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The symplectic topology of Ramanujam’s surface

Paul Seidel and Ivan Smith

Abstract. Ramanujam’s surfaceM is a contractible affine algebraic surface which is not homeo-
morphic to the affine plane. For anym > 1 the productMm is diffeomorphic to Euclidean space
R

4m. We show that, for everym > 0,Mm cannot be symplectically embedded into a subcritical
Stein manifold. This gives the first examples of exotic symplectic structures on Euclidean space
which are convex at infinity. It follows that any exhausting plurisubharmonic Morse function
on Mm has at least three critical points, answering a question of Eliashberg. The heart of the
argument involves showing a particular Lagrangian torus L inside M cannot be displaced from
itself by any Hamiltonian isotopy, via a careful study of pseudoholomorphic discs with boundary
on L.
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1. Introduction

Ramanujam showed in [21] that the complementM of a certain singular curve in the
Hirzebruch surface F1 is a contractible algebraic surface. Algebro-geometrically,M
is distinguished from the affine plane A

2 by being of log general type (having log
Kodaira dimension 2, cf. [17]). Topologically, in spite of being contractible, M is
not homeomorphic to R

4, since its fundamental group at infinity is nontrivial. Now
consider them-fold productMm = M × · · · ×M . This is still of log general type, in
particular not isomorphic to A

2m as an algebraic variety. However, form ≥ 2 the fun-
damental group at infinity becomes trivial, and as a consequenceMm is diffeomorphic
to R

4m; indeed, Dimca [unpublished] observed that any contractible affine variety of
complex dimension d ≥ 3 is diffeomorphic to R

2d (cf. [25, Theorem 3.2]). The
conclusion is that the smooth manifolds R

4m, m ≥ 2, admit nonstandard algebraic
variety structures.

The aim of the present note is to consider this phenomenon from the symplectic
perspective. We will equip M with an exhausting plurisubharmonic function φM ,
which makes it into a Stein manifold of finite type, and consider the associated
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symplectic form ωM (for this and related terminology, see Sections 2 and 3). OnMm

we take the product structure.

Theorem 1. For all m, Mm cannot be symplectically embedded into a subcritical
Stein manifold.

In particular, for m ≥ 2 we obtain a symplectic structure on R
4m which is exotic

(in the usual sense, of not admitting an embedding into the standard R
4m). Any

sufficiently large relatively compact part ofM is exotic in the same sense, because of
the finite type property (cf. Lemma 3 and Lemma 15 below). There is a consequence
which can be stated purely in terms of Stein geometry, answering a question of
Eliashberg [10, Problem 3]:

Corollary 2. For all m, any exhausting plurisubharmonic Morse function on Mm

must have at least 3 critical points.

It seems appropriate to compare Theorem 1 with some other known results. There
are several constructions of exotic symplectic structures on R

2n for n ≥ 2, starting
with the abstract existence theorem of [15, Corollary 0.4.A′

2]. However, in contrast
to our example, the resulting symplectic forms are not known to be convex at infinity;
in fact, at least one construction [18] is explicitly designed to violate that condition.
In a somewhat different direction, we should mention that Eliashberg [10] has given
candidates, by an explicit Lagrangian handle decomposition, for Stein subdomains
of C

2n, n > 2, which are diffeomorphic to balls, and for which he conjectures that
the conclusion of Corollary 2 still holds.

The main result of [21] asserts that A
2 is the only algebraic surface which is

contractible and simply-connected at infinity. The symplectic counterpart of this is the
observation that (assuming the 3-dimensional Poincaré conjecture) any 4-dimensional
Weinstein manifold which is contractible, simply connected at infinity, complete, and
of finite type, is symplectically isomorphic to standard R

4. The proof relies on the
uniqueness of tight contact structures on S3 [9] and the description of Stein fillings of
this structure via families of holomorphic discs [8]. Moreover, the picture changes if
one drops the finite type condition: Gompf [13] has used a suitable infinite handle-
body decomposition to produce Stein structures on uncountably many manifolds
homeomorphic, but not diffeomorphic, to R

4.
The essential ingredient in our proof of Theorem 1 is a particular Lagrangian

torus L ⊂ M , described below. By a careful study of pseudo-holomorphic discs, and
invoking a theorem of Chekanov [5], we show that L ⊂ M cannot be displaced from
itself by a Hamiltonian isotopy. More generally, if i : M → N is a symplectic embed-
ding into a complete Stein manifold, then i(L) ⊂ N has the same non-displaceability
property. This, together with the corresponding facts for products Lm, leads easily to
Theorem 1.
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The heart of the argument involves considering two different compactifications
X and X ∼= F1 of M . The complement X\M is a curve S = S′ ∪ S′′ with two
irreducible components, one of which S′′ has a cusp singularity; the Lagrangian torus
L lies in a neighbourhood of the cusp. Rather than working with a single Lagrangian
torus, we consider a family {Lt } which as t → 0 collapses into the cusp point on S′′.
Intuitively, the limit of a family of holomorphic discs {(D, ∂D) → (M,Lt)}t∈(0,1] as
t → 0 is either a holomorphic sphere in X disjoint from S′, or is the constant map to
the cusp point. The first case is excluded since S′ is ample; the second is impossible
for topological reasons concerning the fundamental group π1(V \S′′), where V ⊂ X

is a small neighbourhood of the cusp. The upshot is that no such families of discs
can exist, enabling us to appeal to Chekanov’s work.

For technical reasons, we in fact work with a blown-up compactificationX → X

of M in which the complement S = X\M is a divisor with normal crossings. The
tori Lt now appear as so-called linking tori for a normal crossing point p of S.
To construct them as manifestly Lagrangian tori, and to make the abovementioned
limiting argument for holomorphic discs rigorous, we use a simple algebro-geometric
trick. Take CP 1 × X and blow up the point (0, p), obtaining a threefold Y with a
projection Y → CP 1. The singular fibre Y0 has an irreducible component which
is a CP 2. We take a Clifford torus K0 in that component, and move it by parallel
transport to obtain a family of Lagrangian toriKt , t ∈ [−1; 1], in the nearby fibres Yt .
For t 	= 0, these fibres are naturally identified with X, and we define Lt to be the
image of Kt under this identification, for t ∈ (−1; 0]. Since the total submanifold
K = ⋃

t∈[−1,1]Kt ⊂ Y is Lagrangian, Gromov compactness can be applied directly
to families of discs with boundary in K . The drawback of this argument is that
the Yt ∼= X carry varying Kähler forms. To take account of this, we give a careful
discussion of Stein deformations in Section 2, and introduce in Section 3 the technical
notion of a “Stein-essential” Lagrangian submanifold. The idea is that for any given
E > 0, we can deform our Stein structure and our Lagrangian submanifold, in such
a way that at the endpoint of the deformation, there are no pseudo-holomorphic discs
of area less than E. Section 4 introduces Lagrangian linking tori, and describes the
implications of a linking torus being Stein-essential. Only in Section 5 are these
ingredients assembled to derive Theorem 1.

