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Applications of Hofer’s geometry to Hamiltonian dynamics

Felix Schlenk*

Abstract. We prove that for every subset A of a tame symplectic manifold (W, w) meeting a
semi-positivity condition, the r1-sensitive Hofer—Zehnder capacity of A is not greater than four
times the stable displacement energy of A,

cliz (A, W) <de(A x S', W x T*S").

This estimate yields almost existence of periodic orbits near stably displaceable energy levels
of time-independent Hamiltonian systems. Our main applications are:

e The Weinstein conjecture holds true for every stably displaceable hypersurface of contact
type in (W, w).

e The flow describing the motion of a charge on a closed Riemannian manifold subject to a
non-vanishing magnetic field and a conservative force field has contractible periodic orbits
at almost all sufficiently small energies.

The proof of the above energy-capacity inequality combines a curve shortening procedure in
Hofer geometry with the following detection mechanism for periodic orbits: If the ray {¢%.},
t > 0, of Hamiltonian diffeomorphisms generated by a compactly supported time-independent
Hamiltonian stops to be a minimal geodesic in its homotopy class, then a non-constant con-
tractible periodic orbit must appear.
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1. Introduction and results

On their search for periodic orbits of autonomous Hamiltonian systems, Hofer and
Zehnder ([27], [28]) associated to every open subset A of a symplectic manifold
(V, w) a number, the Hofer—Zehnder capacity cyz(A) € [0, oo], in such a way that
cuz(A) < oo implies almost existence of periodic orbits near any compact regular
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energy level of an autonomous Hamiltonian system on A. Showing that cgz(A) is
finite is, however, often a difficult problem. Our main result is that if a subset A
of a tame symplectic manifold meeting a suitable semi-positivity condition can be
displaced from itself by a Hamiltonian isotopy in a stabilized sense, then the Hofer—
Zehnder capacity of A is indeed finite.

In order to set notations, we abbreviate / = [0, 1] and consider an arbitrary
smooth symplectic manifold (V, w) without boundary. Denote by #,.(I x V) the
set of smooth functions / x V — R with compact support. The Hamiltonian vector
field of H € #.(I x V), defined by

o(Xn,, ) =—dH(),
generates a flow h;. The time-1-maps / form the group
Ham.(V,w) :={h | H € #.(I x V)}

of compactly supported Hamiltonian diffeomorphisms of (V, w). The set of functions
in #.(I x V) which do not depend on ¢ € [ is denoted by #.(V). We shall denote
functions in #.(I x V) by H or K and functions in #.(V) by F or G, and their
flows by h; or k; and f; or g;.

The Hofer—Zehnder capacity we shall study is defined as follows. We say that
F € #.(V) is slow if all non-constant contractible periodic orbits of f; have period
greater than 1. Following [27], [28] and [38], [53], [17] we define for each subset A
of (V, w) the m1-sensitive Hofer—Zehnder capacity

crz(A, V, ) = sup{fmax F —min F | F € #.(Int(A)) is slow}. (D

We shall often suppress @ from the notation, and we shall write ¢y, (V) instead
of ¢y, (V, V). The Hofer—Zehnder capacity cyz(A) mentioned above is obtained by
taking the supremum over the smaller class of functions F' € #. (Int(A)) for which all
non-constant periodic orbits of f; have period > 1. Therefore, cyz(A) < ¢f, (A, V).
We shall compare the Hofer—Zehnder capacity ¢y, (A, V) with the displacement
energy defined in [21], [32]. The norm ||H || of H € #.(I x V) is defined as

1
I Hl :/ (max H (¢, x) — min H (¢, x))dt,
0 xeV xeV

and the displacement energy e(A, V) = e(A, V, w) € [0, oo] of a subset A of V is
defined as

e(A,V)=inf{||H| | H € #.(I x V), h(A)N A = ¢}
if A is compact and as

e(A,V) =supfe(K, V)| K C A is compact}
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for a general subset A of V. In fact, we shall compare cy;, (A, V) with the stable
displacement energy defined as

es(A, V) :=e(A xS\, V x TS, 0 ® wy)

where wy = dp A dq is the standard symplectic form on T*S!. We are able to do
this for the following class of symplectic manifolds.

Definition ([20], [56], [2]). A symplectic manifold (W, w) is tame if W admits an
almost complex structure J and a complete Riemannian metric g such that

e J is uniformly tame, i.e., there are positive constant C; and C3 such that
w(X,JX)>CIXI* and |o(X,Y)|<CIXIY]

forall X,Y e TW.

e The sectional curvature of (W, g) is bounded from above and the injectivity
radius of (W, g) is bounded away from zero.

Examples of tame symplectic manifolds are closed symplectic manifolds, standard
cotangent bundles (T*M, w) as well as twisted cotangent bundles (T*M, w,) over
a closed base M, and symplectic manifolds which at infinity are isomorphic to the
symplectization of a closed contact manifold. The class of tame symplectic manifolds
is closed under taking products or coverings.

For technical reasons we also impose a semi-positivity condition on (W, w). The
first Chern class ¢; € H2(W; Z) is defined as the first Chern class of the complex
vector bundle (T W, J), where J is any almost complex structure such that w( -, J-)
is a Riemannian metric. Recall from [43], [23], [54], [44] that a 2n-dimensional
symplectic manifold (W, w) is strongly semi-positive if for all A € m(W),

w(A) >0, c1(A)>2—n = c1(A) =0.

Definition. A 2r-dimensional symplectic manifold (W, w) is stably strongly semi-
positive if for all A € (W),

w(A) >0, c;(A)>1—-n = c1(A) =0.
Equivalently, (W, w) satisfies one of the following conditions.
(1) w(A) = Ac1(A) for every A € mp(W) and some A > 0;
(1) c1(A) = Oforevery A € mp(W);

(iii)) The minimal Chern number N > 0 defined by ¢ (m2(W)) = NZ is at least n.
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Since (T*S!, wp) is exact and has vanishing first Chern class, (W, ) is stably
strongly semi-positive if and only if (W x T*S!, w @ wp) is strongly semi-positive.
This assumption guarantees that the evaluation map used in the definition of the
Gromov—Witten invariants relevant for our arguments is a pseudo-cycle. If one is
willing to use Liu-Tian’s construction of the S'-invariant virtual moduli cycle, this
assumption can be dropped throughout the paper.

