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Lorentzian Kleinian groups
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Abstract. In this article we introduce some basic tools for the study of Lorentzian Kleinian
groups. These groups are discrete subgroups of the Lorentzian Möbius group O(2, n), acting
properly discontinuously on some nonempty open subset of Einstein’s universe, the Lorentzian
analogue of the conformal sphere.
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1. Introduction

To understand a hyperbolic manifold H
n+1/� (Hn+1 denotes here the (n + 1)-

hyperbolic space and � ⊂ O(1, n + 1) is a discrete group of hyperbolic isome-
tries), a nice and powerful tool is the dynamical study of the conformal action of �

on the sphere S
n. This deep relationship between hyperbolic and conformally flat

geometry has a counterpart in Lorentzian geometry, often quoted by physicists as
AdS/CFT correspondence. Let us first recall what is the Lorentzian analogue of the
pair (Hn+1, S

n). The (n + 1)-dimensional Lorentzian model space of constant cur-
vature −1 is called anti-de Sitter space, denoted AdSn+1 (precisely, we are speaking

here of the quotient of the simply connected model ÃdSn+1 by the center of its isom-
etry group, see [O’N], [Wo]). This space, like the hyperbolic space, has a conformal
boundary. It is called Einstein’s universe, denoted Einn, and it can be defined, up to
a two-sheeted covering, as the product S

1 × S
n−1 endowed with the conformal class

of the metric −dt2 × gSn−1 . From the conformal viewpoint, Einstein’s universe has
a lot of properties reminiscent of those of the sphere. In particular, the group O(2, n)

of isometries of AdSn+1 turns out to be also the group of conformal transformations
of Einn. The understanding of an anti-de Sitter manifold AdSn+1 /� thanks to the
conformal dynamics of � on Einn is one of the motivations for studying Lorentzian
Kleinian groups, which we define by analogy with the classical theory as discrete
subgroups of O(2, n) acting freely and properly discontinuously on some nonempty
open subset of Einn.
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Since the works of Poincaré and Klein at the end of the nineteenth century, the
classical theory of Kleinian groups has generated a great amount of works and pro-
gressed very far (we refer the reader to [A], [Ka], [Ma], [MK] for a historical account
and good expositions on the subject).

Other notions of Kleinian groups also appeared in other geometric contexts, such
as complex hyperbolic and projective geometry (see for example [Go], [SV]).

To our knowledge, nothing systematic has been done for studying Lorentzian
Kleinian groups, so that the aim of this article is to lay some basis for the theory. In
particular, our first task is to build and study nontrivial examples of such groups.

The first part of the paper (Sections 3 and 4) is devoted to what could be called
Lorentzian Möbius dynamics, namely the dynamical study of divergent sequences of
O(2, n) acting on Einn. This dynamics appears richer than that of classical Möbius
transformations on the sphere. This is essentially due to the fact that O(2, n) has
rank two, and the different ways to reach infinity in O(2, n) induce different dy-
namical patterns for the action on Einn. These patterns, which are essentially three,
are described in Section 3, Propositions 3, 4 and 5. Let us mention here two new
phenomena (with respect to the Riemannian context) illustrating the dynamical com-
plications we are confronted with. Firstly, the Lorentzian Möbius group O(2, n) is
not a convergence group for its action on Einn (roughly speaking, a group G acting
by homeomorphisms on a manifold X is a convergence group if any sequence (gi)

of G tending to infinity admits a subsequence with a “north–south” dynamics, i.e. a
dynamics with an attracting pole p+ and a repelling one p−. See for example [A],
p. 40, for a precise definition). Secondly, a discrete subgroup � ⊂ O(2, n) does not
always act properly on AdSn+1.

In spite of these differences with respect to the classical theory it is still possible
to define the limit set of a discrete subgroup � ⊂ O(2, n) (see Section 4). This is a
closed �-invariant subset �� ⊂ Einn, such that the action on the complement ��

is proper. Moreover it is a union of lightlike geodesics, so that it defines naturally
a �-invariant closed subset �̂� of Ln, the space of lightlike geodesics of Einn (this
space is described in Section 2.5). Unfortunately, the nice properties of the limit set in
the classical case of groups of conformal transformations of the sphere are generally
no longer satisfied in our situation. For example, the limit set that we define is not, in
general, a minimal set for the action of � on Einn (although �̂� is sometimes minimal
for the action of � on Ln, see Theorem 1 below). The groups � ⊂ O(2, n) acting
properly on AdSn+1 are those whose behaviour is closest to that of classical Kleinian
groups. They will be called groups of the first type. For them we get nice properties
for the limit set.

Theorem 1. Let � be a Kleinian group of the first type and �� its limit set.

(i) The action of � is proper on �� ∪ AdSn+1 ⊂ Einn+1.
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(ii) �� is the unique maximal element among the open sets � ⊂ Einn such that �

acts properly on � ∪ AdSn+1.

(iii) If moreover � is Zariski dense in O(2, n), then �� is the unique maximal open
subset of Einn on which � acts properly, and �̂� is a minimal set for the action
of � on Ln.

In Section 5, we give several examples of families of Lorentzian Kleinian groups.
These basic examples being constructed, it is natural to try to combine two of them to
get other more complicated examples. This is the aim of Section 6, where we prove
the following result (an analogue of the celebrated Klein’s combination theorem):

Theorem 2. Let �1 and �2 be two cocompact Lorentzian Kleinian groups with fun-
damental domains D1 and D2. Suppose that both D1 and D2 contain a lightlike
geodesic. Then one can construct from �1 and �2 another cocompact Kleinian
group, isomorphic to the free product �1 ∗ �2.

By a cocompact Kleinian group we mean a group acting properly on some open
subset of Einn with compact quotient.

We then use Theorem 2 in Section 7 to construct Lorentzian Schottky groups. The
study of such groups can be carried out quite completely. The limit set �� and the
topology of the conformally flat Lorentz manifold obtained as the quotient ��/� of
the domain of properness are made explicit in this case, and we get:

Theorem 3. Let � = 〈s1, . . . , sg〉 (g ≥ 2) be a Lorentzian Schottky group.

(i) The group � is of the first type.

(ii) The limit set �� is a lamination by lightlike geodesics. Topologically, it is a
product of RP 1 with a Cantor set.

(iii) The action of � is minimal on the set of lightlike geodesics of �� .

(iv) The quotient manifold ��/� is diffeomorphic to the product

S
1 × (S1 × S

n−1)
(g−1)�

,

where (S1 × S
n−1)

(g−1)�
is the connected sum of (g − 1) copies of S

1 × S
n−1.

2. Geometry of Einstein’s universe

A detailed description of the geometry of Einstein’s universe can be found in [Fr1],
[Fr2] and [CK]. Also, for the readers who are not very familiar with Lorentzian space-
times of constant curvatures, good expositions can be found in [Wo], chapter 11, and
[O’N], chapter 8. In this section we briefly recall (without any proof) the main
properties which will be useful in this article.
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2.1. Projective model for Einstein’s universe. Let R
2,n be the space R

n+2, en-
dowed with the quadratic form q2,n(x) = −x2

1 −x2
2 +x2

3 +· · ·+x2
n+2. The isotropic

cone of q2,n is the subset of R
2,n on which q2,n vanishes. We call C2,n this isotropic

cone, with the origin removed. Throughout this article we will denote by π the projec-
tion from R

2,n minus the origin on RP n+1. The set π(C2,n) is a smooth hypersurface
� of RP n+1. This hypersurface turns out to be endowed with a natural Lorentzian
conformal structure. Indeed, for any x ∈ C2,n, the restriction of q2,n to the tangent
space TxC

2,n, that we call q̂
2,n
x , is degenerate. Its kernel is just the kernel of the tan-

gent map dxπ . Thus, pushing q̂
2,n
x by dxπ , we get a well-defined Lorentzian metric

on Tπ(x)�. If π(x) = π(y) the two Lorentzian metrics on Tπ(x)� obtained by push-

ing q̂
2,n
x and q̂

2,n
y are in the same conformal class. Thus the form q2,n determines

a well-defined conformal class of Lorentzian metrics on �. One calls Einstein’s
universe the hypersurface � together with this canonical conformal structure.

The intersection of C2,n with the Euclidean sphere defined by x2
1 + x2

2 + · · · +
x2
n+2 = 1 is a smooth hypersurface �̂ ⊂ R

2,n. One can check that q2,n has Lorentzian

signature when restricted to �̂, and in fact,
(
�̂, q

2,n

|�̂
)

is isometric to the product

(S1 ×S
n−1, −dt2 +gSn−1). Now Einstein’s universe is conformally equivalent to the

quotient of (S1 ×S
n−1, −dt2 +gSn−1) by an involution (induced by the map x 	→ −x

of R
2,n).

