Comment. Math. Helv. 81 (2006), 101-103

Erratum to "A gap theorem for hypersurfaces with constant scalar curvature one"

H. Alencar, M. do Carmo and W. Santos

Proof of Lemma 4.1

In our paper [AdCS], the following lemma is stated.

Lemma 4.1. Let $M^n \to \mathbb{S}^{n+1}$ be a closed orientable hypersurface with scalar curvature R = 1 (i.e. $S_2 = 0$). Then the index of the quadratic form

$$I(f, f) = -\int_{M} \{fL_{1}f + ((n-1)S_{1} - 3S_{3})f^{2}\} dM$$

is greater than one.

Here S_r , r = 1, ..., n, is the r^{th} -symmetric function of the principal curvatures of the immersion and L_1 is the linearized operator corresponding to the equation of hypersurfaces of \mathbb{S}^{n+1} with $S_2 \equiv 0$.

The proof of Lemma 4.1 presented in [AdCS] is incorrect. We had set $N = \sum_{i=1}^{n+2} n_i e_i$, where $\{e_1, \ldots, e_{n+2}\}$ is an orthonormal basis of \mathbb{R}^{n+2} and N is the unit normal vector to the immersion of $M^n \to \mathbb{S}^{n+1} \subset \mathbb{R}^{n+2}$. By assuming the index of I is greater than one and noticing that $I(n_i, n_i) \leq 0$, we concluded that all n_i but one were zero. This is not true. Replace the proof of the lemma by the following.

Proof. To prove that Ind(M) is greater than one, we will follow Simons [S], where a similar proposition is proved for the minimal case in arbitrary codimension (Proposition 5.1.1 of [S]). The crucial point is that Simons argument in codimension one does not depend on minimality. For convenience of the reader we present here the details.

Let ξ denote the (n + 2)-dimensional space of vector fields that are tangential projections to \mathbb{S}^{n+1} of parallel vector fields in $\mathbb{R}^{n+2} \supset \mathbb{S}^{n+1}$. Clearly at each point $p \in M$, ξ spans the entire tangent space $T_p(\mathbb{S}^{n+1})$. Let ξ^N be the space of all normal vector fields of the form $\langle a, N \rangle N$, where *a* is a fixed vector of \mathbb{R}^{n+2} and *N* is the unit normal of *M*. We first show that restricted to ξ^N , the index form is negative definite. Indeed, setting $f_a = \langle a, N \rangle$, $g_a = \langle a, x \rangle$ and noticing that

$$L_1(f_a) = -(S_1S_2 - 3S_3)f_a - 2S_2g_a,$$

we obtain, since $S_2 = 0$, that $L_1(f_a) = 3S_3f_a$.

Thus,

$$I(f_a, f_a) = -\int_M (f_a L_1(f_a) + [(n-1)S_1 - 3S_3]f_a^2) \, dM$$
$$= -\int_M (n-1)S_1 f_a^2 \, dM < 0,$$

since $S_1 > 0$. It follows that the index formula restricted to ξ^N is negative definite, hence $\text{Ind}(M) \ge 1$.

To show that $\operatorname{Ind}(M) > 1$, we need a few lemmas taken from [S]. Let ∇ , $\overline{\nabla}$ and $\overline{\nabla}$ the covariant derivatives of M^n , \mathbb{S}^{n+1} and \mathbb{R}^{n+2} , respectively.

Lemma 1.1. Let $Z \in \xi$. Then, given $p \in \mathbb{S}^{n+1}$, there exists a λ such that, for any $x \in T_p(\mathbb{S}^{n+1})$,

$$\overline{\nabla}_{x}Z = \lambda x. \tag{1}$$

Proof. Since $Z = W^T$, where W is a parallel field in \mathbb{R}^{n+2} , we have, by setting $W = W^T + W^N$,

$$\overline{\nabla}_{x} Z = (\overline{\overline{\nabla}}_{x} W^{T})^{T} = -(\overline{\overline{\nabla}}_{x} W^{N})^{T} = \lambda x,$$

because \mathbb{S}^{n+1} is umbilic.

Lemma 1.2. Let $Z \in \xi$ and write $Z = Z^T + Z^N$, where Z^N is the projection into N(M) and Z^T is the projection into T(M). Then, for any $x \in T_p(M)$,

$$\nabla_x^N Z^N = -B(x, Z^T).$$
⁽²⁾

Proof. By using (1),

$$\nabla_x^N Z^N = (\overline{\nabla}_x Z^N)^N = (\overline{\nabla}_x Z - \overline{\nabla}_x Z^T)^N$$
$$= (\lambda x - \overline{\nabla}_x Z^T)^N = -(\overline{\nabla}_x Z^T)^N = -B(x, Z^T).$$

Lemma 1.3. Assume that dim $\xi^N = 1$. Then given $z \in T_p(M)$, there exists $Z \in \xi$ such that Z(p) = z and Z is everywhere tangent to M.

Proof. Let η be the kernel of the homomorphism $\xi \to \xi^N$. If $Z \in \eta$, then $Z^T = Z$ at every point of M. Now, for some $p \in M$, let β_p be the kernel of the homomorphism $\xi \to N_p(M)$ defined by $Z \mapsto Z^N(p)$. Clearly $\eta \subset \beta_p$. On the other hand, dim $\beta_p = n+2-1$ and the assumption that dim $\xi^N = 1$ implies that dim $\eta = n+2-1$. Thus $\eta = \beta_p$. Since $Z \to Z^T(p)$ maps β_p onto $T_p(M)$, it also maps η onto $T_p(M)$. This implies the claim of the lemma.

We can now conclude our proof. By using Lemma 1.3 and (2), we obtain

$$B(x, z) = B(x, Z) = B(x, Z^{T}) = -\nabla_{x}^{N} Z^{N} = 0$$

Thus $B \equiv 0$ and M is totally geodesic. Since $S_1 > 0$, this is a contradiction and shows that Ind(M) > 1.

References

- [AdCS] H. Alencar, M. do Carmo, W. Santos, A gap theorem for hypersurfaces with constant scalar curvature one. *Comment. Math. Helv.* 77 (2002), 549–562. Zbl 1032.53045 MR 1933789
- [S] J. Simons, Minimal varieties in riemannian manifolds. Ann. of Math. (2) 88 (1968) 62–105. Zbl 0181.49702 MR 0233295

Received December 27, 2004

H. Alencar, Universidade Federal de Alagoas, Departamento de Matemática, 57072-900, Maceió, AL, Brazil

E-mail: hilario@mat.ufal.br

M. do Carmo, Instituto de Matemática Pura e Applicada (IMPA), Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, RJ, Brazil

E-mail: manfredo@impa.br

W. Santos, Universidade Federal do Rio de Janeiro, Departamento de Matemática, Caixa Postal 68530, 21945-970, Rio de Janeiro, RJ, Brazil
E-mail: walcy@im.ufrj.br