Comment. Math. Helv. 81 (2006), 101–103 **Commentarii Mathematici Helvetici**

Erratum to "A gap theorem for hypersurfaces with constant scalar curvature one"

H. Alencar, M. do Carmo and W. Santos

Proof of Lemma 4.1

In our paper [\[AdCS\]](#page-2-0), the following lemma is stated.

Lemma 4.1. Let $M^n \rightarrow \mathbb{S}^{n+1}$ be a closed orientable hypersurface with scalar *curvature* $R = 1$ (*i.e.* $S_2 = 0$ *). Then the index of the quadratic form*

$$
I(f, f) = -\int_M \{fL_1f + ((n-1)S_1 - 3S_3)f^2\} dM
$$

is greater than one.

Here S_r , $r = 1, \ldots, n$, is the rth-symmetric function of the principal curvatures of the immersion and L_1 is the linearized operator corresponding to the equation of hypersurfaces of \mathbb{S}^{n+1} with $S_2 \equiv 0$.

 $\sum_{i=1}^{n+2} n_i e_i$, where $\{e_1,\ldots,e_{n+2}\}$ is an orthonormal basis of \mathbb{R}^{n+2} and N is the unit The proof of Lemma 4.1 presented in [\[AdCS\]](#page-2-0) is incorrect. We had set $N =$ normal vector to the immersion of $M^n \to \mathbb{S}^{n+1} \subset \mathbb{R}^{n+2}$. By assuming the index of I is greater than one and noticing that $I(n_i, n_i) \leq 0$, we concluded that all n_i but one were zero. This is not true. Replace the proof of the lemma by the following.

Proof. To prove that $Ind(M)$ is greater than one, we will follow Simons [\[S\]](#page-2-0), where a similar proposition is proved for the minimal case in arbitrary codimension (Proposition 5.1.1 of $[S]$). The crucial point is that Simons argument in codimension one does not depend on minimality. For convenience of the reader we present here the details.

Let ξ denote the $(n + 2)$ -dimensional space of vector fields that are tangential projections to \mathbb{S}^{n+1} of parallel vector fields in $\mathbb{R}^{n+2} \supset \mathbb{S}^{n+1}$. Clearly at each point $p \in M$, ξ spans the entire tangent space $T_p(\mathbb{S}^{n+1})$. Let ξ^N be the space of all normal vector fields of the form $\langle a,N\rangle N$, where a is a fixed vector of \mathbb{R}^{n+2} and N is the unit normal of M.

We first show that restricted to ξ^N , the index form is negative definite. Indeed, setting $f_a = \langle a, N \rangle$, $g_a = \langle a, x \rangle$ and noticing that

$$
L_1(f_a) = -(S_1S_2 - 3S_3)f_a - 2S_2g_a,
$$

we obtain, since $S_2 = 0$, that $L_1(f_a) = 3S_3f_a$.

Thus,

$$
I(f_a, f_a) = -\int_M (f_a L_1(f_a) + [(n-1)S_1 - 3S_3]f_a^2) dM
$$

=
$$
-\int_M (n-1)S_1 f_a^2 dM < 0,
$$

since $S_1 > 0$. It follows that the index formula restricted to ξ^N is negative definite, hence Ind $(M) \geq 1$.

To show that Ind(M) > 1, we need a few lemmas taken from [\[S\]](#page-2-0). Let ∇ , $\overline{\nabla}$ and $\overline{\overline{\nabla}}$ the covariant derivatives of M^n , \mathbb{S}^{n+1} and \mathbb{R}^{n+2} , respectively.

Lemma 1.1. *Let* $Z \in \xi$ *. Then, given* $p \in \mathbb{S}^{n+1}$ *, there exists a* λ *such that, for any* $x \in T_p(\mathbb{S}^{n+1}),$

$$
\overline{\nabla}_x Z = \lambda x. \tag{1}
$$

Proof. Since $Z = W^T$, where W is a parallel field in \mathbb{R}^{n+2} , we have, by setting $W = W^T + W^N$.

$$
\overline{\nabla}_x Z = (\overline{\overline{\nabla}}_x W^T)^T = -(\overline{\overline{\nabla}}_x W^N)^T = \lambda x,
$$

because \mathbb{S}^{n+1} is umbilic. \Box

Lemma 1.2. *Let* $Z \in \xi$ *and write* $Z = Z^T + Z^N$ *, where* Z^N *is the projection into* $N(M)$ and Z^T is the projection into $T(M)$ *. Then, for any* $x \in T_p(M)$ *,*

$$
\nabla_x^N Z^N = -B(x, Z^T). \tag{2}
$$

Proof. By using (1),

$$
\nabla_x^N Z^N = (\overline{\nabla}_x Z^N)^N = (\overline{\nabla}_x Z - \overline{\nabla}_x Z^T)^N
$$

= $(\lambda x - \overline{\nabla}_x Z^T)^N = -(\overline{\nabla}_x Z^T)^N = -B(x, Z^T).$

Lemma 1.3. *Assume that dim* $\xi^{N} = 1$ *. Then given* $z \in T_{p}(M)$ *, there exists* $Z \in \xi$ *such that* $Z(p) = z$ *and* Z *is everywhere tangent to* M.

Proof. Let η be the kernel of the homomorphism $\xi \to \xi^N$. If $Z \in \eta$, then $Z^T = Z$ at every point of M. Now, for some $p \in M$, let β_p be the kernel of the homomorphism $\xi \rightarrow N_p(M)$ defined by $Z \mapsto Z^N(p)$. Clearly $\eta \subset \beta_p$. On the other hand, dim $\beta_p = n+2-1$ and the assumption that dim $\xi^N = 1$ implies that dim $\eta = n+2-1$. Thus $\eta = \beta_p$. Since $Z \to Z^T(p)$ maps β_p onto $T_p(M)$, it also maps η onto $T_p(M)$. This implies the claim of the lemma. \Box

We can now conclude our proof. By using Lemma [1.3](#page-1-0) and [\(2\)](#page-1-0), we obtain

$$
B(x, z) = B(x, Z) = B(x, ZT) = -\nabla_x^N Z^N = 0.
$$

Thus $B \equiv 0$ and M is totally geodesic. Since $S_1 > 0$, this is a contradiction and shows that Ind $(M) > 1$.

References

- [AdCS] H. Alencar, M. do Carmo, W. Santos, A gap theorem for hypersurfaces with constant scalar curvature one. *Comment. Math. Helv.* **77** (2002), 549–562. [Zbl 1032.53045](http://www.emis.de/MATH-item?1032.53045) [MR 1933789](http://www.ams.org/mathscinet-getitem?mr=1933789)
- [S] J. Simons, Minimal varieties in riemannian manifolds. *Ann. of Math.* (2) **88** (1968) 62–105. [Zbl 0181.49702](http://www.emis.de/MATH-item?0181.49702) [MR 0233295](http://www.ams.org/mathscinet-getitem?mr=0233295)

Received December 27, 2004

H. Alencar, Universidade Federal de Alagoas, Departamento de Matemática, 57072-900, Maceió, AL, Brazil

E-mail: hilario@mat.ufal.br

M. do Carmo, Instituto de Matemática Pura e Applicada (IMPA), Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, RJ, Brazil

E-mail: manfredo@impa.br

W. Santos, Universidade Federal do Rio de Janeiro, Departamento de Matemática, Caixa Postal 68530, 21945-970, Rio de Janeiro, RJ, Brazil E-mail: walcy@im.ufrj.br