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Tangent bundle embeddings of manifolds in Euclidean space

Mohammad Ghomi∗

Abstract. For a given n-dimensional manifold Mn we study the problem of finding the smallest
integer N(Mn) such that Mn admits a smooth embedding in the Euclidean space R

N without
intersecting tangent spaces. We use the Poincaré–Hopf index theorem to prove that N(S1) = 4,
and construct explicit examples to show that N(Sn) ≤ 3n + 3, where S

n denotes the n-sphere.
Finally, for any closed manifold Mn, we show that 2n + 1 ≤ N(Mn) ≤ 4n + 1.
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1. Introduction

Every C1-immersion f : Mn → R
N , where Mn is an n-manifold and R

N is the
Euclidean N-space, induces a mapping of the tangent bundle TM via the differential
map df : TM → R

N . We say that f is a tangent bundle embedding, or a T-embedding
for short, provided that df is one-to-one. In other words, a submanifold of Euclidean
space is T-embedded provided that it has no pairs of intersecting tangent spaces. The
aim of this note is to begin the study of and call attention to the following basic
question:

Problem 1.1. For a given manifold Mn, what is the smallest integer N(Mn) such
that Mn admits a T-embedding in R

N?

The above problem may be regarded as a generalization of the investigations
conducted in the 1940’s by H. Whitney [12], culminating in his celebrated theorem
that every n-manifold may be embedded in R

2n. The prime stimulus for this work,
however, is due to the recent renewed interest in studying global geometry of tangent
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lines of closed curves and knots ([1], [2], [4], [11], [13]), see Note 1.8. Our first result
shows that the circle S

1 admits no T-embedding in R
3.

Theorem 1.2. Every closed C1-immersed curve in R
3 has uncountably many pairs

of intersecting tangent lines.

The proof of Theorem 1.2, which we present in Section 2, follows from the
Poincaré–Hopf index theorem (Proposition 2.3) together with a perturbation argument
for bitangent planes (Proposition 2.4). The remaining results of this paper, which are
proved in Section 3, are concerned mainly with some explicit constructions of T-
embeddings:

Theorem 1.3. Every torus T
n admits a smooth T-embedding in R

4n given by

C
n ⊃ T

n � (z1, . . . , zn) �−→ (z1, z
2
1, . . . , zn, z

2
n) ∈ C

2n.

In particular, there exists a T-embedded closed curve in R
4.

Where C
n denotes the complex n-space. The previous two theorems solve Prob-

lem 1.1 for the case Mn = S
1:

Corollary 1.4. N(S1) = 4. �

Another class of T-embeddings may be constructed using cubic curves, and ex-
ploiting the fact (Proposition 3.2) that T-embeddings are preserved under cartesian
product:

Theorem 1.5. Let f : Mn → R
N be any C1-embedding, and fi , i = 1, . . . , N be

the components of f . Then

M � p �−→ (
f1(p), f 2

1 (p), f 3
1 (p), . . . , fN(p), f 2

N(p), f 3
N(p)

) ∈ R
3N

is a T-embedding. In particular, N(Rn) ≤ 3n and N(Sn) ≤ 3n + 3.

Since every planar curve has intersecting tangents, the above theorem immedi-
ately yields that N(R1) = 3. Further, note that the above result, via Whitney’s
2n-embedding theorem [12], implies that any n-manifold admits a T-embedding
in R

6n. Working a bit harder, via successive projections into subspaces of lower
dimension, we obtain:

Corollary 1.6. N(Mn) ≤ 4n + 1, for any manifold Mn.
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Using Thom’s transversality theorem, it can be shown that the above result is in
fact a generic property [5]. That is, any immersion of Mn in R

4n+1 can be turned
into a T-embedding by an arbitrarily small perturbation. In Section 3, we also obtain
a lower bound:

Theorem 1.7. N(Mn) ≥ 2n + 1, for any non-contractible manifold Mn.

