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Embeddings of Danielewski surfaces in affine spaces

A. Dubouloz

Abstract. We construct explicit embeddings of Danielewski surfaces [4] in affine spaces. The
equations defining these embeddings are obtained from the 2 × 2 minors of a matrix attached
to a weighted rooted tree γ . We characterize those surfaces Sγ with a trivial Makar-Limanov
invariant in terms of their associated trees. We prove that every Danielewski surface S with a
nontrivial Makar-Limanov invariant admits a closed embedding in an affine space A

n
k in such a

way that every Ga,k-action on S extends to an action on A
n defined by a triangular derivation. We

show that a Danielewski surface S with a trivial Makar-Limanov invariant and non-isomorphic
to a hypersurface with equation xz − P(y) = 0 in A

3
k admits nonconjugated algebraically

independent Ga,k-actions.
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Introduction

A Danielewski surface over a field k of characteristic zero is an integral affine surface
S equipped with a morphism π : S → A

1
k = Spec(k[x]) restricting to the trivial

line bundle over A
1
k \ {0} and such that the fiber π−1(0) is nonempty and reduced,

consisting of a disjoint union of affine lines A
1
k . For instance, a surface SP,n ⊂

Spec(k[x, y, z]) with equation xnz − P(y) = 0, where P is a nonconstant polyno-
mial with deg(P ) simple roots, is a Danielewski surface prx : SP,n → Spec(k[x]).
Danielewski surfaces appear naturally as locally trivial fiber bundles ρ : S → X̃ over
an affine line with a multiple origin (see e.g. [5]). More precisely, see [4], every
such bundle ρ is a principal homogeneous bundle under the action of a line bundle
p : L → X̃. These principal L-bundles are uniquely determined by data consisting
of an invertible sheaf L on X̃ and a Čech 1-cocycle g with values in the dual L∨ of L
for a suitable covering U of X̃. In turn, the pair (L, g) is encoded in a combinatorial
datum consisting of a rooted tree with weighted edges, which we call a weighted tree
(see [4, Example 1.6 and Theorem 3.2] and 2.2 below). Here we use weighted trees in
a different way to construct embeddings of Danielewski surfaces into affine spaces.
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More precisely, starting with a suitable class of k-weighted trees γ , we construct
explicit ideals of certain polynomial rings. In turn, these ideals define affine surfaces
Sγ which are naturally Danielewski surfaces over the affine line A

1
k .

The paper is divided as follows. In Section 1 we recall basic facts on weighted
trees. We associate to every fine k-weighted tree γ = (�,w) (see Definition 1.3
below) a polynomial ring k[�] and a collection of polynomials in k[�] defined recur-
sively through the weight function w.

In Section 2, we review the construction of Danielewski surfaces as locally trivial
bundles over the affine line with an n-fold origin given in [4]. Then we associate
to every fine k-weighted tree γ a closed affine subscheme Sγ = Spec(Bγ ) of A

1
k ×

Spec(k[�]), and we prove the following result (Theorem 2.9).

Theorem. For every fine k-weighted tree γ , the scheme Sγ is a Danielewski surface
over A

1
k for the restriction of the projection pr1 : A1

k × Spec(k[�])→ A
1
k .

For instance, the surface corresponding to the following fine k-weighted tree

γ =
e0

e1,1

1
0

e3,2

−1

e4,2

1

e2,1

−1

is the Bandman and Makar-Limanov surface [1] S ⊂ k[x][y, z, u] with equations

xz− y(y2 − 1) = 0, yu− z(z2 − 1) = 0, xu− (y2 − 1)(z2 − 1) = 0.

It is a Danielewski surface over X = Spec(k[x]) via the projection morphism
prx : S → X.

Then we show that every embedded Danielewski surface Sγ as above comes
canonically equipped with actions of the additive group Ga,k which are the restrictions
to Sγ of certain Ga,k-actions on the ambient space A

1
k×Spec(k[�]) defined by explicit

locally nilpotent derivations ∂̃γ (see Proposition 2.15). In Section 3, we prove the
following result (Corollary 3.8).

Theorem. Every Danielewski surface π : S → X = A
1
k is X-isomorphic to an

embedded Danielewski surface πγ : Sγ = Spec(Bγ ) → X for an appropriate fine
k-weighted tree γ .

Moreover, we establish that every Ga,X-action on π : Sγ → X is induced by a
locally nilpotent derivation ∂̃γ as above. As a consequence of this description, we
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deduce that every Danielewski surface π : S → X = A
1
k can be embedded in a

relative affine space A
d
X in such a way that every Ga,X-action on S extends to an

action on A
d
X (Corollary 3.11). This generalizes a result obtained by Makar-Limanov

([8], [9]) for the Danielewski hypersurfaces SP,n above.
The Makar-Limanov invariant [6] of an affine k-schemeX = Spec(B) is defined

as the sub-algebra ML(X) ⊂ B consisting of regular functions which are invariant
under all Ga,k-actions on X. If ML(X) = k, then we say that X has a trivial Makar-
Limanov invariant. For Danielewski surfaces with a nontrivial Makar-Limanov in-
variant, we prove the following result.

Theorem. Every Danielewski surface with a nontrivial Makar-Limanov invariant
can be embedded in an affine space A

d
k = Spec(k[x1, . . . , xd ]) in such a way that

every Ga,k-action on S extends to an action on A
N
k . Furthermore, every such action

is induced by a triangular locally nilpotent derivation of k[x1, . . . , xd ].

In Section 4, we study Danielewski surfaces with a trivial Makar-Limanov in-
variant, that is, Danielewski surfaces S which admits two nontrivial Ga,k-actions
with distinct general orbits. We obtain the following criterion which generalizes
Theorem 5.4 in [4].

Theorem. An embedded Danielewski surface π : Sγ = Spec(Bγ ) → A
1
k defined

by a fine k-weighted tree γ has a trivial Makar-Limanov invariant if and only if γ
is a comb, i.e. a tree such that every element has at most one non-terminal direct
descendant (see Definition 4.1 below).

• • • • • •

•
•

•

•
•

•

•
•

•

e0

A comb rooted in e0.

We obtain the following description (see 4.7 below). For every Danielewski
surface S with a trivial Makar-Limanov invariant, there exists a collection of monic
polynomials P0, . . . , Ph−1 ∈ k[t] with simple roots ai,j ∈ k∗, i = 0, . . . , h− 1, j =
1, . . . , degt (Pi), such that S is isomorphic to the nonsingular surface SP0,...,Ph−1 ⊂
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Spec(k[x][y−1, . . . , yh−2][z]) defined by the equations

xz− yh−2

h−1∏
l=0

Pl(yl−1) = 0,

zyi−1 − yiyh−2

h−1∏
l=i+1

Pl(yl−1) = 0, xyi − yi−1

i∏
l=0

Pl(yl−1) = 0, 0 ≤ i ≤ h− 2,

yi−1yj − yiyj−1

j∏
l=i+1

Pl(yl−1) = 0, 0 ≤ i < j ≤ h− 2.

On an affine surface S = Spec(B), two Ga,k-actions μ1 and μ2 with associated
quotient fibrations π1 : S → A

1
k and π2 : S → A

1
k respectively are said to be al-

gebraically independent if the general fibers of π1 and π2 do not coincide. In this
situation, we say that μ1 and μ2 are conjugated if there exists an automorphism φ of
S sending the fibers of π1 onto the fibers of π2. This means equivalently that there
exists an automorphism φ∗ of B such that Ker(∂2) = φ∗(Ker(∂1)), where ∂1 and ∂2
denote the locally nilpotent derivations of B corresponding to the actions μ1 and μ2
respectively. Daigle [2] established that all the Ga,k-actions on a Danielewski surface
SP,1 = {xz − P(y) = 0} are conjugated. From the explicit description above, we
obtain the following result (Theorem 4.12).

Theorem. If a Danielewski surface S non isomorphic to a surface SP,1 admits two in-
dependent Ga,k-actions, then it admits two algebraically independent nonconjugated
Ga,k-actions.

We also deduce the following characterization (Corollary 4.13) of the Danielewski
surfaces SP,1, which generalizes the ones previously obtained by Bandman and
Makar-Limanov [1] and Daigle [2].

Theorem. For a Danielewski surfaceπ : S → X = A
1
k with a trivial Makar-Limanov

invariant, the following are equivalent.

1) S admits a free Ga,X-action.

2) The canonical sheaf ωS of S is trivial.

3) S is isomorphic to a surface SP,1 ⊂ A
3
k = Spec(k[x, y, z]) with the equation

xz − P(y) = 0 for a certain nonconstant polynomial P with deg(P ) simple
roots.

4) All Ga,k-actions on S are conjugated.
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1. Preliminaries

Weighted rooted trees. A poset is a nonempty finite partially ordered setG = (G,≤).
A totally ordered subset C ⊂ G is called a chain of length l(C) = Card(C) − 1.
A chain which is maximal for the inclusion is called a maximal chain. For every
e ∈ G, we let

(↑ e)G = {e′ ∈ G, e ≤ e′} and (↓ e)G = {e′ ∈ N, e′ ≤ e}.