2.2. Conformal group. In the previous projective model for Einstein’s universe the
subgroup O(2, n) ⊂ GLn+2(R) preserving q2,n acts conformally on Einn. In fact,
the conformal group Conf(Einn) of Einn is exactly PO(2, n). Let us now recall the
following result, which is an extension to Einstein’s universe of a classical theorem
of Liouville in Euclidean conformal geometry (see for example [CK], [Fr3]):

Theorem 4. Any conformal transformation between two open sets of Einn is the
restriction of a unique element of PO(2, n).

2.3. Lightlike geodesics and lightcones. It is a remarkable fact of pseudo-Riemann-
ian geometry that all the metrics of a given conformal class have the same lightlike
geodesics (as sets, but not as parametrized curves). In the case of Einstein’s universe,
the lightlike geodesics are the projections on Einn of 2-planes P ⊂ R

2,n such that
q

2,n
|P = 0. Hence lightlike geodesics of Einn are copies of RP 1.

Given a point p in Einn, the lightcone with vertex p, denoted by C(p), is the set of
lightlike geodesics containing p. In the projective model, if p = π(u), with u some
isotropic vector of R

2,n, then C(p) is just π(P ∩ C2,n), where P is the degenerate
hyperplane P = u⊥ (the orthogonal is taken for the form q2,n). The lightcones are not
smooth submanifolds of Einn. The only singular point of C(p) is p, and C(p)\{p}
is topologically R × S

n−2.
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2.4. Homogeneous open subsets. We will deal in this paper with several interesting
open subsets of Einn, all obtained by removing from Einn the projectivization of
peculiar linear subspaces of R

2,n. We will be very brief here and refer to [Wo] for a
more detailed study (especially concerning de Sitter and anti-de Sitter spaces).

Minkowski components. Given a point p ∈ Einn, the complement of C(p) in Einn is
a homogeneous open subset of Einn, which is conformally equivalent to Minkowski
space R

1,n−1. We say that this is the Minkowski component associated to p. In fact,
we have an explicit formula for the stereographic projection identifying Einn\C(p)

and R
1,n−1 (see [CK], [Fr1]).

De Sitter and anti-de Sitter components. Just as Minkowski space arises by removing
from Einn the projectivization of a lightlike hyperplane, one also gets interesting open
subsets by removing the projectivization of other (i.e. nondegenerate) hyperplanes.

If P is some hyperplane of R
2,n with Lorentzian signature, then π(P ∩ C2,n)

is a Riemannian sphere S of codimension one. The canonical conformal structure
of Einn induces on this sphere the canonical Riemannian conformal structure. The
stabilizer of S in O(2, n) is a group G isomorphic to O(1, n). The complement of
S in Einn is a homogeneous open subset of Einn, conformally equivalent to the de
Sitter space d Sn. Therefore S

n−1, with its canonical conformal structure, appears as
the conformal boundary of d Sn

If P is some hyperplane of R
2,n with signature (2, n − 1), then the projection

π(P ∩C2,n) is a codimension one Einstein universe E. The stabilizer of E in O(2, n)

is a subgroup isomorphic to O(2, n − 1). The complement of E is a homogeneous
open subset of Einn, which is conformally equivalent to the anti-de Sitter space AdSn.
In this way we see Einn−1 as the conformal boundary of AdSn.

Complement of a lightlike geodesic. What do we get if we remove from Einn

the projectivization of a maximal isotropic subspace of R
2,n? Such subspaces are

2-planes, so that the resulting open set is the complement �� of a lightlike geodesic
� ⊂ Einn. Open sets like �� admit a natural foliation by degenerate hypersurfaces,
and this foliation H� is preserved by the whole conformal group of ��. This foli-
ation can be described as follows: given a point p ∈ �, we consider the lightcone
C(p) with vertex p. Since � is a lightlike geodesic, we have � ⊂ C(p). Now the
intersection of C(p) with �� is a degenerate hypersurface of ��, diffeomorphic to
R

n−1. We call it H(p). If p 
= p′, H(p) and H(p′) only intersect along �, and the
leaves of the foliation H� are just the H(p) for p ∈ �.

2.5. The space Ln of lightlike geodesics of Einn. Since this space will appear
naturally when we will define the limit set of a Lorentzian Kleinian group, we briefly
describe it.

The stabilizer of a lightlike geodesic in O(2, n) is a closed parabolic subgroup
P , isomorphic to (R × SL(2, R) × O(n − 2)) � Heis(2n − 3), where Heis(2n − 3)
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denotes the Heisenberg group of dimension 2n − 3. Thus Ln can be identified with
the homogeneous space O(2, n)/P , which has dimension 2n − 3.

Let H ⊂ R
2,n be a hyperplane with Lorentzian signature, and let � be the

projection of H∩C2,n on Einn. The hypersurface � is a codimension one Riemannian
sphere of Einn. Now for any isotropic 2-plane P ⊂ R

2,n, P ∩ H is 1-dimensional
and isotropic. Equivalently, any lightlike geodesic of Einn intersects � in exactly one
point. We get a well-defined submersion p : Ln → �. The fiber over q ∈ � is the
set of lightlike geodesics inside the lightcone C(q). So, Ln is topologically an S

n−2

fiber bundle over S
n−1. Notice that O(2, n) does not preserve the bundle structure.

3. Conformal dynamics on Einstein’s universe

3.1. Cartan decomposition of O(2, n). From now on it will be more convenient to
work in a basis of R

2,n for which q2,n(x) = −2x1xn+2 + 2x2xn+1 + x2
3 + · · · + x2

n .
We call O(2, n) the subgroup of GLn+2(R) preserving the form q2,n. Let A+ be a
the subgroup of diagonal matrices in O(2, n) of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eλ

eμ

1
. . .

1
e−μ

e−λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with λ ≥ μ ≥ 0. Such an A+ is usually called a Weyl chamber. The group SO(2, n)

can be written as the product KA+K where K is a maximal compact subgroup of
SO(2, n). This decomposition is known as the Cartan decomposition of the group
SO(2, n) (compare [B], [IW]). Such a decomposition also exists for O(2, n), with
K a compact set of O(2, n). Moreover, for every g ∈ O(2, n), there is a unique
a(g) ∈ A+ such that g ∈ Ka(g)K . The element a(g) is called the Cartan projection
of g. As a matrix it is written

a(g) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eλ(g)

eμ(g)

1
. . .

1
e−μ(g)

e−λ(g)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The reals λ(g) ≥ μ(g) ≥ 0 are called the distortions of the element g (associated
with the given Cartan decomposition).

3.2. Qualitative dynamical description. We want to understand the possible dy-
namics for divergent sequences (gk) of O(2, n) (i.e. sequences leaving every compact
subset of O(2, n)). Our approach considers sequences gk(xk), where (xk) is a converg-
ing sequence of Einn. It is important to consider arbitrary such convergent sequences,
not only constant sequences, in order to characterize proper actions. Recall that given
a subgroup � of homeomorphisms of a manifold X, one says that the action of �

on X is proper if for all convergent sequences (xk) of X and all divergent sequences
(gk) of �, the sequence gk(xk) does not have any accumulation point in X. Notice
that there exist actions for which gk(x) diverges for all divergent (gk) ∈ � and all
x ∈ X, but which are not proper (look, for example, at the action of a hyperbolic
linear transformation of SL(2, R) on the punctured plane R

2\{0}).

Definition 1. Let (gk) be a divergent sequence of homeomorphisms of a manifold X

(i.e. (gk) leaves any compact subset of Homeo(X)). For any point x ∈ X, we define
the set

D(gk)(x) =
⋃

xk→x

{accumulation points of (gk(xk))}.

The union is taken over all sequences converging to x.
Further, for any set E ⊂ X, D(gk)(E) = ⋃

x∈E D(gk)(x). Taking the union,
over all divergent sequences (gk) ∈ �, of the sets D(gk)(E), we get a closed set
D�(E) ⊂ X that we call the dynamic set of E.

Notice that for two points x and y in X, y ∈ D�(x) if and only if x ∈ D�(y). We
say in this case that x and y are dynamically related.

The interest of this definition for the study of actions of discrete groups can be
illustrated by the following: let � be a discrete group of Homeo(X) acting on some
open subset � ⊂ X. Then the next result is easily proved.

Proposition 1. The group � acts properly on � iff no two points of � are dynamically
related.

Assuming that the action of � on � is proper, we also have:

Proposition 2. If the action of � on � has compact quotient, then every x ∈ ∂�

must be dynamically related to some point y of � (depending on x).

Now let (gk) be a divergent sequence of O(2, n). We define λk = λ(gk), μk =
μ(gk) and δk = λk − μk . We say that the sequence (gk) tends simply to infinity if
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a) the three sequences (λk), (μk) and (δk) converge respectively to some λ∞, μ∞
and δ∞ in R;

b) compact factors in the Cartan decomposition of (gk) both admit a limit in K .