Note that since dim(TMn) = 2n, we trivially have N(Mn) ≥ 2n for all manifolds.
The last theorem improves this lower bound for manifolds whose homotopy type
is different from that of a point. In particular, when Mn is a compact manifold
without boundary, N(Mn) ≥ 2n + 1. However, the author does not know if the non-
contractibility assumption in Theorem 1.7 is necessary. More generally, the author
does not know if the estimates in the last two results can be improved. But it would
be reasonable to conjecture that N(Mn) ≤ 4n.

Note 1.8 (Terminology and some history). The class of mappings we study in this pa-
per, the T-embeddings, are not to be confused with skew immersions, or S-immersions
([1], [2], [4], [11], [13], [8]), which are defined as immersions without any pairs of
parallel tangent lines. The first proof of the existence of an S-embedding of a circle,
or skew loop, in R

3 is due to B. Segre [8]. For an explicit formula for such a curve
see [2]; there skew loops where used to solve Wente’s shadow problem which is re-
lated to stability questions concerning surfaces of constant mean curvature [3]. Skew
loops are also of interest due to their connection with quadric surfaces: the author
and B. Solomon [4] showed that the absence of skew loops characterizes ellipsoids,
and S. Tabachnikov [11] has ruled out the existence of skew loops on any quadric
surface.

One may also introduce a notion of totally skew embedding, or TS-embedding [5],
which is defined as an embedding which is both a T-embedding and an S-embedding;
an example is the cubic curve x �−→ (x, x2, x3), and another example is given
by Proposition 3.1. Though in this paper we confine our attention primarily to T-
embeddings, Problem 1.1 can be stated for S-embeddings and TS-embeddings as
well. The case of TS-embeddings will be studied in [5], and is related to the existence
of nonsingular bilinear maps, and the “generalized vector field problem”. The present
work has a different flavor which is in part due to the fact that, unlike T-embeddings,
TS-embeddings are not preserved under cartesian product (see Note 3.3).

2. Proof of Theorem 1.2

The basic idea for the proof of Theorem 1.2 is as follows. Let C ⊂ R
3 be (the image

of) a closed C1-immersed curve. For every unit vector u ∈ S
2, let �(u, λ) be the
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plane which is orthogonal to u and passes through λu; that is,

�(u, λ) := { x ∈ R
3 : 〈x − λu, u〉 = 0 },

where 〈 ·, ·〉 denotes the standard inner product. Let λu be the infimum of all λ such
that �(u, λ) is disjoint from C. Then �u := �(u, λu) is tangent to C. Let Lu be
the collection of all tangent lines of C which lie in �u. We claim that, for some
u ∈ S

2, Lu must contain a pair of intersecting lines. Suppose not. Then, for each
u ∈ S

2, let �u be a line which passes through u and is parallel to the elements of Lu.
Since �u is orthogonal to u, this yields a tangent line field on S

2. As we show in
Lemma 2.1 below, u �→ �u is continuous. But it follows from the Poincaré–Hopf
index theorem (Lemma 2.2), that there are no continuous line fields on the sphere.
Hence we obtain a contradiction. So at least one of the planes �u must have contained
a pair of intersecting tangent lines. A perturbation argument (Proposition 2.3) applied
to �u then yields the existence of infinitely many pairs of intersecting tangent lines
in nearby bitangent planes, and completes the proof.

To proceed more formally, let c : S
1 
 R/2πZ → R

3 be a C1 unit speed curve,
i.e., a C1 mapping with ‖c′‖ = 1. For any u ∈ S

2, let tu ∈ S
1 be a maximum point

of t �→ 〈c(t), u〉, and set �(u) := {±c′(tu)}.

Lemma 2.1. Suppose that c′(t1) = ±c′(t2) whenever t1 and t2 are maximum points
of t �→ 〈c(t), u〉. Then � : S

2 → S
2/{±1} 
 RP

2 is well-defined and continuous.