A subset
←−
e′e with two elements e′ < e such that (↑ e′)G∩ (↓ e)G = {e′ < e} is called

an edge of G. We denote the set of all edges in G by E(G).

Definition 1.1. A (rooted) tree � = (�,≤) is a poset with a unique minimal element
e0 called the root, and such that (↓ e)� is a chain for every e ∈ �. A subposet �′ ⊂ �
which is tree for the induced ordering is called a subtree of �. Given e ∈ �, the
maximal (rooted) subtree of � rooted in e is the subtree �(e) = (↑ e)� .

1.2. An element e such that l(↓ e)� = m is said to be at level m. The maximal
elements ei = ei,mi , where mi = l(↓ ei)� , of a tree � are called the leaves of �. We
denote the set of those elements by L(�). The maximal chains of � are the chains

�ei,mi
= (↓ ei,mi )� = {ei,0 = e0 < ei,1 < · · · < ei,mi }, ei,mi ∈ L(�). (1.1)

We say that� has height h(�) = max(mi). An element of�\L(�) is called a parent,
and we denote the set of those elements by P(�). Given e ∈ � \ {e0}, an element
of the chain Anc(e) = (↓ e) \ {e} is called an ancestor of e. The parent of e is the
maximal element Par(e) of Anc(e). More generally, the n-th ancestor of e is defined
recursively by Parn(e) = Par(Parn−1(e)) ∈ Anc(e). Given two different elements
e, e′ ∈ �, the first common ancestor of e and e′ is the maximal element Anc(e, e′)
of the chain Anc(e) ∩Anc(e). If e is not a leaf of �, then the minimal elements of
(↑ e)� \ {e} are called the children of e, and we denote the set of those elements by
Ch(e). The degree deg(e) of an element e is the number of its children.

Definition 1.3. Let � be a tree. A fine weight function on �, with values in a field k,

is a function w : E(�) → k, which assigns an element ae′,e = w(
←−
e′e) ∈ k to every

edge
←−
e′e of �, in such a way that ae′,e1 = ae′,e2 whenever e1 and e2 share the same

parent e′. A tree � equipped with such a functionw is referred to as a fine k-weighted
tree γ = (�,w).
Definition 1.4. An morphism of fine k-weighted trees τ : γ ′ = (�′, w′) → γ =
(�,w) is an order-preserving map τ : �′ → � satisfying the following properties.

a) The image of a maximal subchain of �′ is a maximal subchain of �.
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b) For every e′ ∈ �′, τ−1(τ (e′)) is either e′ itself or a maximal subtree of �′.
c) For every edge

←−
e′e of�′ such that τ(e) = τ(e′), we havew′(

←−
e′e) = w(←−−−−−τ(e′)τ (e)).

Remark 1.5. A morphism of fine k-weighted trees maps the root e′0 of �′ on the root
e0 of � and a leaf e′

i,m′i
of �′ at levelm′i onto a leaf ej (i),mj(i) of � at levelmj(i) ≤ m′i .

Then b) guarantees that τ(e′i,k) = ej,min(mj(i),k) for every k = 0, . . . , m′i , and so,
condition c) above makes sense.

Genealogical matrix of a weighted tree. Here we associate to every fine k-weighted
tree γ = (�,w) a matrix with coefficients in a polynomial ring k[�].
Definition 1.6. Given a tree � rooted in e0, we associate to every parent e ∈ P(�) a
symbol Xe. If e′ ∈ P(�) is the parent of a given e ∈ P(�), then we will sometimes
denoteXe′ asXPar(e). We also extend this relationship between theXe’s by introducing
the symbolXe−1 = XPar(e0). We let k[�] = k[(Xe)e∈P(�)∪{e−1}] be the corresponding
polynomial ring in d(�) = Card(P(�))+ 1 variables.

For every element e ∈ P(�) of a given fine k-weighted tree γ = (�,w) rooted
in e0, we introduce below three polynomials Fe(γ ), Ae(γ ),Ge(γ ) ∈ k[�], defined

recursively through the weight function w : E(�)→ k,
←−
e′e �→ ae′,e = w(

←−
e′e).

Definition 1.7. For every e′ ∈ P(�) and every subset J ⊂ Ch(e′) we let

FJe′ = FJe′ (γ ) =
∏

e∈(Ch(e′)\J )
(XPar(e′) − ae′,e) ∈ k[XPar(e′)] ⊂ k[�].

The polynomial Fe′ := F ∅e′ is called the fatherhood polynomial of e′.
The ancestral polynomial Ae = Ae(γ ) of e ∈ � is the polynomial defined

recursively by

Ae0 = 1 and Ae = F {e}Par(e)APar(e) ∈ k[Xe−1, (Xe′)e′∈Anc(Par(e))] ⊂ k[�].
The genealogical polynomial of e ∈ P(�) with respect to e′ ∈ Anc(e) is the polyno-
mial

Ge′,e = Ge′,e(γ ) = A−1
e′ AeFe ∈ k[Xe−1, (Xe′′)e′′∈Anc(e)\Anc(Par(e′))] ⊂ k[�].

The polynomial Ge = Ge0,e is simply referred to as the genealogical polynomial
of e.

Remark 1.8. Up to changing the variables,Ge′,e(γ ) coincides with the genealogical
polynomial Ge(γ ′) of e as an element of the maximal weighted subtree γ (e′) =
((↑ e′)�,w|�(e′)) of γ rooted in e′, considered as a fine k-weighted tree disregarding
the inclusion γ (e′) ↪→ γ .
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Definition 1.9. The genealogical matrix of a fine k-weighted tree γ = (�,w) is the
matrix M(γ ) ∈ Matd(�)−1,2(k[�]) with the rows Me = (Ge,Xe) ∈ Mat1,2(k[�]),
e ∈ P(�).

2. Danielewski surfaces defined by weighted trees

In [4], the author gives a method to construct a Danielewski surface π : Sγ → X over
X = Spec(k[x]) from the data consisting of a fine k-weighted tree γ . Here we review
briefly this construction. Then we introduce a new procedure to associate to every
such tree γ a second Danielewski surface π : Sγ → X, which comes embedded in a
relative affine space A

d
X = X × A

d
k .

Notation 2.1. Throughout this section, we fix a field k of characteristic zero. We
let A = k[x], X = Spec(A) � A

1
k , and we denote by X∗ � Spec(Ax) the open

complement in X of the origin x0 ∈ A
1
k . We consider Danielewski surfaces over the

fixed base X. We denote by prX : A1
X = Spec(A[Xe−1])→ X the trivial line bundle

over X. The additive group scheme with base X is denoted by Ga,X = Spec(A[T ]).

Abstract Danielewski surface defined by a fine k-weighted tree. Given a fine
k-weighted tree γ = (�,w) of height h = h(�) with leaves e1,m1, . . . , en,mn , we
construct a Danielewski surfaceπ : Sγ → X as follows. Using the maximal weighted
subchains

γei,mi
= ((↓ ei,mi ), w)= {e0 = ei,0 < ei,1 < · · ·< ei,mi−1 < ei,mi }w, i = 1, . . . , n,

of γ , we define a collection of polynomials

σ = {
σi =∑mi−1

j=0 w(
←−−−−−
ei,j ei,j+1)x

j ∈ k[x]}
i=1,...,n.

For every i = j , we let gij = x−mi (σj − σi) ∈ Ax . These transition functions gij
satisfy the cocycle relation gik = gij + xmj−migjk in Ax for every triple i = j = k.

2.2. We let π : Sγ → X be the X-scheme obtained by gluing n copies Si =
Spec(A[Ti]) of A

1
X over X∗ by means of the Ax-algebra isomorphisms

τij : Ax[Ti] → Ax[Tj ], Ti �→ gij + xmj−miTj , i = j, i, j = 1, . . . , n.

Since γ is a fine k-weighted tree, it follows from 2.8 in [4] that Sγ is a Danielewski
surface π : Sγ → X. The irreducible components of π−1(x0) are the curves Ci =
π−1(x0) ∩ Si � Spec(k[Ti]), i = 1, . . . , n. It comes equipped with a canonical
birational X-morphism ψ : Sγ → A

1
X = Spec(A[Xe−1]) corresponding to the sec-

tion se−1 ∈ Bγ = �(Sγ ,OSγ ) with restrictions se−1 |Si = σi + xmiTi ∈ A[Ti],
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i = 1, . . . , n. By Theorem 3.2 in [4], every Danielewski surface π : S → X is
X-isomorphic to an abstract Danielewski surface π : Sγ → X obtained by this pro-
cedure.