Our main result is the following energy-capacity inequality.

Theorem 1.1. Assume that A is a subset of a tame and stably strongly semi-positive
symplectic manifold (W, o). Then

iy (A, W) < des(A, W).

We shall derive Theorem 1.1 from the following result by capitalizing on the fact
that the definition of ¢y, involves only contractible periodic orbits and by using a
stabilization trick found in Macarini’s work [41].

Theorem 1.2. Assume that A is a subset of a tame and strongly semi-positive sym-
plectic manifold (W, ®). Then

crz (A, W) < 4de(A, W).

Up to its slightly more restrictive hypothesis, Theorem 1.1 is stronger than The-
orem 1.2. Indeed, it is elementary to see that es(A, V) < e(A, V) in general, and in
the dynamically relevant Example 1.5 below we have eg(A, V) < e(A, V) = oo.

The energy-capacity inequality

ez (A, V) =e(A, V) 2

is known for every subset A of a weakly exact symplectic manifold (V, w) which is
closed or convex ([22], [53], [12], [16], [11]). For the open ball B?(r) of radius r in
(R2", @) it holds that

Chiz (an(r), ]RZ") =e (an(r), Rzn) = 72,

see [28], and so (2) is sharp. It is conceivable that the factor 4 in Theorems 1.1 and
1.2 can be omitted.

Following Polterovich [50] we shall obtain Theorem 1.2 by combining an ele-
mentary curve shortening technique in Hofer’s geometry with the following detection
mechanism for periodic orbits.

Theorem 1.3. Assume that (W, w) is a tame and strongly semi-positive symplectic
manifold, and that the autonomous Hamiltonian F € H.(W) is slow. Then the path
Ji. t €10, 1], is length minimizing in its homotopy class.
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Here, the length of f; is defined as || F'||. This result was discovered by Hofer [22]
for (R?", wp) and has been proved in [34] for weakly exact tame symplectic manifolds;
it removes an additional assumption on F in [9], [44] and verifies Conjecture 1.2 in
[44] for tame strongly semi-positive symplectic manifolds.

Theorems 1.1 and 1.2 show that if es(A, W) or e(A, W) is finite, then so is
¢z (A, W), and the finiteness of cpy, (A, W) implies existence of contractible peri-
odic orbits on almost every compact regular energy level of an autonomous Hamil-
tonian system on A. We thus want to understand which compact subsets of a sym-
plectic manifold V have finite (stable) displacement energy. Every compact subset
of a symplectic manifold of the form (V x R? w @ wp) has finite displacement
energy. Less obvious sufficient assumptions on A alone are collected in the fol-
lowing proposition essentially due to Laudenbach [35] and to Polterovich [49] and
Laudenbach-Sikorav [36]. Recall that a middle-dimensional submanifold L of a
symplectic manifold (V, w) is called Lagrangian if w vanishes on L.

Proposition 1.4. Let A be a compact subset of a 2n-dimensional symplectic manifold

(V, w).
(1) If A is contained in an embedded finite CW-complex X of dimension < n, then
es(A, V) < oo.

(ii) If A is contained in an n-dimensional closed submanifold M which is not
Lagrangian, then es(A, V) = 0.

(i) If A is strictly contained in a closed Lagrangian submanifold L, then
es(A,V)=0.

The example S L'« (T*S!, wp) shows that neither the dimension assumption in (i)
nor the assumption |y # 0 in (ii) nor the assumption A C L in (iii) can be omitted.
The following example will play an important role in our applications.

Example 1.5. Let o be a non-vanishing closed 2-form on a closed manifold M
and let w, = wy + w*c be the twisted symplectic form on its cotangent bundle
w:T*M — M. Then es(M, T*M, w,) = 0 by Proposition 1.4 (ii). Note that if the
Euler characteristic y (M) does not vanish, then e(M, T*M, wy) = oc.

Theorems 1.1 and 1.2 and Proposition 1.4, which are proved in the next sec-
tion, have various applications to the existence problem of periodic orbits of time-
independent Hamiltonian systems. Some of them are given in Section 3 below.
Further such applications as well as an application to Lagrangian intersections can
be found in [52].

Acknowledgements. The cornerstone to this work was laid by Leonid Polterovich,
who suggested to me to combine his approach to periodic orbits of a charge in a
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insight with me. I also thank Urs Frauenfelder and Viktor Ginzburg for their generous
help, and Ely Kerman and Jean-Claude Sikorav for valuable discussions. Much of
this work has been written during my stay at Tel Aviv University in April 2003, and it
was finished at FIM of ETH Ziirich and at Leipzig University. I wish to thank these
institutions for their support, and I thank Hari and Harald and Matthias Schwarz for
their warm hospitality.

2. Proofs

2.1. Proof of Theorem 1.2. We follow Polterovich’s beautiful argument in [50,
Section 9.A]. The proof consists of two steps.

Step 1. Curve shortening in Hofer’s geometry

Curve shortening in Hofer’s geometry was invented by Sikorav in [55] and further de-
veloped in [33, Proposition 2.2]. Here, we closely follow the proof of Theorem 8.3.A
in [51], see also Theorem 3.3.A in [3].

We consider an arbitrary symplectic manifold (V, ). Two Hamiltonians H, K €
He(I x V) are equivalent, H ~ K, if h = k and the paths {h;}, {k;}, t € [0, 1],
are homotopic in Ham.(V, w) with fixed end points. In other words, there exists a
smooth family {H*}, s € [0, 1],in #,.(I x V) such that ¥ = h; and h) = k, for all ¢
and h* = h = k for all 5. The group of equivalence classes (I x V)/ ~ form the
ugiyersal cover Ham.(V, w) of Ham.(V, w). We denote the lift of the Hofer norm to
Ham,(V, w) by

plh = plH]:=inf{|K| | K ~ H}.

Proposition 2.1. Consider a compact subset A of an arbitrary symplectic

manifold (V, w) such that e(A,V) < oco. If F: V — R is supported in A and

|FIl > 4e(A, V), then p [F] < || F].