Proof. Our hypothesis, together with the definition of �, implies that

�(u) = {±c′(tu)} ⇐⇒ 〈c(t), u〉 ≤ 〈c(tu), u〉, for all t ∈ S
1. (1)

Thus � is well-defined. To prove the continuity of �, let ui ∈ S
2 be a sequence, and

tui
be a maximum point of t �→ 〈c(t), ui〉. Then

�(ui) = {±c′(tui
)}. (2)

Since S
1 is compact, tui

has a limit point t . Thus, since c is C1, c′(tui
) has a limit

point at c′(t). So, (2) yields that

{±c′(t)} is a limit point of �(ui). (3)

Next note that (1) and (2) imply

〈c(t), ui〉 ≤ 〈c(tui
), ui〉. (4)

Now let u be a limit point of ui . Then, since 〈 ·, ·〉 is continuous, (4) implies

〈c(t), u〉 ≤ 〈c(t), u〉.
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Consequently, (1) yields
�(u) = {±c′(t)}.

So, by (3), �(u) is a limit point of �(ui); therefore, we conclude that � is continuous.
�

We also need to recall the following well-known fact:

Lemma 2.2. There exists no continuous tangent line fields on S
2.

Proof. By a generalization of the Poincaré–Hopf theorem on vector fields [10], the
sum of the index of the singularities of a line field on a 2-manifold M is equal to
the Euler characteristic χ(M) . In particular, if M has a line field which is defined
everywhere, i.e., it has no singularities, then we must have χ(M) = 0, which rules
out S

2. �

Combining Lemmas 2.1 and 2.2, we obtain:.

Proposition 2.3. For every C1 immersed curve c : S
1 → R

3, there exists a plane
� ⊂ R

3 such that

(1) c(S1) lies entirely on one side of �

(2) c has a pair of tangent lines in � which intersect transversely

In particular, there exist t0, s0 ∈ S
1, such that c(t0), c(s0) ∈ � and c′(t0)×c′(s0) �= 0.

Proof. After a reparametrization, we may assume that c has unit speed. For each
u ∈ S

2, let tu be a maximum point of t �→ 〈c(t), u〉, and let �u be the plane given by

�u := {x ∈ R
3 : 〈x, u〉 = 〈c(tu), u〉}.

Note that tu is a maximum point of t �→ 〈c(t), u〉 if and only if c(tu) ∈ �u.
Suppose now that c has no pairs of intersecting tangent lines in �u. Then at all the

maximum points tu of t �→ 〈c(t), u〉, the tangent vectors c′(tu) should be equal up to a
sign. So, by Lemma 2.1, the mapping � : S

2 → S
2/{±1}, given by �(u) := {±c′(tu)},

is well defined and continuous. But 〈c′(tu), u〉 = 0, so � determines a tangent line
field on S

2, given by

Lu := { u + λv : v ∈ �(u), and λ ∈ R }.
This contradicts Lemma 2.2 and thus completes the proof. �

Next we show that it is possible to perturb the plane � in the previous proposition
to produce infinitely many pairs of intersecting tangent lines. For every t ∈ S

1 and
ε ∈ R we define

Uε(t) := { x ∈ S
1 : distS1(x, t) < ε },
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where distS1 is the intrinsic distance in S
1. The end points of the above interval are

denoted by ∂Uε(t).

Proposition 2.4. Let c : Uη(t0) ∪ Uδ(s0) → R
3 be a C1 immersion for some t0,

s0 ∈ S
1, t0 �= s0, and η, δ > 0. Suppose that there exists a plane � ⊂ R

3 such that

(1) c(Uη(t0) ∪ Uδ(s0)) lies on one side of �;

(2) c(t0), c(s0) ∈ �;

(3) c′(t0) × c′(s0) �= 0;

(4) For every 0 < α ≤ δ, there is a 0 < β < α such that c(∂Uβ(s0)) ∩ � = ∅.

Then there exists an 0 < ε ≤ η with the following property: For every t ∈ Uε(t0)

there exists an s ∈ Uδ(s0) such that the tangent lines of c at c(t) and c(s) intersect
transversely.