2.3. A Danielewski surface π : S → X admits nontrivial actions of the additive
group scheme Ga,X. Indeed, since by definition S|X∗ is isomorphic to the trivial line
bundle A

1
X∗ = Spec(Ax[Xe−1]) overX∗, there exists r ≥ 0 such that theA-derivation

xm∂Xe−1
extends to a locally nilpotentA-derivation ∂ of�(S,OS), corresponding to a

nontrivial Ga,X-action on S. By Proposition 2.12 in [4], every nontrivial Ga,X-action
on a Danielewski surface Sγ is induced by the extension ∂a,m to Bγ of a locally
nilpotent A-derivation axm∂Xe−1

of Bγ ⊗A Ax � Ax[Xe−1], where m ≥ h(�) and

a ∈ A \ {0}. We denote the corresponding Ga,X-actions on A
1
X and Sγ by ta,m and

t
γ
a,m respectively. On the open subsets Si = Spec(A[Ti]), t

γ
a,m coincides with the

twisted translation ta,m−mi defined by the group co-action homomorphism

A[Ti] → A[Ti, T ] � A[Ti] ⊗A A[T ], Ti �→ Ti + axm−miT , i = 1, . . . , n.

The canonical morphism ψ : Sγ → A
1
X is Ga,X-equivariant when Sγ and A

1
X are

equipped with the Ga,X-actions t
γ
a,m and ta,m respectively.

Example 2.4. The collection of polynomials σ corresponding to the following fine
k-weighted tree γ = (�,w) with leaves e1,1, e2,1, e3,2, e4,2

e0

e1,1

1
0

e3,2

1

e4,2

−1

e2,1

−1

e1

is σ = {1,−1, x,−x}. The associated transition functions g = {gij }1≤i<j≤4 are

g12 = g34 = −2x−1, g13 = −g24 = x−1(x − 1),

g23 = −g14 = x−1(x + 1).

The gluing homomorphisms {τij }1≤i<j≤4 are given by

τij : k[x, x−1][Ti] → k[x, x−1][Tj ],

Ti �→
{
gij + Tj , if (i, j) ∈ {(1, 2), (3, 4)},
gij + xTj , if (i, j) ∈ {(1, 3), (1, 4), (2, 3), (2, 4)}.
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The Ga,X-action t
γ
1,2 on π : Sγ → X is a non-free action which restricts on Si =

Spec(A[Ti]) to the action

Ti �→
{
Ti + xT , if i = 1, 2,

Ti + T , if i = 3, 4.

Letting P(t) = t2 − 1 ∈ k[t], we will see in Example 3.2 below that Sγ is X-
isomorphic to the Bandman and Makar-Limanov surface [1] S ⊂ Spec(k[x][y, z, u])
with equations

xz− yP (y) = 0, yu− zP (z) = 0, xu− P(y)P (z) = 0,

and that t
γ
1,2 coincides with the action on S induced by the triangular derivation

∂1,2 = x2∂y+x(3y2−1)∂z+(2P(y)(3y2−1)z+2xyP (z))∂u ∈ Derk[x](k[x][y, z, u]).

Embedded Danielewski surface defined by a fine k-weighted tree. Given a fine
k-weighted tree γ = (�,w), we construct a Danielewski surface π : Sγ → X which

comes embedded in a relative affine space A
d(�)
X , where d(�) = Card(P(�)) + 1.

These surfaces are canonically equipped with the restrictions of certain actions of the
additive group Ga,X on the ambient space A

d(�)
X , defined by explicit locally nilpotent

derivations.

2.5. Given a fine k-weighted tree γ = (�,w), we let A[�] = A ⊗k k[�] �
A[Xe−1, (Xe)e∈P(�)] (see Definition 1.6). We let M(γ ) ∈ Matd(�),2(A[�]) be the
matrix with the rows Me−1 = (x, 1) and Me = (Ge(γ ),Xe), e ∈ P(�), i.e.

M(γ ) = (Me−1,M(γ )), whereM(γ ) ∈ Matd(�)−1,2(k[�]) denotes the genealogical
matrix of γ (Definition 1.9).

Definition 2.6. Given a fine k-weighted tree γ = (�,w), we let Iγ ⊂ A[�] be the

ideal generated by the simplified genealogical minors of M(γ )

e′,e=e′,e(γ )=A−1
e′ det(MPar(e′),Me)∈A[�], (e, e′)∈P(�)× (↓ e)�. (2.1)

We let Bγ = A[�]/Iγ , and we let π : Sγ = Spec(Bγ ) → X be the corresponding

closed sub- X-scheme of the relative affine space A
d(�)
X = Spec(A[�]).

2.7. By construction, e := e0,e = xXe − Ge ∈ A[(Xe′)e′∈(↓e)�∪{e−1}] for every
e ∈ P(�), whereas e′,e = (XPar2(e′) − aPar(e′),e′)Xe − XPar(e′)Ge′,e for every pair
(e, e′) ∈ P(�)× ((↓ e)� \{e0}). As a consequence, for every triple e0 < e′′ ≤ e′ ≤ e
in P(�), the following relations hold in A[�]:

Ae′e′,e = XPar(e′)e −Par(e′)Xe,

xe′,e = (XPar2(e′) − aPar(e′),e′)e −Par(e′)Ge′,e,

(XPar2(e′′) − aPar(e′′),e′′)e′,e = (XPar2(e′) − aPar(e′),e′)e′′,e −e′′,e′Ge′,e.

⎫⎪⎬
⎪⎭ (2.2)
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2.8. If γ = (�,w) is the trivial tree with just one element e0, then the first projection
π : Sγ = Spec(k[x][Xe−1]) → X is a Danielewski surface. Similarly, if � has
height 1, then Ge0 ∈ k[Xe−1] is a monic polynomial with simple roots ae0,e =
w(
←−
e0e) ∈ k, e ∈ Ch(e0). Therefore,

π : Sγ = Spec(A[�]/Iγ ) = Spec(k[x][Xe−1, Xe0]/xXe0 −Ge0(Xe−1))→ X

is a Danielewski surface, and the irreducible components of π−1(x0) are the curves
Ce � Spec(k[Xe0]) with defining ideals Iγ,e = (Iγ ,Xe−1 − ae,e0) ⊂ A[�], e ∈
Ch(e0). More generally, we have the following result.

Theorem 2.9. For every fine k-weighted treeγ = (�,w)with leaves e1,m1, . . . , en,mn ,
π : Sγ → X is a Danielewski surface. Furthermore, the fiber π−1(x0) is the disjoint
union of the curves Cei,mi � Spec(k[Xei,mi−1]) with defining ideals

Iγ,ei,mi
= (Iγ , x, (Xei,j−1 − aei,j ,ei,j+1)0≤j≤mi−1) ⊂ A[�], i = 1, . . . , n.

The proof is divided as follows. In 2.10, Lemmas 2.11 and 2.12 below, we show
that Sγ is an integral scheme. Then, in Lemma 2.13, we describe explicitly the
irreducible components of π−1(x0).

2.10. We first observe thatSγ restricts to the trivial line bundle A
1
X∗ = Spec(Ax[Xe−1])

over X∗. Indeed, the second relation of (2.2) guarantees that the ideal IγAx[�] of
Ax[�] � A[�] ⊗A Ax is generated by the polynomials x−1e = Xe − x−1Ge,
e ∈ P(�). Since Ge only involves the variables Xe′ , where e′ ∈ Anc(e), we re-
cursively arrive at an Ax-algebra isomorphism Ax[�]/IγAx[�] � Ax[Xe−1]. Thus
Sγ is a Danielewski surface with base (k[x], x) provided that x is not a zero divisor
in Bγ and that Bγ /xBγ is isomorphic to a nonempty direct product of polynomial
rings in one variable over k. Indeed, the first condition guarantees that the canonical
map Bγ → Bγ ⊗A Ax � Ax[Xe−1] is injective. In turn, this implies that Bγ is a
sub-domain of Ax[Xe−1]. The second one means equivalently that the fiber π−1(x0)

decomposes as a nonempty disjoint union of affine lines A
1
k .

To show that x is not a zero divisor in Bγ , it suffices to find a covering of Sγ by
principal affine open subsets Yi = Spec(Bi) such that x is not a zero divisor in Bi for
every i = 1, . . . , n.

Lemma 2.11. If γ = (�,w) if a fine k-weighted tree with the leaves e1, . . . , en, then
Sγ is covered by the principal open subsets Yi = Spec(A[�][T ]/(Iγ , Aei T − 1)),
i = 1, . . . , n.

Proof. For every e ∈ P(�) the polynomials F {e
′}

e ∈ A[XPar(e)], e′ ∈ Ch(e) generate
the unit ideal of A[XPar(e)] as γ is a fine k-weighted tree. Therefore, there exist
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polynomials �e′ ∈ A[�], e′ ∈ Ch(e), such that

Ae = Ae
∑

e′∈Ch(e)

�e′F
{e′}
e =

∑
e′∈Ch(e)

�e′Ae′ .

It follows by induction that the image ofAe0 = 1 inBγ belongs to the ideal generated
by the images ai ∈ Bγ of the ancestral polynomialsAei of the leaves of�. This means
equivalently that the open subsets Spec((Bγ )ai ) � Spec(A[�][T ]/(Iγ , Aei T − 1))
cover Sγ . �

Lemma 2.12. For every i = 1, . . . , n, Yi is an integral scheme.

