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H-minimal graphs of low regularity in H
1

Scott D. Pauls∗

Abstract. In this paper we investigate H-minimal graphs of lower regularity. We show that
noncharacteristic C1 H-minimal graphs whose components of the unit horizontal Gauss map
are in W 1,1 are ruled surfaces with C2 seed curves. Moreover, in light of a structure theorem of
Franchi, Serapioni and Serra Cassano, we see that any H-minimal graph is, up to a set of perimeter
zero, composed of such pieces. Along these lines, we investigate ways in which patches of C1

H-minimal graphs can be glued together to form continuous piecewise C1 H-minimal surfaces.
We apply this description of H-minimal graphs to the question of the existence of smooth

solutions to the Dirichlet problem with smooth data. We find a necessary and sufficient condition
for the existence of smooth solutions and produce examples where the conditions are satisfied
and where they fail. In particular we illustrate the failure of the smoothness of the data to
force smoothness of the solution to the Dirichlet problem by producing a class of curves whose
H-minimal spanning graphs cannot be C2.
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1. Introduction

In this paper, we further investigate the properties of H-minimal surfaces in the Heisen-
berg group with a focus on the regularity of H-minimal surfaces that satisfy Dirichlet
boundary conditions.

The study of H-minimal surfaces was introduced in the foundational paper of
Garofalo and Nhieu ([11]) where they showed the existence of H-minimal surfaces
of bounded variation that satisfy certain boundary conditions. Expanding on these
results, several authors extended the investigation showing different properties and
constructions of H-minimal surfaces in various settings (see, for example, [1], [4],
[5], [6], [7], [12], [14], [15], [16], [17]). Recently, N. Garofalo and the author ([12])
gave a characterization of C2 H-minimal surfaces used to investigate an analogue of
the Bernstein problem in the Heisenberg group. A different approach to the study
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of analogues of the Bernstein problem was completed by Cheng, Hwang, Malchiodi
and Yang in [5] and [4]. We note that there is some overlap between the results in
[12] and those of [5] and [4] but that the techniques are independent. In particu-
lar, both [12] and [5] make the observation that C2 H-minimal surfaces are ruled
surfaces but analyze them using different tools (in fact, [5] uses the machinery of
pseudohermitian geometry and hence many of their results apply to a larger class
of Carnot–Carathéodory spaces). Using the machinery of [5], two of the authors
classify properly embedded H-minimal surfaces in the Heisenberg group in [4] while
[12] gives a geometric description of the properties of embedded H-minimal surfaces
which are graphs over some plane. Again, the results overlap in some respects, but
the techniques are independent.

With respect to the discussion in this paper, we will use the tools developed in
[12]. For the purposes of this paper, the two most important theorems from [12] are:

Theorem 1.1. Let k ≥ 2. A noncharacteristic patch of a Ck surface S ⊂ H
1 of the

type
S = {(x, y, t) ∈ H

1 | (x, y) ∈ �, t = h(x, y)},
where h : � → R is a Ck function over an open domain � in the xy-plane, is an
H-minimal surface if and only if for every p ∈ S, there exists a neighborhood U of p

so that U can be parameterized by

(s, r) → (γ1(s) + rγ ′
2(s), γ2(s) − rγ ′

1(s), h(s, r)), (1)

where
h(s, r) = h0(s) − r

2
〈γ (s), γ ′(s)〉 (2)

and
γ ∈ Ck+1, h0 ∈ Ck.

Thus, to specify such a patch of smooth H-minimal surface, one must specify a single
curve in H

1 determined by a curve in the plane, γ (s), parameterized by arc-length,
and an initial height function h0(s).

The curve γ (s) in the theorem is called a seed curve and determines almost all
of the behavior of the neighborhood U . Indeed, under the assumption of at least C2

smoothness, we have:

Theorem 1.2. Let S ⊂ H
1 be a C2 connected, open, complete and embedded H-

minimal surface. Then, either S is a vertical plane, or S is determined by a generalized
seed curve � = {(γ i

1(s), γ i
2(s), hi

0(s))}.
A generalized seed curve is a collection of seed curves, height functions and

patching data which, taken together, give a description of a single curve in H
1. In

other words, for such H-minimal surfaces, a single curve determines the entire surface.
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As all H-minimal surfaces have locally finite perimeter (i.e. they are X-Caccioppoli
sets), we turn now to the work of Franchi, Serra Cassano and Serapioni ([10]) and
recall the following theorem.

Theorem 1.3. Let E ⊂ H
1 be an X-Caccioppoli set, then the reduced boundary

of E, ∂∗
XE, is X-rectifiable, i.e.,

∂∗
XE = N ∪

∞⋃
j=1

Kj,

where H3
CC(N) = 0, and Kj is a compact subset of a non-characteristic hypersur-

face Sj of class C1
H

. Moreover, one has for any g ∈ Kj and every ξ ∈ TH,gSj

〈νE
X(g), ξ〉 = 0,

where νE
X(g) denotes the generalized horizontal outer normal to E in g, TH,gSj

indicates the non-characteristic plane orthogonal to the horizontal normal to Sj

in g, H3
CC is the 3-dimensional Hausdorff measure in H

1 constructed with respect
to the Carnot–Carathéodory distance and C1

H
is the space of functions which are

horizontally continuously differentiable, i.e. X1f, X2f exist and are continuous.

The reduced boundary, ∂∗
X, is the set of boundary points where the unit horizontal

Gauss map is well-defined (see the next section for a precise definition). For the
discussion of this paper, it is important to note that the reduced boundary is a full
measure subset of the boundary. The main point of this theorem is that H-minimal
surfaces can be decomposed into a set of H3

CC-measure zero and a union of C1
H

sets.
As we will restrict ourselves to investigating graphs over the xy-plane, we remind
the reader that a C1

H
graph is C1. This, of course, leaves a gap – the pieces given by

Theorem 1.3 are C1 while Theorem 1.2 applies only to C2 surfaces. The first goal of
this paper is to partially bridge the gap between the two theorems.

Theorem A. If S is an open C1 H-minimal graph over a domain � ⊂ R
2 with no

characteristic points and unit horizontal Gauss map νX whose components are in
W 1,1(�), then the integral curves of νX

⊥ are straight lines and S can be locally
parameterized by

(s, r) → (γ1(s) + rγ ′
2(s), γ2(s) − rγ ′

1(s), h(s, r)), (3)

where
h(s, r) = h0(s) − r

2
〈γ (s), γ ′(s)〉 (4)

and γ is an integral curve of νX. Moreover, if there exists ε > 0 so that d(�, γ ) >

ε > 0 then h0(s) ∈ C1 and γ (s) ∈ C2.
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In this theorem d(�, γ ) is a measure of the “horizontal thickness” of the set �

(see Definition 3.5 for a precise statement).
This theorem is shown in a series of steps. First we show that the weak directional

derivative of νX in the direction of νX
⊥ is zero. This is enough to show that the

integral curves of νX
⊥ are lines. Second, forming γ (s) as the integral curve of νX, a

geometric argument shows that γ ′(s) is Lipschitz. Coupled with a further estimate,
this shows that γ ′′(s) exists and is continuous. Applying arguments similar to those
in [12] yields the representation given in the theorem.

Combining this theorem with Theorem 1.3 of Franchi, Serapioni and Serra Cas-
sano yields:

Theorem B. If S is an H-minimal graph then

S = N ∪
∞⋃
i=1

Ki,

where N is a set of H3
CC-measure zero and each Ki , a graph over �i , with its unit

horizontal Gauss map in W 1,1(�) and d(Ki, γ ) > ε > 0 is a compact piece of a C1

H-minimal graph which can locally be parameterized by equations (3) and (4) with
γ ∈ C2 and h0 ∈ C1.

While this theorem recovers the characterization of H-minimal surfaces as ruled
surfaces in the Heisenberg group, it still leaves a gap between the baseline results of
Franchi, Serra Cassano and Serapioni and Theorem 1.1. Specifically, Theorem 1.3
allows that the C1 pieces may be glued together in nonsmooth ways. We find that
this can happen:

Theorem C. Suppose S1 and S2 are subsets of C1 H-minimal graphs with no charac-
teristic points, each parameterized by a single seed curve and height function, defined
over closed sets �1, �2 ⊂ R

2 with open interior, C = �1∩�2 a C1 curve, ∂�i ∈ C1

and d(�i) > 0 for i = 1, 2. Moreover, let ν1 = (p1, q1) and ν2 = (p2, q2) be the
respective unit horizontal Gauss maps. Then S1 ∪ S2 is an H-minimal graph if and
only if (ν1 − ν2)|C is tangent to C almost everywhere.

This provides one way in which a continuous, piecewise C1 H-minimal graph is
constructed.

