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Arithmetic properties of ϕ(n)/λ(n) and the structure of the
multiplicative group modulo n
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Abstract. For a positive integer n, we let ϕ(n) and λ(n) denote the Euler function and the
Carmichael function, respectively. We define ξ(n) as the ratio ϕ(n)/λ(n) and study various
arithmetic properties of ξ(n).
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1. Introduction and notation

Let ϕ(n) denote the Euler function, which is defined as usual by

ϕ(n) = #(Z/nZ)× =
∏

pν ‖ n

pν−1(p − 1), n ≥ 1.

The Carmichael function λ(n) is defined for all n ≥ 1 as the largest order of any
element in the multiplicative group (Z/nZ)×. More explicitly, for any prime power
pν , one has

λ(pν) =
{

pν−1(p − 1) if p ≥ 3 or ν ≤ 2,

2ν−2 if p = 2 and ν ≥ 3,

and for an arbitrary integer n ≥ 2,

λ(n) = lcm
(
λ(p

ν1
1 ), . . . , λ(p

νk

k )
)
,

where n = p
ν1
1 . . . p

νk

k is the prime factorization of n. Clearly, λ(1) = 1.
Despite their many similarities, the functions ϕ(n) and λ(n) often exhibit remark-

able differences in their arithmetic behavior, and a vast number of results about the
growth rate and various arithmetical properties of ϕ(n) and λ(n) have been obtained;
see for example [4], [5], [7], [8], [9], [11], [15]. In this paper, we consider the
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arithmetical function defined by

ξ(n) = ϕ(n)

λ(n)
, n ≥ 1,

and we study some of its arithmetic properties.
In particular, letting P(k) denote the largest prime factor of a positive integer k

(with the convention that P(1) = 1), we study the behavior of P(ξ(n)). Our results
imply that typically ξ(n) is much “smoother” than a random integer k of the same
size. To make this comparison, it is useful to recall that Theorem 2 of [9] implies that
the estimate

ξ(n) = exp
(
log2 n log3 n + C log2 n + o(log2 n)

)
(1)

holds on a set of positive integers n of asymptotic density 1 with some absolute
constant C > 0. Here, and in the sequel, for a real number z > 0 and a natural number
�, we write log� z for the recursively defined function given by log1 z = max{log z, 1},
where log z denotes the natural logarithm of z, and log� z = max{log(log�−1 z), 1}
for � > 1. When � = 1, we omit the subscript (however, we still assume that
all the logarithms that appear below are at least 1). Of course, when z is sufficiently
large, then log� z is nothing more than the �-fold composition of the natural logarithm
evaluated at z.

We also use �(n) and ω(n) with their usual meanings: �(n) denotes the total
number of prime divisors of n > 1 counted with multiplicity, while ω(n) is the
number of distinct prime factors of n > 1; as usual, we put �(1) = ω(1) = 0. In
this paper, we also study the functions �(ξ(n)) and ω(ξ(n)).

Observe that a prime p divides ξ(n) if and only if the p-Sylow subgroup of the
group (Z/nZ)× is not cyclic. Thus, P(ξ(n)) and ω(ξ(n)) can be viewed as measures
of “non-cyclicity” of this group. In particular, ω(ξ(n)) is the number of non-cyclic
Sylow subgroups of (Z/nZ)×.

We also remark that any prime p | ξ(n) has that property that p2 | ϕ(n). Thus,
while studying the prime factors of ξ(n), one is naturally lead to an associated question
concerning the difference �(ϕ(n))−ω(ϕ(n)), a question that we address here as well.

As usual, for a large number x, π(x) denotes the number of primes p ≤ x, and for
positive integers a, k with gcd(a, k) = 1, π(x; k, a) denotes the number of primes
p ≤ x with p ≡ a (mod k).

We use the Vinogradov symbols �, �, � as well as the Landau symbols O and
o with their usual meanings. The implied constants in the symbols O, �, � and �
are always absolute unless indicated otherwise.

Finally, we say that a certain property holds for “almost all” n if it holds for all
n ≤ x with at most o(x) exceptions, as x → ∞.
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2. Distribution of P(ξ(n)), ω(ξ(n)) and �(ξ(n))

In what follows, let us call a real-valued function ε(x) admissible if

• ε(x) is a decreasing function, with limit 0 as x → ∞;

• ε(x) log2 x is an increasing function, tending to ∞ as x → ∞.

We begin with the following statement, which may be of independent interest.

Lemma 1. For any admissible function ε(x) and any prime q ≤ ε(x) log2 x, every
positive integer n ≤ x has at least (log2 n)/2q distinct prime factors p ≡ 1 (mod q),
with at most o(x) exceptions.