There are at least two possible alternative ways of analyzing the symplectic nature
of Mm. One could try to use Floer homology or symplectic homology as introduced
by Viterbo [24], [23] and Cieliebak–Floer–Hofer [7]. In fact, as we intend to discuss
elsewhere, existence of a Stein-essential Lagrangian submanifold already implies
that SH ∗(Mm) 	= 0. To compute SH ∗(Mm) precisely would presumably require
an analysis of the Reeb flow at infinity, though since Floer homology behaves well
under products [19] it would be enough to do the computation for M itself. Floer
homology may also distinguish between different exotic symplectic structures on
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R
4m, which falls outside the scope of the arguments used here. The other possible

approach would be via a symplectic field theory decomposition argument. The aim
would be to prove that if Mm is subcritical, there has to be a non-constant algebraic
map A

1 → M , contradicting a property of contractible surfaces of log general type
[17, Theorem 4.7.1]. Eliashberg has announced a theorem which says that if a smooth
projective variety contains a smooth ample divisor with subcritical complement, then
the variety has many rational curves. In examples, it appears that these rational
curves are closures of maps of A

1 to the complement, but this is not well-understood
in general. Closely related results have been obtained by Biolley [3].

Acknowledgments. The first author would like to thank Denis Auroux for an illu-
minating discussion. Thanks go to Kai Cieliebak for helpful comments on an earlier
version of the paper. This research was partially supported by NSF grant DMS-
0405516 and a grant from the Nuffield foundation NUF-NAL/00876/G.

2. Background

We begin by reviewing the definitions and some elementary results. This follows
([11], [10], [4]) with some modifications. The proofs have been relegated to the
Appendix.

Take a manifoldM equipped with a symplectic formωM , a one-form θM such that
dθM = ωM , and an exhausting (which means proper and bounded below) smooth
function φM : M → R. Let λM be the Liouville vector field associated to θM , so
ωM(λM, ·) = θM . The quadruple (M,ωM, θM, φM) is a convex symplectic manifold
if there is a sequence c1 < c2 < · · · converging to +∞, such that dφM(λM) > 0
on each level set φ−1

M (ck). We call a convex symplectic manifold complete if the
flow of λM exists for all positive times (the corresponding statement for negative
times is always true), and of finite type if there is a c0 such that dφM(λM) > 0
on φ−1

M ([c0; +∞)). Note that if M is complete and of finite type, then the flow of
λM defines a diffeomorphism f : [0; ∞) × φ−1

M (c0) → φ−1
M ([c0; +∞)) satisfying

f ∗θM = er(θM |φ−1
M (c0)), where r is the variable in [0; ∞). HenceM is a symplectic

manifold with a conical end.

Lemma 3. Let M,N be convex symplectic manifolds, with M of finite type and N
complete. Take c0 such that dφM(λM) > 0 on φ−1

M ([c0; +∞)). Then any embedding
i : φ−1

M ((−∞; c0]) → N such that i∗θN − θM is an exact one-form, can be extended
to an embedding M → N with the same property.

Let (ωM,t , θM,t , φM,t ), 0 ≤ t ≤ 1, be a smooth family of convex symplectic
structures on a fixed manifoldM . We say that this is a convex symplectic deformation
if the following two additional conditions hold: the function (t, x) → φM,t (x) on
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[0; 1] ×M is proper; and for each t ∈ [0; 1] there is a neighbourhood t ∈ I ⊂ [0; 1]
and a sequence c1 < c2 < · · · converging to +∞, such that dφM,s(λM,s) > 0 along
φ−1
M,s(ck) for all k and all s ∈ I . A convex symplectic deformation is called complete

if all the convex symplectic structures in it are complete, and of finite type if there is
a c0 such that dφM,t (λM,t ) > 0 on φ−1

M,t ([c0; +∞)) for all t .

Lemma 4. Let (ωM,t , θM,t , φM,t ) be a complete convex symplectic deformation. For
any relatively compact open subset U ⊂ M , there is a smooth family of embeddings
jt : U → M starting with j0 = id, such that j∗

t θM,t−θM,0 are exact one-forms onU .

Lemma 5. Let (ωM,t , θM,t , φM,t ) be a complete finite type convex symplectic defor-
mation. Then there is a smooth family of diffeomorphisms ft : M → M , starting
with f0 = id , such that f ∗

t θM,t − θM,0 = dRt , where (t, x) → Rt(x) is a compactly
supported function on [0; 1] ×M .

It may be instructive to compare our definitions with some that appear elsewhere in
the literature. The condition of a manifold being Weinstein, defined in [10], is related
to but stronger than being convex symplectic; the function φM is tied closely to λM
by a Lyapunov condition, which is somewhat more restrictive than our requirements.
Convex symplectic manifolds were introduced in [11], defined as exact symplectic
manifolds (M,ωM, θM) together with an exhaustion by relatively compact subsets
U1 ⊂ U1 ⊂ U2 ⊂ U2 ⊂ U3 ⊂ · · · , such that each ∂Uk is a smooth hypersurface and
convex of contact type. This coincides with our notion, but we choose to describe the
exhaustion Uk = φ−1

M ((−∞; ck)) via sublevel sets of some function. Our definition
of convex symplectic deformation stays close to the same picture, since locally in
the deformation parameter t , the manifolds (M,ωM,t , θM,t ) have smoothly varying
exhaustions Uk,t = φ−1

M,t ((−∞; ck)). For convex symplectic manifolds which are
both finite type and complete, this is the natural analogue of the notion of deformation
in [10].

A Stein manifold (M, JM, φM) is a complex manifold (M, JM)with an exhausting
plurisubharmonic function φM . Here plurisubharmonicity is always intended in the
strict sense, meaning that −ddcφM = −d(dφM � JM) is a positive (1, 1)-form. We
say that the Stein manifold is complete if the gradient flow of φM exists for all positive
times, and of finite type if there is a c0 such that all c ≥ c0 are regular values of φM .
Taking ωM = −ddcφM and θM = −dcφM then makes M into a convex symplectic
manifold, whose Liouville vector field is λM = ∇φM (and which therefore satisfies
dφM(λM) > 0 on each regular level set of φM ). Completeness or finite type nature
of the Stein manifold imply the corresponding convex symplectic properties.

Lemma 6. Let (M, JM, φM) be a Stein manifold, andh : R → R a function satisfying
h′(c) > 0, h′′(c) ≥ 0 for all c, and such that there are c0 and δ > 0 with h′′(c) ≥
δh′(c) for all c ≥ c0. Then φ̃M = h(φM) is again plurisubharmonic and makes
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(M, JM) into a complete Stein manifold. Denote the convex symplectic structure
obtained from φ̃M by (ω̃M, θ̃M). If the original Stein structure was complete and of
finite type, there is a diffeomorphism f : M → M such that f ∗(θ̃M)− θM = dR for
some compactly supported function R.

Lemma 7. Let φM, φ̃M be two exhausting plurisubharmonic functions on the same
complex manifold (M, JM), of which the second one is complete and of finite type
(while the first one can be arbitrary). Then there is an embedding i : M → M such
that i∗(θ̃M)− θM is an exact one-form.

Let (JM,t , φM,t ), 0 ≤ t ≤ 1, be a smooth family of Stein structures on a manifold
M . We call this a Stein deformation if the following two additional conditions hold:
the function (t, x) → φM,t (x) on [0; 1] ×M is proper; and for each t ∈ [0; 1] there
is a neighbourhood t ∈ I ⊂ [0; 1] and a sequence c1 < c2 < · · · converging to +∞,
such that ck is a regular level set for each φM,s , s ∈ I . A Stein deformation is called
complete if all the Stein structures in it are complete, and of finite type if there is a c0
such that all c ≥ c0 are regular values of φM,t for all t ∈ [0; 1]. Clearly, these kinds
of deformations induce the corresponding convex symplectic notions.