Of course, every sequence tending to infinity admits some subsequence tending
simply to infinity, so that we will restrict our study to these last ones. The sequences
tending simply to infinity split into three categories:

(i) Sequences with balanced distortions. This name denotes the sequences (gk) for
which λ∞ = μ∞ = +∞ and δ∞ is finite.

(ii) Sequences with bounded distortion. This denotes the sequences (gk) for which
μ∞ 
= +∞.

(iii) Sequences with mixed distortions. This denotes the sequences (gk) for which
λ∞ = μ∞ = δ∞ = +∞.

To each type corresponds, as we will see soon, distinct dynamical behaviours.

Notation. In the following we will use notations such as C(p), H�, . . . . We invite
the reader to look at Section 2, where these notation were introduced.

For any set E in R
2,n, we use the notation π̌(E) for π(E ∩ C2,n). If y and ε are

two real numbers, we write Iε(y) for the closed interval [y − ε, y + ε].
For every x = (x1, x2, . . . , xn+2) in R

2,n, we define the ε-box centered at x as
Bε(x) = Iε(x1) × Iε(x2) × · · · × Iε(xn+2)

For a sequence (gk) of O(2, n) tending simply to infinity, we call B∞
ε (x) the

compact set obtained as the limit (for the Hausdorff topology) of the sequence of
compact sets gk � π̌(Bε(x)) (this limit will always exist in the examples we will deal
with).

Finally, we will often denote in the same way an element of O(2, n) and the
conformal transformation of Einn that it induces.

3.2.1. Dynamics with balanced distortions

Proposition 3. Let (gk) be a sequence of O(2, n) with balanced distortions. Then
we can associate to (gk) two lightlike geodesics �+ and �−, called attracting
and repelling circles of (gk), and two submersions π+ : Einn\�− → �+ (resp.
π− : Einn\�+ → �−), whose fibers are the leaves of H�− (resp. H�+), such that
the following holds.

For every compact subset K of Einn\�− (resp. Einn\�+), D(gk)(K) = π+(K)

(resp. D
(g−1

k )
(K) = π−(K)).

Remark 1. Before beginning the proof, let us remark that if (gk) has balanced distor-
tions (resp. bounded distortion, resp. mixed distortions), it will be so for any compact
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perturbation of (gk), i.e. any sequence (l
(1)
k gkl

(2)
k ) for (l

(1)
k ) and (l

(2)
k ) two converging

sequences of O(2, n). In the same way the conclusions of the above proposition are
not modified by a compact perturbation, even if of course π± and �± are. So in the
following (and also in Sections 3.2.2 and 3.2.3) we will restrict the proofs to the case
where (gk) is a sequence of A+.

Proof. We restrict the proof to the case λk = μk , so that δ∞ = 0.
We begin by defining �± and π±. Let us call P + (resp. P −) the 2- plane spanned

by e1 and e2 (resp. en+1 and en+2), and �+ (resp. �− ) the projection on Einn of
these 2- planes. The space R

2,n splits as a direct sum P+ ⊕P0 ⊕P−, where P0 is the
span of e3, . . . , en. This splitting defines a projection π̃+ (resp. π̃−) from R

2,n to the
plane P + (resp. P −). The image π̃+(x) is nonzero as soon as x is an isotropic vector
of q2,n which is not in P −. Thus π̃+ induces a projection π+ of Einn\�− on �+
whose fibers are the projections on Einn of the fibers of π̃+. These are degenerate
hyperplanes of R

2,n, defined as q2,n-orthogonals of vectors of P −. So, the fibers of
π+ are the intersections of Einn\�− with the lightcones with vertex on �−, i.e. the
leaves of H�− .

Now let us choosex such thatπ(x) 
∈ �−. Sincegk�π̌(Bε(x)) = π̌(Ieλk ε(e
λkx1)×

Ieμk ε(e
μkx2) × Iε(x3) × · · · × Iε(xn) × Ie−μk ε(e

−μkxn+1) × Ie−λk ε(e
−λkxn+2)), we

obtain, for ε sufficiently small, that B∞
ε (x) = π̌(Iε(x1) × Iε(x2) × {0} × · · · × {0}).

We thus have B∞
ε (x) ⊂ �+. Since ε is arbitrarily close to 0, for any sequence (xk)

such that π(xk) tends to π(x), we have limk→∞ gk � π(xk) = π(x1, x2, 0, . . . , 0).
This concludes the proof. �

3.2.2. Dynamics with bounded distortion

Proposition 4. Let (gk) be a sequence of O(2, n) with bounded distortions. Then we
can associate to (gk) two points p+ and p− of Einn, called attracting and repelling
poles of (gk), and a diffeomorphism ĝ∞ from the space of lightlike geodesics of
C− = C(p−) in the space of lightlike geodesics of C+ = C(p+), conformal with
respect to the natural conformal structure of these two spaces, such that we have:

(i) For all compact subset K inside Einn\C−, we have D(gk)(K) = {p+}.
(ii) For a lightlike geodesic � ⊂ C− and a point x of � distinct from p−, D(gk)(x)

is the lightlike geodesic ĝ∞(�).

(iii) The set D(gk)(p
−) is the whole of Einn.

The cones C+ and C− are called attracting and repelling cones of (gk).

Remark 2. The dynamical pattern of the sequence (g−1
k ) is obtained by switching

the +’s and the −’s in the statement. This remark holds also for Proposition 5.
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Proof. Following Remark 1, we do the proof for a sequence (gk) of A+, with
limk→∞ λk = +∞.

Let p+ = π(e1), p− = π(en+2), C+ = π̌((e1)
⊥), C− = π̌((en+2)

⊥).
Let us first remark that if x1 
= 0, then clearly B∞

ε (x) = p+. This proves (i), as
well as (iii), passing to the complement.

If π(x) ∈ C− and if ε is sufficiently small, we get that B∞
ε (x) = π̌(R ×

Ieμ∞ε(e
μ∞x2) × Iε(x3) × · · · × Iε(xn) × Ie−μ∞ε(e

−μ∞xn+1) × {0}).
The lightlike geodesics of C+ and C− are parametrized by a sphere S

n−2 corre-
sponding to isotropic directions of the space spanned by e2, . . . , en+1.

We define ĝ∞ as the element of O(1, n − 1) given by

ĝ∞ =

⎛
⎜⎜⎜⎝

eμ∞
1

. . .
1

e−μ∞

⎞
⎟⎟⎟⎠ .

The spaces of lightlike geodesics of C+ and C− have a canonical conformal Rieman-
nian structure, and we see that the map ĝ∞ is a conformal diffeomorphism between
these two spaces.

By the above formula, if π(xk) converges to π(x), the accumulation points of the
sequence gk(π(xk)) are in every B∞

ε (x), for arbitrary small ε. The intersection of all
B∞

ε (x) is π̌(R × {eμ∞x2} × {x3} × · · · × {xn} × {e−μ∞xn+1} × {0}), i.e. the image
by ĝ of the lightlike geodesic passing through p− and π(x). Conversely, every point
π(y) of this geodesic is in the Hausdorff limit of gk � π̌(Bε(x)). Hence, there exists a
sequence xε

k of Bε(x) with limk→∞ gk �π(xε
k ) = π(y). Let εk be a sequence tending

to 0. Then limk→∞ gk �π(x
εk
nk

) = π(y) for some sequence of integers nk , and π(x
εk
nk

)

tends to π(x). This concludes the proof of (ii). �

3.2.3. Mixed dynamics

Proposition 5. Let (gk) be a sequence of O(2, n) with mixed distortions. Then we
can associate to (gk) two points p+ and p−, called attracting and repelling poles
of the sequence, as well as two lightlike geodesics �+ et �− (called attracting and
repelling circles), with the inclusions p+ ∈ �+ ⊂ C+ = C(p+) and p− ∈ �− ⊂
C− = C(p−), such that the following properties hold:

(i) For every compact subset K inside Einn\C−, the set D(gk)(K) is {p+}.
(ii) If x is a point of C− not on �−, then D(gk)(x) is the lightlike geodesic �+.

(iii) If x is a point of �− distinct from p−, then D(gk)(x) is the attracting cone C+.

(iv) The set D(gk)p
− is the whole of Einn.
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The conesC+ andC− are called attracting and repelling cones of the sequence (gk).

Proof. Once again we suppose that (gk) is in A+.
Let p+ = π(e1), p− = π(en+2), C+ = π̌((e1)

⊥), C− = π̌((en+2)
⊥). The

circle �+ (resp. �−) is the projection of the 2-plane spanned by e1 and e2 (resp.
en+1 and en+2). We do not show (i) and (iv), the proof being exactly the same as for
Proposition 4.