Proof. Choose a path {h;}, ¢t € [0, 1], in Ham.(V, w) such that /(A) N A = J and
plhd < FIFIl. 3)

For ¢t € [0, 1] we decompose the path f; as

fo=(fipohio fipoh")o(hiof ohi o fip) =bioa.
As we shall see below,

pla] < 3IIF| and p[b]<%|F]. 4)
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Since {b; o a;}1is equivalent to the juxtaposition of {a; } and {b; oa } and since p satisfies
the triangle inequality, the estimates (4) imply Proposition 2.1. In order to prove the
first estimate in (4), notice that the paths { szl oh; ' o fi) and | fl_/é ohy o fip)
are equivalent and that

plfiseh o fip]=p[h]=plhl.

Together with the triangle inequality and the estimate (3) we can estimate
plad = plhio f5 o hito fiyo]

< plhil + p[f5 o by ' o fipo]

=2plh]

<3lFI.
To prove the second estimate in (4), notice that the path {b;} = { Jtypohio fipo hz_l }
is equivalent to the path { ;2 o i o f;/2 o h™'} generated by the Hamiltonian

K(t,x) = $F(x) + %F(h*lftyzlx), t € [0, 1].

Since F' is autonomous, F' = F o f;/>, and since h displaces supp F' C A, so does
h~L. Therefore,

K|l = %||F+Foh—1oft721||
=3|Fofip+Fon™|
=3|F+Fon™!|
=3 IFIl,

and so p [b] < % || F'||. The proof of Proposition 2.1 is complete. O

Step 2. The cut point has a non-constant contractible periodic orbit

Consider an arbitrary symplectic manifold (V, w). We recall from the introduction
that F € #,.(V) is slow if all non-constant contractible periodic orbits of f; have
period > 1. We say that F' € #,.(V) is flat if all non-constant periodic orbits of the
linearized flow of F at its critical points have period > 1.

Lemma 2.2. Assume that (W, w) is a tame strongly semi-positive symplectic mani-
fold, and that the autonomous Hamiltonian F € F#.(W) is slow and flat. Then the
path f;, t € [0, 1], is length minimizing in its homotopy class.

Proof. If W is closed, this result is proved in [9], [44], see also [34]. If (W, w) is
not closed but tame, then the compactness theorems in [20], [56] hold, and so the
arguments in [44] establishing compactness of the relevant Floer moduli space go
through. O
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Following a suggestion by Viktor Ginzburg, we derive Theorem 1.3 from
Lemma 2.2 by elementary means:

Proof of Theorem 1.3. Let F € H#.(W) be slow. Arguing by contradiction, we as-
sume that p[F] < || F||. Choose ¢ > 0 so small that

plF1+2¢e < ||F]|.

Since F is smooth and compactly supported and by Sard’s theorem, the set C of
critical values of F is compact and has zero Lebesgue measure. If F'(W) = [a, b],
we thus find finitely many intervals [a;, b;] C [a, b] \ C such that ) ;(b; — a;) >
(b — a) — ¢. Choose a smooth function r: [a, b] — R such that r(a) = a and such
that 0 < 7/(t) < 1 for all ¢ and

Pty =1 ifr e U[a;,b,-] and r'(t) =0 ift € C.

1

The function G = r o F belongs to #.(W) and is both slow and flat. Moreover,
maxG =r(b) >r(a)+ (b—a) — e =max F — &.

Since the path {g; of,_l} is generatedby G — F = roF — F andsince |[ro F — F|| =
max F — max G < g, we have p[g; o ft_l] < ¢. Therefore,

plGl = plgioftof]

< pleo 7 +pIF]
< e+ pl[F]

< |Fll—e

< Gl

We have constructed a slow and flat G € #,.(W) with p[G] < ||G]|, in contradiction
to Lemma 2.2. O

We would like to point out that the proof of Lemma 2.2 is the only place were we
use a semi-positivity assumption on (W, ). As explained in [44] the S'-invariant
virtual moduli cycle can be used to establish Lemma 2.2 for arbitrary tame symplectic
manifolds. The above argument then yields Theorem 1.3 and hence Conjecture 1.2
in [44] for all tame symplectic manifolds.

End of the proof of Theorem 1.2. We can assume that e(A, W) < 00, and in view of
the definitions of the capacity cy;, and the displacement energy e we can assume that
Ais compact. Let F € #,. (Int A) be such that max F —min F = ||F|| > 4e(A, W).
According to Proposition 2.1 we have p [F] < || F||, and so Theorem 1.3 shows that
F is not slow. Therefore, cpp, (A, W) < 4e(A, W). O
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2.2. Proof of Theorem 1.1. We shall derive Theorem 1.1 from Theorem 1.2 by
a stabilization argument. Let G(gq, p) = % p? be the Hamiltonian generating the
geodesic flow on 7*S!, and abbreviate G° = {(¢, p) | G(q, p) < €}.

Lemma 2.3. For any subset A of a symplectic manifold (V, w) and any ¢ > 0,
ctiz(A, V) < iy (A x G*,V x T*S').

Proof. We can assume that Int A # . Let F € J#. (Int A) be slow. We choose a
smooth function a: R — [0, 1] such that

a®)=1ift <ie and a@)=0 ifr > e

The function Fs: V x T*S! - R given by (v, w) — F(v)a(G(w)) belongs to
F. (Int (A x G%)). In order to see that Fs is slow, assume that x (¢) is a contractible
periodic orbit of its Hamiltonian flow. Then x(¢) = (x1(¢), x2(¢)) C VxT*S ! where
both x1(¢) and x,(¢) are contractible periodic orbits. Denoting the Hamiltonian vector
fields of F and G by Xr and X¢, we find

21 (1) = a(G(x2(1))) X F (x1(1)),
B(t) = Fxi(0))a' (G(x2(1)) X6 (x2(1)) .