It remains to make the connection with algebraic geometry. Let X be a smooth
projective variety,E → X an ample line bundle, sE ∈ H 0(E) a nonzero holomorphic
section, and S = s−1

E (0) the hypersurface along which it vanishes. Ampleness means
that we can put a metric ‖ · ‖E on E such that the curvature form ωX = iF∇E of the
associated connection ∇E is a positive (1, 1)-form. The restriction of this form to
M = X \ S can be written as ωM = ωX|M = −ddcφM , where φM = − log ‖sE‖E .
This is clearly an exhausting function, hence defines a Stein structure.

Lemma 8. Suppose that S has only normal crossing singularities (but sE can vanish
along the irreducible components with arbitrary multiplicities). Then φM is of finite
type.

There is also a version of this for deformations: in the same algebro-geometric
situation, given a family ‖ · ‖E,t of metrics, one gets a finite type Stein deformation
(JM,t = JM, φM,t = − log ‖sE‖E,t ).

3. Stein-Essential Lagrangian submanifolds

Following a line of thought similar to the one in [4], we combine “soft” displacement
methods for subcritical Stein manifolds with “hard” Lagrangian intersection results
to derive some restrictions on embeddings of Stein manifolds.

Let (M,ωM, θM) be any exact symplectic manifold. By a Hamiltonian isotopy
of M , we will mean an isotopy (gt ), 0 ≤ t ≤ 1, starting with g0 = id, which is
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induced by a smooth family of Hamiltonian functions Ht , such that (t, x) → Ht(x)

has compact support in [0; 1] ×M . The Hofer length of (gt ) is defined as

∫ 1

0

(
max(Ht )− min(Ht )

)
dt.

Now let L ⊂ M be a Lagrangian submanifold (throughout, all such submanifolds
will be assumed to be compact). Consider Hamiltonian isotopies (gt ) such that
gt (L) ∩ L = ∅. The infimum of the Hofer lengths of all these isotopies is called the
displacement energy ofL (of course, there are cases where no such isotopy exists, and
then the displacement energy is ∞). Recall that by definition, a Lagrangian isotopy
(Lt ) is exact if the class [θM |Lt ] ∈ H 1(Lt ; R) ∼= H 1(L0; R) is constant in t . These
are precisely the Lagrangian isotopies which can be embedded into Hamiltonian ones,
in the sense that there is a (gt ) with gt (L0) = Lt . Hence, the displacement energy is
invariant under exact Lagrangian isotopies. Chekanov’s theorem ([5] ,[6], [20]) says:

Theorem 9. Let L ⊂ M be a compact Lagrangian submanifold whose displacement
energy is E < ∞. Let JM be an ωM -compatible almost complex structure which is
convex at infinity. Then there is a non-constant JM -holomorphic map u : (D, ∂D) →
(M,L), where D ⊂ C is the closed unit disc, whose area is

∫
u∗ωM ≤ E. �

Convexity at infinity of the almost complex structure means that there is an ex-
hausting function φM such that outside a compact subset, −d(dφM � JM) is positive
on all JM -complex tangent planes. This holds for the given complex structure on
any Stein manifold, but it also allows one to deform that structure (compatibly with
the symplectic form) on a compact subset. Chekanov’s theorem actually holds in
somewhat greater generality, but that will not be necessary for our purpose.

Recall that a Stein manifold (M, JM, φM) is subcritical if φM is a Morse function
and has only critical points of index < 1

2 dimRM . The next statement is a special
case of [4, Lemma 3.2] (and technically somewhat simpler than the general result):

Lemma 10. For any Lagrangian submanifold L in a complete subcritical Stein
manifold M , there exists an exact Lagrangian isotopy (Lt ) such that L0 = L and
L1 ∩ L0 = ∅. �

Suppose that we have a Stein manifold, containing a Lagrangian submanifold
such that there are no non-constant holomorphic discs bounding it. Then our Stein
manifold cannot be subcritical (one would use Lemma 6 to make it complete, and
then combine Theorem 9 with Lemma 10). A little less obviously, this manifold
cannot have an exact symplectic embedding into any subcritical Stein manifold. We
will spend the rest of this section deriving a more complicated version of the latter
statement.
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Let (M, JM, φM) be a complete finite type Stein manifold, and take c0 as usual.
On φ−1

M ([c0; ∞)), which in symplectic terms is the cone part of M , consider the
splitting

TM = ξM ⊕ ξ⊥
M (1)

where ξM = ker(dφM)∩ ker(dcφM) is the contact hyperplane field on each level set
φ−1
M (c), c ≥ c0; and ξ⊥

M = R∇φM ⊕RρM is spanned by the Liouville vector field to-
gether with the Reeb vector field on each level set, which is ρM = JM∇φM/‖∇φM‖2.
The decomposition (1) is JM -invariant and orthogonal with respect to ωM . One can
therefore find an ωM -compatible almost complex structure J̃M which

is equal to JM on φ−1
M (−∞; c0]);

preserves ξM , and maps λM
to a positive multiple of ρM

on φ−1
M ([c0; +∞));

is invariant under the Liouville flow on φ−1
M ([c0 + 1; +∞)).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2)

Lemma 11. Let �0 be a compact connected Riemann surface with boundary, and
u : �0 → M a J̃M -holomorphic map such that u(∂�0) ⊂ φ−1

M ((−∞; c0]). Then
u(�0) ⊂ φ−1

M ((−∞; c0]).

Proof. The second part of (2) implies that on φ−1
M ([c0; +∞)), −dφM � J̃M = η θM

with a strictly positive function η. Hence

−d(dφM � J̃M) = η ωM + dη

η
∧ (−dφM � J̃M). (3)

Suppose that we have a J̃M -holomorphic map u : �0 → M such that u(∂�0) ⊂
φ−1
M ((−∞; c0]) but u(�0) 	⊂ φ−1

M ((−∞; c0]). Then there is a c > c0 such that u
intersects the level set φ−1

M (c) transversally in a nonempty set. Consider the function
ψ = φM � u on the surface � = u−1φ−1

M ([c; +∞)) ⊂ �0. By pulling back (3) and
using the positivity of u∗ωM we obtain a differential inequality for ψ , which in a
local holomorphic coordinate z = s + it can be written as

(∂2
s + ∂2

t )ψ − σ(s, t)∂sψ − τ(s, t)∂tψ ≥ 0

with σ = (η � u)−1∂s(η � u), τ = (η � u)−1∂t (η � u). The strong maximum principle
[12, Theorem 3.5] applies to solutions of such equations, hence ψ ≤ c everywhere
on �, which means that u(�0) ⊂ φ−1

M ((−∞; c]). Since c can be chosen arbitrarily
close to c0, the result follows. �

Because J̃M is invariant under the Liouville flow outside a compact subset, it is
tame in the sense of [1, Chapter V, Definition 4.1.1]. In particular, the monotonicity
lemma [1, Chapter V, Proposition 4.3.1] applies:
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Lemma 12. Let g̃M be the metric associated to ωM and J̃M . There is a ρ > 0, which
is less than the injectivity radius of g̃M , and an ε > 0, such that the following holds.
Let x be any point inM , and Br(x) the closed ball of radius r ≤ ρ around it. If � is
a compact Riemann surface with boundary, and u : � → Br(x) a J̃M -holomorphic
map satisfying x ∈ u(�) and u(∂�) ⊂ ∂Br(x), then

∫
u∗ωM ≥ ε r2. �

Lemma 13. For every E > 0 there is a C > 0 with the following property. Let
� be a compact connected Riemann surface with boundary, whose boundary is
decomposed into two nonempty unions of circles ∂−� ∪ ∂+�. Let u : � → M

be a J̃M -holomorphic map such that u(∂−�) ⊂ φ−1
M ((−∞; c0]) and u(∂+�) ⊂

φ−1
M ([C; ∞)). Then

∫
�
u∗ωM > E.