This brings forward an obvious question:

In standard minimal surface theory, the solutions to the minimal surface equation
subject to Dirichlet boundary conditions gain additional regularity from the regularity
of the boundary. Do H-minimal surfaces have a similar property?
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We devote the remaining part of the paper to exploring this question. First, we
examine some of the best behaved H-minimal surfaces, those that are minimal in
Riemannian approximators of H

1 as well as H-minimal. We call these persistent
minimal surfaces and classify them.

Theorem D. The persistent H-minimal graphs fall into two categories:

(1) S is given by (x, y, u(x, y)) where

u(x, y) = m

1 + m2 (x − x0)
2 + m2 − 1

m2 + 1
(x − x0)(y − y0) − m

1 + m2 (y − y0)
2

+ a√
1 + m2

(x − x0) + am√
1 + m2

(y − y0) + b

for m, a, b, x0, y0 ∈ R.

(2) S, given in cylindrical coordinates, is

(ρ cos(θ), ρ sin(θ), aθ + b)

for a, b ∈ R.

These surfaces give examples of the best possible case – they are C∞ spanning
surfaces. Second, in Section 7, we consider the question of the existence of smooth
minimal spanning surfaces. For a fixed smooth closed curve, we focus on finding
the C1 smooth ruled H-minimal spanning graphs, those C1 H-minimal graphs which
satisfy the additional condition that the rules may be extended over the characteristic
locus (as straight lines). We note that by work in [12] or [5], all C2 H-minimal graphs
satisfy this condition. However, using techniques similar to those of Theorem C, one
can construct C1 minimal graphs that are the union of two ruled surfaces along a
common characteristic locus and do not satisfy this condition. For simplicity, we will
ignore this type of construction. Taking the characterization of H-minimal surfaces
as ruled surfaces, we create a necessary and sufficient condition for a smooth closed
curve which is the graph over a curve in the xy-plane to be spanned by a C1 ruled
H-minimal graph.

Existence Criteria. Given a closed smooth curve c(θ) = (c1(θ), c2(θ), c3(θ)) which
is a graph over a curve in the xy-plane, c is spanned by a C1 ruled H-minimal graph
if and only if there exists a monotone C1 function ϕ : S1 → S1 with ϕ(θ) ∈ A(θ).

In this statement, A(θ) is the set of points on c that are accessible from c(θ) via
a rule of an H-minimal surface:

A(θ) =
{
θ0 | c3(θ0) − c3(θ) − 1

2
c1(θ0)c2(θ) + 1

2
c1(θ)c2(θ0) = 0

}
.
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The examples in this section show curves that satisfy the criteria and curves that
exhibit an obstruction. We also discuss the genericity of these classes. Finally, we
show that there are many curves, c, which do not have smooth ruled H-minimal
spanning graphs. This provides an upper bound on the regularity of the solution to
the Plateau Problem for these curves: the solution to the Plateau Problem cannot be a
C1 ruled minimal graph.

Theorem E. Suppose c is a C1 curve with no Legendrian points which is spanned
by a C1 smooth ruled H-minimal graph, S. Then there exists an interval, I , so that
c(I ) is contained in a plane.

Corollary 1.4. If c is a smooth curve with no Legendrian points and no portion of c

is contained in a plane then an H-minimal surface spanning c cannot be a C1 ruled
H-minimal surface.

These different examples show that solutions to the Dirichlet problem and the
Plateau Problem may not have any specified regularity. In particular, the persistent
H-minimal graphs show that some curves have a C∞ solution to the Plateau Problem
while the subsequent examples show instances where C∞ curves may not have a
solution to the Dirichlet problem of high regularity. Indeed, the last set of examples
show that for certain totally non-Legendrian curves, the graphical solutions to the
Dirichlet (and hence the Plateau) problem are necessarily at most C1 but cannot be
ruled surfaces. A consequences of this is that these surfaces must have unresolvable
discontinuities in their unit horizontal Gauss maps. We reiterate that Theorem B shows
that any H-minimal graph is piecewise C1 and its seed curve, on the C1 patches, is C2.

The author would like to thank the referee for many helpful comments and sug-
gestions. The author would also like to thank J. H. Cheng, J. F. Hwang and P. Yang
for pointing out an error in an earlier version of this paper.

2. Definitions and notation

Throughout this paper, we restrict our attention to the topologically three dimen-
sional Heisenberg group, H

1. For convenience, we represent H
1 via an identification

with R
3. Considering R

3 with its usual coordinates labeled as {x, y, t}, we define the
following vector fields:

X1 = ∂

∂x
− y

2

∂

∂t
, X2 = ∂

∂y
+ x

2

∂

∂t
, T = ∂

∂t
.

The vector fields {X1, X2, T } form a basis for the Lie algebra of H
1 at any point

(x, y, t). Note that, via the exponential map at the origin, we identify H
1 with R

3
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using these coordinates, denoting the point eαX1+βX2+γ T by (α, β, γ ). For the pur-
poses of this paper, we define a left invariant inner product on H

1, 〈 ·, · 〉, which
makes {X1, X2, T } an orthonormal basis at each point. Notice that at each point,
[X1, X2] = T and hence {X1, X2} is a bracket generating set for H

1. We define a
subbundle on H

1, called the horizontal subbundle of H
1, by

HH
1 = {(x, y, t, w) ∈ H

1 × R
3 | w ∈ span{X1, X2}}.

The single nontrivial bracket relation yields the following multiplication law via the
Campbell–Baker–Hausdorff formula:

(a, b, c)(α, β, γ ) =
(
a + α, b + β, c + γ + 1

2
(aβ − αb)

)
.

To define the Carnot–Carathéodory metric on H
1, we construct a path metric.

Letting A(m, n) be the set of all absolutely continuous paths in H
1 so that γ (0) = m,

γ (1) = n and γ ′(t) ∈ Hγ(t)H
1 when γ ′(t) exists we define:

dCC(m, n) = inf
γ∈A(m,n)

{ ∫
I

〈γ ′(t), γ ′(t)〉 1
2

}
.

Note that, since 〈 ·, · 〉 is left invariant, so is dCC. Moreover, dCC admits a homo-
thety at each point (x, y, t):

hs(x, y, t) = (sx, sy, s2t)

whereby
dCC(hsm, hsn) = sdCC(m, n).

We denote by Hk
CC the k-dimensional spherical Hausdorff measure constructed

from dCC.

Definition 2.1. The horizontal gradient operator is

∇0 = (X1, X2).

Hence,
∇0f = (X1f ) X1 + (X2f ) X2.

The horizontal divergence of a vector field V = v1 X1 + v2 X2 is

div0 V = ∇0 · V = X1v1 + X2v2.

In addition to the three dimensional Hausdorff measure, we recall the perimeter
measure introduced independently by Capogna, Danielli and Garofalo ([2], [3]) and
Franchi, Gallot and Wheeden ([9]).
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Definition 2.2. Let � be an open subset of H
1. We say that f : � → R is of bounded

variation (i.e. f ∈ BVH1(�)) if

• f ∈ L1(�)

• sup
{∫

f div0 V dh | V ∈ C1
0(�, HH

1), |V | ≤ 1
}

< ∞.

We define BVH1,loc(�) analogously.

Definition 2.3. We say that E ⊂ H
1 is an X-Caccioppoli set if the characteristic

function χE of E is contained in BVH1,loc. The measure |∇0χE| is called the perimeter
measure and will be denoted by P.

We recall that (see [11], [10]) if ∂E is a smooth surface given by t = u(x, y),
then P is mutually absolutely continuous with H3

CC. Moreover, up to a choice of
constant, H3

CC(∂E) is given by∫
∂E

√
(X1(t − u(x, y)))2 + (X2(t − u(x, y)))2 dA.

Again from [10], we recall the definition of the generalized horizontal normal.

Definition 2.4. There exists a P measurable section νE of HH
1 such that

−
∫

E

div0 ϕ dh =
∫

H1
〈νE, ϕ〉 dP

for all ϕ ∈ C∞
0 (�, HH

1), |νE(p)| = 1 for P a.e. p ∈ H
1.

We next recall the definition of the reduced boundary:

Definition 2.5. Let E be an X-Caccioppoli set. Let U(p, r) be the open ball of
radius r and center p. A point p is in the reduced boundary of E, p ∈ ∂∗

H1E, if

(1) P (U(p, r)) > 0 for any r > 0,

(2) limr→0
1

P (U(p,r))

∫
U(p,r)

νE dP exists,

(3)
∣∣∣ limr→0

1
P (U(p,r))

∫
U(p,r)

νE dP
∣∣∣ = 1.

We note that Lemma 7.3 in [10] ensures that ∂∗
H1E has full P measure in ∂E.

In this paper, we will be examining smooth graphs over the xy-plane in H
1 by

which we mean surfaces which can be represented as t = u(x, y) using the coor-
dinates described above. As shown in [16] and [7], H-minimal surfaces are criti-
cal points of an area functional based on the horizontal Gauss map of the surface
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t = u(x, y). The horizontal Gauss map is the projection of the Riemannian normal
of the surface to the horizontal bundle:

G : S → HS,

G(x, y, u(x, y)) = (X1(t − u(x, y))) X1 + (X2(t − u(x, y))) X2.