Proof. Since (t, s) �→ c′(t) × c′(s) is continuous and c′(t0) × c′(s0) �= 0, we may
choose ε small enough so that

c′(t) × c′(s) �= 0, for all (t, s) ∈ Uε(t0) × Uε(s0). (5)

In particular, Uε(t0)∩Uε(s0) = ∅. Further, item 4 above implies that we may assume

c(∂Uε(s0)) ∩ � = ∅, (6)

where ∂U denotes the endpoints of U .
Now let �x denote the tangent line of c at c(x). Using (6), and the assumption

that c′(t0) × c′(s0) �= 0, we may rotate � around �t0 to obtain a new tangent plane,
say �t0 , such that

�t0 separates c(s0) from c(∂Uε(s0)). (7)

That is, c(s0) lies in one of the open half-spaces determined by �t0 while c(∂Uε(s0))

lies in the other open half-space.
Let n0 denote a unit normal to �t0 , and n : Uε(t0) → S

2 be any continuous unit
normal vector field of c with n(t0) = n0. For every t ∈ Uε(t0), let �t be the plane
which pass through c(t) and is perpendicular to n(t). Then, by continuity of t �→ �t ,
(7) implies that there exists 0 < ε′ ≤ ε such that

�t separates c(s0) from c(∂Uε(s0)),

for all t ∈ Uε′(t0).
So, for each t ∈ Uε′(t0), we may rotate �t around �t until we obtain a plane, say

�′
t , which is tangent to c(Uε(s0)). Then, in addition to �t , �′

t will contain another
tangent line �s , for some s ∈ Uε(s0). Thus (5) implies that �t and �s intersect
transversely, which completes the proof. �
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The above propositions now yield:

Proof of Theorem 1.2. For any C1 immersed closed curve c : S
1 → R

3, Proposi-
tion 2.3 ensures that all the conditions of Proposition 2.4 are satisfied except possibly
Condition 4. If Condition 4 is also satisfied, then Proposition 2.4 yields that c has
uncountably many intersecting tangent lines. On the other hand, if Condition 4 is not
satisfied, then it follows that c maps an open neighborhood of S

1 into �. In particu-
lar, c is tangent to � uncountably often. But this again results in uncountably many
intersecting tangents, because � contains a pair of nonparallel tangent lines. �

Note 2.5. It is comparatively easy to prove the existence of intersecting tangents for
knotted curves c : S

1 → R
3. To see this let d be the maximum distance of c(S1)

from the origin o := (0, 0, 0), and S ⊂ R
3 be a sphere of radius r > d centered at o.

Then, for each t ∈ S
1, the ray

Rt := {c(t) + λc′(t) : λ ≥ 0}

has a point inside and a point outside of S. So Rt intersects S at a unique point, say
c(t) + λtc

′(t). Since c is continuous, t �→ λt is continuous as well. Thus

c := c(t) + λtc
′(t)

gives a closed curve in S. Suppose that c has no pairs of intersecting tangents. Then

Rt ∩ Rs = ∅ (8)

for all t �= s. Consequently c is one-to-one. So, by Jordan’s curve theorem, c(S1)

bounds an embedded disk, and is therefore unknotted. Now define h : S
1 × [0, 1] →

R
3 by

h(t, s) := c(t) + sλtc
′(t).

Clearly h is continuous. Further, (8) implies that h is one-to-one. Thus h gives an
isotopy between c(S1) and c(S1), which is a contradiction. So we conclude that c

must have a pair of intersecting tangent lines

Note 2.6. The set of all tangent lines to a C1 curve c : S
1 → R

3 determines a surface
parametrized by c(t) + sc′(t), and called the tangent developable of c. Theorem 1.2
implies that the tangent developable of any closed C1 curve in R

3 has infinitely many
double points. The multiple points and singularities of the tangent developable of
“generic” curves have been studied by a number of authors. For a survey of results
of this type and references see [7].
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3. Proof of other results and examples

In the previous section we established the nonexistence of closed T-embedded curves
in R

3. The following result shows that such curves may be constructed in R
4.

Proposition 3.1. The mapping c : S
1 → R

4, given by

C ⊃ S
1 � z

c�−→ (z, z2) ∈ C
2,

is a TS-embedding.