Proof. Consider the diffeomorphism f : [0; ∞)× φ−1
M (c0) → φ−1

M ([c0; ∞)) which
defines the conical end structure. Since the metric g̃M blows up on the cone, the
distance between any two sets f ({i} × φ−1

M (c0)), i = 0, 1, 2, . . . is bounded below
by some δ > 0. Take the constants ρ, ε from Lemma 12. After making δ smaller
if necessary, we may assume that δ/2 < ρ; we then take an integer k greater than
9δ−2ε−1E, and choose C so that φ−1

M ([C; ∞)) ⊂ f ([k; ∞)× φ−1
M (c0)).

Since� is connected and intersects bothφ−1
M ((−∞; c0]) andf ([k; ∞)×φ−1

M (c0))

nontrivially, there are points z1, . . . , zk ∈ � such that xi = u(zi) ∈ f ({i − 1/2} ×
φ−1
M (c0)). The balls Br(xi), for any r < δ/2, are mutually disjoint. Choose
r ∈ (δ/3; δ/2) in such a way that u is transverse to all the boundaries ∂Br(xi).
By Lemma 12, each ui = u|u−1(Br(xi)) : u−1(Br(xi)) → Br(xi) has area ≥ εδ2/9.
Hence, the total area of u is ≥ kεδ2/9 > E. �

Let (M, JM, φM) be a finite type Stein manifold. We say that a compact La-
grangian submanifold L ⊂ M is Stein-essential if for each E > 0 there is a finite
type Stein deformation (JM,t , φM,t ) and a smooth family of compact submanifolds
Lt ⊂ M (0 ≤ t ≤ 1), with the following properties: at the starting point t = 0, we
have the original Stein structure and Lagrangian submanifold L = L0; for all t , Lt
is ωM,t -Lagrangian, and the cohomology class [θM,t ] ∈ H 1(Lt ; R) ∼= H 1(L; R) is
constant in t ; and at the opposite end, every JM,1-holomorphic map u : (D, ∂D) →
(M,L1) with

∫
u∗ωM,1 ≤ E is constant.

Proposition 14. Let M be a finite type Stein manifold, which admits an embedding
i : M → N into a complete subcritical Stein manifold, such that i∗θN−θM is an exact
one-form. Then M cannot contain any Stein-essential Lagrangian submanifolds.

Proof. Assume that on the contrary, there is a Stein-essential Lagrangian submanifold
L ⊂ M . By definition, for each E we can find a finite type Stein deformation
(JM,t , φM,t ) and family of Lagrangian submanifolds (Lt ), such that E is a strict
lower bound for the area of non-constant JM,1-holomorphic discs in (M,L1). We
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may takeE to be the displacement energy of i(L) insideN , which is finite by Lemma
10.

Because the deformation (JM,t , φM,t ) is of finite type, there is a c0 > 0 so that all
c ≥ c0 are regular values of φM,t for all t . After making c0 larger if necessary, one can
also assume that Lt ⊂ φ−1

M,t ((−∞; c0]). Lemma 6 says that one can find functions

ht depending smoothly on t , such that the modified Stein structures (JM,t , φ̃M,t =
ht (φM,t )) are complete. Choose these functions in such a way that ht (c) = c for
c ≤ c0, which means that the Lt remain Lagrangian for the associated modified
convex symplectic structures (ω̃M,t , θ̃M,t ).

By construction (JM,1, φ̃M,1) is complete and of finite type. Introduce a new ω̃M,1-
compatible almost complex structure J̃M,1 as in the discussion preceding Lemma 11.
More explicitly, to carry over that construction to the current situation, one should
replace the notationJM , φM , J̃M in (2) by JM,1, φ̃M,1, J̃M,1 respectively; and similarly
ξM ,λM ,ρM are now the contact hyperplane field, Liouville vector field, and Reeb
vector field associated to (ω̃M,1, θ̃M,1) and to the conical end [c0; +∞)×φ̃−1

M,1(c0) →
φ̃−1
M,1([c0; +∞)). We will now state some properties of the data introduced so far.

(a) There is an embedding ı̃ : M → N with ı̃(L) = i(L), such that ı̃∗θN − θ̃M,0 is
an exact one-form.

To obtain that, restrict i to an embedding of φ−1
M ((−∞; c0]) into N , note that

θM = θ̃M,0 on that subset, and then extend it to the whole of (M, ω̃M,0, θ̃M,0) using
Lemma 3.

(b) There is a diffeomorphism f̃1 : M → M such that f̃ ∗
1 θ̃M,1 − θ̃M,0 is an exact

one-form, and f̃1(L0) is exact Lagrangian isotopic to L1.

By definition (JM,t , φ̃M,t ) is a complete finite type deformation, so Lemma 5
provides a family of diffeomorphisms f̃t : M → M such that f̃ ∗

t θ̃M,t−θ̃M,0 are exact.
f̃1f̃

−1
t (Lt ) is a Lagrangian isotopy between f̃1(L0) and L1, and the cohomology

class [θ̃M,1|f̃1f̃
−1
t (Lt )] = [θ̃M,0|f̃−1

t (Lt )] = [θ̃M,t |Lt ] = [θM,t |Lt ] is constant in t ,
which means that the isotopy is exact.

(c) The image of any J̃M,1-holomorphic disc ũ : (D, ∂D) → (M,L1) is contained
in φ̃−1

M,1((−∞; c0]).
By construction L1 ⊂ φ̃−1

M,1((−∞; c0]); therefore Lemma 11 applies and yields
the desired result.

(d) There is a C > c0 with the following property. Let � be a compact con-
nected Riemann surface with boundary, whose boundary is decomposed into two
nonempty unions of circles ∂−�∪∂+�. Let ũ : � → M be a J̃M,1-holomorphic
map such that ũ(∂−�) ⊂ φ̃−1

M,1((−∞; c0]) and ũ(∂+�) ⊂ φ̃−1
M,1([C; ∞)). Then∫

�
u∗ω̃M,1 > E.
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Up to the change in notation, this is Lemma 13.
Consider the compact subset K = φ̃−1

M,1((−∞;C + 1]), and let j = ı̃ � f̃−1
1 |K :

K → N . Clearly, one can find an ωN -compatible almost complex structure J̃N
with the following two properties: J̃N = JN outside a compact subset; and j∗J̃N =
J̃M,1|K . From (b) we know that the Lagrangian submanifold j (L1) is exact isotopic
to ı̃(L), hence its displacement energy is again E. Since J̃N = JN at infinity, we
can apply Theorem 9, which shows that there is a non-constant J̃N -holomorphic disc
u : (D, ∂D) → (N, j (L1)) with

∫
u∗ωN ≤ E.