We give classically inspired names to these horizontal derivatives of f , letting

p = X1(t − u(x, y)),

q = X2(t − u(x, y)).

In this paper the unit horizontal Gauss map plays a crucial role and so we define
the unit horizontal Gauss map by

νX = pX1 + qX2

where p = p√
p2+q2

and q = q√
p2+q2

. Notice that νX has a limited domain and is not

defined at points where both p and q are zero. Such points are called characteristic
points and play an important role in the study of surfaces in Carnot–Carathéodory
spaces.

In this paper we consider surfaces which are graphs over the xy-plane. In other
words, the set E in the previous theorem is given as

{(x, y, t) | t < u(x, y)}.
Thus the hypersurface ∂E would be given as t − u(x, y) = 0. The function t −
u(x, y) is horizontally continuously differentiable if and only if u is continuously
differentiable.

With this notation in place, we next review the characterization of smooth non-
characteristic area minimizing graphs by an appropriate partial differential equation
via the first variation of the energy. The first variation formula has been explored
in a variety of settings by a number of authors including the aforementioned paper of
Cheng, Hwang, Malchiodi andYang ([5]), Danielli, Garofalo and Nhieu ([7]), the au-
thor ([16]), Bonk and Capogna ([1]), Ritoré and Rosales ([17]). For the convenience
of the reader, we recall the derivation of the equation here. First, the energy integral we
use for the variational setup is

E(u) =
∫

�

√
p2 + q2,

where t = u(x, y) defines the graph in question over a domain � and has at least two
weak derivatives.

Second, we consider a variation in the t direction by a function ϕ(x, y) ∈ C∞
0 (�).

Then,

E(ε) = E(u + εϕ) =
∫

�

√(
ux + y

2
+ εϕx

)2 +
(
uy − x

2
+ εϕy

)2
.
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Abusing notation, we let p = ux + y
2 and q = uy − x

2 . Thus, differentiating with
respect to ε twice and evaluating at zero, we have

E′(0) =
∫

�

pϕx + qϕy√
p2 + q2

and

E′′(0) =
∫

�

(qϕx − pϕy)
2

(p2 + q2)
3
2

=
∫

�

(∇ϕ · G⊥)2

|G|3 .

In the last equation we use the convention that ifv is the vector given by coordinates
(a, b) then v⊥ is given by (b, −a). This convention will be used throughout the paper.
Note that the integrand of the second integral is nonnegative and is strictly positive
if ∇ϕ is not parallel to the vector G. Thus, to check if a given solution to the
Euler–Lagrange equation is a local minimum of area (with respect to this type of
perturbation), one must only check it against variations in this direction.

Lemma 2.6. Let u : � → R, u ∈ C2, be a critical point of the energy functional.
Then, for all test functions ϕ ∈ C∞

0 (�), E′′(0) > 0.

Proof. Notice first that if ∇ϕ ·G⊥ is not identically zero on a set of positive measure,
then since the integrand is always positive, the result follows. If ∇ϕ points in the
same direction as G, we now verify that for such a perturbation, E′′ > 0. In this case
let β be a function so that ∇ϕ = β(x, y)G = (βG1, βG2). Then βG is the gradient
of the C∞

0 (�) function ϕ, so

ϕxy − ϕyx = βyG1 + βG1,y − βxG2 − βG2,x = 0.

But
βG1,y − βG2,x = β(uxy − uyx − 1) = −β.

So we have
−∇β · G⊥ − β = 0. (5)

By Theorem 1.1 in the introduction, we see that the integral curves of G⊥ are
straight lines (for a more detailed discussion of this fact, see [12]). Thus, (5) im-
plies that when β is restricted to such a straight line, we have β ′ = −β and hence
β = Ce−t , where t is the parameter along the integral curve. However, as ϕ is
compactly supported in �, β must tend to zero towards the boundary of �. This is
a contradiction of the existence of a compactly supported normal variation ϕ with
gradient pointing in the same direction as G. �

Thus local minima of this area functional appear as solutions of the following
partial differential equation:

X1p + X2q = 0. (6)
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This equation says simply that the unit horizontal Gauss map is (horizontally)
divergence free:

div0 νX = 0.

In this paper we will also allow solutions that are only weak solutions to this equation.
In Section 4 we discuss a condition under which a piecewise C1 graph can satisfy
this equation weakly, but not strongly.

Remark 1. In some of the references given above, there are versions of these first and
second variation equations for more generally defined surfaces. For example, in [7],
the authors give these formulae for surfaces defined implicitly as ϕ(x, y, t) = 0. We
also point out that without our restriction to graphs (and perturbations that remain
graphs) the second variation formula does not necessarily ensure that the critical
points are local minima. Again see the examples in [7].

In [7], Danielli, Garofalo and Nhieu introduce the notation of horizontal mean
curvature, which is used to define H-minimal surfaces in both [7] and [12]. We recall
slight variations of these definitions here using the notation above.

Definition 2.7. The horizontal mean curvature of S at noncharacteristic points of S

is defined by
H = X1p + X2q.

If x0 ∈ �, then
H(x0) = lim

x→x0,x �∈�
H(x).

provided that the limit exists, finite or infinite. If the limit does not exist, the horizontal
mean curvature is not defined at such points.

This definition differs from that in [7] by a constant.
In [7] and [12] a C2 surface is called an H-minimal surface if H is identically

zero. In this paper, we make a slightly different definition,

Definition 2.8. A C1 graph S over a domain � ⊂ R
2 is an H-minimal surface if,

for any subdomain �′ ⊂ � over which S is noncharacteristic, it satisfies (6) weakly.
More precisely, if νX = p X1 + q X2 is the unit horizontal Gauss map of S, then∫

�′
pϕx + qϕy dx dy = 0

for all ϕ ∈ C∞
0 (�′).

For completeness, we also recall some of the results of [12].
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Definition 2.9. Let S be a C2 H-minimal graph and νX be its unit horizontal Gauss
map. Thinking of νX as a vector field on R

2, any integral curve of νX is called a seed
curve of S. We denote a seed curve by γz(s), i.e. γz(0) = z, γ ′

z(s) = νX(γz(s)). If a
basepoint is understood, we denote the curve by γ (s). We denote the integral curves
of νX

⊥ by Lz(r) (or, simply L(r) if a basepoint is understood).

As mentioned in the introduction, in [12], N. Garofalo and the author show that,
for C2 H-minimal surfaces, Lz(r) are straight lines in the plane and lift to horizontal
lines in H

1. This yields an adapted parameterization of the plane:

F(s, r) = (γ1(s) + rγ ′
2(s), γ2 − rγ ′

1(s)).

We recall that this parameterization ceases to be a local diffeomorphism along the
locus r = 1

κ(s)
where κ is the signed curvature of the seed curve γ and is given by

κ(s) = γ ′′(s) · γ ′(s)⊥.

When lifted to H
1, this yields a parameterization of the H-minimal surface as a

ruled surface

S =
(
γ1(s) + rγ ′

2(s), γ2 − rγ ′
1(s), h0(s) − r

2
γ · γ ′(s)

)
.

This is the content of Theorem 1.1 in the introduction. Moreover, we can extend
this parameterization from this patch of surface to include all of the rules (i.e. allow
r ∈ (−∞, ∞)), which introduces characteristic points at the locus given by

�(s, r) = h′
0(s) − r + 1

2
γ ′(s) · γ (s)⊥ + r2

2
κ(s) = 0. (7)

We recall that generically this yields two branches of the characteristic locus, one
on one side of the locus r = 1

κ(s)
and the second on the other side of this locus. We

refer the reader to [12], Section 7 for a more detailed discussion of these features.

3. Noncharacteristic C1 H-minimal graphs

In this section we investigate C1 H-minimal graphs. We will focus first on section
of C1 H-minimal graphs that do not have characteristic points. In this setting, we
show that such graphs are ruled surfaces as in the C2 case. At the end of the section
we will address the question of characteristic points. Throughout the section we will
consider a surface defined by (x, y, u(x, y)) where u : � → R is a C1 function.
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3.1. Weak directional derivatives. At first we will assume that the function u defin-
ing the H-minimal surface is at least C2 and so the components of the unit horizontal
Gauss map are continuously differentiable. Under this assumption, we compute the

directional derivative of p in the direction of v = (
1, −p

q

)
(the choice of this vector

will become evident in a moment):

Dvp = ∇p ·
(

1, −p

q

)
= px − p

q
py = px + qy.

The last equation is true because q =
√

1 − p
2 and hence qy = −p

q
py .