Proof. Let ω(n, q) denote the number of distinct prime factors p of n such that p ≡ 1
(mod q). For any real number y ≥ 1 and integer a ≥ 1, put

S(y, a) =
∑
p≤y

p≡1 (mod a)

1

p
. (2)

It is known (see Theorem 1 in [18] or Lemma 6.3 in [17]) that

S(y, a) = log2 y

ϕ(a)
+ O(1). (3)

In particular, the estimate

S(n, q) = log2 n

q − 1
+ O(1) � ε(x)−1

holds for all q in the stated range and all n > x1/2, once x is sufficiently large. By
the classical result of Turán [20], we also have that the estimate

ω(n, q) = S(n, q) + O
(
S(n, q)2/3)

holds for all n in the interval x1/2 < n ≤ x, with at most

O
(
xS(n, q)−1/6) = O

(
x ε(x)1/6) = o(x)

possible exceptions, and the result now follows. �
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Lemma 2. For real numbers x ≥ y > 1 let

�(x, y) = #{n ≤ x : P(ξ(n)) > y}.
Then,

�(x, y) � x(log2 x)2

y log y
.

Proof. If a prime q divides ξ(n), then clearly q2 | ϕ(n). The upper bound

#{n ≤ x : ϕ(n) ≡ 0 (mod q2)} � x(log2 x)2

q2

is a special partial case of Lemma 2 of [5] (see also the proof of Theorem 7.1 in [4]).
In particular,

#{n ≤ x : P(ξ(n)) = q} � x(log2 x)2

q2 . (4)

It now follows that

�(x, y) =
∑

y<q≤x

∑
n≤x

P (ξ(n))=q

1 �
∑

y<q≤x

x(log2 x)2

q2 .

Using Abel summation, we estimate∑
y<q≤x

1

q2 = π(x)

x2 − π(y)

y2 + 2
∫ x

y

π(t)

t3 dt � 1

x log x
+

∫ x

y

1

t2 log t
dt � 1

y log y
,

and the lemma follows. �

Theorem 1. If ε(x) is any admissible function, then the inequalities

ε(n) log2 n ≤ P(ξ(n)) ≤ (log2 n)2

ε(n) log3 n

hold for almost all positive integers n.

Proof. By the Prime Number Theorem, for all sufficiently large real numbers x there
exists a prime q in the interval:

ε(x) log2 x < q ≤ 2 ε(x) log2 x.

If n is an integer with two prime factors p1 ≡ p2 ≡ 1 (mod q), then q | ξ(n). By
Lemma 1, we derive that∑

x1/2<n≤x
P (ξ(n))≥ε(n) log2 n

1 ≥
∑

x1/2<n≤x
P (ξ(n))≥q

1 ≥
∑

x1/2<n≤x
ω(n,q)≥2

1 = x + o(x).
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This proves the lower bound. The upper bound is a direct application of Lemma 2.
�

We remark that the upper bound of Theorem 1 improves the corollary to Theorem 2
in [9].

Theorem 2. As x → ∞, we have

(1 + o(1)) x log3 x ≤
∑
n≤x

log P(ξ(n)) ≤ (2 + o(1)) x log3 x.

Proof. The above lower bound follows from the lower bound from Theorem 1. For
the upper bound above, we write∑

n≤x

log P(ξ(n)) =
∑
q≤x

log q
∑
n≤x

P (ξ(n))=q

1.

For q ≤ y, we trivially have∑
q≤y

log q
∑
n≤x

P (ξ(n))=q

1 ≤ log y
∑
q≤y

∑
n≤x

P (ξ(n))=q

1 ≤ log y
∑
n≤x

1 ≤ x log y,

while for q > y, we have, by (4):

∑
y<q≤x

log q
∑
n≤x

P (ξ(n))=q

1 � x(log2 x)2
∑

y<q≤x

log q

q2 � xy−1(log2 x)2,

where we have used Abel summation to estimate

∑
y<q≤x

log q

q2 = π(x)
log x

x2 − π(y)
log y

y2 −
∫ x

y

π(t)

(
1

t3 − 2 log t

t3

)
dt

� x−1 +
∫ x

y

t−2 dt � y−1.

Setting y = (log2 x)2, we obtain the desired upper bound. �

Theorem 3. As x → ∞, we have∑
n≤x

P (ξ(n)) � x(log2 x)3.
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Proof. Let y = (log2 x)3, z = exp((log x)1/2) and w = exp((log x)2/3). We also
put v = z6. In what follows, x is taken to be arbitrarily large.

Taking A = 5/2, ε = 1/2, and δ = 1/15 in the statement of Theorem 2.1
of [1], we see that there exists an absolute constant D ≥ 0 and a set D of cardinality
#D ≤ D, with min{m : m ∈ D} ≥ log v = 6(log x)1/2, such that the inequality

π(t; d, 1) ≥ π(t)

2ϕ(d)
(5)

holds for all positive reals t provided that 1 ≤ d ≤ min{tv−2/3, z2} and that d is not
divisible by any element of D . Note that if x is sufficiently large and t ≥ w, then
tv−2/3 ≥ wv−2/3 ≥ z2.