Choose a c ∈ [C;C + 1] such that u intersects the hypersurface j (φ̃−1
M,1(c))

transversally. Consider only the part of our J̃N -holomorphic disc u that lies on the
interior side of that hypersurface. This may have several connected components;
we ignore all of them except the one which contains ∂D, and compose that with
j−1 to obtain a J̃M,1-holomorphic map ũ : � → K ⊂ M . By construction, � is
a connected compact Riemann surface with boundary; its boundary contains one
circle ∂−� such that ũ(∂−�) ⊂ L1 ⊂ φ̃−1

M,1((−∞; c0]), and if ∂+� is the union

of all the other boundary circles, then ũ(∂+�) ⊂ φ̃−1
M,1(c) ⊂ φ̃−1

M,1([C; ∞)); finally∫
ũ∗ω̃M,1 ≤ E. By (d) above, this is possible only if ∂+� = ∅, which means that

ũ is a non-constant J̃M,1-holomorphic disc in (M,L). Applying (c) we find that the
image of ũ must be contained in φ̃−1

M,1((−∞; c0]), which implies that it is in fact a
JM,1-holomorphic disc, with

∫
ũ∗ωM,1 ≤ E. However, given our original choice of

the deformation, the existence of such a disc violates the definition of Stein-essential
Lagrangian submanifold. �

In fact, the requirement that N is complete can be omitted, due to the following
observation, which is similar to step (a) in the previous proof:

Lemma 15. Let M be a finite type Stein manifold. If M admits an embedding
i : M → N into a subcritical Stein manifold, such that i∗θN − θM is an exact one-
form, then it also admits an embedding into a complete subcritical Stein manifold,
with the same property.

Proof. Take c0 so that all c ≥ c0 are regular values of φM . Use Lemma 6 to find
an h such that φ̃N = h(φN) gives rise to a complete Stein structure. This is still
subcritical, because the critical points and their Morse indices remain the same. h
can be chosen in such a way that the new convex symplectic structure (ω̃N , θ̃N ) agrees
with the old one on i(φ−1

M ((−∞; c0]) ⊂ N . By restricting i to φ−1
M ((−∞; c0]), and

then extending it again using Lemma 3, one gets an embedding j : M → N such that
j∗θ̃N − θM is exact. �
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4. Linking tori

Throughout this section, X will be a smooth projective algebraic surface; S ⊂ X an
algebraic curve with only normal crossing singularities; and p ∈ S a crossing point.
Set M = X \ S. Take local holomorphic coordinates (a, b) centered at p in which
S = {ab = 0}, and let U ⊂ X be a ball of some radius ρ > 0 in those coordinates.
Consider the torus L ⊂ M given by {|a| = μ, |b| = ν} for some 0 < μ, ν < ρ/

√
2.

We will call such anL, as well as any other torus isotopic to it insideU ∩M , a linking
torus for S at p.

Recall that, given any algebraic curve on a smooth algebraic surface, one can re-
solve its singularities by blowups, until only normal crossings remain ([2], Chapter II).
The linking tori constructed in this way can be viewed as lying in the complement
of the original curve, since blowups leave that complement unchanged. We will now
consider in more detail the simplest example of this, which is relevant for our appli-
cation later on. Let X be a smooth projective algebraic surface, and S ⊂ X a curve
which has a cusp singularity at the point p. Blow up to get a map q : X → X, such
that S = q−1(S) has only normal crossings. We assume that this resolution is the
minimal one (meaning that no exceptional component of S can be blown down with-
out violating the normal crossing condition). Take local coordinates (c, d) centered
at p in which S = {c2 = d3}; let V ⊂ X be a small ball in these coordinates; and set
V = q−1(V ). The curve S ∩V consists of a small piece of the principal component,
which is the proper transform of S, and three exceptional components of multiplicities
2, 3 and 6. Figure 1 summarizes the stages of the blowup process and the correspond-
ing coordinate changes (the thick lines are the exceptional components, and the dots
indicate the origin of the coordinate systems used).

Consider the linking torus L = {|a| = μ, |b| = ν} at the point (a, b) = (0, 0)
where the principal component of S ∩ V crosses the exceptional component of mul-
tiplicity 6 (this point is indicated by the small arrow in Figure 1). Its image under q
is the torus L = Lμ,ν parametrized by

c = μ3(νeiγ + 1)e3iδ, d = μ2(νeiγ + 1)e2iδ

for (γ, δ) ∈ R/2πZ, and where μ, ν > 0 are suitably small constants. By keeping
μ constant and letting ν → 0, one obtains a smooth family of tori in V \ S, which in
the limit shrink to the loop (c = μ3e3iδ, d = μ2e2iδ) lying on (S \ {(0, 0)}) ∩ V .

The topological aspect of cusp singularities is well-known: the intersection S3 ∩
{c2 = d3} is a (2, 3)-torus knot, which is a trefoil κ . One can find a diffeomorphism
V \{(0, 0)} ∼= (0; 1)×S3 which takes S \{(0, 0)} to (0; 1)×κ , hence identifies V \S
with (0; 1)× (S3 \ κ). From the argument given above, it follows that the loop on L
given by {γ = const.} is homotopic to a longitude of κ . Here, by longitude we mean
a curve in S3 \κ which runs parallel to κ , for some framing which may not necessarily
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c2 − d3

t2(s2 − t)

u2v3(v − u)

t = uv
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v = a

u = (b + 1)a

d = (b + 1)a2

c = (b + 1)a3

3

6

Figure 1

be the canonical one (this ambiguity could be settled by explicit computation, but it
is irrelevant for our purpose). Similarly, by inspection of the limit ν → 0 with fixed
μ and δ, one sees that the other loop {δ = const.} on L is a meridian of κ . It is a
general fact about nontrivial knots (Dehn’s Lemma, see e.g. [16, Theorem 11.2]) that
longitude and meridian together define an injective homomorphism Z

2 → π1(S
3\κ),

which for us means that π1(L) → π1(V \ S) is injective. Using the identification
V \ S ∼= V \ S provided by q, we arrive at this conclusion:

Lemma 16. If a loop on L bounds a disc in V \ S, then it must be contractible on L
itself. �

Returning to the general discussion of linking tori, we now reformulate their
definition using a degeneration ofX to a normal crossing surface. Let Y be the variety
obtained by blowing up (0, p) ∈ P

1 ×X, and π : Y → P
1 ×X → P

1 the projection
to the first variable. The smooth fibres Yt , t ∈ P

1\{0}, are obviously isomorphic toX.
The singular fibre has two irreducible components, Y0 = Z∪P : Z is the blowup ofX
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at p, and P = P(C ⊕ TXp) is the exceptional divisor in Y . They are joined together
by a normal crossing, where one identifies the exceptional curve in Z with the line
C0 = P({0} ⊕ TXp) in P . Let T ⊂ Y be the proper transform of P

1 × S ⊂ P
1 ×X

under the blowup, and Tt = T ∩ Yt . For t 	= 0 one can obviously identify Tt ⊂ Yt
with S ⊂ X; while T0 is the union of T ∩ Z, which is the proper transform of S
under blowing up p ∈ X, and of T ∩ P , which consists of the two lines C1, C2 ⊂ P

obtained by projectivizing C × (tangent space to either branch of S at p). Choose
an isomorphism P ∼= P

2 in such a way that the Ck become the coordinate lines, and
let K0 ⊂ (C∗)2 ∼= P \ (C0 ∪ C1 ∪ C2) be one of the standard Clifford tori. One can
find a submanifold with boundaryK ⊂ Y , lying in π−1([−1; 1]) and with boundary
in π−1({−1; 1}), such that π |K : K → [−1; 1] is a smooth fibration, whose fibre
over t = 0 is the given K0. One way to think of this is to choose a connection (a
horizontal subbundle) on the open subset of π -regular points of Y . Since K0 lies in
that subset, one can use parallel transport to move it to other fibres, and doing that in
both directions along the real axis yieldsK . In fact, anyK with the properties stated
above can be obtained in this way, for some choice of connection.

Lemma 17. For all sufficiently small t ∈ [−1; 1] \ {0}, Kt = K ∩ Yt is a linking
torus for S at the crossing point p.