Proof. Let us denote by ej = ei,j , j = 0, . . . , m = mi , the elements of the maximal
subchain (↓ ei,mi )� of � associated with the leaf ei,mi . For every i = 1, . . . , m− 2,
the polynomial Aei+1divides Aem . Similarly, for every e ∈ P(�) \ (↓ em), the first
common ancestor of e and em is an element ei , i ≤ m − 1, such that e′ = Ch(ei) ∩
(↓ e) = ei+1, and so (Xei−1 − aei ,e′) divides Aem . Therefore, these polynomials
become invertible in A[�]Aem . We claim that the ideal IγA[�]Aem is generated by
the polynomials

δei = A−1
ei+1

ei = −(Xei−1 − aei ,ei+1)+ A−1
ei+1

xXei , i = 1, . . . , m− 2,

δei ,e = (Xei−1 − aei ,e′)−1ei,e

= Xe − (Xei−1 − aei ,e′)−1XeiGei,e,

⎧⎪⎨
⎪⎩
e ∈ P(�) \ (↓ em),
Anc(e, em) = ei,
e′ = Ch(ei) ∩ (↓ e)�.

Indeed, the second relation of (2.2) guarantees that the polynomials e, where e ∈
P(�) \ (↓ em)� , can be expressed in A[�]Aem in terms of the δei ’s and δei ,e’s. In
turn, we deduce from the first and the third ones that all the polynomials e′,e,
(e, e′) ∈ P(�)× ((↓ e)� \ {e0}) belong to the ideal ofA[�]Aem generated by the δei ’s
and the δei ,e’s. Since the polynomials Aei andGei,e above only involve the variables
corresponding to the elements in (↓ ei−2)� and (↑ e′)�∩(↓ Anc(e))� respectively, we
conclude by induction that there exists a nonconstant polynomial P ∈ A[Xem−1] such
that A[�]Aem /IγA[�]Aem � A[Xem−1]P . Since A is a domain and P is nonconstant,
it follows that (Bγ )ai � A[Xem−1]P is a nonzero domain too. �

Summing up, we have established that for every fine k-weighted tree γ ,
π : Sγ → X is an integral affine scheme restricting to the trivial bundle A

1
X∗ overX∗.

The following result completes the proof of Theorem 2.9.

Lemma 2.13. For every fine k-weighted treeγ = (�,w)with leaves e1,m1, . . . , en,mn ,
the fiber π−1(x0) of π : Sγ → X is the disjoint union of the curves Cei,mi �
Spec(k[Xei,mi−1]) with defining ideals

Iγ,ei,mi
= (Iγ , x, (Xei,j−1 − aei,j ,ei,j+1)0≤j≤mi−1) ⊂ A[�], i = 1, . . . , n.
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Proof. We proceed by induction on the height h of �. If h = 0 then Sγ =
Spec(A[Xe−1]) and π−1(x0) � Spec(k[Xe−1]). Otherwise, if Ch(e0) = ∅ then, since
γ is a fine k-weighted tree, it follows that the polynomialsXe−1−ae0,e, e ∈ Ch(e0) are
pairwise relatively prime. Therefore π−1(x0) = Spec(A[�]/(x, Iγ )) decomposes as
the disjoint union of curvesDe = Spec(A[�]/(x,Xe−1−ae0,e, Iγ )), e ∈ Ch(e0). We
let γ (e) = (�(e), w|�(e)) be the maximal fine k-weighted subtree of γ rooted in e.
Clearly, the ideal (x,Xe−1 − ae0,e, Iγ ) coincides with the ideal Ie ⊂ A[�] generated
by x, Xe−1 − ae0,e and the polynomials

Ge,e′(γ ), e′ ∈ P(�(e)),

e′′,e′(γ ), (e′, e′′) ∈ P(�(e))× (Anc�(e)(e
′)),

δe,e′ = (ae0,e − ae0,e′′)Xe′ −Xe0Ge,e′(γ ),

{
e′ ∈ P(�) \ ({e0} ∪ P(�(e))),

e′′ = Ch(e0) ∩ (↓ e′) = e.
By definition, we have A[�(e)] = A[Xe−1, (Xe′)e′∈P(�)] � A[Xe0, (Xe′)e′∈P(�)] as
e0 ∈ �(e). This choice of coordinates yields the identities

Ge′(γ (e)) = Ge,e′(γ ), e′ ∈ P(�(e)),

Ge′′,e′(γ (e)) = Ge′′,e′(γ ), (e′, e′′) ∈ P(�(e))×Anc�(e)(e
′),

and we conclude that A[�]/(x,Xe−1 − ae0,e, Iγ ) � A[�]/Ie � A[�(e)]/(x, Iγ (e)).
This means equivalently that π−1(x0) is isomorphic to the disjoint union of the fibers
π−1
γ (e)(x0) of the corresponding surfaces πγ (e) : Sγ (e) → X, e ∈ Ch(e0). Since the

fine k-weighted tree γ (e) has height h− 1, it follows from our induction hypothesis
that these fibers are nonempty and reduced, consisting of disjoint unions of affine
lines A

1
k . So the same holds for π−1(x0). Finally, the precise description of the

irreducible components of π−1(x0) follows easily by induction again. �

Remark 2.14. A Danielewski surface π : Sγ → X = A
1
k is a flat (or rather a smooth)

X-scheme. In general, the scheme π̃ : S̃γ → X with defining ideal Ĩγ generated only
by the polynomials e, e ∈ P(�), is not flat over X. The above discussion together
with the second relation of (2.2) imply that Sγ coincides with the flat limit over X
of the trivial family of affine lines S̃γ |X∗ � A

1
X∗ defined by the equations e = 0,

e ∈ P(�), in A
d(�)
X∗ = Spec(Ax[�]). This explains why the polynomials e′,e,

(e, e′) ∈ P(�)× ((↓ e)� \ {e0}), should be added to the obvious onese, e ∈ P(�),
to define the surface Sγ .

The following result shows that the embedded Danielewski surface π : Sγ → X

defined by a fine k-weighted tree γ = (�,w) admits nontrivial actions of the additive
group Ga,X, which come as the restrictions of certain Ga,X-actions on the ambient

space A
d(�)
X .
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Proposition 2.15. Let γ = (�,w) be a fine k-weighted tree of height h ≥ 0. Then,
for every m ≥ h and every a ∈ A \ {0}, the derivation ∂̃γ,a,m ∈ DerA(A[�], Ax[�])
defined recursively by

∂̃γ,a,m = axm∂Xe−1
+ x−1

∑
e∈P(�)

∂̃γ,a,m(Ge(γ ))∂Xe

is a triangular derivation of A[�] inducing a locally nilpotent A-derivation ∂γ,a,m
of Bγ .

Proof. It suffices to prove the assertion for the derivation ∂̃ = ∂γ,1,h as ∂̃γ,a,m =
axm−h∂̃ . For every e ∈ P(�) at level i < h, the polynomial Ge only involves
the variables X0 and Xe′ , e′ ∈ Anc(e). So we conclude recursively that ∂̃(Xe) ∈
xh−i−1A[Xe−1, (Xe′)e′∈Anc(e)]. Thus ∂̃ restricts to a triangular A-derivation of A[�].
By construction, ∂̃ annihilates e for every e ∈ P(�). Moreover, x∂̃(e′,e) =
∂̃(xe′,e) ∈ Iγ for every pair (e, e′) ∈ (P(�) \ {e0}) × ((↓ e)� \ {e0}) by virtue of
(2.2). Thus ∂̃(e′,e) ∈ Iγ as Iγ is a prime ideal which does not contain x. Hence
∂̃(Iγ ) ⊂ Iγ and so, ∂̃ induces a locally nilpotent A-derivation ∂ of Bγ . �

Example 2.16. We consider the following fine k-weighted tree γ̃ = (�, w̃) with the
leaves e1,1, e2,1, e3,2, e4,2.

e0

e1,1

1
0

e3,2

−1

e4,2

1

e2,1

−1

e1

We have A[�] = k[x][Xe−1, Xe0, Xe1] and

tM(γ̃ ) =
(
x Xe−1P(Xe−1) P (Xe−1)P (Xe0)

1 Xe0 Xe1

)
,

where P(t) = t2 − 1 ∈ k[t]. Therefore π : Sγ̃ → X is the surface with equations

xXe0 −Xe−1P(Xe−1) = 0, Xe−1Xe1 −Xe0P(Xe0) = 0,

xXe1 − P(Xe−1)P (Xe0) = 0.

Letting y = Xe−1, z = Xe0 and u = Xe1 , the locally nilpotent derivation ∂̃γ̃ ,1,2 ∈
DerA(A[�]) is simply the derivation ∂1,2 ∈ Derk[x](k[x][y, z, u]) of Example 2.4.
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3. Embeddings of Danielewski surfaces in affine spaces

In this section, we compare the two constructions of Danielewski surfaces by means
of fine k-weighted trees. We describe a certain class of morphisms of Danielewski
surfaces as the restrictions of suitable linear projections.

From abstract to embedded Danielewski surfaces. Here we prove the following
result.