Letting Q denote the set of primes q ∈ [y, z]\D , we therefore see that the lower
bound (5) holds for all t ∈ [w, x] and all integers d ∈ [1, z2] whose prime factors all
lie in Q. Together with the Brun–Titchmarsh theorem (see for example Theorem 3.7
in Chapter 3 of [12]), we conclude that

π(t; d, 1) � π(t)

ϕ(d)

holds uniformly for all t ∈ [w, x] and all integers d of the form d = q or d = q1q2
composed of one or two (not necessarily distinct) primes from Q. Moreover, for any
sufficiently large constant γ > 1, we also have

π(t; d, 1) − π(t/γ ; d, 1) � π(t)

ϕ(d)
(6)

under the same conditions.
We now let

k =
⌈

log w

log γ

⌉
and K =

⌊
log x

2 log γ

⌋
− 1.

For any prime q ∈ Q, we have, by (6):

∑
w<p≤x1/2

p≡1 (mod q)

1

p
≥

K∑
j=k

π(γ j+1; d, 1) − π(γ j ; d, 1)

γ j+1 � 1

q

K∑
j=k

1

j
� log2 x

q
.

On the other hand, the upper bound (3.1) in [7] (see also Lemma 1 of [5]) provides
an upper bound of the same size as the above lower bound. Consequently,

∑
w<p≤x1/2

p≡1 (mod q)

1

p
� log2 x

q
. (7)
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We now fix a prime number q in Q. We denote by N(x, q) the number of integers
n ≤ x for which there exists a unique representation of the form n = p1p2m for
some integer m and two primes w < p1 < p2 ≤ x1/2 with p1 ≡ p2 ≡ 1 (mod q)

and such that q is the only prime in Q dividing gcd(p1 − 1, p2 − 1). We then have

N(x, q) ≥ T0(x, q) − T1(x, q) − T2(x, q) − T3(x, q),

where

• T0(x, q) is the total number of ordered triples (p1, p2, m) with primes w < p1 <

p2 ≤ x1/2, p1 ≡ p2 ≡ 1 (mod q), and an integer m ≤ x/p1p2. Therefore,
using (7), we obtain that

T0(x, q) � x
∑

w<p1<p2≤x1/2

p1≡p2≡1 (mod q)

1

p1p2

= x

2

( ∑
w<p≤x1/2

p≡1 (mod q)

1

p

)2

− x

2

∑
w<p≤x1/2

p≡1 (mod q)

1

p2

� x

2

(
log2 x

q

)2

− x

2q

∑
w<p≤x1/2

p≡1 (mod q)

1

p

= x(log2 x)2

2q2 + O

(
x log2 x

q2

)
� x(log2 x)2

q2 .

• T1(x, q) is the number of triples (p1, p2, m) as above for which there exists
another prime � ∈ Q, � �= q, such that p1 ≡ p2 ≡ 1 (mod �). Then, by (7),
we have that

T1(x, q) � x
∑
�∈Q
��=q

∑
w<p1<p2≤x1/2

p1≡p2≡1 (mod q�)

1

p1p2
≤ x

∑
�∈Q

( ∑
w<p<x1/2

p≡1 (mod q�)

1

p

)2

� x
∑
�∈Q

(log2 x)2

q2�2 � x(log2 x)2

q2

∑
�>y

1

�2

� x(log2 x)2

q2y log y
= o

(
x(log2 x)2

q2

)
.

• T2(x, q) is the number of triples (p1, p2, m) as above for which there exists
another prime p3, w < p3 ≤ x1/2, which divides m, and for some prime � ∈ Q
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(possibly � = q) one has p3 ≡ 1 (mod �), and either p1 ≡ 1 (mod �), or
p2 ≡ 1 (mod �). Therefore, by (7), we see that

T2(x, q) � x
∑
�∈Q

∑
w<p1,p2≤x1/2

w<p3≤x1/2

p1≡p2≡1 (mod q)
p3≡p2≡1 (mod �)

1

p1p2p3

� x
∑
�∈Q

∑
w<p1≤x1/2

p1≡1 (mod q)

1

p1

∑
w<p2≤x1/2

p2≡1 (mod q�)

1

p2

∑
w<p3≤x1/2

p3≡1 (mod �)

1

p3

� x(log2 x)3
∑

y≤�≤z

1

q2�2 � x(log2 x)3

q2y log y
= o

(
x(log2 x)2

q2

)
.