If π(x) ∈ C−, but π(x) 
∈ �−, then x1 = 0, but x2 
= 0. In this case we get
B∞

ε (x) = π̌(R × Iε(x2) × {0} × · · · × {0}), that is to say �+.
The intersection of all the B∞

ε (x) is π̌(R×{x2}×{0}×· · ·×{0}), i.e. the lightlike
geodesic �+. The fact that D(gk)(π(x)) = �+ is proved exactly as in Proposition 4.

When π(x) ∈ �−, only xn+1 and xn+2 do not vanish and by the assumption
π(x) 
= p+, we get xn+1 
= 0. Hence, we have that B∞

ε (x) is π̌(R × · · · × R ×
Iε(xn+1) × {0}), that is to say C+.

As previously, we get D(gk)(π(x)) = C+. �

Remark 3. Notice that different configurations for the dynamical elements described
above can occur. For example, attracting and repelling circles of a dynamics with
balanced or mixed distortions can intersect, or even be the same. In fact, all the
possible configurations can occur.

4. About the limit set of a Lorentzian Kleinian group

4.1. Definition of the limit set. Given a Kleinian group � on a manifold X, it is
quite natural to ask if there is in some sense a “canonical” open set � ⊂ X on
which � acts properly. For example, any Kleinian group � on the sphere S

n admits
a limit set �� and the open set �� = S

n\�� is distinguished, since it is the only
maximal open subset on which � acts properly. The nice properties of the limit set of
a Kleinian group on S

n rest essentially on the fact that the Möbius group O(1, n + 1)

is a convergence group on S
n. We just saw in the previous section that O(2, n) is

quite far from being a convergence group on Einn, but we would nevertheless like to
define a limit set �� associated to a given discrete group � ⊂ O(2, n). We require
that such a limit set have at least the two following properties:

(i) �� is a �-invariant closed subset of Einn.

(ii) The action of � on �� = Einn\�� is properly discontinuous.

Definition 2. Given � discrete in O(2, n), we define S� (resp. T�) the set of sequences
(γk) of �, tending simply to infinity, with mixed or balanced distortions (resp. with
bounded distortion). If (γk) is a sequence ofS� (resp.T�), we call�+(γk) and�−(γk)

(resp. C+(γk) and C−(γk)) its attracting and repelling circles (resp. attracting and
repelling cones).
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Definition 3. We define the limit set of a discrete � ⊂ O(2, n) as

�� = �
(1)
� ∪ �

(2)
� ,

where
�

(1)
� =

⋃
(γk)∈S�

�+(γk) ∪ �−(γk)

and
�

(2)
� =

⋃
(γk)∈T�

C+(γk) ∪ C−(γk).

Notation. The complement of �� in Einn is denoted by �� .

It is clear that �� is closed and �-invariant. Let us remark that �� is a union of
lightlike geodesics, so that it also defines a closed �-invariant subset �̂� ⊂ Ln.

From the dynamical properties stated in the previous section, one checks easily
that no pair of points in �� can be dynamically related, so that the action of � on ��

is proper.

4.2. Lorentzian Kleinian groups of the first and the second type. Until now we
did not focus on a fundamental difference between the action of O(1, n+1) on S

n and
that of O(2, n) on Einn. Although any discrete group � ⊂ O(1, n + 1) automatically
acts properly on H

n+1, it is not true in general that a discrete � ⊂ O(2, n) does so on
AdSn+1. This motivates the following distinction between subgroups of O(2, n).

Definition 4. A discrete group � of O(2, n) is of the first type if it acts properly on
AdSn+1. If not, it is said to be of the second type.

Notice that this terminology has no connection with the denomination of being
of first kind and of second kind for the standard Kleinian groups on the sphere.

The previous dichotomy has a nice translation into dynamical terms due to the
next result.

Proposition 6. A Kleinian group � of O(2, n) is of the first type if and only if it does
not admit any sequence (γk) with bounded distortion.

Proof. We endow R
2,n+1 with the quadratic formq2,n+1(x) = −2x1xn+2+2x2xn+1+

x2
3 + · · · + x2

n + x2
n+3 and call e1, . . . , en+3 the canonical basis. The subgroup of

O(2, n+1) leaving invariant the subspace spanned by the first n+2 basis vectors can
be canonically identified with O(2, n). This identification defines an embedding j

from O(2, n) into O(2, n+ 1). The action of j (O(2, n)) on Einn+1 leaves invariant a
codimension one Einstein universe that we call Einn. As we saw in the introduction,
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the complement of Einn in Einn+1 is conformally equivalent to the anti-de Sitter
space AdSn+1.

Let us consider some g in O(2, n). In the basis e1, . . . , en+3, j (g) = ( g
1

)
, so

that when we perform the Cartan decomposition of j (g), we find the same distortions
as for g.

Suppose now that � admits some sequence (γk) with bounded distortion. By
the remark above, j (γk) has also bounded distortion as a sequence of O(2, n + 1).
We call C+ and C− its attracting and repelling cones in Einn+1. By Proposition 4,
D(gk)(C

− ∩ AdSn+1) = C+ ∩ AdSn+1. Therefore we can find two points of AdSn+1
which are dynamically related, so that the action of (γk) on AdSn+1 cannot be proper
(Proposition 1).

Conversely, let us consider some sequence (γk) tending simply to infinity and with
balanced or mixed distortions. Then the sequence j (γk) has the same properties.
Let us call �+ and �− the attracting and repelling circles of this latter sequence.
Looking at the matrix expressions, it is clear that �+ ⊂ Einn and �− ⊂ Einn. By
Propositions 3 and 5, D(gk)(x) ⊂ Einn for any point x ∈ AdSn+1. So, if we assume
that � has no sequence with bounded distortion, we get D�(x) ⊂ Einn for any point
x ∈ AdSn+1. Using Proposition 1, we get that � acts properly on AdSn+1. �

4.3. Limit set of a group of the first type: proof of Theorem 1. Since � is of the
first type, �� is also the limit set of �, regarded as a subgroup of O(2, n + 1) acting
on Einn+1. The complement of this limit set in Einn+1 is precisely �� ∪ AdSn+1, so
that (i) of the theorem is clear.

To prove (ii), let us suppose that � acts properly on some � ∪ AdSn+1 with �

not included in �� . Then there is a sequence (γk) of � (with balanced or mixed
distortions) such that �−(γk) meets �.

Lemma 1. Let � be a discrete group of O(2, n) acting properly on some open set
�. Then for any sequence (γk) of � with balanced distortions, neither �+(γk) nor
�−(γk) meets �.

Proof. Suppose on the contrary that for some (γk) with balanced distortions, we
have �+(γk) ∩ � 
= ∅. From Proposition 3, we infer that the set D(γk)(�

+(γk) ∩ �)

contains a lightlike geodesic � in its interior. So, there is a tubular neighbour-
hood U of � contained in Ext(�) (Ext(�) denotes the complement of � in Einn).
But we also infer from Proposition 3 that for any � not meeting �−(γk), we have
limk→+∞ γk(�) = �+(γk). As a consequence, any lightlike geodesic of Ext(�)

has to cut �−(γk). Since all the lightlike geodesics included in U cannot all meet
�−(γk) we get a contradiction. �

The lemma above tells us that the sequence (γk) has mixed distortions. For any
point x ∈ �−(γk) ∩ �, we have D(γk)(x) = C+(γk). Since C+(γk) meets AdSn+1,
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we get pairs of points in � ∪ AdSn+1 which are dynamically related, and the action
cannot be proper by Proposition 1.

Remark 4. For � Kleinian of the first type, the manifold ��/� appears as the
conformal boundary of the complete anti-de Sitter manifold AdSn+1 /� (see [Fr4]
for more details on this point).

To prove (iii), we begin by showing that �̂� ⊂ Ln is a minimal set. This is in fact
a particular case of a general result of Benoist ([B]), but we give a simple proof.

Let �̂ be a closed �-invariant subset of Ln. Any sequence (γk) tending simply
to infinity in � has either mixed or balanced distortions. As a simple consequence
of Propositions 3 and 5, we get that if � is a lightlike geodesic of Einn which does
not meet �−(γk), then limk→+∞ γk(�) = �+(γk). So, if for any sequence (γk) as
above, no geodesic of �̂ meets �−(γk), we have �� ⊂ �, and we are done.

On the contrary, if for some (γk), all the geodesics of �̂ meet �−(γk), we claim
that � cannot be Zariski dense. Indeed, by Zariski density, � cannot leave �−(γk)

invariant. So, let us choose γ ∈ � such that γ (�−(γk)) 
= �−(γk). If γ (�−(γk))

and �−(γk) are disjoint, the set of lightlike geodesics meeting both g(�−(γk)) and
�−(γk) is contained in a 2-dimensional Einstein universe, which have to be fixed by
�: a contradiction with the Zariski density of �.