Theorem 3.1. For every abstract Danielewski surface π : Sγ → X defined by a fine
k-weighted tree γ = (�,w), there exists another fine weight function w̃ : E(�)→ k

on the tree �, and a closed embedding ζ : Sγ ↪→ A
d(�)
X inducing an isomorphism

between Sγ and the embedded Danielewski surface Sγ̃ defined by the fine k-weighted

tree γ̃ = (�, w̃). Moreover, ζ is equivariant when we equip Sγ and A
d(�)
X with the

Ga,X-actions corresponding to the locally nilpotentA-derivations ∂a,m ∈ DerA(Bγ )
(see 2.3) and ∂̃γ̃ ,a,m ∈ DerA(A[�]) (Proposition 2.15) respectively.

Example 3.2. We consider the abstract Danielewski surface π : Sγ → X defined
by the fine k-weighted tree of Example 2.4. The canonical morphism ψ : Sγ →
A

1
X = Spec(k[x][Xe−1]) is given by the section se−1 ∈ Bγ whose restrictions on the

canonical open subsets Si = Spec(k[x][Ti]) are given by

se−1 |Si =
{
(−1)i+1 + xTi, if i = 1, 2,

(−1)i+1x + x2Ti, if i = 3, 4.

Letting Ci = π−1(x0)∩Si , i = 1, . . . , 4, be the irreducible components of π−1(x0),
we see that se−1 restricts to a coordinate function on every fiber π−1(y), y ∈ X∗, and
is locally constant on π−1(x0) with the values 1, −1 and 0 on C1, C2 and C3 ∪ C4
respectively. Therefore, letting P(t) = (t2−1) ∈ k[t], the section x−1se−1P(se−1) ∈
Bγ ⊗k[x] k[x, x−1] extends to a section se0 ∈ Bγ whose restrictions on the Si’s are
given by

se0 |Si =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2T1 + 3xT 2
1 + x2T 3

1 , if i = 1,

2T2 − 3xT 2
2 + x2T 3

2 , if i = 2,

−1− xT3 + x2ξ3(x, T3), if i = 3,

1− xT4 + x2ξ4(x, T4), if i = 4,

for certain polynomials ξ3(x, t), ξ4(x, t) ∈ k[x, t]. Thus se0 restricts to a coor-
dinate function on C1 and C2, and is constant on C3 and C4 with the values −1
and 1 respectively. Again, x−1P(se0) ∈ Bγ ⊗k[x] k[x, x−1] extends to a regular
function on S3 ∪ S4 ⊂ Sγ which restricts to a coordinate function on C3 and C4.
Clearly, x−1P(se−1)P (se0) extends to a section se1 ∈ Bγ with the same property as
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P(se−1)|Ci = −1, i = 3, 4. The A-algebra homomorphism A[Xe−1, Xe0, Xe1] →
Bγ ,Xe �→ se defines a closed embedding ζ : Sγ → A

3
X, inducing anX-isomorphism

between Sγ and the embedded Danielewski surface Sγ̃ defined by the fine k-weighted
tree γ̃ = (�, w̃) of Example 2.16.

3.3. To prove Theorem 3.1, we proceed in a similar way as in the previous example.
More precisely, given an abstract Danielewski surface Sγ defined by a fine k-weighted
tree γ = (�,w), we construct in 3.4 and Lemmas 3.5–3.7 below a fine weight function
w̃ : E(�)→ k on � and a collection of sections se ∈ Bγ , e ∈ P(�) ∪ {e−1}, which
define a closed embedding ζ : Sγ ↪→ A

d(�)
X inducing an X-isomorphism φ : Sγ ∼→

Sγ̃ betweenSγ and the embedded Danielewski surface defined by the tree γ̃ = (�, w̃).

3.4. Given a fine k-weighted tree γ = (�,w) with the leaves e1,m1, . . . , en,mn , we
denote by τi : Bγ = �(Sγ ,OSγ ) → A[Ti] the localization homomorphisms cor-
responding to the canonical open covering of the abstract Danielewski surface Sγ

by the open subsets Si = Spec(A[Ti]), i = 1, . . . , n. The canonical X-morphism
ψ : Sγ → A

1
X = Spec(A[Xe−1]) (2.2) corresponds to the section se−1 ∈ Bγ such

that

τi(se−1) =
mi∑
j=0

wi,j x
j ∈ A[Ti],

where

wi,j =
{
w(
←−−−−−
ei,j ei,j+1), if 0 ≤ j ≤ mi − 1,

Ti, if j = mi.
For every e ∈ �, we let

Ce =
⊔

{ei,mi∈L((↑e)�)}
(π−1(x0) ∩ Si) � Spec

( ∏
{ei,mi∈L((↑e)�)}

Spec(k[Ti])
)
.

If γ has height h = 0 then� is the trivial tree with one element {e0} andψ : Sγ → A
1
X

is an isomorphism. Otherwise, if h ≥ 1, then we have the following result.

Lemma 3.5. If h ≥ 1 then there exists a fine weight function w̃ : E(�) → k,←−
e′e �→ ãe′,e defining a fine k-weighted tree γ̃ = (�, w̃), and a collection of sec-
tions (se)e∈P(�)∪{e−1} ∈ Bγ with the following properties.

a) For every ei,j ∈ P(�), sei,j = x−1Gei,j (γ̃ )(se−1, se0, sei,1, . . . , sei,j−1).

b) If Ch(ei,j ) = {ei1,j+1, . . . , eir ,j+1}, then sei,j−1 is constant onCeil ,j+1 ⊂ π−1(x0)

with the value ãei,j ,eil ,j+1 ∈ k, l = 1, . . . , r .

c) For every leaf ei,mi of �, sei,mi−1 induces an coordinate function on Cei,mi � A
1
k .
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Proof. We construct the weight function w̃ and the sections se by induction as follows.
For every m = 0, . . . , h, we denote by �m the subtree of � with the elements e ∈ �
at levels l ≤ m. At step m, we suppose that the weight function w̃m : E(�m) →
k is constructed on �m, as well as the sections se for every e ∈ �m−2, and we
define the sections se, e ∈ �m−1 \ �m−2. Then we extend w̃m to a weight function
w̃m+1 : E(�m+1)→ k.

Step 0. We let se−1 ∈ Bγ be the section corresponding to the canonical morphism
ψ : Sγ → A

1
X. By definition, τi(se−1) = wi,0+xξi for a certain ξi ∈ A[Ti] for every

i = 1, . . . , n. Thus b) is satisfied provided that we define the weight function w̃1 on
�1 \ {e0} by

ãe0,ei,1 = w̃1(
←−−−
e0ei,1) = se−1 |Cei,1 = wi,0 ∈ k

for every ei,1 ∈ Ch(e0). Note that if ej,1 = ei,1, then wi,0 = wj,0 as wi,0 = wj,0
if and only if e0 is the first common ancestor of the leaves ei,mi and ej,mj . Thus
γ̃1 = (�1, w̃1) is a fine k-weighted tree and we are done with Step 0.

Step 1. By construction, the rational section x−1Ge0(γ̃1)(sγ,e−1) ∈ Bγ ⊗A Ax
extends to a section se0 of Bγ satisfying a). Since γ is a fine k-weighted tree,
we deduce from Taylor’s Formula that for every i = 1, . . . , n, there exists a pair
(αi,1 = F {ei,1}e0 (wi,0), βi,1) ∈ k∗ × k depending only of the subchain (↓ ei,1)� , and a
polynomial ξi,1 ∈ A[Ti] such that

τi(se0) = αi,1wi,1 + βi,1 + xξi,1 ∈ A[Ti].
Thus, if ei,1 is a leaf of � then wi,1 = Ti and so c) is satisfied. Otherwise, if ej,2
and ej ′,2 are children of ei,1 then αj,1 = αj ′,1 = αi,1 and βj,1 = βj ′,1 = βi,1 as
ej,1 = ej ′,1 = ei,1, whereas wj,1 = wj ′,1 as γ is a fine k-weighted tree. Thus
γ̃2 = (�2, w̃2) is a fine k-weighted tree for the weight function w̃2 : E(�2) → k

restricting to w̃1 on �1 ⊂ �2 and such that

ãei,1,ei,2 = w̃2(
←−−−
ei,1ei,2) = se0 |Cei,2 = (αi,0wi,1 + βi,1) ∈ k, i = 1, . . . , n.