• T3(x, q) is the number of triples (p1, p2, m) as above for which there exists
another triple (r1, r2, k) with primes w ≤ r1 < r2 ≤ x1/2 such that r1 ≡ r2 ≡ 1
(mod �) for some � ∈ Q, and p1p2m = r1r2k. Applying (7) once again, we
obtain that

T3(x, q) � x
∑
�∈Q

∑
w<p1<p2≤x1/2

p1≡p2≡1 (mod q)

1

p1p2

∑
w<r1<r2≤x1/2

r1≡r2≡1 (mod �)

1

r1r2

� x(log2 x)4
∑

y≤�≤z

1

q2�2 � x(log2 x)4

q2y log y
= o

(
x(log2 x)2

q2

)
.

Consequently, we have

N(x, q) ≥ T0(x, q) − T1(x, q) − T2(x, q) − T3(x, q) � x(log2 x)2

q2 .

We note that P(ξ(n)) ≥ q for all n ∈ N(x, q) and that the sets N(x, q) are disjoint
for different choices of q ∈ Q. Thus,

∑
n≤x

P (ξ(n)) �
∑
q∈Q

q #N(x, q) � x(log2 x)2
∑
q∈Q

1

q

≥ x(log2 x)2
( ∑

y≤q≤z

1

q
− D

6(log x)1/2

)

� x(log2 x)2(log2 z − log2 y + o(1)) � x(log2 x)3.
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To prove the upper bound, we simply use (4) to derive that

∑
n≤x

P (ξ(n)) ≤
∑
q≤x

q
∑
n≤x

P (ξ(n))=q

1 � x(log2 x)2
∑
q≤x

1

q
� x(log2 x)3.

This completes the proof. �

Concerning the minimal order of P(ξ(n)), little need be said; clearly P(ξ(n)) ≥ 1
for all n ≥ 1, and equality holds if and only if n = 2, 4, pν or 2pν for some odd
prime p and ν ≥ 1. As for the maximal order, we have the following:

Theorem 4. The inequality

P(ξ(n)) ≤ (3n + 1)1/2 − 2

6

holds for all n ≥ 276, and the inequality

P(ξ(n)) � n0.3335

holds for infinitely many n.

Proof. For n in the range 276 ≤ n ≤ 579, the upper bound can be verified case by
case; hence, we assume that n ≥ 580 in what follows. Without loss of generality, we
may further assume that q = P(ξ(n)) > 3, since

3 ≤ (3n + 1)1/2 − 2

6
holds for all n ≥ 133.

If P(ξ(n)) = q, then either n has a prime divisor p ≡ 1 (mod q) and q2p | n, or
n has two distinct prime divisors p1 ≡ p2 ≡ 1 (mod q). In the first case, we see that

q < (q2p/2)1/3 ≤ (n/2)1/3 ≤ (3n + 1)1/2 − 2

6
,

the last inequality being valid for all n ≥ 580. In the second case, suppose p1 = aq+1
and p2 = bq + 1, where a < b are distinct even integers. Now if 2q + 1 is prime,
then 4q + 1 is divisible by 3; thus, we must have a ≥ 2, b ≥ 6. Then

(2q + 1)(6q + 1) ≤ (aq + 1)(bq + 1) = p1p2 ≤ n,

and we obtain the stated upper bound.
To establish the lower bound, we recall the result of Fouvry [10], which asserts

that for all large x, the set Q of primes p in the interval x1/2 ≤ p ≤ x and satisfying
P(p − 1) � p0.667 is of cardinality #Q � x/ log x. We also recall that, by Brun’s
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method (see Theorem 2.2 in [12]), for any integer m, the number of primes of the
form p = mq + 1 ≤ x for some other prime q is

O

(
x

ϕ(m)(log(x/m))2

)
= O

(
x

ϕ(m)(log x)2

)

provided that m < x1/2. Summing up the above inequalities over all positive integers
m ≤ log2 x, we see that

#{p ≤ x : P(p − 1) ≥ x/ log2 x} � x

log2 x

∑
m<log x

1

ϕ(m)
� x log2 x

log2 x
= o(Q).

Thus, most of the primes p in Q in the interval have q = P(p − 1) < x/ log2 x, and
therefore there exist two primes p1, p2 ∈ Q with the same value of P(p1 − 1) =
P(p2−1) = q. With n = p1p2, we see that P(ξ(n)) ≥ q � max

{
p0.667

1 , p0.667
2

} �
n0.3335. �

As is clear from the proof, the upper bound of Theorem 4 is tight under the prime
k-tuplet conjecture of Hardy and Littlewood (see, for example, [3]). We also remark
that the trivial upper bound P(ξ(n)) ≤ n1/2 holds for all n ≥ 1.

Unfortunately, our method of proof for the lower bound of Theorem 4 can not be
combined with the more recent results of [2], since the set of primes considered there
is too thin.

Theorem 5. The inequalities

�(ξ(n)) = (1 + o(1)) log2 n log4 n and
log2 n

(log3 n)2 � ω(ξ(n)) � log2 n

hold for almost all positive integers n.