If g(�−(γk)) and �−(γk) meet in one point p, then any lightlike geodesic meet-
ing both g(�−(γk)) and �−(γk) has to contain p. Indeed, due to the fact that the
quadratic form q2,n cannot have some 3-dimensional isotropic subspace, there is no
nontrivial triangle of Einn, whose edges are pieces of lightlike geodesics. We infer
that � has to fix the lightcone C(p) and we get once again a contradiction.

We can now show that �� is the maximal open set on which the action of � is
proper. Suppose that � acts properly on � which is not included in �� . We call
� the complement of � in Einn. Since �� 
⊂ �, there is a sequence (γk) tending
simply to infinity in � with �+(γk) ∩ � 
= ∅.

Lemma 2. If an infinite Kleinian group � ⊂ O(2, n) acts properly on some open
subset �, then the complement � of � in Einn contains a lightlike geodesic.

Proof. Let us pick a sequence (γk) tending simply to infinity in �. Suppose first that
(γk) has mixed dynamics. Suppose that �−(γk) meets � at a point x (if �−(γk)∩� =
∅, we are done). By properness, D(gk)(x) ∩ � = ∅. But D(gk)(x) = C+(gk), which
contains infinitely many lightlike geodesics, and the conclusion holds.

Also, if (gk) has balanced (resp. bounded) distorsions, the dynamic set D(gk)x of
x ∈ �−(γk) (resp. x ∈ C−(γk)) contains infinitely many lightlike geodesics. The
proof works thus in the same way. �
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Now let us look at the lightlike geodesics of �. Since by Zariski density, � cannot
fix a finite family of lightlike geodesics, there are infinitely many lightlike geodesics
in �. But all these geodesics have to meet �−(γk), because if some � does not,
limk→+∞ γk(�) = �+(γk). A contradiction with �+(γk) ∩ � 
= ∅. Now, we
conclude as for proving the minimality property of �̂�: all the lightlike geodesics of
� are in the same �-invariant Einstein torus, or the same �-invariant lightcone, and
we get a contradiction with the Zariski density of �.

5. Some examples of Lorentzian Kleinian groups

5.1. Examples arising from structures with constant curvature. In Lorentzian
geometry, a completeness result ensures that any compact Lorentzian manifold with
constant sectional curvature is obtained as a quotient R

1,n−1/� or ÃdSn/�, where �

is a discrete group of Lorentzian isometries. This deep theorem was first proved for
the case of curvature zero by Carrière in [Ca], and generalized by Klingler in [Kl] (note
that compact Lorentzian manifolds cannot have curvature +1). Another result, known
as finiteness of level (see [KR], [Ze]), ensures that any compact quotient ÃdSn/�̃

(where �̃ is a discrete group of isometries) is in fact, up to finite cover, a quotient
AdSn /�. Since R

1,n−1 and AdSn both embed conformally into Einn (see Section 2),
by Theorem 4 we get that any compact Lorentzian structure with constant curvature
is (up to finite cover) uniformized by a Lorentzian Kleinian groups. Moreover, in this
case the structure of the groups involved is fairly well understood, due to [CaD], [Sa]
and [Ze].

5.2. Examples arising from flat CR-geometry. Let us consider the complex vector
space C

n+1, endowed with the hermitian form h1,n−1(z) = −|z1|2 + |z2|2 + |z3|2 +
· · · + |zn+1|2. We consider C

1,n
C

, the lightcone defined as {z ∈ C
n+1| h1,n(z) = 0},

and call �− the open set {z ∈ C
n+1| h1,n(z) < 0}. If we project �− on the complex

projective space C Pn, we get the complex hyperbolic space H
n
C

. If we project C
1,n
C

minus the origin on C Pn, we get a sphere S
2n−1, naturally endowed with a CR-

structure. This CR-sphere can be seen at the infinity of H
n
C

. If, instead of looking

at the complex directions of C
1,n
C

, we consider the quotient C
1,n
C

/R
� of C

1,n
C

by the
real homotheties, then the space that we get is Einstein’s universe of dimension 2n.
In other words, there is a fibration f : Ein2n → S

2n−1 whose fibers are circles. The
fibration is preserved by the group U(1, n), which acts on Ein2n as a subgroup of
O(2, 2n). If Z denotes the center of U(1, n) (homotheties by complex numbers of
modulus 1), then the fibers of f are exactly the orbits of Z on Ein2n. These orbits are
lightlike geodesics.

Proposition 7. If � ∈ U(1, n) is a discrete group, whose projection �̂ on PU(1, n)

acts properly discontinuously on �̂ ⊂ S
2n−1, then � is a Kleinian group of Ein2n
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and acts properly discontinuously on � = f −1(�̂). If Ĝ acts with compact quotient
on �̂, so does � on �.

Remark 5. The group PU(1, n) acting on S
2n−1 is a convergence group, and there

is a good notion of limit set for a discrete group Ĝ as above (see for example [A]).
In fact, it is not difficult to check that the Lorentzian Kleinian groups � built as in
Proposition 7 are of the first type. Their limit set is just the preimage by f of the limit
set �̂

�̂
of �̂ on S

2n−1.

To illustrate this case, let us mention the two following examples.

Example 1. We write each z ∈ C
n+1 as z = (x, y) with x and y in R

n. We identify the
real hyperbolic space H

n
R

with the set of points (x, 0) with −x2
1 +x2

2 +· · ·+x2
n+1 = −1

and x1 > 0. If (x, y) is moreover in the unit tangent bundle of H
n
R

, it satisfies the
following two extra equations:

−x1y1 + x2y2 + · · · + xnyn = 0,

−y2
1 + y2

2 + · · · + y2
n+1 = 1.

Projectivising, we get an open subset �̂ ⊂ S
2n−1. In fact �̂ is precisely S

2n−1

minus an (n − 1)-dimensional sphere � (the projection on S
2n−1 of the set {z =

(x, 0)| − x2
1 + x2

2 + · · · + x2
n+1 = 0}).

Now the subgroup G = O(1, n) of real matrices in U(1, n) acts on S
2n−1 and

preserves �̂. Identifying �̂ with T 1
H

n
R

, we get that G acts properly and transitively
on �̂. As a consequence we have the following

Fact. Any discrete group � in O(1, n) acts properly discontinuously on �̂. Consid-
ered as a subgroup of O(2, 2n) it yields a Kleinian group acting on Ein2n.

The Kleinian manifold �/� obtained in this way are circle bundles over T 1(N),
where N is the hyperbolic manifold H

n
R
/�.

Example 2. Inside U(1, n) there is a group G isomorphic to the Heisenberg group
of dimension 2n − 1. The group G fixes a point p∞ on S

2n−1 and acts simply
transitively on the complement of this point. By Proposition 7, any discrete group
in G will yield a Lorentzian Kleinian group, acting properly on the complement of a
lightlike geodesic. The Kleinian manifolds obtained in this way will be circle bundles
over nilmanifolds.

5.3. Subgroups of O(1, r) × O(1, s). We still endow R
2,n with the quadratic form

q2,n(x) = −2x1xn+2 + 2x2xn+1 + x2
3 + · · · + x2

n , and we consider an orthogo-
nal splitting R

2,n = E1 + E2 with E1 and E2 two spaces of signature (1, r) and
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(1, s) respectively (r 
= 0, s 
= 0 and r + s = n). We suppose also r ≤ s. For ex-
ample, we take E1 = (e1, e3, . . . , e3+r−2, en+2) and E2 = (e2, e3+r−1, . . . , en+1).
The subgroup G of O(2, n) preserving this splitting is isomorphic to the product
O(1, r) × O(1, s). Before describing some examples of Kleinian groups in G, let us
say a few words about the geometric meaning of this splitting on Einn.

Lemma 3. We can write Einn as a union �1 ∪ �2 ∪ �. The set �1 (resp. �2) is
open, G-invariant, homogeneous under the action of G, and conformally equivalent
to the product d Sr × H

s (resp. H
r × d Ss). � is a singular, degenerate G-invariant

hypersurface.

Proof. We call π1 and π2 the projections of R
2,n on E1 and E2, respectively. The

projection of vectors u = (v, w) of R
2,n, for which both v = π1(u) and w = π2(u)

are isotropic, gives the hypersurface �. We will say more about it later.
The vectors u = (v, w), for which neither v nor w is isotropic, are of two kinds.

Those for which q2,n(v) > 0. Since we work projectively, we can suppose that
q2,n(v) = 1 and q2,n(w) = −1. In a further quotient by −Id these vectors project
on the product d Sr × H

s . They constitute the open set �1.

Those for which q2,n(v) < 0. These vectors project on a product H
r × d Ss and

constitute the open set �2. �

The hypersurface � can be regarded as the conformal boundary of the spaces
d Sr × H

s and H
r × d Ss . Let us describe it more precisely. The isotropic vectors

(v, w) of R
2,n, for which v and w are isotropic, split themselves into two sets. Those

for which either v or w is zero. Their projectivisation gives two Riemannian spheres
�1 and �2 of dimension (r − 1) and (s − 1) respectively.