Therefore, the orbits x1(¢) and x;(¢) are, up to reparametrization, orbits of Xy and
X¢. Since F and G are autonomous, we conclude that the functions a(G(xz(t)))
and F(x (t))a/(G (xz(t))) are constant. Since |a(G(x2))| € [0, 1] and F is slow, the
orbit x(¢) is constant or has period > 1, and since all contractible periodic orbits
of the flow of G are constant, the orbit x,(¢) is constant. We have constructed for
every slow F' € F, (Int A) a slow Fs € J. (Int (A x G?)) with max F' = max Fs.
Lemma 2.3 thus follows. U

In order to prove Theorem 1.1 we need to show that for every compact subset A
of W,

iz (A, W) < de (A x S', W x T*S"). )

We can assume that e(A x S', W x T*S!) is finite. Fix § > 0, and choose H €
H.(I x W x T*S") such that i displaces A x S! and

IH| <e(Ax S, WxT*s") +3.
We then find ¢ > 0 such that & displaces A x G¢. It follows that

e(Ax G WxT*S") < |[H| <e(Ax S, WxT*s") +5s.
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Since both (W, @) and (T*S!, w) are tame, so is their product, and since (W, w) is
stably strongly semi-positive, (W x T*S!, w@wy) is strongly semi-positive. Together
with Lemma 2.3 and Theorem 1.2 we can thus estimate

iz (A, W) < cipz (A x G5, W x T*S")
<4e(Ax G*, W x T*S")
<de(AxS' W xT*S") +4s.

Since § > 0 was arbitrary, inequality (5) follows, and so Theorem 1.1 is proved. O

2.3. Proof of Proposition 1.4. (i) By assumption, the set A x S! is contained in
the finite CW-complex X x § ! of dimension < n + 1 in the (2n + 2)-dimensional
symplectic manifold (V x T*S!, w @ wp). Since X x S! can be displaced from itself
in V x T*S! by a smooth isotopy, a result of Laudenbach [35] implies that X x '
can be displaced from itself in (V x T*S', w @ wp) by a Hamiltonian isotopy. It
follows that es(A, V) < es(X, V) < o0.

(ii) Consider the closed submanifold M x S! of V x T*S!. Since w|y # 0
we have o @ wply g1 # 0. Moreover, the Euler characteristic of M x S' van-
ishes. A result of Polterovich [49] and Laudenbach—Sikorav [36] thus implies that
e(M x S',V x T*S!) =0, and so es(A, V) = 0.

(iii) The proof of the case n = 1 is elementary and omitted. So assume thatn > 2.
Since A is compact, L \ A is open. Using the Lagrangian Neighbourhood Theorem
we easily find a closed submanifold L’ of V which is not Lagrangian and such that
A C L'. By assertion (i) we have eg(L’, V) = 0, and so es(A, V) = 0. O

3. Applications

Throughout this section, (V, w) denotes an arbitrary symplectic manifold, while
(W, w) denotes a tame and stably strongly semi-positive symplectic manifold. We
say that a compact subset A of (V, w) is displaceable if there exists 1 € Ham.(V, w)
such that 1(A) N A = 4, and we say that A is stably displaceable if A x S is
displaceable in (V x T*S L w@®wy). Thus A C Vis (stably) displaceable if and only
if e(A, V) < oo (resp. es(A, V) < 00). Note that if A is (stably) displaceable, then
an entire neighbourhood of A is (stably) displaceable.

3.1. Almost existence of closed characteristics and the Weinstein conjecture.
A hypersurface S in a symplectic manifold (V, w) is a smooth compact connected
orientable codimension 1 submanifold of V without boundary. A closed characteristic
on § is an embedded circle in § all of whose tangent lines belong to the distinguished
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line bundle
Ls={(x,E)eTS|w&,n) =0foralln € T, S}.

Examples show that £ ¢ might not carry any closed characteristic, see [15], [17]. We
therefore follow [26] and consider parametrized neighbourhoods of S. Since S is
orientable, there exists an open neighbourhood / of 0 and a smooth diffeomorphism

D:SxI—->UCV

such that ¥ (x,0) = x for x € S. We call ¥ a thickening of S, and we abbreviate
Se = U (S x {€}). Denote by #° (S;) the set of closed characteristics on S which are
contractible in V. The refinement of the Hofer—Zehnder argument [28, Sections 4.1
and 4.2] in [42] shows

Proposition 3.1. For any thickening ©: S x I — U C V of a hypersurface S in
(V, @) with ¢, (U, V) < o0 it holds that P° (S¢) # @ for almost all ¢ € I.

Together with Theorem 1.2 we obtain

Corollary 3.2. Assume that S is a stably displaceable hypersurface in (W, o). Then
for any stably displaceable thickening 9 : S x I — U C W it holds that P° (S;) # @
foralmostall ¢ € 1.

In [61], Zehnder constructed a symplectic form on the 4-torus T4 = (R/Z)4
such that none of the hypersurfaces {x4 = const} carries a closed characteristic. The
assumption in Corollary 3.2 that S is stably displaceable thus cannot be omitted.

A hypersurface S in a symplectic manifold (V, w) is called of contact type if
there exists a Liouville vector field X (i.e., Lxw = dixw = w) which is defined in
a neighbourhood of S and is everywhere transverse to S. Weinstein conjectured in
[60] that every hypersurface S of contact type with H'(S; R) = 0 carries a closed
characteristic.

Corollary 3.3. Assume that S is a stably displaceable hypersurface of contact type
in (W, w). Then P°(S) # (. In particular, the Weinstein conjecture holds true for S.

The Weinstein conjecture has been proved for various classes of hypersurfaces
of contact type in various classes of symplectic manifolds ([57], [26], [24], [10],
[25], [29], [40], [58], [38], [59], [4], [37], [39], [46]). Corollary 3.3 generalizes or
complements the results in [57], [26], [10], [59], [37], where the ambient symplectic
manifold is of the form (V x R%, w @ wp). Under the additional assumption that
(W, w) is weakly exact and convex, Corollary 3.3 has been proved in [12].
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3.2. Periodic orbits of autonomous Hamiltonian systems. We consider a smooth
proper Hamiltonian F on (V, w) which attains its minimum at 0. We abbreviate the
sublevel set F—1 ([0, r]) by F", and define d; (F) € [0, oo] by

di(F) = sup{r € R | F" is stably displaceable}.