It may be appropriate to first clarify the meaning of this. As before, let (a, b) be
coordinates centered at p in which S = {ab = 0}, and U a ball in those coordinates.
By identifying Yt ∼= X for t ∈ [−1; 1] \ {0}, one can think of theKt as tori inside X.
A more technical formulation of the lemma is that for sufficiently small such t ,Kt lies
inU \S, and is isotopic inside that set to the standard linking torus {|a| = μ, |b| = ν}.
(This formulation, and the following proof, are somewhat pedantic, but are engineered
to adapt well to the symplectic geometry requirements to be imposed subsequently.)

Proof. LetW be the preimage of P
1 ×U under the blowup map Y → P

1 ×X. Since
K0 ⊂ P ⊂ W , one has Kt ⊂ W ∩ Yt = U for sufficiently small t 	= 0. Similarly,
because K0 ∩ T = K0 ∩ (C1 ∪ C2) = ∅, one has Kt ∩ S = ∅ for sufficiently small
t 	= 0. The next step is to show that the isotopy type ofKt insideU \S is independent
of the choice of K . If one thinks of that choice as given by a connection, any two
connections can be deformed into each other, which gives rise to an isotopy of the
associated submanifolds Kt . The previous considerations show that for small t , this
isotopy will take place inside U \ S.

With that in mind, it is sufficient to prove the statement that theKt are linking tori
for just one choice ofK . We write down the local picture near P ⊂ Y in coordinates:

Y = {(t, a, b, [τ : α : β]) ∈ C
3 × P

2 : (t, a, b) ∈ [τ : α : β]},
π(t, a, b, [τ : α : β]) = t,

Z = {t = 0, τ = 0},
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P = {t = a = b = 0},
T = {αβ = 0}.

Here (t, a, b) should actually lie in a small neighbourhood of (0, 0, 0), but we omit
that to make the notation more transparent. By definition, K0 = {τ = 1, |α| = μ,

|β| = ν} for some constants μ, ν > 0, and one can therefore take K = {t ∈ R,

|a| = μ|t |, |b| = ν|t |}, in which case Kt (t 	= 0) is clearly a family of linking tori,
whose diameter shrinks as t → 0. �

From this point onwards, we will make the additional assumption that there is
an effective divisor D on X whose support is S (in other words, D is a sum of the
irreducible components of S with positive multiplicities), which is ample. Let E =
OX(D) be the associated ample line bundle. Form the tensor product OP1(1)�E →
P

1 × X and pull it back to a line bundle on Y (keeping the notation for simplicity).
For d � 0, F = (OP1(1) � E)⊗d ⊗ OY (−P) → Y is again ample. We will now
recall Kodaira’s classical proof of this fact; for full details see e.g. [14, p. 185].
Start with a metric ‖ · ‖E on E whose curvature (more precisely iF∇E , where ∇E is
the associated connection) is a positive (1, 1)-form, denoted by ωX. Similarly, on
OP1(1)we choose a metric whose curvature is a positive (1, 1)-formωP1 . Tensor them
together to give a metric on OP1(1)� E, with curvature ωP1 + ωX. By specializing
to the point (0, p) ∈ P

1 ×X, this induces a metric on the bundle OP (1) → P , and a
Fubini–Study form ωP on P . One can identify OY (−P)|P ∼= OP (1), so this gives a
metric on OY (−P)|P , which one can extend to a small neighbourhood of P . On the
complement of P , OY (−P) is canonically trivial, so one can take a constant metric,
and patch that together with the other one using a cutoff function. The outcome is a
metric on OY (−P) whose curvature form restricts to ωP on P . Direct computation
shows that for d � 0, the curvature of the resulting tensor product metric ‖ · ‖F on
F is a positive (1, 1)-form, which we denote by ωY .

For our application, we suppose that ‖ · ‖E has been chosen in such a way that
the two branches of S meet orthogonally at p. This is always possible, in fact
one can modify the Kähler potential to make the metric standard in any given local
holomorphic coordinates; see e.g. [22, Lemma 7.2]. The advantage is that we can
then identify P ∼= P

2 in such a way that C0, C1, C2 become the coordinate lines, and
ωP the standard Fubini–Study form. As a consequence, any Clifford torus K0 ⊂ P

is Lagrangian for ωY |P = ωP . The Kähler form ωY also induces a symplectic
connection on the set of π -regular points in Y . We use this connection to transportK0
into nearby fibres, as described above. The resulting K is a Lagrangian submanifold
with boundary inside (Y, ωY ) (this is best seen in two steps: since the connection
is symplectic and K0 is Lagrangian, each Kt will be Lagrangian in Yt ; and since
the horizontal subspace is defined as the ωY -orthogonal complement to the fibrewise
tangent spaces, K itself is Lagrangian).
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Lemma 18. Suppose that there is a sequence tk ∈ (0; 1] with limk tk = 0, and a
sequence of holomorphic discs uk : (D, ∂D) → (Ytk , Ktk ) whose areas

∫
u∗
kωY are

bounded. Then, after passing to a subsequence, there is a finite collection of holo-
morphic maps vi : P

1 → X with the property that (with respect to the isomorphism
Ytk

∼= X) the image of uk for k � 0 is contained in an arbitrarily small neighbour-
hood of the union of the images of the vi . Moreover, the union of the images of the vi
is connected, and contains p.

Proof. Consider (tk, uk) as a sequence of holomorphic discs in Y with boundary
on the Lagrangian submanifold K , and apply Gromov compactness to a suitable
subsequence. Since the images of the discs lie in Ytk , the limiting stable disc has
image in Y0. Its components are of three kinds: holomorphic spheres wi : P

1 → Z

and yi : P
1 → P , as well as discs zi : (D, ∂D) → (P,K0). A fairly weak implication

of Gromov convergence is that the image of (tk, uk) for k � 0 is contained in an
arbitrarily small neighbourhood (in Y ) of the union of the images of the wi, yi, zi .
We define the vi to be the images of all the original components under blowdown
Y → P

1 × X; the yi and zi become constant, and in the latter case we replace the
domain D by P

1. The convergence statement then holds by construction; since the
original stable disc was connected, the same applies to the union of the images of the
vi ; and since there was at least one zi component, there is at least one vi which is the
constant map with value p. �

Lemma 19. Suppose that there is a union of irreducible components of S, forming
a sub-curve S′ ⊂ S with p /∈ S′, and an effective nef divisor D′ whose support
is S′. Assume that we have (tk, uk) as in the previous lemma, with the additional
assumption that u−1

k (S′) = ∅ for all k. Then v−1
i (S′) = ∅ for all i.

Proof. We have uk ·D′ = 0 because the supports are disjoint, and by looking at the
Gromov limiting process,

∑
i vi ·D′ = 0 (the fact that (0, p) is blown up in Y plays

no role here, since p /∈ S′). Nefness implies that vi ·D′ = 0 for each i, which means
that the image of vi is either contained in S′ or disjoint from it. Connectedness of the
Gromov limit, together with the fact that p /∈ S′ lies on one of the vi , means that the
first possibility is excluded. �

We now link this with the previous discussion of Stein-essential Lagrangian sub-
manifolds. E comes with a canonical holomorphic section sE which vanishes pre-
cisely on S. From this, the section of OP1(1) which vanishes exactly at {∞}, and the
nowhere zero meromorphic section of OY (−P) which has a simple pole at P , one
gets a section sF of F which vanishes precisely on Y∞ ∪ T ∪ P . For t 	= 0,∞,
choose the isomorphism F |Yt ∼= E in such a way that sF gets mapped to sE . Then
the restriction of ‖ · ‖F to Yt ∼= X induces a metric ‖ · ‖E,t onE, hence an exhausting
plurisubharmonic function φM,t = − log ‖sE‖E,t , which by Lemma 8 makesM into
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a finite type Stein manifold. Note that the associated convex symplectic structure
(ωM,t , θM,t ) satisfies θM,t = (dc log ‖sF ‖F ) | (Yt \ Tt ) and ωM,t = ωY | (Yt \ Tt ),
where we are again using the identifications Yt \ Tt ∼= X \ S = M .