Thus we can interpret the integral equation

−
∫

�

pϕx + qϕy dx dy = 0

as a weak form of the equation

∇p ·
(

1, −p

q

)
= 0.

In other words, if S is an H-minimal surface, then p is weakly constant in the νX
⊥

direction (νX
⊥ and

(
1, −p

q

)
point in the same direction). We take this as a definition.

Definition 3.1. The directional derivative of p in the direction of v = (
1, −p

q

)
is

weakly zero if

−
∫

�

pϕx + qϕy dx dy = 0.

In this case we write Dvp = 0

3.2. Rulings of C1 H-minimal graphs. Mimicking classical arguments we have
the following result.

Lemma 3.2. Let v =
(

1, −p

q

)
where (p, q) is the unit horizontal Gauss map of an

H -minimal graph, S, over a domain O ⊂ R
2 and p, q ∈ W 1,1(O). Assume � ⊂ O

is an open domain so that

(1) The portion of S over � is noncharacteristic.

(2) v is continuous on � (i.e. q �= 0).

Finally, let cx(t) be an integral curve of v with cx(0) = x and let Dh
vp(x) =

p(cx(h))−p(x)
h

. Then for V compactly contained in �, h < dist(x, ∂�), Dh
vp(x) = 0

for a.e. x ∈ V .
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Proof. Let w be a continuous vector field on V and let cw
x0

(h) be an integral curve of w

passing through the point x0. We note that cw
x0

(h), as a point set, coincides with Lx0(r)

but is parametrized differently. We may reparametrize cw
x0

so that (cw
x0

)′(s) = hw.
Assuming briefly that f is a smooth function, we have

f (cw
x0

(h)) − f (cw
x0

(0)) =
∫ 1

0
∇f (cw

x0
(s)) · (cw

x0
)′(s) ds

=
∫ 1

0
∇f (cw

x0
(s)) · hw ds

= h

∫ 1

0
Dwf (cw

x0
)(s) ds.

So,

Dh
wf = f (cw

x0
(h)) − f (cw

x0
(0))

h
=

∫ 1

0
Dwf (cw

x0
(s)) ds.

Integrating appropriately, we have, for example, that∫
V

|Dh
wf | dx ≤

∫
V

|Dwf | dx.

Using standard mollification we can smooth the function p yielding a C∞ function
pε. As we have restricted to a set where p is continuous (i.e. there are no characteristic
points), we know that pε → p uniformly as ε → 0. Noting that p2, q2, ppy, qqy ∈
L1(�), we have that (p2 + q2)y = 2ppy + 2qqy = 0 in L1. Since q

p
is continuous

on � we have − q

p
py = qy in L1

loc(�). Thus, Dvp = px + qy in L1
loc(�). Thus, by

H -minimality, for ϕ ∈ C∞
0 (�),∫
�

Dvpϕ = −
∫

�

pϕx + qϕy = 0

and we have Dvp = 0.

p̃ε = pε√
p

2
ε + q

2
ε

,

q̃ε = qε√
p

2
ε + q

2
ε

,

and

ṽ =
(

1, − p̃ε

q̃ε

)
.
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As pε converges to p uniformly on V , it follows by direct calculation that p̃ε converges
to p uniformly on V as well. Similarly, q̃ε converges to q uniformly on V and ṽ

converges to v uniformly on V .
Under this definition we have that

p̃2
ε + q̃2

ε = 1.

Differentiating with respect to y and solving for (p̃ε)y we have

(p̃ε)y = − q̃ε

p̃ε

(q̃ε)y.

So

Dṽp̃ε = (p̃ε)x − (p̃ε)y
p̃ε

q̃ε

= (p̃ε)x + (q̃ε)y
q̃ε

p̃ε

p̃ε

q̃ε

= (p̃ε)x + (q̃ε)y.

As (px)ε = (pε)x, (qx)ε = (qε)x , it follows that ‖(p2
ε + q2

ε )x‖L1 → 0 as ε → 0.
Therefore,

‖(p̃ε)x − px‖L1(�) ≤ sup
∣∣∣∣ pε

(p2
ε + q2

ε )
3
2

∣∣∣∣‖(p2
ε + q2

ε )x‖L1(�)

+ sup
∣∣∣∣ 1√

p2
ε + q2

ε

∣∣∣∣‖(px)ε − px‖L1(�) → 0.

Similarly, ‖(q̃ε)y − qy‖L1(�) → 0 and we conclude ‖Dṽp̃ε‖L1(�) → 0 as ε → 0.
Hence, there exists a function C(ε) → 0 as ε → 0 so that∫

�

|Dṽp̃ε| ≤ C(ε).

So, applying the computation at the beginning of the proof with f = p̃ε, we have∫
V

|Dh
ṽ p̃ε| ≤ C(ε).

Thus, as ε → 0, Dh
ṽ
p̃ε → 0 for almost every x0 ∈ V . To complete the proof,

we would like to have that limε→0 Dh
ṽ
p̃ε = Dh

vp. Assuming this for a moment, this
would imply that Dh

vp = 0 almost everywhere as well. Then, taking a countable
dense sequence hn → 0 and the countable intersection of full measure sets where
D

hn
v p = 0, we have a full measure subset of V , denoted by V0, where

Dhn
v p(x0) = 0 for all n ∈ Z+, x0 ∈ V0.

By the continuity of p on this region, this implies that

Dh
vp(x) = 0 for all h < dist(x, ∂�), x ∈ V .
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Thus we are left with verifying that

lim
ε→0

Dh
ṽ p̃ε = Dh

vp.

First we note that Dh
ṽ
p̃ε = Dh

ṽ
p + oε(1) and that the convergence is uniform as

p̃ε → p uniformly on V . So we merely need to verify that

lim
ε→0

Dh
ṽp = Dh

vp. (8)

To calculate the value of the limit, we will construct a sequences of integral curves
using the work in appendix A. Letting � = V , X = (p, q) and Xk = (p̃εk

, q̃εk
)

for a sequence εk → 0, we apply the construction in appendix A to form appropriate
integral curves for these vector fields. Then Lemma A.4 implies that p(c

Xk
x0 )(h) →

p(cX
x0

(h)) and hence (8) is true. �

Remark 2. We note that if we assume v = ( q

p
, −1

)
and that S is a noncharacteristic

patch of surface where v is continuous, essentially the same argument proves that

Dh
vq(x) = 0

for x ∈ V and h < dist(x, ∂�). We note that since p
2 + q

2 = 1, if Dh
vq = 0 implies

that Dh
vp = 0 as well.

Lemma 3.3. If S, a C1 H-minimal surface, is decomposed as N ∪ ⋃∞
i=1 Ki , then on

each Ki with nontrivial interior and with p, q ∈ W 1,1 the integral curves of νX
⊥ are

straight lines.

Proof. Let �1 ⊂ Ki be the open set where q �= 0 and let �2 ⊂ Ki be the set where
p �= 0. Then �1 ∪ �2 = Ki . Let Vj be compactly contained in �j . By the previous
lemma, since Dh

vp = 0 on V1, we have that for each integral curve, L of νX
⊥, Dh

vp

is zero on almost every point of L. Thus, for these integral curves νX
⊥ = (q, −p) is

constant almost everywhere along its own integral curves (which are the same as the
integral curves of v). Thus, these integral curves are straight lines except potentially
on a set of measure zero. However, the structure theorem of Franchi, Serapioni and
Serra Cassano tells that p is a continuous function and hence, p is discontinuous
only at characteristic points. As the Ki have no characteristic points, we see that p is
continuous on each Ki . So, the integral curves are C1 and thus, since they are lines
almost everywhere, they must simply be straight lines. Similarly, the integral curves
of ν⊥

X are straight lines on V2 as well using Remark 2. Using a compact exhaustion
of the �i , we see that the integral curves of ν⊥

X on Ki are straight lines. �

This is the same basic result we found in Section 4 of [12] – the integral curves
of νX

⊥ are straight lines. So, if we can construct a seed curve γ as an integral curve of
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the vector field νX and repeat the proof of Theorem 4.5 in [12] (this is Theorem 1.1 of
the introduction), we have the same result for these C1 noncharacteristic H-minimal
graphs:

Proposition 3.4. Let S ⊂ H
1 be a noncharacteristic patch of a C1 H-minimal surface

of the type
S = {(x, y, t) ∈ H

1 | (x, y) ∈ �, t = h(x, y)},
with p, q ∈ W 1,1(�) and where h : � → R is a Ck function over a domain � in the
xy-plane. Then, there exists a C1 seed curve γ so that S can be locally parameterized
by

(s, r) → (γ1(s) + rγ ′
2(s), γ2(s) − rγ ′

1(s), h(s, r)), (9)

where
h(s, r) = h0(s) − r

2
〈γ (s), γ ′(s)〉. (10)

and h0(s) = h|γ (s).