Thus d; (F) > 0 if and only if F~1(0) is stably displaceable. Denote by P°(F~!(r))
the set of non-constant periodic orbits on F~!(r) which are contractible in V. Since
the set of critical values of F is closed and, by Sard’s theorem, of Lebesgue measure
zero, Corollary 3.2 yields

Corollary 3.4. Consider a proper Hamiltonian F on (W, w) with minimum 0, and
assume that d{ (F) > 0. Then P°(F~1(r)) # @ for almost all r € 10, d;(F)].

Discussion. 1. Recall that Corollary 3.4 becomes relevant in conjunction with Propo-
sition 1.4 applied to A = F~1(0).

2. According to [17], every symplectic manifold (V, w) of dimension 2n > 4
admits a proper C2-smooth Hamiltonian F with minimum 0 and d; (F) > 0 such that
for a sequence ry — 0 of regular values the levels F~!(ry) carry no periodic orbit,
and if 2n > 6, then F can be chosen C*°-smooth.

3. Consider a tame symplectic manifold (W?", ) for which [@] and ¢; vanish
on m (W), and assume that the proper function F: W — R attains its minimum 0
along a closed symplectic submanifold M?* of (W, w). It has been shown in [17,
Corollary 2.16] that Po(F~1(r)) # () for almost all » € ]0, b(F)], where

b(F)=sup{r e R | F" C B(M, F)} €10, c0] (6)

and B(M, F) is “the F-maximal symplectic ball neighbourhood of M in (W, w)”,
see [17, Section 4.1] for details. For k € {0, 1, ..., |n/2]}, this result is covered
by Proposition 1.4 and Corollary 3.4 with d;(F) > O instead of b(F). It would be
interesting to compare these two constants.

3.3. Closed trajectories of a charge in a magnetic field and a potential. Consider
a closed Riemannian manifold (M, g) of dimension at least 2, and endow the cotan-
gent bundle 7*M with the standard symplectic form wo = ) ; dp; A dg;. We fix a
closed 2-form o on M and define the twisted symplectic form wy, onw: T*M — M
by ws = wo + 7*0o. We also fix a function V on M with minimum 0. The flow of
the Hamiltonian system

Fv: (T*M,ws) > R, Fy(q,p)— %Ipl* +V(q),

describes (for example) the motion of a unit charge on (M, g) subject to the magnetic
field o and the potential V, cf. [45], [31], [14]. As before we denote by #°(Fy, ! (r)
the set of periodic orbits on the level Fy, l(r) which are contractible in T*M and
hence project to contractible closed trajectories on M.
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Corollary 3.5. Consider a closed Riemannian manifold (M, g) endowed with a
closed 2-form o which does not vanish identically, and let V be a potential on M with
minimum Q. Then di(Fy) > 0 and !P"(F‘;l(r)) # 0 for almost all r € 10, d1(Fy)].

Proof. It is shown in [5] that for any closed 2-form o on a closed manifold M the
symplectic manifold (T*M, w,) is tame. Since the kernel of the differential of the
projection w: T*M — M defines a Lagrangian distribution in the tangent bundle
of (T*M, w,), the first Chern class vanishes, so that (T*M, w,) is stably strongly
semi-positive. Moreover, Fy is proper, has minimum 0, and Fy, ! (0) C M; and since
o does not vanish, M is not Lagrangian. Proposition 1.4 (ii) thus yields d; (Fy) > 0,
and so Corollary 3.5 follows from Corollary 3.4. O

Specializing to the case V = 0, we set d;(g, o) = d1(Fp) and denote the sphere
bundle Fy ' (r) by E,.

Corollary 3.6. Consider a closed Riemannian manifold (M, g) endowed with
a closed 2-form o which does not vanish identically. Then di(g,0) > 0 and
P°(E) # 0 foralmost all r € 10, d1(g, 0)].

Discussion. 1. There has been much recent progress in the existence problem for
periodic orbits of a charge in a magnetic field ([45], [31], [1], [13], [24], [14], [38],
[50], [18], [30], [71, [19], [5], [17], [41], [8], [6], [12], [47]). Corollary 3.6 solves the
almost existence problem at small energies. Under additional assumptions on M, g
or o, stronger results are known. We refer to [14], [52], [47] for the state of the art.

2. If o isexact, dj(g,0) < %maxxeM |oz(x)|2 for all « with da = o, see [12]. If
o is non-exact, d1 (g, o) can be infinite; examples with infinite d; (g, o) are non-exact
closed 2-forms o on tori, see [18], [52].

3. One cannot expect that P° (E,) # @ for almost all » > 0 in general. Indeed,
let M be a closed oriented surface of genus 2, and let g and o either be a Riemannian
metric of constant curvature —1 and its area form or the Riemannian metric and
the exact 2-form constructed in [48]. Then #° (E,) = @ for all r > %, see [14,
Example 3.7] and [48].

4. Assume that M is neither a 2-sphere nor an orientable surface of genus > 2. If
o is non-exact, then none of the hypersurfaces E, in (T*M, w, ) is of contact type, see
e.g. [52]. Therefore, Corollary 3.6 does not follow from existence results of closed
characteristics on contact type hypersurfaces.

References

[1] V. Arnol’d, On some problems in symplectic topology. In Topology and geometry—
Rohlin Seminar, Lecture Notes in Math. 1346, Springer-Verlag, Berlin 1988, 1-5.
Zbl 0655.58002 MR 0970068


http://www.emis.de/MATH-item?0655.58002
http://www.ams.org/mathscinet-getitem?mr=0970068

118

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

(16l

(171

F. Schlenk CMH

M. Audin, F. Lalonde and L. Polterovich, Symplectic rigidity: Lagrangian submanifolds.
In Holomorphic curves in symplectic geometry, Progr. Math. 117, Birkhéuser, Basel 1994,
271-321. MR 1274934

M. Bialy and L. Polterovich, Invariant tori and symplectic topology. In Sinai’s Moscow
Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2 171, Amer. Math. Soc.,
Providence, RI, 1996, 23-33. Zbl 0847.58022 MR 1359090

W. Chen, Pseudo-holomorphic curves and the Weinstein conjecture. Comm. Anal. Geom.
8 (2000), 115-131. Zbl 0978.53135 MR 1730894

K. Cieliebak, V. Ginzburg and E. Kerman, Symplectic homology and periodic orbits
near symplectic submanifolds. Comment. Math. Helv. 79 (2004), 554-581. Zbl 02113905
MR 2081726

G. Contreras, The Palais-Smale condition for contact type energy levels for convex la-
grangian systems. math.DS/0304238.