By Lemma 17 one can find a τ > 0 such that for t ∈ (0; τ ] ⊂ P
1, Kt is a linking

torus, and in particular disjoint from S. This yields a smooth family of submanifolds
Kt ⊂ M which are ωM,t -Lagrangian. Moreover, the class [θM,t |Kt ] is constant in t .
To see this, note that sinceK itself is ωY -Lagrangian, the restriction of dc log ‖sF ‖F
to K ∩ π−1(0; τ ] is a closed one-form. Its image under the restriction map H 1(K ∩
π−1((0; τ ]); R) → H 1(Kt ; R) is [θM,t |Kt ], which is therefore independent of t as
claimed.

Lemma 20. Suppose that Kτ , as a Lagrangian submanifold of the Stein manifold
(M, φM,τ ), is not Stein-essential in the sense of Section 3. Then there is a sequence
tk ∈ (0; τ ] with limk tk = 0, and a sequence of non-constant holomorphic discs
uk : (D, ∂D) → (Ytk \ Ttk ,Ktk ) whose areas

∫
u∗
kωY are bounded.

Proof. Suppose that the conclusion is false. Then as t ∈ (0; τ ] goes to zero, the least
area of non-constant holomorphic discs boundingKt in (M,ωM,t )must go to infinity.
More precisely, for each E > 0 there is a τ ′ ∈ (0; τ ] such that every holomorphic
disc (D, ∂D) → (M,Kτ ′) with

∫
u∗ωM,τ ′ ≤ E is constant. The manifold M ,

with its given complex structure and the family of plurisubharmonic functions φM,t ,
t ∈ [τ ′; τ ], is a finite type Stein deformation (see the remark following Lemma 8),
and the Kt , t ∈ [τ ′; τ ], are a family of Lagrangian submanifolds such that [θM,t |Kt ]
is constant. By definition, the existence of such a deformation for each E means that
Kτ is Stein-essential, contrary to our assumption. �

Slightly more generally, suppose that for some m ≥ 1, the product Km
τ is not

Stein-essential as a Lagrangian submanifold of Mm equipped with the product Stein
structure (meaning the product complex structure and the plurisubharmonic function
(x1, . . . , xm) → φM,τ (x1)+ · · · + φM,τ (xm), which is still of finite type). Then the
same argument as before shows that one can find tk and non-constant holomorphic
discs (u1

k, . . . , u
m
k ) : (D, ∂D) → ((Ytk \ Ttk )m,Km

t ) with bounded area. After choos-

ing a non-constant component uk = u
ik
k , ik ∈ {1, . . . , m} of each disc, one arrives at

the same conclusion as in the lemma itself.

5. Conclusion

We briefly recall Ramanujam’s construction [21]. In P
2 take a smooth conic, and

a cubic with a cusp singularity, which intersect each other at two points with mul-
tiplicities 1 and 5 respectively (the intersection points should also be distinct from
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the cusp). Blow up the multiplicity 1 intersection point, and let S′, S′′ be the proper
transforms of the conic and the cubic, respectively, inside the blowup X̄ ∼= F1. The
union S = S′∪S′′ has two singular points, namely the multiplicity 5 intersection point
and the cusp. Take the minimal blowup q : X → X such that S = q−1(S) is a divisor
with normal crossings. The resolution graph describing S is shown in Figure 2. The
fattened vertices correspond to those components which are the proper transforms of
S′ (with selfintersection −2) and S′′ (with selfintersection −3); the other components
are exceptional divisors lying above the cusp (on the left) and the multiplicity 5 in-
tersection point (on the right). Let p ∈ S be the crossing point in the preimage of
the cusp where the proper transform of the cubic intersects the exceptional divisor of
multiplicity 6; this corresponds to the edge indicated by the arrow.

−2−3 −1 −3 −1

−2−2

−2 −2 −2

Figure 2

Because S is ample, one can find an ample divisor D on X whose support is S.
Set E = OX(D), and carry out the construction from the previous section for the
pointp; this yields a family of plurisubharmonic functionsφM,t andωM,t -Lagrangian
tori Kt . Take τ as in the discussion before Lemma 20. Equip M with its standard
complex structure JM , the function φM = φM,τ which makes it into a finite type
Stein manifold, and the Lagrangian submanifold L = Kτ .

Let S′ ⊂ S be the preimage of S′, which is its proper transform together with
the exceptional curves arising from blowing up the multiplicity 5 intersection point.
Since S′ ⊂ X is ample, one can use Kodaira’s construction to find an effective
divisor D′ with support S′, and a (1, 1)-form representing its Poincaré dual, which
is nonnegative everywhere, and positive away from the preimage of the cusp point.
This means that any curve � with � · D′ ≤ 0 must lie on the preimage of the cusp
point; in particular D′ is nef.

Proof of Theorem 1. Assume that Mm has a symplectic embedding i into a sub-
critical Stein manifold N , which we may assume to be complete by Lemma 15.
Since H 1(Mm; R) = 0, the closed one-form i∗θN − θM is automatically exact.
By Proposition 14, Lm cannot be Stein-essential. Using Lemma 20 and the re-
mark following it, one then gets a sequence tk and non-constant holomorphic discs
uk : (D, ∂D) → (Ytk \ Ttk ,Ktk ) with bounded energy. The isomorphism Ytk

∼= X
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sends Ttk to S, hence the image of each uk is disjoint from S′ ⊂ S. The limit of this,
in the sense of Lemma 18, is a finite collection of holomorphic maps vi : P

1 → X,
which by Lemma 19 are disjoint from S′. Using the observation made above, it fol-
lows that the image of the vi lies in the preimage of the cusp point. In other words,
if V is a neighbourhood of the cusp in X, and V its preimage in X, then for k � 0
we have a non-constant holomorphic disc uk : (D, ∂D) → (V \ S,Ktk ). SinceKtk is
a linking torus for a crossing point which arose from a cusp, we can apply Lemma 16
to conclude that uk(∂D) is a contractible loop onKtk . But by Stokes this implies that
the area

∫
u∗
kωY is zero, which means that uk is constant, hence yields a contradiction.