By construction, b) is also satisfied. This completes Step 1.
Step m, m ≥ 2. By induction hypothesis, γ̃m = (�m, w̃m) is a fine k-weighted

tree, and the sections se ∈ Bγ , e ∈ �m−2, satisfying the hypothesis of Lemma 3.5
have been defined. So the formula

sei,m−1 = x−1Gei,m−1(γ̃m)(se−1, se0, sei,1, . . . , sei,m−2)

makes sense and defines an element of Bγ ⊗A Ax . Similarly as in Step 1, we
deduce from Taylor’s Formula that for every j = 0, . . . , m − 1 there exists a pair
(α̃i,j , β̃ij ) ∈ k∗ × k depending only on the subchain (↓ ei,j )� , and a polynomial
ξ̃i,j ∈ A[Ti] such that

τi(sei,j−1) = aei,j+1ei,j + x(α̃i,jwi,j+1 + β̃i,j )+ x2ξ̃i,j ∈ A[Ti].
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By applying Taylor’s Formula again, we conclude that there exists a pair (αi,m, βi,m) ∈
k∗ ×k depending only on the subchain (↓ ei,m)� and a polynomial ξi,m ∈ A[Ti] such
that

τi(sei,m−1) = αi,mwi,m + βi,m + xξi,m ∈ A[Ti].
Thus, if ei,m−1 ∈ (↓ ej,mj ) then ei,m−1 = ej,m−1 and so τj (sei,m−1) ∈ A[Tj ]. Oth-
erwise, for every index j such that ei,m−1 ∈ (↓ ej,mj )� , the first common ancestor
of ei,m−1 and ej,mj is an element ei,l = ej,l at level l ≤ min(m − 2,mj − 1). Thus
(Xej,l−1−ãej,l ,ej,l+1) divides the genealogical polynomialGei,m−1(γ̃m) of ei,m−1. Since
τj (sej,l−1 − ãej,l ,ej,l+1) ∈ xA[Tj ], we conclude that

xτj (sei,m−1) = Gei,m−1(γ̃m)(τj (se−1), τj (sei,0), τj (sei,1), . . . , τj (sei,m−2)) ∈ xA[Tj ].
Thus τj (sei,m−1) ∈ A[Tj ] for every j = 1, . . . n, and hence, sγ,ei,m−1 ∈ Bγ . If ei,m
is a leaf of � then wi,m = wi,mi = Ti by definition. Thus sei,m−1 satisfies a) and c).
Finally, the same argument as in Step 1 shows that γ̃m+1 = (�m+1, w̃m+1) is a fine
k-weighted tree for the weight function w̃m+1 : E(�m+1)→ k restricting to w̃m on
�m ⊂ �m+1 and such that

ãei,m,ei,m+1 = w̃m+1(
←−−−−−−
ei,mei,m+1) = sei,m−1 |C(ei,m+1) = (αi,mwi,m + βi,m) ∈ k,

whenever ei,m is not a leaf of �. This completes Stepm as b) is satisfied by construc-
tion.

After h = h(�) steps, the above procedure stops, and we obtain a fine k-weighted
tree γ̃ = γ̃h = (�, w̃h) and a collection of sections (se)e∈P(�)∪{e−1} ∈ Bγ satisfying
conditions a), b) and c). This completes the proof. �

The following lemma implies the first assertion of Theorem 3.1.

Lemma 3.6. TheX-morphism ζ : Sγ → A
d(�)
X induced by theA-algebra homomor-

phism ζ ∗ : A[�] → Bγ ,Xe �→ se, e ∈ P(�)∪{e−1}, is a closed embedding inducing
an X-isomorphism φ : Sγ ∼→ Sγ̃ .

Proof. By construction, se−1 corresponds to the canonical birational morphism

ψ : Sγ → A
1
X, whence induces a X∗-isomorphism Sγ |X∗ ∼→ A

1
X∗ . By b) of

Lemma 3.5, for every pair ei,mi , ej,mj of leaves of�with first common ancestor e ∈ �,
the section sPar(e) takes distinct constant values on Cei,mi and Cei,mj . Thus ζ distin-

guishes the irreducible components of the fiberπ−1(x0). Finally, c) of Lemma 3.5 im-
plies that for every i = 1, . . . , n, sei,mi−1 induces a coordinate function onCei,mi � A

1
k .

This proves that ζ : Sγ → A
d(�)
X is an embedding. By construction, ζ ∗(e(γ̃ )) = 0

in Bγ for every e ∈ P(�). Thus xζ ∗(e′,e(γ̃ )) = ζ ∗(xe′,e(γ̃ )) = 0 for every
(e, e′) ∈ (P(�) \ {e0})× ((↓ e)� \ {e0}) by virtue of (2.2), and so, ζ ∗(e′,e(γ̃ )) = 0
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as Bγ is an integral A-algebra. This proves that the image of ζ in contained in the
embedded Danielewski surface Sγ̃ . It is clear by construction that the induced X-
morphism φ : Sγ → Sγ̃ restricts to a bijection between the sets of closed points of
Sγ and Sγ̃ respectively. So the result follows from Zariski’s Main Theorem as Sγ̃ is
smooth over k, whence, in particular, normal. �

The following result completes the proof of Theorem 3.1.

Lemma 3.7. For every nontrivial Ga,X-action tγ,a,m (2.3) on an abstract Danielewski
surface π : Sγ → X defined by a fine k-weighted tree γ = (�,w), the closed

embedding ζ : Sγ ↪→ A
d(�)
X in Lemma 3.6 is equivariant when we equip A

d(�)
X with

the Ga,X-action induced by the locally nilpotent A-derivation ∂̃γ̃ ,a,m ∈ DerA(A[�])
(Proposition 2.15).

Proof. By definition (see 2.3), the twisted translation tγ,a,m on Sγ is induced by
the extension ∂a,m to Bγ of the locally nilpotent derivation δa,m = axm∂Xe−1

of
Bγ ⊗A Ax � Ax[Xe−1], where m ≥ h(�) and a ∈ A \ {0}. By construction, for
every e ∈ P(�), we have se = x−1Ge(γ̃ )(se−1, se0, . . . , sPar(e)) ∈ Bγ ⊂ Ax[Xe−1]
and so,

∂a,m(se) = x−1
∑

e′∈Anc(e)∪{e−1}
∂Xe′Ge(γ̃ )(se−1, se0, . . . , sPar(e))∂a,m(se′) ∈ Bγ⊗AAx.

In view of the definition of ∂̃γ̃ ,a,m ∈ DerA(A[�]) (see Proposition 2.15), this means

precisely that the embedding ζ : Sγ ↪→ A
d(�)
X is equivariant when we equip Sγ

and A
d(�)
X with the actions corresponding to the locally nilpotent derivation ∂a,m

and ∂̃γ̃ ,a,m. �

Corollary 3.8. Every Danielewski surface π : S → X equipped with a nontriv-
ial Ga,X-action is equivariantly X-isomorphic to an embedded Danielewski surface
Sγ defined by a fine k-weighted tree γ = (�,w), equipped with the Ga,X-action
corresponding to a suitable locally nilpotent derivation ∂γ,a,m ∈ DerA(Bγ ), where
m ≥ h(�) and a ∈ A \ {0}.
Proof. By Theorem 3.2 in [4], every Danielewski surface S is isomorphic to an
abstract Danielewski surface Sγ defined by a fine k-weighted tree γ . Moreover, by
Proposition 2.12 in loc. cit., every nontrivial Ga,X-action on Sγ coincides with a
twisted translation tγ,a,m for a suitable pair (m ≥ h(�), a ∈ A \ {0}). So the result
follows from Theorem 3.1. �

Corollary 3.9. Every Ga,X-action on an embedded Danielewski surface Sγ defined
by a fine k-weighted tree γ = (�,w) is induced by a locally nilpotent derivation
∂γ,a,m ∈ DerA(Bγ ).
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Since the locally nilpotent derivations ∂γ,a,m ∈ DerA(Bγ ) are induced by locally
nilpotent derivations ∂̃γ,a,m ∈ DerA(A[�]), we obtain the following result.

Corollary 3.10. Every Danielewski surface π : S → X admits a closed embedding
ζ : S ↪→ A

d
X into a relative affine space A

d
X, whered ≥ 1, such that every Ga,X-action

on S extends to an action on A
d
X.

In particular, if the Makar-Limanov invariant of S is nontrivial, then π : S → X is
a unique A

1-fibration on S up to automorphisms of X. Therefore, the general orbits
of a Ga,k-action on S coincide with the general fibers ofπ . This leads to the following
result.

Corollary 3.11. Every Danielewski surface S with a nontrivial Makar-Limanov in-
variant admits a closed embedding into an affine space A

d
k in such a way that every

Ga,k-action on S extends to an action on A
d
k .

Morphisms of Danielewski surfaces as linear projections. A morphism of Danie-
lewski surfaces is a birationalX-morphism β : S′ → S, restricting to an isomorphism
overX∗. In other words, β is an affine modification [7] restricting to an isomorphism
over the complement of the support of the principal divisor π−1(x0) = div(x) ⊂ S.
Thus, letting S = Spec(B), there exists an ideal I ⊂ B containing a power xm of x
such that S′ is isomorphic to the open subset Spec(B[I t]/(1− xmt)) of the spectrum
of the Rees algebra B[I t]. In turn, this implies that S′ � Spec(B[t1, . . . , tr ]/J ) for
a certain ideal J . In these coordinates, the morphism β : S′ → S coincides with the
restriction to S′ of the projection prS : Ar+1

S = Spec(B[t1, . . . , tr ]) → S. Here we
give a more precise description of this situation.