Proof. We start with �(ξ(n)) and first turn our attention to the upper bound. Let x

be a large positive real number, and let A1 be the set of all positive integers n in the
interval [x/ log x, x]. Clearly, A1 contains all but o(x) positive integers n ≤ x. Let
A2 be the set of those integers n ∈ A1 for which P(ξ(n)) ≤ (log2 x)2; by Theorem 1,
A2 contains all but o(x) positive integers n ≤ x. Let y = (log2 x)2. For any positive
integer m, we write

ωy(m) =
∑
p<y
p | m

1 and �y(m) =
∑
p<y

pν ‖ m

ν.

Thus, the inequality �(ξ(n)) ≤ �y(ϕ(n)) holds for all n ∈ A2. The argument on
page 349 in [8] shows that∑

n≤x

∣∣�y(ϕ(n)) − log2 x log2 y
∣∣2 � x log2 x(log2 y)2. (8)



Vol. 81 (2006) Arithmetic properties of ϕ(n)/λ(n) 11

Now let ε1(x) = (log2 x)−1/3, and let B be the set of those n ≤ x such that

�y(ϕ(n)) > (1 + ε1(x)) log2 x log2 y.

Using (8), it follows that

#B � x

ε1(x)2 log2 x
= o(x).

The set A3 = A2\B contains all but o(x) positive integers n ≤ x, and for each
n ∈ A3 we have

�(ξ(n)) ≤ �y(ϕ(n)) ≤ (1 + ε1(x)) log2 x log2 y = (1 + o(1)) log2 x log4 x. (9)

Since n ≥ x/ log x for all n ∈ A3, this shows that

�(ξ(n)) ≤ (1 + o(1)) log2 n log4 n

for almost all positive integers n.
Next we turn to the lower bound for �(ξ(n)). As before, let x be a large real

number, and put ε2(x) = (log3 x)−1/3 and Q = (log2 x)1/2. For natural numbers
n and q, we again write ω(n, q) for the number of prime factors p of n that are
congruent to 1 modulo q. For a prime q ≤ Q we define the sets

Cq =
{
n ≤ x : ω(n, q) ≤ (1 − ε2(x))

log2 x

ϕ(q)

}
,

and

C =
⋃
q≤Q

Cq .

We claim that #C = o(x) as x → ∞. Indeed, for a fixed prime q ≤ Q, by a result
of Turán [20] (see also (1.2) of [17]), we have

#Cq � xq

ε2
2(x) log2 x

� x(log3 x)2/3

log2 x
q.

Therefore,

#C ≤
∑
q≤Q

#Cq � x(log3 x)2/3

log2 x

∑
q≤(log2 x)1/2

q � x

(log3 x)1/3 = o(x).

Now let D be the set of those positive integers n ≤ x not lying in C. Then for each
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n ∈ D , one has

�(ξ(n)) ≥
∑
q≤Q

(ω(n, q) − 1) =
∑
q≤Q

ω(n, q) − π(Q)

≥ (1 − ε2(x)) log2 x
∑
q≤Q

1

ϕ(q)
− π(Q)

≥ (1 − ε2(x)) log2 x
∑
q≤Q

1

q
− π(Q)

≥ (1 + o(1)) log2 x log4 x ≥ (1 + o(1)) log2 n log4 n.

This completes the proof of the normal order of �(ξ(n)).
We now turn our attention to ω(ξ(n)) and start with the lower bound. Again, let x

be a large positive real number, and let ε3(x) be any admissible function. Let q be a
prime number and let νq(m) denote the largest power of q dividing a natural number
m. It suffices to show that there exists a constant c1 such that for all but o(x) positive
integers n ≤ x, the estimate

νq(ξ(n)) ≥ ε3(x) log2 x, (10)

holds simultaneously for all primes q ≤ c1 log2 x/ log3 x.
Let us define

Wq =
{
n ≤ x : ω(n, q) <

log2 x

2ϕ(q)

}
.

By the result of Turán mentioned above, we have #Wq � xq/ log2 x; summing up
these estimates for all q ≤ (log3 x)1/2, we see that

∑
q≤(log3 x)1/2

#Wq � x

log2 x

∑
q≤(log3 x)1/2

q � x log3 x

log2 x log4 x
= o(x).

We also note that for q ≤ (log3 x)1/2, we have

log2 x

2ϕ(q)
� log2 x

(log3 x)1/2

which establishes (10) for q in this small range if ε3(x) ≤ (log3 x)−1/2, which we
now assume.

Next we consider the case in which q > (log3 x)1/2.
Let us denote by ωy(n) the number of prime factors p of n with p ≤ y. Let N

be the set of integers x1/2 ≤ n ≤ x for which

ωy(n) = log2 y + O((log2 y)2/3)
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holds simultaneously for y = exp((log x)1/2) and for y = x. By [20], we have that
#N = x + o(x).