G. Contreras, R. Iturriaga, G. P. Paternain and M. Paternain, The Palais-Smale condi-
tion and Mafié’s critical values. Ann. Henri Poincaré 1 (2000), 655-684. Zbl 0986.58005
MR 1785184

G. Contreras, L. Macarini and G. P. Paternain, Periodic orbits for exact magnetic flows on
surfaces. Internat. Math. Res. Notices 2004 (8), 361-387. MR 2036336

M. Entov, K-area, Hofer metric and geometry of conjugacy classes in Lie groups. Invent.
Math. 146 (2001), 93—141. Zbl 1039.53099 MR 1859019

A. Floer, H. Hofer and C. Viterbo, The Weinstein conjecture in P x C!. Math. 7. 203
(1990), 469-482. Zbl 0666.58019 MR 1038712

U. Frauenfelder, V. Ginzburg and F. Schlenk, Energy capacity inequalities via an action
selector. In Geometry, Spectral Theory, Groups, and Dynamics (M. Entov, Y. Pinchover,
M. Sageeyv, eds.), Contemp. Math. 387, Amer. Math. Soc., Providence, R.1., 2005, 129-152.

U. Frauenfelder and F. Schlenk, Hamiltonian dynamics on convex symplectic manifolds.
math.SG/0303282.

V. Ginzburg, New generalizations of Poincaré’s geometric theorem. Funct. Anal. Appl. 21
(1987), 100-106. Zbl 0656.58027 MR 0902290

V. Ginzburg, On closed trajectories of a charge in a magnetic field. An application of
symplectic geometry. In Contact and symplectic geometry (Cambridge, 1994), Publ. New-
ton Inst. 8, Cambridge University Press, Cambridge 1996, 131-148. Zbl 0873.58034
MR 1432462

V. Ginzburg, Hamiltonian dynamical systems without periodic orbits. In Northern Cali-
fornia Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math.
Soc., Providence, RI, 1999, 35-48. Zbl 0958.37044 MR 1736212

V. Ginzburg, The Weinstein conjecture and theorems of nearby and almost existence. In
The breadth of symplectic and Poisson geometry, Progr. Math. 232, Birkhéduser Boston,
Boston, MA, 2005, 139-172. MR 2103006

V. Ginzburg and B. Giirel, Relative Hofer—Zehnder capacity and periodic orbits in twisted
cotangent bundles. Duke Math. J. 123 (2004), 1-47. Zbl 02114444 MR 2060021


http://www.ams.org/mathscinet-getitem?mr=1274934
http://www.emis.de/MATH-item?0847.58022
http://www.ams.org/mathscinet-getitem?mr=1359090
http://www.emis.de/MATH-item?0978.53135
http://www.ams.org/mathscinet-getitem?mr=1730894
http://www.emis.de/MATH-item?02113905
http://www.ams.org/mathscinet-getitem?mr=2081726
http://www.emis.de/MATH-item?0986.58005
http://www.ams.org/mathscinet-getitem?mr=1785184
http://www.ams.org/mathscinet-getitem?mr=2036336
http://www.emis.de/MATH-item?1039.53099
http://www.ams.org/mathscinet-getitem?mr=1859019
http://www.emis.de/MATH-item?0666.58019
http://www.ams.org/mathscinet-getitem?mr=1038712
http://www.emis.de/MATH-item?0656.58027
http://www.ams.org/mathscinet-getitem?mr=0902290
http://www.emis.de/MATH-item?0873.58034
http://www.ams.org/mathscinet-getitem?mr=1432462
http://www.emis.de/MATH-item?0958.37044
http://www.ams.org/mathscinet-getitem?mr=1736212
http://www.ams.org/mathscinet-getitem?mr=2103006
http://www.emis.de/MATH-item?02114444
http://www.ams.org/mathscinet-getitem?mr=2060021

Vol. 81 (2006) Applications of Hofer’s geometry to Hamiltonian dynamics 119

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

V. Ginzburg and E. Kerman, Periodic orbits in magnetic fields in dimensions greater
than two. In Geometry and topology in dynamics (Winston-Salem, NC, 1998/San An-
tonio, TX, 1999), Contemp. Math. 246, Amer. Math. Soc., Providence, RI, 1999, 113-121.
7bl 0948.37045 MR 1732375

V. Ginzburg and E. Kerman, Periodic orbits of Hamiltonian flows near symplectic extrema.
Pacific J. Math. 206 (2002), 69-91. Zbl 1055.37065 MR 1924819

M. Gromov, Pseudo-holomorphic curves in symplectic manifolds. Invent. Math. 82 (1985),
307-347. Zbl 0592.53025 MR 0809718

H. Hofer, On the topological properties of symplectic maps. Proc. Roy. Soc. Edinburgh
Sect. A 115 (1990), 25-38. Zbl 0713.58004 MR 1059642

H. Hofer, Estimates for the energy of a symplectic map. Comment. Math. Helv. 68 (1993),
48-72.7Zbl 0787.58017 MR 1201201

H. Hofer and D. Salamon, Floer homology and Novikov rings. In The Floer memo-
rial volume, Progr. Math. 133, Birkhduser-Verlag, Basel 1995, 483-524. Zbl 0842.58029
MR 1362838

H. Hofer and C. Viterbo, The Weinstein conjecture in cotangent bundles and related results.
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988),411-445.Zbl 0697.58044 MR 1015801

H. Hofer and C. Viterbo, The Weinstein conjecture in the presence of holomorphic spheres.
Comm. Pure Appl. Math. 45 (1992), 583—-622. Zbl 0773.58021 MR 1162367

H. Hofer and E. Zehnder, Periodic solutions on hypersurfaces and a result by C. Viterbo.
Invent. Math. 90 (1987), 1-9. Zbl 0631.58022 MR 0906578