3.12. To every morphism τ : γ ′ = (�′, w′) → γ = (�,w) of fine k-weighted tree
(see Definition 1.4), we associate a morphism βτ : Sγ ′ → Sγ between the associated
abstract Danielewski surfaces in the following manner. We let σ ′ = {σ ′i ∈ A}i=1,...,n′
and σ = {σj ∈ A}j=1,...,n be the collection of polynomials associated with γ ′ and
γ , and we let g′ = {g′ij ∈ Ax} and g = {gij ∈ Ax} be the corresponding transition
functions. We denote by S′i = Spec(A[T ′i ]), i = 1, . . . , n′, and Sj = Spec(A[Tj ]),
j = 1, . . . , n, the open subsets of the canonical coverings of Sγ

′
and Sγ respectively.

By Remark 1.5, the image of a leaf e′
i,m′i

of �′ by τ is a leaf ej (i),mj(i) of � such

that m′i ≥ mj(i) and τ(e′i,k) = ej (i),min(k,mj(i)) for every k = 0, . . . , m′i . Since

w(
←−−−−−−−−−−
τ(e′i,k)τ (e′i,k+1)) = w′(

←−−−−−
e′i,ke′i,k+1)whenever τ(e′i,k) = τ(e′i,k+1), we conclude that

there exists a collection σ ′′ = {σ ′′i ∈ A}i=1,...,n′ such that σ ′i = σj(i) + xmj(i)σ ′′i ∈ A
for every i = 1, . . . , n′. Then for every i = 1, . . . , n′, the A-algebra homomorphism

A[Tj(i)] −→ A[T ′i ], Tj (i) �→ σ ′′i + xm
′
i−mj(i)T ′i
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defines a birationalX-morphism β
(i)
τ : S′i → Sj(i) restricting to an isomorphism over

X∗. Since the transition functions satisfy the relation xmi′−mj(i)g′il = gj(i)j (l) +
xmj(l)−mj(i)σ ′′l + σ ′′i for every i, l = 1, . . . , n′, it follows that these local morphisms

β
(i)
τ glue to a morphism of Danielewski surfaces βτ : Sγ ′ → Sγ . By Proposition

3.8 and Corollary 3.9 in [4], for every morphism of Danielewski surfaces β : S′ →
S, there exists X-isomorphisms φ′ : S′ ∼→ Sγ

′
and φ : S ∼→ Sγ for suitable fine

k-weighted trees γ ′ and γ such that φ � β � (φ′)−1 is the morphism βτ induced by a
morphism of fine k-weighted tree τ : γ ′ → γ .

3.13. Every morphism of fine k-weighted tree τ : γ ′ → γ factors through a surjective
morphism τ ′ : γ ′ → τ(γ ′) followed by an injection τ(γ ′) ↪→ γ . As a consequence,
every morphism of Danielewski surfaces factors through a quasi-surjective morphism
β ′ : Sγ ′ → Sτ(γ

′), i.e. a morphism of Danielewski surfaces such that β ′−1(C) = ∅
for every irreducible component C of the fiber π−1

τ(γ ′)(x0) ⊂ Sτ(γ ′) followed by the

open immersion of Sτ(γ
′) in Sγ as the complement of irreducible components of

π−1
γ (x0) ⊂ Sγ corresponding to the leaves of � which are not in the image of τ .

3.14. Given a fine k-weighted tree γ = (�,w), we consider the tree γ̃ = (�, w̃)

constructed in Lemma 3.5. For every edge
←−
e′e of �, the weight w̃(

←−
e′e) ∈ k is

uniquely determined by the weights w of the edges of the subtree of � with elements
(↓ e)� ∪⋃

e′∈(↓e)� Ch(e′). Therefore, every surjective morphism of fine k-weighted
trees τ : γ ′ = (�′, w′) → γ gives rise to a surjective morphism of fine k-weighted
trees τ̃ : γ̃ ′ = (�′, w̃′)→ γ̃ which restricts to the same morphism as τ between the
underlying trees �′ and � of γ̃ ′ and γ̃ respectively1. Since the subset �′′ = {e′ ∈
�′, τ−1(τ (e′)) = {e′}} ⊂ �′ is a subtree of �′ isomorphic to �, we obtain that

A[�′] = A[�′′]⊗AA[(Xe′)e′∈P(�′)∩(�′\P(�′′))] � A[�]⊗AA[(Xe′)e′∈P(�′)∩(�′\P(�′′))].

Moreover, for every e′ ∈ P(�′′), the genealogical polynomial Ge′(γ̃ ′) of e′ is
an element of A[�′′] ⊂ A[�′] which coincides with the genealogical polynomial
Gτ(e′)(γ̃ ) ∈ A[�] of τ(e′) via the isomorphism above. In turn, this implies that the
genealogical matrix (see Definition 1.9)M(γ̃ ) of γ̃ is obtained fromM(γ̃ ′) by delet-
ing the rows corresponding to the elements in P(�′) \ P(�′′). By construction of the
embedding of Sγ into A

d(�)
X as the Danielewski surface Sγ̃ , we obtain the following

result.

Theorem 3.15. Let τ : γ ′ = (�′, w′) → γ = (�,w) be a surjective morphism
of fine k-weighted trees and let τ̃ : γ̃ ′ → γ̃ be the morphism obtained above. Let

1Actually, the functor γ �→ γ̃ , τ �→ τ̃ is an automorphism of the category T s
w,k

of fine k-weighted trees
equipped with surjective morphisms.



Vol. 81 (2006) Embeddings of Danielewski surfaces in affine space 69

ζ ′ : Sγ ′ ↪→ A
d(�′)
X and ζ : Sγ ↪→ A

d(�)
X are the embeddings from Lemma 3.6 of Sγ

′

and Sγ as the Danielewski surfaces Sγ̃ ′ and Sγ̃ respectively. Then ζ �β = p�′/� �ζ ′,
where p�′/� : Ad(�

′)
X → A

d(�)
X is the projection induced by the inclusion A[�] �

A[�′′] ⊂ A[�′].

4. Danielewski surfaces with a trivial Makar-Limanov invariant

The Makar-Limanov [6] invariant of an affine variety V = Spec(B) over a field
k of characteristic zero is the sub-algebra ML(V ) ⊂ B of regular functions on V
which are invariant under every Ga,k-action on V . A surface S has a trivial Makar-
Limanov invariant ML(S) = k if and only if it admits two nontrivial Ga,k-actions
with distinct general orbits. In view of the correspondence between nontrivial Ga,k-
actions Ga,k × S → S on S and quotient A

1-fibrations π : S → X = S//Ga,k , this
means in turn that S has a trivial Makar-Limanov invariant if and only if it admits
two A

1-fibrations with distinct general fibers. In this section, we characterize among
Danielewski surfaces the ones with a trivial Makar-Limanov invariant.

Danielewski surfaces defined by weighted combs

Definition 4.1. A nontrivial (oriented) comb of height h ≥ 1 is a tree � such that for
every e ∈ P(�) of degree deg�(e) ≥ 1, all but possibly one of the children of e are
leaves of �. This means equivalently that the subtree C� = P(�) = {e0 < · · · <
eh−1} of � is a nonempty chain of length h− 1, called the dorsal chain of �.

• • • • • •

•
•

•

•
•

•

•
•

•

e0

A comb rooted in e0.

4.2. By Theorem 5.4 in [4], a Danielewski surface S defined over an algebraically
closed field k = k̄ of characteristic zero has a trivial Makar-Limanov invariant if
and only if it is isomorphic to an abstract Danielewski surface Sγ defined by a fine
k-weighted comb. This result is based on a characterization of normal affine surfaces
S with a trivial Makar-Limanov invariant in terms on the boundary divisors of certain
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minimal completions S̄ of S (see [3]). Unfortunately, no such criterion exists for a
normal affine surface defined over an arbitrary field k of characteristic zero. However,
the following result shows that the combinatorial characterization of Danielewski
surfaces with a trivial Makar-Limanov invariant remains valid in this more general
setting.

Theorem 4.3. A Danielewski surface S � A
1
X, defined over a field k of character-

istic zero, has a trivial Makar-Limanov invariant if and only if it is isomorphic to
an abstract Danielewski surface Sγ defined by a fine k-weighted comb. If this is
the case, then there exist an integer h ≥ 1 and a collection of monic polynomials
P0, . . . , Ph−1∈k[t]with simple roots ai,j ∈k∗, i=0, . . . , h−1, j = 1, . . . , degt (Pi),
such that S is isomorphic to the surface SP0,...,Ph−1 ⊂ Spec(k[x][y−1, . . . , yh−2][z])
defined by the equations

xz− yh−2

h−1∏
l=0

Pl(yl−1) = 0,

zyi−1 − yiyh−2

h−1∏
l=i+1

Pl(yl−1) = 0, xyi − yi−1

i∏
l=0

Pl(yl−1) = 0, 0 ≤ i ≤ h− 2,

yi−1yj − yiyj−1

j∏
l=i+1

Pl(yl−1) = 0, 0 ≤ i < j ≤ h− 2.