Let Eq be the set of n ∈ N such that p2 | n for some p ≡ 1 (mod q) and let E be
the union of all Eq for q > (log3 x)1/2. Clearly,

#Eq �
∑

p≡1 (mod q)

x

p2 ≤ x

q2

∑
t≥1

1

t2 � x

q2 ,

and therefore

#E ≤
∑

q>(log3 x)1/2

#Eq � x
∑

q>(log3 x)1/2

1

q2 = o

(
x

(log3 x)1/2

)
= o(x).

For a fixed positive integer k and primes p1 ≡ · · · ≡ pk ≡ 1 (mod q), let
Nk,q(p1, . . . , pk) be the set of integers n ∈ N \E such that n = p1 . . . pkm holds
with some integer m with ω(m, q) = 0.

We first show that if k ≤ 0.5 log2 x, then Nk,q(p1, . . . , pk) is empty unless

x

p1 . . . pk

≥ z, (11)

where z = exp((log x)1/2). Indeed, in the opposite case, we see that for n ∈
Nk,q(p1, . . . , pk),

ω(n) ≤ k + ω(m) ≤ k + ωz(n) ≤ 0.5 log2 x + O
(
(log2 x)1/2) ,

which is impossible because ω(n) ∼ log2 n ∼ log2 x for n ∈ N .
We now have

#Nk,q(p1, . . . , pk) ≤
∑

m≤x/(p1...pk)
q � | ϕ(m)

1. (12)

It has been shown in the proof of Theorem 4.1 of [7] that there exists an absolute
constant c2 > 0 such that the upper bound∑

m≤t
q � | ϕ(m)

1 � t exp (−c2S(t, q))

holds uniformly when log t > q, where S(t, q) is given by (2). By Theorem 3.4 of
[7], we know that the lower bound

S(t, q) � log2 t

q
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holds provided that q < log t . Thus, assuming (11), and remarking that log z =
(log x)1/2 > q, we derive from (12) that the estimate

#Nk,q(p1, . . . , pk) � x

p1 . . . pk

exp

(
−c3

log2 x

q

)

holds with some absolute constant c3 > 0.
Therefore, the set Nk,q consisting of all integers n in N \E that belong to at least

one of the sets Nk,q(p1, . . . , pk), for fixed k and q, has cardinality at most

#Nk,q = 1

k!
∑
p1<x

p1≡1 (mod q)

· · ·
∑
pk<x

pk≡1 (mod q)

#Nk,q(p1, . . . , pk)

≤ 1

k!
∑
p1<x

p1≡1 (mod q)

· · ·
∑
pk<x

pk≡1 (mod q)

x

p1 . . . pk

exp

(
−c3

log2 x

q

)

≤ x

k! exp

(
−c3

log2 x

q

)
S(x, q)k.

Put Kq = ε3(x)(log2 x)/q. Recalling the bound (3) and using the Stirling for-
mula, we obtain

∑
k≤Kq

#Nk,q � x exp

(
−c3

log2 x

q

) ∑
k≤Kq

(
2 log2 x

)k

qkk!

� x exp

(
−c3

log2 x

q

) ∑
k≤Kq

(
6 log2 x

qk

)k

.

Furthermore, we derive

∑
k≤Kq

(
6 log2 x

qk

)k

�
∑

0≤i≤log Kq

∑
Kqe−i−1≤k≤Kqe−i

(
6ei+1 log2 x

qKq

)k

=
∑

0≤i≤log Kq

∑
Kqe−i−1≤k≤Kqe−i

(
6ε−1

3 (x)ei+1
)k

�
∑

0≤i≤log Kq

(
6ε−1

3 (x)ei+1
)Kqe−i

� exp
(
c4Kq log

(
ε−1

3 (x)
))
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for some constant c4. Therefore, for an appropriate constant c1,∑
q≤c1 log2 x/ log3 x

∑
k≤Kq

#Nk,q

� x
∑

q≤c1 log2 x/ log3 x

exp

(
−c3

log2 x

q
+ c4Kq log

(
ε−1

3 (x)
))

� x
∑

q≤c1 log2 x/ log3 x

exp

(
−0.5c3

log2 x

q

)
= o(x)

provided that x is large enough. Clearly, the inequality (10) implies the desired lower
bound on ω(ξ(n)).

We now prove the upper bound on ω(ξ(n)). By (1), we know that the inequality

log(ξ(n)) � log2 n log3 n (13)

holds on a set of positive integers 1 of asymptotic density 1. The upper bound on
ω(ξ(n)) claimed by our Theorem 5 follows now from inequality (13) above combined
with the classical estimate

ω(ξ(n)) � log ξ(n)

log2 ξ(n)
,

which concludes the proof. �

It is easy to see that Theorem 5 implies that for some constant c5 > 0, the bound

τ(ξ(n)) ≥ 2ω(ξ(n)) � exp

(
c5

log2 n

(log3 n)2

)

holds for almost all positive integers n, where, as usual, τ(k) denotes the number of
divisors of an integer k ≥ 1.