Those for which v and w are nonzero project on the product of the projectivisation
of the lightcone of E1 by the lightcone of E2, namely S

r−1×C
1,s . So � minus �1∪�2

has two connected components, each of which is diffeomorphic to S
r−1 × S

s−1 × R.
One can check that � is obtained as the union of the lightlike geodesics intersecting
both �1 and �2.

We now give some examples of Kleinian groups in G.

Example 3. Let us take a discrete group �̂ inside O(1, r) and any representation ρ

of �̂ inside O(1, s). We call �ρ = Graph(�̂, ρ) = {(γ̂ , ρ(γ̂ ))|γ̂ ∈ �̂}. Then �ρ is
a Lorentzian Kleinian group of O(2, n). Indeed, its action on �2 = H

r × d Ss is
clearly proper. Let us say a little bit more about the limit set of these groups. We call
�

�̂
the limit set of the group �̂ on the sphere �1.

Case a): ρ is injective with discrete image. A sequence (γk) of �ρ can be written

as a matrix
(

γ̂k

ρ(γ̂k)

)
. If (γk) tends simply to infinity, so does the sequence (γ̂k)

(resp. ρ(γ̂ k)) in O(1, r) (resp. in O(1, s)). We thus see that (γk) has either mixed
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or balanced distortions. In particular, the group �ρ is always of the first type in this
case.

The attracting and repelling circles of (γk) can be described as follows. Since
the sequence (γ̂k) (resp. ρ(γ̂k)) tends simply to infinity in O(1, r) (resp. O(1, s)),
it has two attracting and repelling poles p+(γ̂k) and p−(γ̂k) (resp. p+(ρ(γ̂k)) and
p−(ρ(γ̂k))) on �1 (resp. �2). Then �+(γk) (resp. �−(γk)) is simply the lightlike
geodesic of Einn joining p+(γ̂k) and p+(ρ(γ̂k)) (resp. p−(γ̂k) and p−(ρ(γ̂k))). In
particular, the limit set ��ρ is a closed subset of � (strictly included in � if �

�̂

= �1).

An interesting subcase arises when we take for �̂ a cocompact lattice in O(1, 2), and
a quasi-fuchsian representation ρ : �̂ → O(1, s) (s ≥ 2). The limit set of ρ(�̂) on
�2 is a topological circle, and we get for the limit set ��ρ a topological torus. One
can prove moreover (which is omitted here) that the action of �ρ is cocompact on the
complement of its limit set.

Case b): ρ is not injective with discrete image. In this case there is a sequence
(γk) tending simply to infinity in �ρ such that ρ(γ̂k) is bounded. Such a sequence
(γk) has bounded distortion, and the group �ρ is of the second type. The attracting
and repelling poles p+(γk) and p−(γk) are both on �1. In fact they are the attracting
and repelling poles of (γ̂k) (acting as a sequence of O(1, r) on �1). In this case the
limit set ��ρ is just the union of lightcones with vertex on �

�̂
.

6. About Klein’s combination theorem

The examples of Kleinian groups given so far are not completely satisfactory, since
they arise from geometrical contexts such as Lorentzian spaces with constant cur-
vature or flat CR-geometry, and in some way are not “typical” of conformally flat
Lorentzian geometry. For instance, we still do not have examples of Zariski dense
Kleinian groups on Einn. One way to construct other classes of examples is to com-
bine two existing Lorentzian Kleinian groups to get a third one. In the theory of
Kleinian groups on the sphere this kind of construction is achieved on the basis of
the celebrated Klein’s combination theorem ([A], [Ma]). We now state a generalized
version of this theorem. For this we need the following definition.

Definition 5. Let X be a manifold. A Kleinian group on X is a discrete subgroup
of diffeomorphisms � acting properly discontinuously on some nonempty open set
� ⊂ X. We say that an open set D ⊂ � is a fundamental domain for the action
of � on � if D does not contain two points of the same �-orbit and if moreover⋃

γ∈� γ (D) = �.

Notation. For any subset D of the manifold X, we call Ext(D) the complement of
D in X.
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Theorem 5 (Klein). Let �i (i = 1, . . . , m) a finite family of Kleinian groups on a
compact connected manifold X. We suppose that each �i acts cocompactly on some
open subset �i of X with fundamental domain Di . We assume moreover that for each
i 
= j , Ext(Di) ⊂ Dj , and that D = ⋂m

i=1 Di 
= ∅. Then we have:

(i) The group � generated by the �i’s is isomorphic to the free product �1∗· · ·∗�m.

(ii) The group � is Kleinian. More precisely, � = ⋃
γ∈� γ (D) is an open subset of

X, and � acts properly discontinuously and cocompactly on �, with fundamental
domain D.

Proof. We do the proof for two groups �1 and �2, the final result being then obtained
by induction. Let γ = γsγs−1 . . . γ2γ1 be a word of � such that γi ∈ Gji

(ji ∈ {1, 2})
and ji 
= ji+1. Then the first condition on the fundamental domains yields the in-
clusions γsγs−1 . . . γ2γ1(D) ⊂ γsγs−1 . . . γ2(Ext(Dj1)) ⊂ · · · ⊂ γs(Ext(Djs−1)) ⊂
Ext(Djs ). So, for any nontrivial reduced g, γ (D)∩D = ∅. This proves that γ cannot

be the identity, and (i) follows. In the same way, we prove that γ (D) ∩ D = ∅ as
soon as s > 1. Since D is compact in �1 and �2 and the action of �1 and �2 is
proper, we get

Lemma 4. The intersection γ (D) ∩ D is empty for all but a finite number of γ ’s.

Lemma 5. There is a finite family γ1, . . . , γs of elements of � such that D ∪γ1(D)∪
· · · ∪ γm(D) contains D in its interior.

Proof. We choose some open neighbourhoodU1 of ∂D1 such thatU1 ⊂ �1 andU1 is a
compact subset of �1. Since D1 is a fundamental domain of �1, for each x ∈ U1 there
exists a γx ∈ �1 such that x ∈ γx(D1). But since the action of �1 is proper γ (D1)∩U1

is nonempty only for a finite number of elements γ
(1)
1 , . . . , γ

(1)
s of �1. Thus D1 ∪U1

is included in D1 ∪ γ
(1)
1 (D1) ∪ · · · ∪ γ

(1)
s (D1), and D1 is contained in the interior of

D1 ∪ γ
(1)
1 (D1) ∪ · · · ∪ γ

(1)
s (D1). But if D′

1 = D1\K , where K is a compact subset

of D1, then we also have D′
1 ∪ U1 ⊂ D′

1 ∪ γ
(1)
1 (D′

1) ∪ · · · ∪ γ
(1)
s (D′

1). In particular,

when K is the exterior of D2, we get that D ∪ U1 ⊂ D ∪ γ
(1)
1 (D) ∪ · · · ∪ γ

(1)
s (D).

Now we can apply the same argument for a neighbourhood U2 of ∂D2 in �2. We
get a finite family γ

(2)
1 , . . . , γ

(2)
t of �2 such that D∪U2 ⊂ D∪γ

(2)
1 (D)∪· · ·∪γ

(2)
t (D).

Setting m = s + t , γi = γ
(1)
i for i = 1, . . . , s and γs+i = γ

(2)
i for i = 1, . . . , t , we

get the lemma. �

As a consequence of this lemma, we get that the set� = ⋃
γ∈� γ (D) is an open set.

It remains to prove that the action of � on � is proper. Indeed, since � is not
a priori a convergence group, the fact that � acts discontinuously on � no longer
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ensures that the action is proper. That is why our assumptions (in particular the
assumption of cocompactness) are stronger as for the classical Klein’s theorem on
the sphere.

Suppose, on the contrary, that there is a sequence (xi) of � converging to x∞ ∈ �,
and a sequence (γi) tending to infinity in �, such that yi = γi(xi) converges to
y∞ ∈ �. We can assume that x∞ ∈ D. On the other hand, by definition of �, there
is a γ0 such that y∞ ∈ γ0(D). Lemma 5 ensures that for i sufficiently large, xi must
be in D ∪ γi1(D) ∪ · · · ∪ γim(D), and yi in γ0(D) ∪ γ0γi1(D) ∪ · · · ∪ γ0γim(D)).
But then, Lemma 4 implies that the sequence (γi) takes its values in a finite set, a
contradiction with the fact that (γi) tends to infinity in �. �

We would like to apply the theorem above to combine Lorentzian Kleinian groups.
Notice that for two Kleinian groups the condition Ext(D1) ⊂ D2 implies ∂�1 ⊂ D2
and ∂�2 ⊂ D1. Together with Lemma 2, we get that if two cocompact Lorentzian
Kleinian groups can be combined, then their fundamental domains have to contain
a lightlike geodesic (in particular, no Kleinian group uniformizing a manifold with
constant curvature can be combined with another Kleinian group). It turns out that
this obstruction is the only one which forbids combining two Lorentzian Kleinian
groups, as shown by Theorem 2, which we now prove.