4.4. The proof is given in 4.5–4.7 below. We first observe that the condition is
necessary. Indeed, suppose that the Makar-Limanov invariant of S is trivial. We
let γ = (�,w) be a fine k-weighted tree such that S � Sγ , and we let i : k ↪→ k̄

be the injection of k in an algebraic closure k̄. Then the Danielewski surface Sk̄ =
S ×Spec(k) Spec(k̄) → Xk̄ = X ×Spec(k) Spec(k̄) is Xk̄-isomorphic to the abstract

Danielewski surface Sγ ×Spec(k) Spec(k̄) defined by the tree γ considered a fine
k̄-weighted tree via the weight function i � w : E(�) → k̄. Since every nontrivial
Ga,k-action on S lifts to a nontrivial action of Ga,k̄ = Ga,k ×Spec(k) Spec(k̄) on Sk̄ ,
we conclude that Sk̄ has a trivial Makar-Limanov invariant too. Thus the tree γ is a
comb by virtue of Theorem 5.4 in [4].

4.5. Conversely, the same argument shows that if S is isomorphic to an abstract
Danielewski surface Sγ defined by a fine k-weighted comb γ , then Sk̄ has a trivial
Makar-Limanov invariant. Unfortunately, in general, there is no guarantee that a
given Ga,k̄-action on Sk̄ appears as the lifting of an action of Ga,k on S. Therefore,
to show that the condition is sufficient, we must proceed in a different way. We will
exploit the fact that S is isomorphic to an embedded surface Sγ defined by a fine
k-weighted comb γ to construct two explicit A

1-fibrations on S with distinct general
fibers.



Vol. 81 (2006) Embeddings of Danielewski surfaces in affine space 71

4.6. By construction, a Danielewski surface S is isomorphic to A
1
X if and only if it is

isomorphic to an abstract surface Sγ defined by a fine k-weighted chain γ . In this case
it is also isomorphic to the surface S{e0} defined by the trivial tree with one element
{e0}. More generally, it follows from Theorem 3.10 in [4] that every Danielewski
surface S � A

1
X isomorphic to an abstract Danielewski surface Sγ defined by a fine

k-weighted comb γ is also isomorphic to a surface Sγ0 defined by a fine k-weighted
comb γ0 = (�,w0) of heighth ≥ 1, with dorsal chainC� = {e0 < e1 < · · · < eh−1},
satisfying the following properties:

a) The root e0 of � as at least two children.

b) For every i = 0, . . . , h− 2, w0(
←−−−
eiei+1) = 0 ∈ k.

c) There exists eh ∈ Ch(eh−1) such that w0(
←−−−−
eh−1eh) = 0 ∈ k.

By definition, the restriction of the canonical morphism ψ : Sγ0 → A
1
X to an open

subset Si = Spec(A[Ti]) corresponding to a leaf ei,mi of � at level mi ≥ 1 is
induced by the sectionw0(

←−−−−−−
emi−1ei,mi )x

mi−1+xmiTi . Thus, by applying the procedure
used in the proof of Lemma 3.5 to this comb γ0, we obtain a fine k-weighted comb
γ̃0 = (�, w̃0) with the same underlying comb � as γ0 such that w̃0(

←−−−
eiei+1) = 0 ∈ k

for every i = 0, . . . , h− 1.

4.7. By construction of the tree γ̃0, there exists monic polynomials P0, . . . , Ph−1 ∈
k[t], of degrees deg(Pi) = deg�(ei)− 1, with simple roots ãe,ei ∈ k∗, e ∈ Ch(ei) \
{ei+1} respectively, such that Fei (γ̃0) = Xei−1Pi(Xei−1) for every i = 0, . . . , h− 1.
Letting y−1 = Xe−1 , y0 = Xe0, . . . , yh−2 = Xeh−2, z = Xeh−1 , we conclude that
the embedded Danielewski surface Sγ̃0 is X-isomorphic to the surface SP0,...,Ph−1 of
Theorem 4.3. This shows that every abstract Danielewski surface Sγ � A

1
X defined

by a fine k-weighted comb γ is X-isomorphic to a surface SP0,...,Ph−1 ⊂ A
h+1
X .

Thus, to complete the proof of Theorem 4.3, it suffices to show that a surface S =
SP0,...,Ph−1 = Spec(B) has a trivial Makar-Limanov invariant. A similar argument as
in 2.10 shows that B⊗k[z] k[z, z−1] � k[z, z−1][yh−2]. This means equivalently that
the projection π2 = prz |S : S → Z = Spec(k[z]) in an A

1-fibration restricting to the
trivial line bundle A

1
Z∗ = Spec(k[z, z−1][yh−2]) over Z∗. Since the general fibers

of the two projections π1 = prx |S : S → X = Spec(k[x]) and π2 : S → Z do not
coincide, we conclude that S has a trivial Makar-Limanov invariant. This completes
the proof of Theorem 4.3.

Remark 4.8. The same argument as in the proof of Proposition 2.15 applied to the
fibration π2 shows that the locally nilpotent derivation zh∂yh−2 of B⊗k[z] k[z, z−1] �
k[z, z−1][yh−2] extends to a locally nilpotent derivation ofB, induced by a triangular
k[z]-derivation of k[z][yh−2, . . . , y−1, x]. This proves that every Danielewski surface
S with a trivial Makar-Limanov invariant can be embedded in an affine space A

d
k in

such a way that at least two algebraically independent Ga,k-actions on S extend to
Ga,k-actions on A

d
k .
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Nonconjugated Ga-actions on a Danielewski surface. By a result of Daigle [2],
all the Ga,k-actions on a Danielewski surface SP,1 = {xz − P(y)} are conjugated
under the action of the automorphism group Aut(SP,1) of SP,1.

4.9. This means that for every pair of nontrivial locally nilpotent derivations ∂1 and
∂2 of B = �(SP,1,OSP,1), there exists a k-algebra automorphism φ of B such that
φ(Ker(∂1)) = Ker(∂2). This implies in particular that the fibers of corresponding
quotient A

1-fibrations π1 : SP,1 → A
1
k and π2 : SP,1 → A

1
k have the same scheme-

theoretic structures. By 4.7 above, a Danielewski surface S = SP0,...,Ph−1 = Spec(B)
admits two A

1-fibrations π1 : S → X = Spec(k[x]) and π2 : S → Z = Spec(k[z]).
Moreover π2 restricts to the trivial line bundle over Z∗ = Spec(k[z, z−1]), and a
similar argument as in Lemma 2.13 shows that the fiber (π−1

2 (0))red decomposes as

a disjoint union of curves isomorphic to the affine line A
1
k . However, we have the

following result.

Lemma 4.10. If h ≥ 2, then π2 : S = SP0,...,Ph−1 → Z is not a Danielewski surface
over Z.

Proof. It suffices to show that the intersection of the fiberπ−1
2 (0)with the complement

of the fiber π−1
1 (0) is a nonreduced scheme. By (2.2), the defining ideal I∗ of S \

π−1
1 (0) � A

1
X∗ in k[x, x−1][y−1, . . . , yh−2][z] is generated by the polynomials ci =

yi − x−1yi−1
∏i
l=0Pl(yl−1), i = 0, . . . , h− 2 and d = z− x−1yh−2

∏h−1
l=0 Pl(yl−1).

We conclude recursively that there exists a polynomial R ∈ k[x, x−1][y−1] such that

d ≡ z− x−hy−1(P0(y−1))
hR(y−1)

modulo c0, . . . , ch−2. Since the polynomial P0 is nonconstant (see 4.6),(
S \ π−1

1 (0)
) ∩ π−1

2 (0) � Spec
(
k[x, x−1] [y−1, . . . , yh−2, z]/(I∗, z)

)
� Spec

(
k[x, x−1][y−1]/(x−hy−1(P0(y−1))

hR(y−1))
)

is clearly nonreduced whenever h ≥ 2. This completes the proof. �

4.11. The above result implies that if h ≥ 2, then the degenerate fibers of π1 and π2
have different scheme-theoretic structures. Therefore two Ga,k-actions on SP0,...,Ph−1

with associated quotient A
1-fibrations π1 : S → X and π2 : S → Z respectively can

not be conjugated in the sense of (4.9) above. This leads to the following result.

Theorem 4.12. A Danielewski surface S � SP,1 with a trivial Makar-Limanov
invariant admits two algebraically independent nonconjugated Ga,k-actions.

As a consequence of this description, we obtain the following characterization of
ordinary Danielewski surfaces SP,1.
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Corollary 4.13. Let π : S → X = Spec(k[x]), where k is an arbitrary field of
characteristic zero, be a Danielewski surface with a trivial Makar-Limanov invariant.
Then the following are equivalent.

a) S admits a free Ga,X-action.

b) S is isomorphic to a surface SP,1 = {xz−P(y) = 0} in A
3
k = Spec(k[x, y, z]),

where P is a nonconstant polynomial with degP simple roots.

c) The canonical sheaf ωS is trivial.

d) All Ga,k-actions on S are conjugated.

Proof. The equivalence b)⇔d) follows from [2] and the above discussion. All the
other equivalences can be obtained in the same way as in Corollary 5.7 in [4]. �
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