It is also clear that for any positive integer n

ω(ξ(n)) ≤ ω(ϕ(n)) � log ϕ(n)

log2 ϕ(n)
� log n

log2 n

and
�(ξ(n)) � �(ϕ(n)) � log ϕ(n) � log n.

Theorem 6. The inequalities

�(ξ(n)) � log n and ω(ξ(n)) � log n

log2 n

hold for infinitely many positive integers n.
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Proof. Let k be a sufficiently large integer, and then let p1 and p2 be the first two
primes in the arithmetic progression 1 (mod 2k). By Linnik’s Theorem, in the form
given by Heath-Brown [13], we know that max{p1, p2} � 211k/2, With n = p1p2,
we have that 2k | ξ(n); therefore �(ξ(n)) ≥ k � log n. Finally, let y be large and
let M = ∏

p<y p. By the Prime Number Theorem, we have log M = (1 + o(1))y.
Let p1 and p2 be the first two primes in the arithmetic progression 1 (mod M). We
again have that max{p1, p2} � M11/2, and with n = p1p2 we have that M | ξ(n).
Thus,

ω(ξ(n)) � ω(M) = π(y) � log M

log2 M
� log n

log2 n
,

which finishes the proof. �

3. Average q-adic norm and order of ϕ(n)

Let q be a prime, and let |m|q be the q-adic norm of m, that is, |m|q = q−νq(m) where,
as before, νq(m) is the largest power of q dividing m. In this section, we address the
average value of |ϕ(n)|q and νq(ϕ(n)).

Recall that an arithmetic function f (n) is said to be multiplicative if f (nm) =
f (n)f (m) for any integers n and m with gcd(n, m) = 1. Accordingly, if f (nm) =
f (n) + f (m) for any integers n and m with gcd(n, m) = 1 then f (n) is called
additive.

In particular, νq(ϕ(n)) is an additive function. Thus, |ϕ(n)|q is a bounded mul-
tiplicative function, and therefore it is natural that our principal tool is the following
theorem of Wirsing [21].

Lemma 3. Assume that a real-valued multiplicative function f (n) satisfies the fol-
lowing conditions:

• f (n) ≥ 0, n = 1, 2, . . . ;

• f (pν) ≤ abν , ν = 2, 3, . . . , for some constants a, b > 0 with b < 2;

• there exists a constant τ > 0 such that∑
p≤x

f (p) = (τ + o(1))
x

log x
.

Then, for any x ≥ 0,

∑
n≤x

f (n) =
(

1

eγ τ�(τ)
+ o(1)

)
x

log x

∏
p≤x

( ∞∑
ν=0

f (pν)

pν

)
,
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where γ is the Euler constant, and

�(s) =
∫ ∞

0
e−t t s−1 dt

is the �-function.

Lemma 4. For any fixed prime q,

∏
p≤x

(
1 + |p − 1|q

p − 1

)
= (

ηq + o(1)
)
(log2 x)αq ,

where αq = (q2 − q − 1)/(q2 − 1), and ηq is a constant depending only on q.

Proof. We have

log

(
1 + |p − 1|q

p − 1

)
= |p − 1|q

p
+ O

( |p − 1|q
p2

)
,

therefore the series

ζq =
∑
p

∣∣∣∣log

(
1 + |p − 1|q

p − 1

)
− |p − 1|q

p

∣∣∣∣
converges absolutely. Hence, it is enough to show that

∑
p≤x

|p − 1|q
p

= αq log2 x + βq + o(1) (14)

holds with some constant βq .
We have:

∑
p≤x

|p − 1|q
p

=
∞∑

k=0

( ∑
p≤x

p≡1 (mod qk)

q−k

p
−

∑
p≤x

p≡1 (mod qk+1)

q−k

p

)

= S(x, 1) − (q − 1)

∞∑
k=1

q−kS(x, qk),

(15)

where, as before, S(x, qk) is given by (2).
We write K for the largest positive integer such that qK ≤ log2 x; thus, K �

log3 x. Using the classical Page bound (see Chapter 20 of [6]) and partial summation
(see a remark in Chapter 22 of [6]), we have

π(t; qk, 1) = t

(q − 1)qk−1 log t
+ O

(
t

qk(log t)2

)
(16)
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for all positive integers k ≤ K and real t ≥ eK .
Therefore, using the same partial summation arguments as in the proof of Theo-

rem 1 of [18] (see also Lemma 6.3 of [17]), and using (16) in the appropriate place
(starting with the value of t ≥ eK ), we derive that for every k ≤ K ,

S(x, qk) = log2 x

(q − 1)qk−1 + Ak,q + O

(
1

(log x)1/2

)
, (17)

for some constants Ak,q depending only on k and q. Moreover, by Theorem 1 of [18]
or Lemma 6.3 of [17], Ak,q = O(1) uniformly for q and k = 0, 1, . . . (see (3)).