Proof. We may parametrize c as

c(t) := (cos t, sin t, cos 2t, sin 2t).

First we verify the skewness. To see this let

T (t) := c′(t)
‖c′(t)‖ = 1√

3
(− sin t, cos t, −2 sin 2t, 2 cos 2t).

It is enough to check that T (t) �= ±T (s), unless t ≡ s (mod 2π). Suppose T (t) =
T (s). Then sin t = sin s, and cos t = cos s. This yields t ≡ s (mod 2π). Next
suppose that T (t) = −T (s). Then sin t = − sin s, and cos t = − cos s. This yields

t ≡ s + π (mod 2π). (9)

But we also have sin 2t = − sin 2s, and cos 2t = − cos 2s. So

2t ≡ 2s + π (mod 2π). (10)

Subtracting (9) from (10) we get t ≡ s (mod 2π). So c is skew.
To see that c is totally skew, note that

c(t) =

⎡
⎢⎢⎣

cos t − sin t 0 0
sin t cos t 0 0

0 0 cos 2t − sin 2t

0 0 sin 2t cos 2t

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ .

That is, c is the image of a one parameter subgroup of the special orthogonal group
SO(4) acting on c(0). In particular, c is invariant under such rotations. Thus to show
that the tangent lines of c do not intersect, it is enough to check that the tangent line
of c at c(0) does not intersect any other tangent line. Let

�t (s) := c(t) + sc′(t)
= ( cos t − s sin t, sin t + s cos t, cos 2t − 2s sin 2t, sin 2t + 2s cos 2t ).
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be a parametrization for the tangent line of c at c(t). Setting �t (s1) = �0(s2) yields:

cos t − s1 sin t = 1,

sin t + s1 cos t = s2,

cos 2t − 2s1 sin 2t = 1,

sin 2t + 2s1 cos 2t = 2s2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(11)

Eliminating s1 from the first and third equations, we get

2 sin 2t cos t − sin t cos 2t = 2 sin 2t − sin t.

Using the identities sin 2t = 2 sin t cos t and cos 2t = 1 − 2 sin2 t , we may rewrite
the above equation as

2 sin t (1 − cos t)2 = 0.

The solutions to this equation, modulo 2π , are t = 0 and t = π . But a quick
examination of (11) reveals that only t = 0 satisfies all the equations. Thus the
tangent line �0 is disjoint from all other tangent lines of c, and we conclude that c is
totally skew. �

Proposition 3.2. If M1 ⊂ R
n1 and M2 ⊂ R

n2 are T-embedded submanifolds, then
so is M1 × M2 ⊂ R

n1+n2 .

Proof. Suppose, towards a contradiction, that M1×M2 has intersecting tangent lines.
Then there are distinct points p, q in M1 × M2 and vectors v ∈ Tp(M1 × M2) and
w ∈ Tq(M1 × M2), such that

p + v = q + w.

Note that p = (p1, p2) and q = (q1, q2) where pi , qi are points in Mi , i = 1, 2.
Further, v = (v1, v2) and w = (w1, w2) where vi ∈ Tpi

Mi and wi ∈ Tqi
Mi . Thus

the above equality implies that

p1 + v1 = q1 + w1 and p2 + v2 = q2 + w2.