H. Hofer and E. Zehnder, A new capacity for symplectic manifolds. In Analysis, et cetera,
Academic Press, Boston, MA, 1990, 405-427. Zbl 0702.58021 MR 1039354

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics. Birkhéuser,
Basel 1994. Zbl 0805.58003 MR 1306732

M.-Y. Jiang, Hofer—Zehnder symplectic capacity for two-dimensional manifolds. Proc.
Roy. Soc. Edinburgh Sect. A 123 (1993), 945-950. Zbl 0796.53035 MR 1249696

E. Kerman, Periodic orbits of Hamiltonian flows near symplectic critical submanifolds.
Internat. Math. Res. Notices 1999 (17), 953-969. Zbl 0958.37041 MR 1717637

V. V. Kozlov, Calculus of variations in the large and classical mechanics. Russian Math.
Surveys 40 (2) (1985), 37-71. Zbl 0579.70020 MR 0786086

F. Lalonde and D. McDuff, The geometry of symplectic energy. Ann. of Math. (2) 141
(1995), 349-371. Zbl 0829.53025 MR 1324138

F. Lalonde and D. McDuff, Hofer’s L°°-geometry: energy and stability of Hamiltonian
flows, part I. Invent. Math. 122 (1995), 1-33. Zbl 0844.58020 MR 1354953

F. Lalonde and D. McDuff, Hofer’s L°°-geometry: energy and stability of Hamiltonian
flows, part II. Invent. Math. 122 (1995), 35-69. Zbl 0844.58021 MR 1354953

F. Laudenbach, Homotopie réguliere inactive et engouffrement symplectique. Ann. Inst.
Fourier 36 (1986), 93-111. Zbl 0576.57027 MR 0850746

F. Laudenbach and J.-C. Sikorav, Hamiltonian disjunction and limits of Lagrangian sub-
manifolds. Internat. Math. Res. Notices 1994 (4), 161-168. Zbl 0812.53031 MR 1266111


http://www.emis.de/MATH-item?0948.37045
http://www.ams.org/mathscinet-getitem?mr=1732375
http://www.emis.de/MATH-item?1055.37065
http://www.ams.org/mathscinet-getitem?mr=1924819
http://www.emis.de/MATH-item?0592.53025
http://www.ams.org/mathscinet-getitem?mr=0809718
http://www.emis.de/MATH-item?0713.58004
http://www.ams.org/mathscinet-getitem?mr=1059642
http://www.emis.de/MATH-item?0787.58017
http://www.ams.org/mathscinet-getitem?mr=1201201
http://www.emis.de/MATH-item?0842.58029
http://www.ams.org/mathscinet-getitem?mr=1362838
http://www.emis.de/MATH-item?0697.58044
http://www.ams.org/mathscinet-getitem?mr=1015801
http://www.emis.de/MATH-item?0773.58021
http://www.ams.org/mathscinet-getitem?mr=1162367
http://www.emis.de/MATH-item?0631.58022
http://www.ams.org/mathscinet-getitem?mr=0906578
http://www.emis.de/MATH-item?0702.58021
http://www.ams.org/mathscinet-getitem?mr=1039354
http://www.emis.de/MATH-item?0805.58003
http://www.ams.org/mathscinet-getitem?mr=1306732
http://www.emis.de/MATH-item?0796.53035
http://www.ams.org/mathscinet-getitem?mr=1249696
http://www.emis.de/MATH-item?0958.37041
http://www.ams.org/mathscinet-getitem?mr=1717637
http://www.emis.de/MATH-item?0579.70020
http://www.ams.org/mathscinet-getitem?mr=0786086
http://www.emis.de/MATH-item?0829.53025
http://www.ams.org/mathscinet-getitem?mr=1324138
http://www.emis.de/MATH-item?0844.58020
http://www.ams.org/mathscinet-getitem?mr=1354953
http://www.emis.de/MATH-item?0844.58021
http://www.ams.org/mathscinet-getitem?mr=1354953
http://www.emis.de/MATH-item?0576.57027
http://www.ams.org/mathscinet-getitem?mr=0850746
http://www.emis.de/MATH-item?0812.53031
http://www.ams.org/mathscinet-getitem?mr=1266111

120

(37]

(38]

[39]

[40]

(41]

(42]

[43]

[44]

[45]

[46]

[47]
(48]

[491]

[50]

(51]

(52]

(53]

[54]

[55]

F. Schlenk CMH

G. Liu and G. Tian, Weinstein conjecture and GW-invariants. Commun. Contemp. Math.
2 (2000), 405-459. Zbl 1008.53071 MR 1806943

G. Lu, The Weinstein conjecture on some symplectic manifolds containing the holomorphic
spheres. Kyushu J. Math. 52 (1998), 331-351 and 54 (2000) 181-182. Zbl 0987.53033
MR 1762803

G. Lu, The Weinstein conjecture in the uniruled manifolds. Math. Res. Lett. 7 (2000),
383-387. Zbl 0983.53062 MR 1783615

R.-Y. Ma, Symplectic capacity and the Weinstein conjecture in certain cotangent bun-
dles and Stein manifolds. Nonlinear Differential Equations Appl. 2 (1995), 341-356.
Zbl 0874.53029 MR 1343398

L. Macarini, Hofer—Zehnder capacity and Hamiltonian circle actions. Commun. Contemp.
Math. 6 (2004), 913-945. Zbl 02165914 MR 2112475

L. Macarini and F. Schlenk, A refinement of the Hofer—Zehnder theorem on the existence
of closed trajectories near a hypersurface. Bull. London Math. Soc. 37 (2005), 297-300.
7Zbl 02164584 MR 2119029

D. McDuff, Symplectic manifolds with contact type boundaries. Invent. Math. 103 (1991),
651-671. Zbl 0719.53015 MR 1091622

D. McDuff and J. Slimowitz, Hofer—Zehnder capacity and length minimizing Hamiltonian
paths. Geom. Topol. 5 (2001), 799-830. Zbl 1002.57056 MR 1871405

S. P. Novikov, The Hamiltonian formalism and a many-valued analogue of Morse theory.
Russian Math. Surveys 37 (5) (1982), 1-56. Zbl 0571.58011 MR 0676612