�

Proof of Corollary 2. Suppose that Mm carries an exhausting plurisubharmonic
Morse function φ̃M with just 1 critical point. In view of Lemma 6, we may as-
sume that φ̃M is complete; and it is of finite type by assumption. Lemma 7 then
says that there is a symplectic embedding i : M → M such that i∗θ̃M − θM is exact,
contradicting Theorem 1. �

Appendix

Proof of Lemma 3. This is a straightforward generalization of the case of cotangent bundles,
discussed in [11, Proposition 1.3.A]. Without affecting the validity of the statement, we may
replace θN by θ̃N = θN + dK for any compactly supported function K . A suitable choice of
K ensures that i∗θ̃N = θM , and then i takes the Liouville flow lM to the modified Liouville
flow l̃N associated to θ̃N . By assumption, for any point x ∈ M there is a t ≥ 0 such that
l−tM (x) ∈ φ−1

M ((−∞; c0]), and on the other hand l̃tN is defined for all t ≥ 0. Hence

jt = l̃tN � i � l−tM , t ≥ 0

is a family of mutually compatible extensions of i to successively larger subsets, which exhaust
M; and they satisfy j∗

t θ̃N = θM . �

Proof of Lemma 4. After a finite decomposition of the interval [0; 1], we may assume that
there are c1 < c2 < · · · converging to +∞, such that dφM,t (λM,t ) > 0 on φ−1

M,t (ck) for all

t ∈ [0; 1]. There is a k such thatU ⊂ φ−1
M,0((−∞; ck]). Letμt be the Moser vector field defined

by ωM,t (μt , ·) = −dθM,t /dt . By choosing r � 0 sufficiently large, one can achieve that
dφM,t (μt − rλM,t )+ ∂tφM,t < 0 on φ−1

M,t (ck) for all t ∈ [0; 1]. Hence, integrating μt − rλM,t

yields a smooth family of embeddings it : φ−1
M,0((−∞; ck]) → φ−1

M,t ((−∞; ck]) starting with
i0 = id, such that i∗t θM,t − e−rt θM,0 is an exact one-form. Define jt by composing it |U and
the time rt flow of λM,t . �

Proof of Lemma 5. Let c0 be as in the definition of finite type deformations. Gray’s Theorem on
the stability of contact structures implies that there is a family of diffeomorphisms of φ−1

M,t (c0)

which pulls back (the restrictions of) θM,t to θM,0. This induces a family of diffeomorphisms
which identify the cone-like ends of (M,ωM,t , θM,t ) for different t . Going back from isotopies
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to the generating vector fields, the outcome is that one can find vector fields γt on φ−1
M,t ([c0; ∞))

such thatLγt θM,t+∂t θM,t = 0 and [γt , λM,t ]+∂tλM,t = 0 (the first condition comes from Gray’s
argument, and the second one expresses compatibility with the conical structure). Extend these
vector fields to all ofM in an arbitrary way, and integrate them to get a family of diffeomorphisms
gt : M → M such that g∗

t θM,t − θM,0 vanishes outside a compact subset. Moser’s Lemma then
yields another family of diffeomorphisms ht : M → M , which is compactly supported and
satisfies h∗

t g
∗
t θM,t − θM,0 = dRt as desired. Set ft = gt � ht . �

Proof of Lemma 6. The main statement is taken from [4, Lemma 3.1]. There, the authors
observe that for any h with h′ > 0, h′′ ≥ 0, the modified function φ̃M = h(φM) is again
plurisubharmonic. Moreover, the Liouville vector field associated to the modified Stein structure
is related to the original one by

λ̃M = λM · h′(φM)
h′(φM)+ h′′(φM)‖∇φM‖2 ,

with the norm taken in the original Kähler metric. This means that the modified Liouville flow
has the same flow lines as the original one, but moves along them at a slower or equal rate. The
additional condition h′′(c) ≥ δh′(c) for c ≥ c0 implies dφM(λ̃M) ≤ δ−1 outside a compact
subset, so that the flow is then complete.

To prove the last statement in the lemma, consider the family of functions φM,t = ht (φM)

withht (c) = (1−t)c+th(c), 0 ≤ t ≤ 1. These also satisfyh′
t > 0, h′′

t ≥ 0, so the flow of ∇φM,t
(with respect to its associated Kähler metric) is slower than that of ∇φM . We are assuming the
second flow is complete, hence so is the first one. Besides that, we are also assuming that φM
is of finite type. Hence what we get is a complete finite Stein deformation (M, JM, φM,t ), to
which Lemma 5 can be applied. �

Proof of Lemma 7. We imitate the argument from [11, Theorem 1.4.A], with some clarifications.
We will prove the statement first in the case where φ̃M grows faster than φM , by which we mean
that the difference δ = φ̃M − φM is an exhausting function. Let Uk = δ−1((−∞; k)) be the
associated family of exhausting subsets; after changing φ̃M by a constant, we may assume that
δ ≥ 1 everywhere, henceUk = ∅ for k ≤ 1. Fix a smooth function l : R → R such that l(r) = 0
for r ≤ −1, l(r) = r for r ≥ 1, and l′′(r) ≥ 0 everywhere. For k = 0, 1, 2, . . . consider the
functions φ̃M,k = φM + l(φ̃M − φM − k). These satisfy φ̃M,k = φM on Uk−1, φ̃M,k = φ̃M − k

on M \ Uk+1, and are plurisubharmonic because

ddcφ̃M,k = (1 − l′) ddcφM + l′ ddcφ̃M + l′′ d(φ̃M − φM) ∧ dc(φ̃M − φM)

with l′ = l′(φ̃M − φM − k) ∈ [0; 1], and l′′ = l′′(φ̃M − φM − k) ≥ 0. Let (ω̃M,k, θ̃M,k)
be the convex symplectic structure associated to φ̃M,k . By applying Moser’s argument to the
linear deformation between the kth and (k + 1)st of these structures, we get a diffeomorphism
fk : M → M which is the identity outside Uk+2 \ Uk−1, and such that f ∗

k θ̃M,k − θ̃M,k+1 is the

derivative of a functionKk supported inUk+2\Uk−1. Let i : M → M be the infinite composition
f0 �f1 � · · · . This is well-defined because for each x ∈ M , one has fk(x) = x for all but finitely
many k. The infinite composition is injective and a local diffeomorphism, hence an embedding
(but not necessarily a diffeomorphism; composing the f−1

k in the opposite order makes no
sense). By definition θ̃M,0 = θ̃M ; and for each relatively compact subset U ⊂ M there is a k
such that θ̃M,k = θM on U , and fk+1|U = fk+2|U = · · · = idU . It follows that i∗ω̃M = ωM ,
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and moreover i∗θ̃M = θM + dK for K = (f1 � f2 � · · · )∗K0 + (f2 � f3 � · · · )∗K1 + · · · , the
same argument as before showing that this sum is well-defined.

We now pass to the general situation, where φ̃M is complete and of finite type but otherwise
arbitrary. One can then find a function h as in Lemma 6 for which h(φ̃M) grows faster than φM ,
and moreover this rescaling does not change the (exact) symplectic isomorphism type. One can
then apply the previous argument to φM and h(φ̃M), and derive the desired result. �

Proof of Lemma 8. For simplicity, we write ‖ · ‖ = ‖ · ‖E and s = sE . Around a point x ∈ S,
choose local holomorphic coordinates, and a local holomorphic trivialization of our line bundle,
with respect to which s(z) = z

w1
1 . . . z

wn
n . Write w = w1 + · · · +wn. With respect to the trivial

metric ‖ · ‖0 one has

|d‖s‖0| �
∑
j

wj
∣∣∂zj ‖s‖0

∣∣ �
∑
j

wj |zw1
1 . . . z

wj−1
j . . . zwnn |

� w

√
|z1|w1(w−1) . . . |zn|wn(w−1) = ‖s‖1−1/w

0 ,

where � means greater than or equal to some small constant times the right hand side (in spite
of that, we have kept the wj , because they indicate how the inequality between arithmetic and

geometric mean is applied). One also has |d‖s‖ | + ‖s‖ � |d‖s‖0| and ‖s‖1−1/w
0 � ‖s‖1−1/w .

After combining the inequalities, one sees that d‖s‖ does not vanish at points z where ‖s(z)‖ is
sufficiently small, hence x does not lie in the closure of the critical point set of φM . �
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