6.1. Proof of Theorem 2. We choose �1 ⊂ D1 and �2 ⊂ D2, two lightlike
geodesics. Since D1 and D2 are open, they contain not only one, but in fact infinitely
many lightlike geodesics, so that we can moreover choose �1 and �2 disjoint. We
begin with a useful lemma.

Lemma 6. Given �1 and �2 two disjoint lightlike geodesics of Einn, there exists
g ∈ Conf(Einn) such that (gk) has mixed distortions and admits �1 and �2 as
attracting and repelling circles.

Proof. The geodesic �1 (resp. �2) is the projection on Einn of a 2-plane (e′
1, e

′
2) (resp.

(e′
3, e

′
4)) of R

2,n. We choose moreover e′
3 and e′

4 such that q2,n(e′
1, e

′
3) = −2 and

q2,n(e′
2, e

′
4) = 2. The q2,n-orthogonal F to (e′

1, e
′
2, e

′
3, e

′
4) has Riemannian signature

and we denote by e′
5, . . . , e

′
n+2 one of its orthonormal basis. Then we consider some

element g of O(2, n), which writes in the base (e′
1, . . . , e

′
n+2) as

g =

⎛
⎜⎜⎜⎜⎜⎜⎝

eλ

eμ

e−λ

e−μ

1
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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If we choose λ > μ > 0, then it is clear that (gk) has mixed distortions with
�+ = �1 and �− = �2. �

We now take some g ∈ Conf(Einn) as in the lemma above. Let us choose V1

(resp. V2) an open tubular neighbourhood of �1 (resp. �2) such that V1 ⊂ D1 (resp.
V2 ⊂ D2). The complement of Vi (i = 1, 2) in Einn is denoted by Ext(Vi). It
follows from Proposition 5 (i) and (ii) that the set dynamically associated to Ext(V2)

with respect to (gk) is included in �+. Since Ext(V2) contains a lightlike geodesic,
it is exactly �+. Hence, for k0 sufficiently large, gk0(Ext(V2)) ⊂ V1. We call
�′

2 = gk0�2g
−k0 . The group �′

2 is a cocompact Lorentzian Kleinian group with
fundamental domain D′

2 = gk0(D2). But gk0(D2) contains gk0(Int(V2)), and as we
just saw, Ext(V1) ⊂ gk0(Int(V2)). So Ext(D′

2) ⊂ D1. We can then apply Theorem 5,
and we get that the group generated by �′

2 and �1 is still Kleinian, cocompact, and
isomorphic to �1 ∗ �′

2, i.e. �1 ∗ �2.

Example 4. All the cocompact Lorentzian Kleinian groups of the Examples 1 and
2 of Section 5 satisfy the hypothesis of Theorem 2. This is also the case of most
instances of Example 3, when ρ is injective with discrete image. Thus such groups
can be combined and give new examples. Notice that in the proof of Theorem 2, the
gluing element g can be chosen in many ways. In particular, starting from two groups
of the Examples 1, 2 or 3, suitable choices of g will give combined groups which are
Zariski dense in O(2, n).

6.2. Lorentzian surgery. Theorem 2 reflects in fact the group theoretical aspect of
a slightly more general process of conformal Lorentzian surgery.

Let M1 and M2 be two conformally flat Lorentzian manifolds (we do not make
any compactness assumption). Suppose that M1 contains a closed lightlike geodesic
�1 admitting some open neighbourhood U1 which embeds conformally, via a certain
embedding φ1, into Einn. Suppose moreover that the same property is satisfied by
M2, for a closed lightlike geodesic �2, an open neighbourhood U2, and a confor-
mal embedding φ2. We can suppose that φ1(�1) and φ2(�2) are disjoint in Einn.
By Lemma 6, φ1(�1) and φ2(�2) are the attracting and repelling circles of some
element g ∈ Conf(Einn). As in the proof of Theorem 2, there exist two open neigh-
bourhoods V1 and V2 of �1 and �2 respectively, such that V1 ⊂ U1, V2 ⊂ U2,
and g(Ext(φ2(V2))) = φ1(V1). In particular g(∂(φ2(V2))) = ∂(φ1(V1)) (recall that
∂ denotes the boundary). So the element g provides a gluing map f between ∂V1
and ∂V2. We denote by Ṁ1 (resp. Ṁ2 ) the manifold M1 (resp. M2) with V1 (resp.
V2) removed. We call M = Ṁ1�f Ṁ2 the manifold obtained from Ṁ1 ∪ Ṁ2 after
identification of ∂V1 and ∂V2 by means of the map f . Since g ∈ Conf(Einn), the
“surgered manifold” M is still endowed with a conformally flat Lorentzian structure.
Theorem 2 ensures that if one starts with two compact Kleinian structures M1 and
M2, the conformally flat structure on Ṁ1�f Ṁ2 is still Kleinian.
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Remark 6. This surgery process is reminiscent of Kulkarni’s construction of a con-
formally flat Riemannian structure on the connected sum of two conformally flat
Riemannian manifolds ([K1]). We do not know whether the connected sum of two
conformally flat Lorentzian manifolds can still be endowed with a conformally flat
Lorentzian structure.

7. Lorentzian Schottky groups

As an application of the former sections we study here the Lorentzian Schottky groups.
These groups are interesting since we can completely determine their limit set and
the Kleinian manifolds they uniformize. Moreover, they can be used to construct
examples of conformally flat manifolds with some peculiar properties (see [Fr2]).

Let us consider a family {(�−
1 , �+

1 ), . . . , (�−
g , �+

g )}of pairs of lightlike geodesics
in Einn. We suppose moreover that the �±

i are all disjoint. By Lemma 6, there exists
a family s1,…, sg of elements of Conf(Einn) with mixed dynamics such that the
attracting and repelling circles of si are precisely �+

i and �−
i . Looking if necessary

at suitable powers s
ki

i of si , we can find open tubular neighbourhoods U±
i of the �±

i

with the following properties:

(i) The U±
i are all disjoint.

(ii) si(Ext(U−
i )) = Ui

+
for all i = 1, . . . , g.

Such a group � = 〈s1, . . . , sg〉 is called a Lorentzian Schottky group. Properties (i)
and (ii) are classically known as ping-pong dynamics (see for example [dlH]). For
each i, the group 〈si〉 acts properly cocompactly on the open set Einn\{�−

i ∪ �+
i },

and a fundamental domain is just given by Di = Einn\{U+
i ∪ U−

i }. Now, since the

U±
i are disjoint, we get that Ext(Di) ⊂ Dj for all i 
= j . If we call D = ⋂g

i=1 Di , it
is clear that D 
= ∅. We then apply Theorem 5 to obtain

Proposition 8. A Lorentzian Schottky group � = 〈s1, . . . , sg〉 is a free group of
Conf(Einn). Moreover, � is Kleinian, it acts properly and cocompactly on � =⋃

γ∈� γ (D). A fundamental domain for this action is given by D = ⋂g
i=1 Di .

We are now going to describe � and its complement � ⊂ Einn more precisely.
Let us recall that in a finitely generated free group each element γ can be written

in an unique way as a reduced word in the generators. We denote by |γ | the length
of this word. Let us also recall that we can define the boundary ∂� of � as the set
of totally reduced words of infinite length. Hence the elements of the boundary can
be written as s

ε1
i1

. . . .s
εk

ik
. . . with εj ∈ {±1} and ij εj 
= −ij+1εj+1 for all j ≥ 1.

Since we supposed that g ≥ 2, the boundary ∂� is a compact metrizable space,
homeomorphic to a Cantor set (see [GdlH]).
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For each k ∈ N, we call Fk = ⋃
|γ |≤kγ (D), with the convention F0 = D. It is

not difficult to check that Fk−1 ⊂ Fk , and � = ⋃
k∈N

Fk . So, � = ⋂
k∈N

Ext(Fk).

For each k, we set �k = Ext(Fk), and thus, we also have � = ⋂
k∈N

�k . The

set �k is a disjoint union of exactly 2g.(2g − 1)k connected components, in one to
one correspondence with the words of length k + 1 in �. For example, to the word
s
ε1
i1

. . . s
εk+1
ik+1

corresponds the component s
ε1
i1

. . . s
εk

ik
(U

εk+1
ik+1

) of �k . We can now state
the following result.

Lemma 7. There is a homeomorphism K between the boundary ∂� and the space of
connected components of � (endowed with the Hausdorff topology for the compact
subsets of Einn).