A. Oancea, The Kunneth formula in Floer homology for manifolds with contact type
boundary. math.SG/0403376.

G. Paternain, Magnetic Rigidity of Horocycle flows. math.DS/0409528.

G. Paternain and M. Paternain, Critical values of autonomous Lagrangian systems. Com-
ment. Math. Helv. 72 (1997), 481-499. Zbl 0921.58017 MR 1476061

L. Polterovich, An obstacle to non-Lagrangian intersections. In The Floer memorial vol-
ume, Progr. Math. 133, Birkhiuser, Basel 1995, 575-586. Zbl 0847.58038 MR 1362842

L. Polterovich, Geometry on the group of Hamiltonian diffeomorphisms. Proceedings of
the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math. 1998,
Extra Vol. II, 401-410. Zbl 0909.58004 MR 1648090

L. Polterovich, The geometry of the group of symplectic diffeomorphisms. Lectures in
Mathematics ETH Ziirich, Birkhéduser Verlag, Basel 2001. Zbl 01584173 MR 1826128

F. Schlenk, Applications of Hofer’s geometry to Hamiltonian dynamics. http://www.math.
uni-leipzig.de/~schlenk/Maths/Papers/applications.pdf

M. Schwarz, On the action spectrum for closed symplectically aspherical manifolds. Pa-
cific J. Math. 193 (2000), 419-461. Zbl 1023.57020 MR 1755825

P. Seidel, 7 of symplectic automorphism groups and invertibles in quantum homology
rings. Geom. Funct. Anal. 7 (1997), 1046-1095. Zbl 0928.53042 MR 1487754

J.-C. Sikorav, Systemes Hamiltoniens et topologie symplectique. Dipartimento di Matem-
atica dell’ Universita di Pisa, 1990, ETS EDITRICE PISA.


http://www.emis.de/MATH-item?1008.53071
http://www.ams.org/mathscinet-getitem?mr=1806943
http://www.emis.de/MATH-item?0987.53033
http://www.ams.org/mathscinet-getitem?mr=1762803
http://www.emis.de/MATH-item?0983.53062
http://www.ams.org/mathscinet-getitem?mr=1783615
http://www.emis.de/MATH-item?0874.53029
http://www.ams.org/mathscinet-getitem?mr=1343398
http://www.emis.de/MATH-item?02165914
http://www.ams.org/mathscinet-getitem?mr=2112475
http://www.emis.de/MATH-item?02164584
http://www.ams.org/mathscinet-getitem?mr=2119029
http://www.emis.de/MATH-item?0719.53015
http://www.ams.org/mathscinet-getitem?mr=1091622
http://www.emis.de/MATH-item?1002.57056
http://www.ams.org/mathscinet-getitem?mr=1871405
http://www.emis.de/MATH-item?0571.58011
http://www.ams.org/mathscinet-getitem?mr=0676612
http://www.emis.de/MATH-item?0921.58017
http://www.ams.org/mathscinet-getitem?mr=1476061
http://www.emis.de/MATH-item?0847.58038
http://www.ams.org/mathscinet-getitem?mr=1362842
http://www.emis.de/MATH-item?0909.58004
http://www.ams.org/mathscinet-getitem?mr=1648090
http://www.emis.de/MATH-item?01584173
http://www.ams.org/mathscinet-getitem?mr=1826128
http://www.emis.de/MATH-item?1023.57020
http://www.ams.org/mathscinet-getitem?mr=1755825
http://www.emis.de/MATH-item?0928.53042
http://www.ams.org/mathscinet-getitem?mr=1487754

Vol. 81 (2006) Applications of Hofer’s geometry to Hamiltonian dynamics 121

[56] J.-C. Sikorav, Some properties of holomorphic curves in almost complex manifolds. In
Holomorphic curves in symplectic geometry, Progr. Math. 117, Birkhéuser, Basel 1994,
165-189. MR 1274929

[57] C. Viterbo, A proof of Weinstein’s conjecture in R?". Ann. Inst. H. Poincaré Anal. Non
Linéaire 4 (1987), 337-356. Zbl 0631.58013 MR 0917741

[58] C. Viterbo, Exact Lagrange submanifolds, periodic orbits and the cohomology of free loop
spaces. J. Differential Geom. 47 (1997), 420-468. Zbl 0946.37017 MR 1617648

[59] C. Viterbo, Functors and computations in Floer homology with applications. I. Geom.
Funct. Anal. 9 (1999), 985-1033. Zbl 0954.57015 MR 1726235

[60] A. Weinstein, On the hypotheses of Rabinowitz’ periodic orbit theorems. J. Differential
Equations 33 (1979), 353-358. Zbl 0388.58020 MR 0543704

[61] E.Zehnder, Remarks on periodic solutions on hypersurfaces. Periodic solutions of Hamil-
tonian systems and related topics (Il Ciocco, 1986), NATO Adv. Sci. Inst. Ser. C Math.
Phys. Sci. 209, Reidel, Dordrecht 1987, 267-279. Zbl 0639.58011 MR 0920629

Received May 27, 2003; revised March 2, 2005

Felix Schlenk, Mathematisches Institut, Universitit Leipzig, 04109 Leipzig, Germany
E-mail: schlenk @math.uni-leipzig.de


http://www.ams.org/mathscinet-getitem?mr=1274929
http://www.emis.de/MATH-item?0631.58013
http://www.ams.org/mathscinet-getitem?mr=0917741
http://www.emis.de/MATH-item?0946.37017
http://www.ams.org/mathscinet-getitem?mr=1617648
http://www.emis.de/MATH-item?0954.57015
http://www.ams.org/mathscinet-getitem?mr=1726235
http://www.emis.de/MATH-item?0388.58020
http://www.ams.org/mathscinet-getitem?mr=0543704
http://www.emis.de/MATH-item?0639.58011
http://www.ams.org/mathscinet-getitem?mr=0920629

	Introduction and results
	Proofs
	Proof of Theorem 1.2
	Proof of Theorem 1.1
	Proof of Proposition 1.4

	Applications
	Almost existence of closed characteristics and the Weinstein conjecture
	Periodic orbits of autonomous Hamiltonian systems
	Closed trajectories of a charge in a magnetic field and a potential