We note that if we knew γ ∈ C2, the argument used to prove Theorem A in [12]
would extend completely to this case, showing that a C1 noncharacteristic graph is
an H-minimal surface if and only if it has such a representation for a neighborhood
of each point on the surface. A priori, γ is merely C1 and need not have any higher
regularity. However, we shall see that if � is “large in horizontal directions” then γ ′
is indeed C1. To make this precise, we need a definition.

Definition 3.5. Suppose an open set � is parametrized by

F(s, r) = (γ1(s) + rγ ′
2(s), γ2(s) − rγ ′

1(s))

where γ is a seed curve. Let

d(s) = min
{

sup{r1 | r1 > 0, F (s, r)|r∈(0,r1) ∈ �},
sup{r2 | r2 > 0, F (s, r)|r∈(−r2,0) ∈ �}}

and let
d(�, γ ) = inf{d(s) | γ (s) ∈ �}.

Lemma 3.6. Fix ε > 0. Let S be a C1 noncharacteristic H-minimal graph defined
over a planar domain � with p, q ∈ W 1,1(�) and let γ be a seed curve for S. If
d(�, γ ) > ε, then γ ′(s) is locally Lipschitz.

Proof. We argue by contradiction. Suppose γ ′(s) is not Lipschitz at s = s0. Then,
there exists a sequence {hn} tending to zero with

|γ ′(s0 + hn) − γ ′(s0)|
hn

= √
2Ln,
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with Ln → ∞ as n → ∞. Now

|γ ′(s0+hn)−γ ′(s0)|2 = (γ ′(s0+hn)−γ ′(s0))·(γ ′(s0+hn)−γ ′(s0)) = 2−2 cos(θn).

Where θn is the angle between γ ′(s0) and γ ′(s0 + hn). So we must have that

1 − cos(θn)

h2
n

= Ln.

Rearranging, we have
cos(θn) = 1 − h2

nLn. (11)

Recalling that, by Proposition 3.4, νX is constant along integral curves of νX
⊥,

for νX to be well defined on �, no two integral curves of νX
⊥ may cross inside �.

Indeed, it two such curves crossed, then infinitely many of them would cross and we
would have conflicting values for νX.

Next we use this to gain an estimate on Ln. Referring to Figure 1, we see that
sin(θn) = c

a
≤ |γ (s0+hn)−γ (s0)|

a
. Now, since d(�) > ε, we have

ε < d(�) ≤ a

≤ |γ (s0 + hn) − γ (s0)|
sin(θn)

= |γ (s0 + hn) − γ (s0)|√
1 − (1 − h2

nLn)2
(by equation (11)).

(12)

Thus we have √
1 − (1 − h2

nLn)2 ≤ |γ (s0 + hn) − γ (s0)|
ε

.

Or, after some algebraic simplification,

Ln ≤ |γ (s0 + hn) − γ (s0)|2

ε2h2
n

(
1 +

√
1 − |γ (s0+hn)−γ (s0)|2

ε2

) → 1

2ε2 .

But, by assumption, Ln → ∞ as n → ∞, so we reach a contradiction. �

Theorem 3.7. Let S be a C1 H-minimal graph over a domain � of the xy-plane with
p, q ∈ W 1,1(�). If γ is a seed curve for S and d(�, γ ) > ε > 0, then γ is C2.

Proof. By the previous lemma we know that γ ′ is Lipschitz and hence γ ′′(s) exists for
almost every s. Now consider a parameter value s0 and sequences {s+

i } and {s−
i } so

that s+
i → s0, s−

i → s0 and both γ ′′(s+
i ) and γ ′′(s−

i ) exist for all i. By the Lipschitz
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a

b

c

θn

γ (s0 + hn)

γ (s0)

�

Figure 1. Illustration for Lemma 3.6.

condition on γ ′, we can always find such sequences and we may also assume, picking
subsequences if necessary, that limi→∞ γ ′′(s+

i ) and limi→∞ γ ′′(s−
i ) both exist. Then

we claim that
lim

i→∞ γ ′′(s+
i ) = lim

i→∞ γ ′′(s−
i ).

To show this, we examine the Riemannian normal of the surface. As the surface
is C1, the normal must be continuous. We will show that if

lim
i→∞ γ ′′(s+

i ) �= lim
i→∞ γ ′′(s−

i )

then the normal cannot be continuous.
First, we a direct calculation using the representation of S by(

F(s, r), h0(s) − r

2
γ · γ ′(s)

)
yields that the vector

η(s, r) = γ ′
1(s) X1 + γ ′

2(s) X2 + β(s, r) T

points in the direction of the Riemannian normal where

β(s, r) = −1 + rκ(s)

h′
0(s) − r + 1

2γ ′ · γ ⊥ + r2

2 κ(s)
. (13)
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We note that this computation is contained in Section 4 of [12]. Now, by assumption,
both γ and γ ′ are continuous. To argue by contradiction, we assume that

lim
i→∞ γ ′′(s+

i ) = l1

and
lim

i→∞ γ ′′(s−
i ) = l2

where l1 �= l2. Let

κ1 = lim
i→∞ γ ′′(s+

i ) · γ ′(s+
i )⊥ = l1 · γ ′(s0)

⊥ (14)

and
κ2 = lim

i→∞ γ ′′(s−
i ) · γ ′(s−

i )⊥ = l2 · γ ′(s0)
⊥. (15)

Now, looking at η(s, r) along the two sequences, we know that the X1 and X2
components match as we tend towards s0 as γ ′ is continuous. If η is to be continuous,
then β must be continuous as well, i.e.

−1 + rκ1

h′
0(s0) − r + 1

2γ ′ · γ ⊥ + r2

2 κ1

= −1 + rκ2

h′
0(s0) − r + 1

2γ ′ · γ ⊥ + r2

2 κ2

.

After simplifying algebraically, this yields

(κ1 − κ2)

(
rh′

0(s0) + r

2
γ ′ · γ ⊥ − r2

2

)
= 0.

As r can vary, we see that κ1 = κ2. Since γ is parameterized by arclength, we have
that γ ′′ ·γ ′ = 0 where defined. Combining this with equations (14) and (15) we reach
a contradiction of the assumption that l1 �= l2. So we see that, where it is defined, γ ′′
coincides with a continuous function. Consider a point s0 where, a priori, γ ′ is not
differentiable. Then in a neighborhood N of s0 there is a full measure subset N0 so
that if s ∈ N0, γ ′′(s) exists. Then, as γ ′′ coincides with a continuous function where
is exists, we see that

lim
s∈N0, s→s0

γ ′(s0) − γ ′(s)
s0 − s

exists. In other words, s0 is a point of approximate differentiability for γ ′. Since, by
the previous lemma, γ ′ is Lipschitz, Lemma 3.1.5 in [8] implies that γ ′ is differen-
tiable at s0 as well. �

We combine the previous lemmas:

Theorem 3.8. Fix ε > 0. Suppose S is a C1 noncharacteristic H-minimal graph
over a region � with p, q ∈ W 1,1(�). If γ is a seed curve of S with d(�, γ ) > ε,
then γ ∈ C2.
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Remark 3. The previous theorem is a type of regularity result for H-minimal sur-
faces. Recalling that νX = (γ ′

1(s), γ
′
2(s)), the theorem says that the vector field νX

is continuously differentiable. Therefore, the arguments from [12] used to prove
Theorem 1.1 (this is Theorem A in [12]) apply and the surface can be realized by(

γ1(s) + rγ ′
2(s), γ2(s) − rγ ′

1(s), h0(s) − r

2
γ · γ ′(s)

)
.

Moreover, the smoothness of such a piece of H-minimal surface is completely de-
termined by the function h0(s). Given the structure theorem of Franchi et al., if the
surface is an X-perimeter minimizer, the function h0(s) must be at least C1 on the
sets Ki .

We end this section by summarizing the results.

Theorem 3.9. If S is an open C1 H-minimal graph over a domain � ⊂ R
2 with no

characteristic points with unit horizontal Gauss map νX in W 1,1(�), then the integral
curves of νX

⊥ are straight lines and S can be locally parameterized by

(s, r) → (γ1(s) + rγ ′
2(s), γ2(s) − rγ ′

1(s), h(s, r)), (16)

where
h(s, r) = h0(s) − r

2
〈γ (s), γ ′(s)〉 (17)

and γ is an integral curve of νX. Moreover, if there exists ε > 0 so that d(�, γ ) >

ε > 0 then h0(s) ∈ C1 and γ (s) ∈ C2.