Since, by assumption, p �= q, we must have p1 �= p2 or q1 �= q2. Thus the
above equalities imply that M1 or M2 must have a pair of intersecting tangent lines
respectively. �

Note 3.3. In contrast to the previous proposition, S-embeddings are not closed under
cartesian product. Indeed, the cartesian product of any two submanifolds will always
have parallel tangent lines. To see this let M1 ⊂ R

n1 and M2 ⊂ R
n2 be a pair of

submanifolds, and p ∈ M1, v ∈ TpM1, and q, r ∈ M2. Then (v, 0) ∈ T(p,q)M1×M2,
and (v, 0) ∈ T(p,r)M1 × M2. Thus M1 × M2 has parallel tangent vectors at all pairs
of points (p, r) and (p, q).
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Combining the previous two propositions immediately yields Theorem 1.3. Fur-
ther, the last proposition also yields:

Proof of Theorem 1.5. Any submanifold of a T-embedded submanifold is also T-
embedded. Thus, by Proposition 3.2, it suffices to check that

R � x �→ (x, x2, x3) ∈ R
3

has no intersecting tangent lines. Suppose otherwise. Then there are x, y ∈ R, x �= y,
such that

(x, x2, x3) + λ(1, 2x, 3x2) = (y, y2, y3) + μ(1, 2y, 3y2),

for some λ, μ ∈ R. The above equality yields three equations:

x − y = μ − λ,

x2 − y2 = 2(μy − λx),

x3 − y3 = 3(μy2 − λx2).

Solving for y in the first equation and substituting in the second yields that λ = ±μ.
If λ = μ, then the first equation yields x = y, which is a contradiction. If λ = −μ,
then dividing the third equation by the first yields that

x2 + xy + y2 = 3

2
(y2 + x2).

The above equation is equivalent to (x − y)2 = 0, which yields x = y, another
contradiction. �

From this we immediately obtain the following result.

Corollary 3.4. If a manifold admits an embedding in R
m, then it admits aT-embedding

in R
3m. �

Further, we can use Theorem 1.5 to etablish Corollary 1.6.

Proof of Corollary 1.6. As is well-known, every compact manifold Mn admits a
smooth embedding into R

m, provided that m is sufficiently large [6, p. 23]. Thus, by
the previous corollary, Mn admits a smooth embedding without intersecting tangents
into R

N , where N = 3m. If N ≤ 4n + 1 we are done. So suppose that N > 4n + 1.
Define g : (TM × TM − 
TM) → S

N−1, by

g(x, y) := x − y

‖x − y‖ ,
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where 
 denotes the diagonal elements of a cartesian product. Since

dim(TM × TM − 
TM) = 4n < N − 1 = dim(SN−1),

and g is a C1 mapping, the image of g must have measure zero [6, p. 68]. In particular,
g is not unto. Let u ∈ S

N−1 be a vector in the complement of the image of g, Hu

be the hyperplane through the origin and orthogonal to u, and πu : R
N → Hu be the

orthogonal projection
πu(x) := x − 〈x, u〉u.

Then π is an embedding on TM. But π(TM) = T (π(M)). Thus π(M) has no
intersecting tangent spaces, and we obtain a T-embedding of M in Hu 
 R

N−1.
We may repeat this procedure until we reach the desired dimension, 4n + 1, for the
ambient space. �

Finally, we prove the last observation mentioned in the introduction. The proof
below uses the notions of contractibility and retract of a topological space X. Recall
that X is contractible if there exists a point x0 ∈ X and a continuous mapping
f : X × [0, 1] → X such that f (x, 0) = x, and f (x, 1) = x0. A subset Y ⊂ X is
called a retract of X if there exists a continuous map f : X → Y such that f (y) = y

for all y ∈ Y .

Proof of Theorem 1.7. Suppose that there exists a non-contractible manifold Mn

which is T-embedded in R
2n. Since dim(TM) = 2n, it follows from the theorem

on the invariance of domain that TM is an open subset of R
2n. We claim that TM is

closed in R
2n as well. To see this let pi be a sequence of points in TM converging

to a point p in R
2n. Let qi be the corresponding sequence of points in M such that

pi ∈ Tqi
M . Since M is compact, qi have a limit point q in M . Since the tangent space

TqM is a limit point of Tqi
M , it follows that p ∈ TqM ⊂ TM. Thus TM is both open

and closed in R
2n, which yields that TM = R

2n. In particular TM is contractible.
But M is a retract of TM, and the retract of a contractible space is contractible. So
M is contractible – a contradiction. �
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