Proof. Let γ∞ = s
ε1
i1

. . . .s
εk

ik
. . . be an element of ∂�. We call γk = s

ε1
i1

. . . .s
εk

ik
and

we look at the decreasing sequence of compact subsets K(γk) = s
ε1
i1

. . . .s
εk−1
ik−1

(U
εk

ik
).

This decreasing sequence of compact sets tends to a limit compact set K(γ∞) for the
Hausdorff topology. Since the U±

i are connected, so are the K(γk), and K(γ∞) is
itself connected. Let us remark that if γ∞ and γ ′∞ are distinct in ∂�, then K(γk) and
K(γ ′

k) are disjoint for k large (they represent two distinct components of �k), so that
K(γ∞) and K(γ ′∞) are disjoint.

Reciprocally, choose x∞ ∈ �. Since � = ⋂
k∈N

�k with �k+1 ⊂ �k , x∞
must be an element of some connected component Ck ⊂ �k for each k. More-
over Ck+1 ⊂ Ck . But Ck is then a decreasing sequence of compact subsets of
the form s

ε1
i1

. . . .s
εk−1
ik−1

(U
εk

ik
) and thus converges to a limit compact set K(γ∞) for

γ∞ = s
ε1
i1

. . . .s
εk

ik
. . . .

We have proved that the mapping K between ∂� and the set of connected com-
ponents of � is a bijection. It remains to prove that it is a homeomorphism, and for
this, it is sufficient to show that K is continuous. Let us consider a sequence γ

(n)∞
of elements of �, converging to some γ∞. It means that there is a sequence (rn) of
integers which tends to infinity, such that γ

(n)∞ and γ∞ have the same rn first letters.
For each n ∈ N, K(γ

(n)∞ ) is a decreasing sequence of compact sets C
(n)
k , where each

C
(n)
k is a connected component of �k . On the other hand, K(γ∞) is the limit of a

decreasing sequence of Ck , where each Ck is a connected component of �k . Since
γ

(n)∞ and γ∞ have the same rn first letters, we have C
(n)
rn−1 = Crn−1 for all n. Thus,

the limit, as n tends to infinity, of C
(n)
rn−1 is K(γ∞). But since K(γ

(n)∞ ) ⊂ C
(n)
rn−1, we

get that limn→∞ K(γ
(n)∞ ) = K(γ∞) and we are done. �

The next step is to show the following lemma.

Lemma 8. The connected components of � are lightlike geodesics.
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Proof. Let us consider γ∞ = s
ε1
i1

. . . s
εk

ik
. . . in the boundary of �. We know that

K(γ∞) is the limit of the sequence s
ε1
i1

. . . s
εk−1
ik−1

(U
εk

ik
). Since the sequence is decreas-

ing, the limit remains the same if we consider a subsequence. Thus we can make the
extra assumption that K(γ∞) is the limit of a sequence γk(U

εj0
j0

), such that (γk) tends
simply to infinity and the first and last letters of γk are always the same, namely s

ε1
i1

and s
εj1
j1

. Observe that j1εj1 
= −j0εj0 . We are going to discuss the different possible
dynamics for (γk), and we first prove that (γk) cannot have bounded distortion.

Suppose that it is the case. We call p+ (resp. p−) and C+ (resp. C−) the attracting
(resp. repelling) pole and cone of (γk). If x is a point of D, then for all k ∈ N,

γk(x) ∈ U
ε1
i1

and γk
−1(x) ∈ U

−εj1
j1

. So we must have p+ ∈ U
ε1
i1

and p− ∈ U
−εj1
j1

.

In particular, p− is not in U
εj0
j0

. On the other hand, it is a general fact that in Einn

any lightlike cone meets any lightlike geodesic (just because degenerate hyperplanes
always meet null 2-planes in R

2,n). In particular, the cone C− meets �
εj0
j0

and thus

U
εj0
j0

. We call V
εj0
j0

= C− ∩ U
εj0
j0

. Since U
εj0
j0

does not contain p−, we infer from

Proposition 4 (i) and (ii) that K(γ∞) = D(γk)(V
εj0
j0

). More precisely, if V̂
εj0
j0

is the

set of lightlike geodesics of C− meeting V
εj0
j0

, then K(γ∞) is the closure of the

union the lightlike geodesics of γ̂∞(V̂
εj0
j0

) (see Proposition 4 for the notation γ̂ ∞).
In particular, K(γ∞) contains a lightlike geodesic. Now some lightlike geodesic of
C− does not meet V

εj0
j0

. Indeed, if this is not the case, then Proposition 4 (ii) ensures
that K(γ∞) = C−. But if we take γ ′∞ 
= γ∞, then K(γ ′∞) contains some lightlike
geodesic by the remark above. Since any lightlike geodesic meets C−, we get a
contradiction with the fact that K(γ∞) and K(γ∞) have to be disjoint.

Now let us perturb slightly the sets U
εj0
j0

and U
−εj0
j0

into some sets U ′
j0

εj0 and

U ′
j0

−εj0 , in order to get another fundamental domain D′, very close to D. Since

it is very near to D, D′ is included in some Fk for k sufficiently large, and so⋃
γ∈� γ (D′) = ⋃

γ∈� γ (D). We prove as above that the limit of the compact sets
γk(U

′
j0

εj0 ) is still a connected component of � and consequently of the form K(γ ′∞).

We just saw that some lightlike geodesics of C− do not meet V
εj0
j0

, so that V̂
εj0
j0

is

not the whole of S
n−2. It is thus possible to choose U ′

j0

εj0 in such a way that some

points of V̂ ′
j0

εj0 are not in V̂
εj0
j0

. But then K(γ ′∞) and K(γ∞) will be two different

components, hence disjoint. On the other hand, since the intersection of U
εj0
j0

and

U ′
j0

εj0 is not empty (�
εj0
j0

is inside), K(γ∞) and K(γ ′∞) must have some common
points. We thus get a contradiction.

It remains to deal with the case where (γk) has mixed or balanced distortions. Once

again, if x is a point of D then for all k ∈ N, γk(x) ∈ U
ε1
i1

and γk
−1(x) ∈ U

−εj1
j1

.
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Hence the attracting circle �+ is in U
ε1
i1

and the repelling one �− is in U
−εj1
j1

. In

particular U
εj0
j0

does not meet �−. We infer from Proposition 5 and Proposition 3

that limk→∞ γk(U
εj0
j0

) ⊂ �+, but since U
εj0
j0

contains a lightlike geodesic, we have

the equality limk→∞ γk(U
εj0
j0

) = �+. We finally obtain that K(γ∞) = �+. �

7.1. Proof of Theorem 3. We begin by proving that the group � is of the first
type. Suppose on the contrary that there is some sequence (γk) in � with bounded
distortion. Then D meets the repelling cone C−. Otherwise C− would be included
in some U±

i , say U+
1 . But since �−

1 meets C−, the intersection between �−
1 and

U+
1 would be nonempty, a contradiction. By Proposition 4 (ii), limk→∞ γk(D) is a

compact subset containing infinitely many lightlike geodesics. But limk→∞ γk(D) is
also a connected subset of �. This contradicts the fact that the connected components
of � are lightlike geodesics.

We claim that the equality �� = � holds. Indeed, for any sequence (γk) of �

tending simply to infinity, (γk) tends to �+(γk). We thus see that �� ⊂ �. Now
it is a general fact that if a group � acts properly cocompactly on some open set �,
then it cannot act properly on some open set �′ strictly containing �. So � cannot
be strictly contained in Einn\�� , and we obtain �� = �.

We now prove that �� is the product of RP 1 with a Cantor set. The space Einn

is the quotient of S
1 × S

n−1 by the product of antipodal maps, so that there is a
fibration f : Einn → RP 1. The fibers of f are conformal Riemannian spheres of
codimension one. In the projective model they are obtained as the projection of the
intersection between C2,n and some hyperplanes P ⊂ R

2,n of Lorentzian signature.
As a consequence any lightlike geodesic is transverse to any fiber of f . Let us choose a
fiber F0 above a point t0 of RP 1. From Lemmas 7 and 8, � (and thus ��) is transverse
to F0 and intersects it along a Cantor set C. For each x ∈ C, we call x(t) the unique
element of f −1(t)∩�� such that x and x(t) are on the same lightlike geodesic of �.
Then Lemma 7 ensures that the following mapping is a homeomorphism:

RP 1 × C → �,

(t, x) 	→ x(t).

This proves (ii).
Due to the homeomorphism K we get that, since the action of � on its boundary is

minimal (see for instance [GdlH]), the action of � on the space of lightlike geodesics
of �� is also minimal, which establishes (iii).

For the proof of (iv) we refer to Theorem 5 of [Fr2] (in fact, in [Fr2] we considered
only particular cases of Schottky groups, but the proof of Theorem 5 includes the
general case).
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