This is Theorem A in the introduction.
We note that, as γ ∈ C2, all of the computations of Section 4 of [12] are valid so

long as they do not involve more than one derivative of h0(s). In particular, we have:

Proposition 3.10. Let S be a patch of C1 H-minimal surface given by

(s, r) → (γ1(s) + rγ ′
2(s), γ2(s) − rγ ′

1(s), h(s, r)),

where
h(s, r) = h0(s) − r

2
〈γ (s), γ ′(s)〉

with s ∈ (s0, s1), r ∈ (r0, r1). Then S may be extended to a surface S̃ by including
all portions of the rules, i.e. extending the above parameterization to r ∈ (−∞, ∞).
In this case the surface S̃ has characteristic points at

h′
0(s) − r + 1

2
γ ′(s) · γ (s)⊥ + r2

2
κ(s) = 0. (18)
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Proof. The only new portion of this proposition is the identification of the character-
istic locus. We note that by hypothesis, d(�, γ ) = r1 −r0 > 0 and so γ ∈ C2. As we
assume the surface is C1, we must have that h0 ∈ C1 as well. To verify the position
of the characteristic locus, we repeat the arguments found in [12], in particular the
computations in the proof of Theorem A. We review them here for completeness.
We first compute tangent vectors to the surface at each point by taking the s and r

derivatives of the parameterization:

τ = ∂

∂r
(γ1(s) + rγ ′

2(s), γ2(s) − rγ ′
1(s), h(s, r))

= (γ ′
2(s), −γ ′

1(s), −
1

2
〈γ (s), γ ′(s)〉)

= γ ′
1(s) X1 + γ ′

2(s) X2,

(19)

σ = ∂

∂s
(γ1(s) + rγ ′

2(s), γ2(s) − rγ ′
1(s), h(s, r))

= (γ ′
1(s) + rγ ′′

2 (s), γ ′
2(s) − rγ ′′

1 (s), h′
0(s) − r

2
− r

2
〈γ (s), γ ′′(s)〉)

= (γ ′
1(s) + rγ ′′

2 (s)) X1 + (γ ′
2(s) − rγ ′′

1 (s)) X2 + (h′
0(s) − r

+ 1

2
〈γ ′(s), γ (s)⊥〉 + r2

2
κ(s)) T .

(20)

Taking the cross product of these vectors with respect to the Riemannian structure,
we have

σ × τ = γ ′
1(s)B(s, r) X1 + γ ′

2(s)B(s, r) X2 + (−1 + rκ(s)) T (21)

where

B(s, r) = h′
0(s) − r + 1

2
〈γ ′(s), γ (s)⊥〉 + r2

2
κ(s).

As characteristic points arise when Riemannian normal, σ × τ , has only a T compo-
nent, we have the desired description of characteristic points. �

We often use the notation

W0(s) = h′
0(s) + 1

2
〈γ ′(s), γ (s)⊥〉.

We end the section with an observation concerning the nature of the characteristic
locus along a single rule. Equation (7) shows that, generically, each rule contains two
characteristic points at

r = 1

κ(s)
±

√
1 − 2κ(s)W0(s)

κ(s)
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one to each side of the point at r = 1
κ(s)

. In the special case where W0(s) = 1
2κ(s)

we

have a double characteristic point at r = 1
κ(s)

.

Lemma 3.11. Let S be a C1 H-minimal graph parameterized by(
F(s, r), h0(s) − r

2
γ (s) · γ ′(s)

)
, (s, r) ∈ � ⊂ R

2.

Suppose (s0, r0) and (s1, r1) are points so that F(s0, r0) = F(s1, r1). Then(
F(s0, r0), h0(s0) − r0

2
γ (s0) · γ ′(s0)

)
is a characteristic point of S.

Proof. Since we assume that S is a graph over the xy-plane, we must have that(
F(s0, r0), h0(s0) − r0

2
γ (s0) · γ ′(s0)

)
=

(
F(s1, r1), h0(s1) − r1

2
γ (s1) · γ ′(s1)

)
.

We recall that the unit horizontal Gauss map on S is given by νX(s, r) = (γ ′
1(s), γ

′
2(s))

and that the unit horizontal Gauss map is constant along any rule. The vector

η(s, r) = γ ′
1(s)√

1 + β(s, r)2
X1 + γ ′

2(s)√
1 + β(s, r)2

X2 + β(s, r)√
1 + β(s, r)2

T

where

β(s, r) = −1 + rκ(s)

W0(s) − r + r2

2 κ(s)

points in the same direction as the unit Riemannian normal to the surface and is a
completion of the unit horizontal Gauss map. As the surface is C1, we must have that
limr→r0 η(s0, r) = limr→r1 η(s1, r). Since we assume the two rules are not parallel
(they intersect), we have that γ ′(s0) �= γ ′(s1) and hence, for these limits to be equal,
we must have that

lim
r→ri

β(si, r) = ±∞.

Examining the formula for the denominator of β and equation (7), we see that the
intersection must be a characteristic point. �

Lemma 3.12. Let S be a C1 H-minimal graph parameterized by(
F(s, r), h0(s) − r

2
γ (s) · γ ′(s)

)
, (s, r) ∈ � ⊂ R

2.

Then along each rule, Lγ (s)(r), there is at most one characteristic point.
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Proof. As above, by equation (7), we see there are at most two characteristic points
along Lγ (s)(r). Suppose there are two characteristic points along a rule L =
Lγ (s0)(r), one to each side of r = 1

κ(s0)
. We claim that, arbitrarily close to r = 1

κ(s0)
,

L crosses another (nearby) rule. To see this, we first left translate and rotate the
Heisenberg group so that γ (s0) = 0 and γ ′(s0) = (1, 0) and reparametrize γ so that
s0 = 0. From this normalization, we have that F(0, r) = (0, −r). Consider a nearby
rule, Lγ (s1)(r). Then, direct calculation shows that

F

(
s1, −γ1(s1)

γ ′
2(s1)

)
= F

(
0, γ2(s1) + γ1(s1)γ

′
1(s1)

γ ′
2(s1)

)
.

Taking that limit as s1 → 0, we see that

γ2(s1) + γ1(s1)γ
′
1(s1)

γ ′
2(s1)

→ 1

κ(0)
.

Thus we make pick s1 small enough so that

Lγs1
(r) ∩ L ⊂ L(r)|

r∈
(

1
κ(0)

−ε, 1
κ(0)

+ε
).

By the previous lemma, we see that there must be a characteristic point at this in-
tersection distinct from the two characteristic points assumed to be along L. This is
a contradiction of (7), which shows that there are at most two characteristic points.
Thus, along a rule contained in a piece of H-minimal graph, there is at most a single
characteristic point. �

4. Continuous H-minimal surfaces

Again taking our motivation from the theorem of Franchi, Serapioni and Serra Cas-
sano, we now investigate the possibility of gluing two pieces of different of C1

H-minimal surfaces together to form a new H-minimal surface from their union. In
contrast to the classical cases, we can, under certain restrictions, create piecewise C1

surfaces that are globally merely continuous and yet satisfy the H-minimal surface
equation.

We consider the problem, discussed in the introduction, of gluing together two
patches of C1 H-minimal graphs so that the union satisfies the H-minimal surface
equation, at least weakly.

Proof of Theorem C. Assuming first that S1 ∪ S2 is H-minimal, we let

νX = (p, q) =
{

ν1 on �1,

ν2 on �2.
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Then ∫
�1∪�2

pϕx + qϕy = 0

for a smooth compactly supported (on �1 ∪ �2) test function ϕ. Recall that by
Theorem 3.8, we know that νX|�̃i

∈ C1(�̃i). First we compute∫
�i

piϕx + qiϕy =
∫

�i

(piϕ)x − pi,xϕ + (qiϕ)y − qi,yϕ

=
∫

�i

(piϕ)x + (qiϕ)y −
∫

�i

pi,xϕ + qi,yϕ

=
∫

�i

(piϕ)x + (qiϕ)y

=
∫

∂�i

−qiϕ dx + piϕ dy (by Green’s theorem)

=
∫

C

−qiϕ dx + piϕ dy

=
∫

C

ϕ(νi · �ni) ds.

The third equality holds because the surface over the interior of �i satisfies the
minimal surface equation. The second to last equality holds because ϕ is compactly
supported on �1 ∪ �2 and hence can only be nonzero on C = �1 ∩ �2. In the last
equality, �ni denotes the inward pointing unit normal vector to ∂�i .

Applying this we have∫
�1∪�2

pϕx + qϕy =
∫

�1

p1ϕx + q1ϕy +
∫

�2

p2ϕx + q2ϕy

=
∫

∂�1

ϕ(ν1 · �n1) +
∫

∂�2

ϕ(ν2 · �n2)

=
∫

C

ϕ(ν1 · �n1) +
∫

C

ϕ(ν2 · (−�n1))

=
∫

C

ϕ((ν1 − ν2) · �n1)

= 0.

The second equality follows by the previous computation, where �ni are the inward
pointing unit normal vectors. The differentiability of the νi and the fact that the Si

are H-minimal implies that on the interior of �i , we have that pi,x + qi,y = 0. In the
third equality, we observe that ϕ is zero on the boundary of �1 ∪ �2 and that on C,
�n1 = −�n2.
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Thus, we have that (ν1 − ν2) · �n1 is weakly zero and hence, ν1 − ν2 must be
tangent to C almost everywhere. Reversing the computation shows the sufficiency
of this condition as well. �

We illustrate this with an example where we glue two different H-minimal surfaces
along a rule.