For k ≥ K , we use the fact that

S(x, qk) � log2 x

(q − 1)qk−1 (18)

(see the bound (3.1) in [7] and also Lemma 1 of [5]). Define

βq = Ak,0 − (q − 1)
∑
k≥1

Ak,q

qk
.

Using (17) and (18) in (15), and taking into account that

1 − (q − 1)
∑
k≥1

1

(q − 1)q2k−1 = q2 − q − 1

q2 − 1
= αq,

we get (14) and thus finish the proof. �

Theorem 7. For any prime q,∑
n≤x

|ϕ(n)|q = (
γq + o(1)

)
x(log x)−q/(q2−1),

where γq is a constant depending only on q.

Proof. For p �= q, we have

∞∑
ν=0

|ϕ(pν)|q
pν

= 1 +
∞∑

ν=1

|p − 1|q
pν

= |p − 1|q
p − 1

,

and certainly

∞∑
ν=0

|ϕ(qν)|q
qν

= 1 +
∞∑

ν=1

1

q2ν−1 = 1 + q

q2 − 1
= q2 + q − 1

q2 − 1
.

Combining Lemma 3 and Lemma 4, we obtain the desired result. �
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We now show that the classical Turán–Kubilius inequality can be used to study
the normal order of νq(ϕ(n)).

Theorem 8. For any prime q, the estimate

νq(ϕ(n)) =
(

q

(q − 1)2 + o(1)

)
log2 n

holds for almost all positive integers n.

Proof. Because νq(ϕ(n)) is an additive function, by the Turán–Kubilius inequality
(see [14], [19]), we have

1

x

∑
n≤x

∣∣νq(ϕ(n)) − Aq(x)
∣∣2 � Dq(x)

where

Aq(x) =
∑
pr≤x

νq(ϕ(pr))

pr
and Dq(x) =

∑
pr≤x

ν2
q(ϕ(pr))

pr
,

and in both sums the summation is extended over all prime powers pr ≤ x. Thus, it
is enough to show that

Aq(x) =
(

q

(q − 1)2 + o(1)

)
log2 x and D(x) = o((log2 x)2). (19)

Because νq(ϕ(p)) � log p, using the Prime Number Theorem, we derive that

∑
pr≤x
r≥2

νq(ϕ(p))

pr
�

x∑
r=2

∞∑
k=2

log k

(0.5k log k)r
�

x∑
r=2

∞∑
k=2

1

kr
�

x∑
r=2

2−r � 1.

Thus

Aq(x) =
∑
p≤x

νq(ϕ(p))

p
+ O(1) =

∑
p≤x
p �=q

νq(ϕ(p))

p
+ O(1).

Furthermore, as in the proof of Lemma 4, we derive that

∑
p≤x
p �=q

νq(ϕ(p))

p
=

∞∑
k=1

( ∑
p≤x

p≡1 (mod qk)

k

p
−

∑
p≤x

p≡1 (mod qk+1)

k

p

)

=
∞∑

k=1

S(x, qk) =
(

q

(q − 1)2 + o(1)

)
log2 x.

Similar arguments show that Dq(x) = O(log2 x) (in fact, our arguments give an
asymptotic formula for Dq(x)). Therefore, we obtain (19), which finishes the proof.

�
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4. Distribution of �(ϕ(n)) − ω(ϕ(n))

It has been shown in [8] that for almost all positive integers n, both �(ϕ(n)) and
ω(ϕ(n)) are close to 0.5(log2 n)2. Here, we study the behavior of the difference
�(ϕ(n)) − ω(ϕ(n)).

Theorem 9. The estimate

�(ϕ(n)) − ω(ϕ(n)) = (1 + o(1)) log2 n log4 n

holds for almost all positive integers n.

Proof. By Theorem 5, we know that

�(ξ(n)) = (1 + o(1)) log2 n log4 n

holds for almost all positive integers n. Since

�(ϕ(n)) − ω(ϕ(n)) = �(ϕ(n)) − ω(λ(n)) ≥ �(ϕ(n)) − �(λ(n)) ≥ �(ξ(n)),

we see that
�(ϕ(n)) − ω(ϕ(n)) ≥ (1 + o(1)) log2 n log4 n

holds for almost all positive integers n.
To obtain the upper bound, let x be a large positive real number, and let y =

(log2 x)2. The argument on page 404 of [16] shows that the set of all positive integers
n ≤ x such that ϕ(n) is not divisible by the square of any prime q > y has cardinality
x + o(x) (see the bound on #E2 in Theorem 9 of [16]). Thus, for all but o(x) positive
integers n ≤ x, we have that

�(ϕ(n)) − ω(ϕ(n)) = �y(ϕ(n)) − ωy(ϕ(n)) ≤ �y(ϕ(n)).

Now using (9) (which is established with the same value of y), we finish the proof.
�
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