Example 1. This theorem allows us to create many continuous H-minimal surfaces
which are piecewise C1. We illustrate how to use this theorem by constructing a new
H-minimal surface by gluing together the lower half of the plane t = 0 with a portion
of the surface t = xy

2 (see Figure 2). To do this we define the following seed curve:

γ (s) =

⎧⎪⎨
⎪⎩

(1, s) 0 ≤ s < ∞,

(cos(s), sin(s)) −π ≤ s < 0,

(−1, −s − π) −∞ < s < −π.

Note that, as a plane curve, γ is two vertical lines glued to the bottom half of a circle.

-2-2
-2 -1

-1

-1
0

0

0

1
1

1

22

2

x
y

Figure 2

Now, we construct an H-minimal surface from this seed curve. With appropriate
choices of h0(s), this yields the parameterization:

S :=

⎧⎪⎪⎨
⎪⎪⎩

(
1 + r, s, − sr

2 − s
2

)
0 ≤ s < ∞, −1 ≤ r < ∞,

((1 + r) cos(s), (1 + r) sin(s), 0) −π < s < 0, −1 ≤ r < ∞,(
−1 − r, −s − π, − r(s+π)

2 − s+π
2

)
−∞ < s ≤ −π, −1 ≤ r < ∞.
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Calculating in xy-coordinates, we find the unit horizontal Gauss map to be:

νX = (p, q) =
⎧⎨
⎩

(0, sgn(x)) y ≥ 0,(
− y√

x2+y2
, x√

x2+y2

)
y < 0.

Direct computation shows that, away from y = 0, these are H-minimal surfaces.
We note that, using the notation of the theorem, ν1 = ν2 along the line y = 0 and

hence the hypotheses of the theorem are satisfied so long as we pick �1 and �2 away
from the characteristic locus (for example, we might consider �1 = {(x, y) | 2 ≥
x ≥ 1, 2 ≥ y ≥ 0} and �2 = {(x, y) | 2 ≥ x ≥ 1, −2 ≤ y ≤ 0}).

5. C∞ solutions to the Plateau Problem: persistent H-minimal surfaces

In [16], we showed that H-minimal graphs can arise as limits of minimal surfaces in
(H1, gλ). In this section, we examine those surfaces which are minimal for all values
of λ ∈ [1, ∞).

Definition 5.1. A nonparametric graph is called a persistent H-minimal surface if it
is H-minimal and is minimal in (H1, gλ) for all λ ∈ [1, ∞].

As shown in [16] Theorem 3.6 and 3.7 this implies that the surface is H-minimal
and, for any curve satisfying the bounded slope condition that such a surface spans,
it is the solution to the Plateau problem for this curve. Thus, the persistent minimal
surfaces are a (small) class of smooth solutions to the Plateau problem. Moreover, as a
consequence of Remark 1 in Section 3 of [16], we have the following characterization
of persistent minimal surfaces.

Theorem 5.2. An H-minimal surface S = {(x, y, h(x, y))} is persistent if and only
if �h = 0 where � is the usual Laplacian in R

2.

In this section, we will use the representation formula from Theorem 1.1 and some
results from [12] to classify the persistent H-minimal surfaces.

Lemma 5.3. If an H-minimal graph S is persistent then the signed curvature of its
seed curve is constant.

Proof. First we assume that S is a persistent H-minimal graph. If S is given by
(x, y, h(x, y)) then p = hx − y

2 and q = hy + x
2 and so �h = 0 is equivalent to

px + qy = 0. Using the notation from the previous section, we have p = αp and
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q = αq and so

px + qy = (αp)x + (αq)y

= ∇α · νX + α(px + qy)

= ∇α · νX (since S is H-minimal)

= 0 (since we assume S is persistent).

(22)

Thus α is constant along the curves F(s, t0) and so we may write α(s, r) = α(r).
However, from Theorem 7.1 in [12], we know that

α(s, r) =
κ(s)

2 r2 − r + α0(s)

1 − κ(s)r
.

Since α is constant along F(s, 0) this implies that α0(s) ≡ α0 is constant, and so
κ(s) must also be constant. �

Theorem 5.4. The persistent H-minimal graphs fall into two categories up to iso-
metric transformations of (H1, dCC):

(1) (κ = 0)

h(x, y) = m

1 + m2 (x − x0)
2 + m2 − 1

m2 + 1
(x − x0)(y − y0) − m

1 + m2 (y − y0)
2

+ a√
1 + m2

(x − x0) + am√
1 + m2

(y − y0) + b

for m, a, b ∈ R.

(2) (κ �= 0) S, given in cylindrical coordinates, is

(ρ cos(θ), ρ sin(θ), aθ + b)

for a, b ∈ R.

Proof. By the previous lemma, we know that κ must be constant for S to be persistent.

Case 1. κ = 0. If the curvature of the seed curve is zero, it is a line in the plane. By
left translation, we may move the surface S so that the seed curve passes through the
origin. Thus, we may assume that

γ (s) =
(

s√
1 + m2

,
ms√

1 + m2

)

for some m ∈ R. Note that γ (s) · γ ′(s) = s In this case the parameterization F is
simply a linear transformation of the plane and we can write (s, r) in terms of (x, y).
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Indeed, we have

s = x√
1 + m2

+ my√
1 + m2

,

r = mx√
1 + m2

− y√
1 + m2

.
(23)

Plugging this into the representation given in Theorem A, we get

h(x, y) = h0(s) + 1

2
rs

= h0

(
x√

1 + m2
+ my√

1 + m2

)

+ 1

2

(
mx√

1 + m2
− y√

1 + m2

) (
x√

1 + m2
+ my√

1 + m2

)
(24)

= h0

(
x√

1 + m2
+ my√

1 + m2

)
+ m

1 + m2 x2 + m2 − 1

m2 + 1
xy − m

1 + m2 y2.

Now, S is persistent if and only if �h = 0,

hxx + hyy =
(

h′′
0

1

1 + m2 + 2
m

1 + m2

)
+

(
h′′

0
m2

1 + m2 − 2
m

1 + m2

)
= h′′

0

= 0.

(25)

Thus, surfaces in this case are persistent if and only if h0 is linear, i.e. h0 = cs +d

for some a, b ∈ R. If we now left translate the resulting surfaces by a fixed basepoint
(x0, y0, t0), we have that the surface is given by

(x, y, h(x, y)) = (x0, y0, t0) ·
(

x, y, c

(
x√

1 + m2
+ my√

1 + m2

)

+ m

1 + m2 x2 + m2 − 1

m2 + 1
xy − m

1 + m2 y2 + d

)
(26)

=
(

x + x0, y + y0, t0 + c

(
x√

1 + m2
+ my√

1 + m2

)

+ m

1 + m2 x2 + m2 − 1

m2 + 1
xy − m

1 + m2 y2 + d + 1

2
x0y − 1

2
y0x

)
.

Substituting x = x + x0 and y = y − y0 and collecting terms yields the claim.
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Case 2. κ �= 0. If κ = c �= 0, then γ (s) must be a circle and after a suitable left
translation, we may write

γ (s) =
(

1

c
cos(s),

1

c
sin(s)

)
.

Hence γ (s) · γ ′(s) = 0. Moreover, the parameterization F yields

x =
(

r − 1

c

)
cos(s), y =

(
r − 1

c

)
sin(s),

and

s = arctan
(y

x

)
, r =

√
x2 + y2 + 1

c
.

Thus
h = h0(s) + r

2
γ (s) · γ ′(s) = h0

(
arctan

(y

x

))
.

Computing the Laplacian of h yields

�h = h′′
0

(
arctan

(y
x

))
x2 + y2 .

Thus, �h = 0 if and only if h′′
0(s) = 0 or that h0 is linear. Thus, using cylindrical

coordinates, S is given by

(ρ cos(θ), ρ sin(θ), aθ + b)

for a, b ∈ R. �

We record the observation made above:

Corollary 5.5. Any closed curve lying on the surfaces identified in Theorem 5.4 has
a C∞ solution to the Plateau problem.

6. Obstructions to H-minimal spanning surfaces of high regularity

Throughout the rest of this paper, we will be considering a smooth closed curve

c(θ) = (c1(θ), c2(θ), c3(θ)) ⊂ H
1

with the property that c(θ) is a graph over the projection of c to the xy-plane. For
ease of notation, we will denote this projection by c(θ) = (c1(θ), c2(θ), 0). When
the context is clear, we suppress the last coordinate of the projection. We will be
considering H-minimal spanning surfaces for these curves and moreover will consider
only C1 H-minimal spanning surfaces that are ruled graphs. To be precise, we make
a definition:
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Definition 6.1. A C1 ruled H-minimal graph, S, over a closed domain � ∈ R
2

is a ruled H-minimal graph with the property that every rule in S that meets a the
characteristic locus may be extended over the characteristic locus as a straight line.

In other words, we will not consider gluings of the type discussed in Theorem C.
We note that the work in [12] or [5] shows that C2 H-minimal surfaces satisfy this
definition.

If c lies on a C1 ruled H-minimal graph then a geodesic line intersects each point
on c and, potentially, one or more other points on c (see Figure 3). One easy way to
determine the possible geodesic lines which are allowable for a specific point, c(θ0),
on the curve is to left translate that point to the origin (recalling that left translation
preserves minimality). At the origin, the horizontal plane is the xy-plane and so,

Figure 3. The dotted arrows are the possible rules emanating from the point.

points which can be connected to c(θ0) by geodesic lines are those points on the left
translated curve which lie on the xy-plane. Using the Campbell–Baker–Hausdorff
formula, one can calculate this set explicitly as:

A(θ0) = {
θ | c3(θ) − c3(θ0) − 1

2
c1(θ)c2(θ0) + 1

2
c1(θ0)c2(θ) = 0

}
.

Note that θ0 ∈ A(θ0). In terms of building up a ruled surface which spans c,
the larger A(θ0), the more flexibility one has in developing a surface. On the other
hand, if A(θ0) contains only θ0 itself, this places great restriction on the possibilities
of smooth spanning H-minimal surfaces.

Consider a Ck closed curve c : [t0, t1) → H
1 which is a graph over a curve, c,

in the xy-plane. Suppose c is spanned by a ruled H-minimal surface, S, which is a
graph over a closed domain � in the xy-plane so that ∂� = c. Then the definition of
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A above implicitly defines a function ϕ(t) for t ∈ [t0, t1) via the equation

c3(ϕ(t)) − c3(t) − 1

2
c1(ϕ(t))c2(t) + 1

2
c1(t)c2(ϕ(t)) = 0.

As ci ∈ Ck , ϕ is also Ck . Moreover, we claim that such a ϕ must be monotone.
To see this, suppose that ϕ is not monotone and that there exist t0, t1, t2 so that
ϕ(t0) = ϕ(t2) and ϕ(t1) �= ϕ(t0). Let Li be the rule connecting c(ti) to c(ϕ(ti)) and
let Li be the projection of Li to the xy-plane. Then, the assumption on ϕ implies
that L1 intersects either L2 or L0. Without loss of generality, we will assume it
intersects L2. Further, L2 must intersect the projection of every rule connecting c(t)

to c(ϕ(t)) for t ∈ (t0, t1). Such intersection points must be characteristic points of
the surface and so L2 would contain infinitely many characteristic points in violation
of Lemma 3.12. We note that, given a monotone Ck function ϕ : S1 → S1, it is easy
to construct a Ck ruled H-minimal graph.

We record this observation:

Existence Criterion. Given a closed curve c ∈ Ck which is a graph over a curve in
the xy-plane, c is spanned by a ruled H-minimal graph if and only if there exists a
monotone Ck function ϕ : S1 → S1 with ϕ(θ) ∈ A(θ).

Definition 6.2. A point c(θ0) is called Legendrian if c′(θ0) ∈ span{X1, X2}. We call
a point isolated if

{θ0} = A(θ0).

We record an immediate consequence of the definition.

Lemma 6.3. If c(θ) is an isolated point and c is spanned by a ruled H-minimal graph,
then c(θ) is Legendrian and the rule passing through c(θ) must be tangent to c.

Proof. If c(θ) is isolated then, by definition, it cannot be connected to another point
of c via a rule. As a consequence, we note that the projection a rule through c(θ) to
the xy-plane cannot be transverse to c. Indeed, if the projection were transverse, then
it would intersect another point on c. As S is assumed to be a graph, this rule would
then be forced to intersect another point on c. Now, consider the rule through c(θ).
It is the limit of rules connecting points near c(θ). In other words, it is the limit of
secant lines and hence must be a tangent line to c and c(θ). �

We next consider the relationship between two points on c which are connected
by a rule on a spanning H-minimal surface.

Lemma 6.4. Suppose c(θ1) and c(θ2) are connected by a rule, L, of a ruled surface
spanning c. Then c′

3(θ2) is proportional to the third coordinate of the parallel trans-
lation of c′(θ1) along L. The proportionality constant is given as the derivative at the
point c(θ2) of the parametrization of the curve induced by the ruling around c(θ2).
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Proof. Without loss of generality, we may assume that θ1 = 0 and c(0) = 0 via
a reparametrization of c and a composition with left translation in the Heisenberg
group. By hypothesis, A(0) contains the point c(θ2) which, by abuse of notation, we
will still identify by the parameter value θ2 despite having reparametrized the curve.
Note, that under this renormalization, the rule L can be parametrized as

L(τ ) = (τc1(θ2), τc2(θ2), 0).

Moreover, the assumption that c lies on a ruled surface implies that there exists a
mapping ϕ : (−ε, ε) → (θ2 − δ, θ2 + δ) (with appropriately small ε and δ) so that
c(ϕ(t)) ∈ A(c(t)) for t ∈ (−ε, ε) and c(t) is connected to c(ϕ(t)) by a rule. Thus,
by the definition of A(θ) we have

c3(ϕ(t)) − c3(t) − 1

2
c1(ϕ(t))c2(t) + 1

2
c1(t)c2(ϕ(t)) = 0. (27)

Taking a derivative at t = 0 and recalling that c1(0) = 0 = c2(0) we get

c′
3(θ2)ϕ

′(0) = c′
3(0) − 1

2
c(θ2) · (c′

2(0), −c′
1(0)). (28)

Next we note that the vector field

W = c′
1(0) X1 + c′

2(0) X2 + (
c′

3(0) + τ

2
(c(θ2) · (c′

2(0), −c′
1(0))

)
T

is parallel along L. Indeed, the tangent field to L is given by

V = c1(θ2) X1 + c2(θ2) X2

and a direct computation shows that V W = 0. Since the third coordinate of W

at τ = 1 is proportional to the expression in equation (28), we have the desired
result. �

Remark 4. Geometrically, this says that the height function, relative to translation
in the Heisenberg group, remains constant along the rules. Thus, H-minimal surfaces
are significantly more limited than ruled surfaces in Euclidean R

3. A comparable
class of ruled surfaces in R

3 would be those ruled surfaces that contain only rules
parallel to the xy-plane.

6.1. Curves with isolated points. We next turn to the problem of identifying curves
that have ruled H-minimal spanning surfaces. We begin with an investigation of curves
that have isolated points.

Lemma 6.5. Suppose c is a C2 curve in H
1 and c(θ0) is an isolated point. Then

there is an open neighborhood, I = (θ0 − ε, θ0 + δ), where c|I sits on a piece of a
ruled surface.
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Proof. Note that, without loss of generality, by composing with a left translation and
reparametrizing the curve, we may assume that θ0 = 0 and that c(0) = 0. We are
attempting to parametrize a piece of the curve for t ∈ (−ε, 0] in terms of parameter
values t ∈ [0, δ) by associating a ϕ(t) ∈ (−ε, 0] to t ∈ [0, δ). So, we will construct a
map ϕ : [0, δ) → (−ε, 0] with ϕ(0) = 0 so that A(t) contains ϕ(t). By the definition
of A, this implies that

c3(ϕ(t)) − c3(t) − 1

2
c(ϕ(t)) · c(t)⊥ = 0. (29)

Differentiating with respect to t solving for ϕ′(t), we get

ϕ′(t) = c′
3(t) + 1

2c(ϕ(t)) · c′(t)⊥

c′
3(ϕ(t)) − 1

2c′(ϕ(t)) · c(t)⊥
= c′

3(t) + 1
2c(ϕ(t)) · c′(t)⊥

c′
3(ϕ(t)) + 1

2c(t) · c′(ϕ(t))⊥
. (30)

Note that, at t = 0, recalling that c(0) = 0, we see that

ϕ′(0) = c′′
3(0)

ϕ′(0)c′′
3(0)

�⇒ ϕ′(0)2 = 1.

Thus, for at least a small time, ϕ(t), defined implicitly by (29), exists and hence, for
some interval I , there exists a ruled surface spanning c|I . �

Remark 5. In the proof above, we see the obstruction – to be able to span a given
curve with a ruled surface we must be able to find a function ϕ describing how to
connect points on c via rules that is monotone.

Example 2. Consider the curve (see Figure 4a)

c1(θ) = (1 − cos(θ), sin(θ), 2 − 2 cos(θ) + sin(θ) − sin(θ) cos(θ))

for θ ∈ [0, 2π). We quickly compute that

A(θ0) = {
θ | 2 cos(θ0) + 1

2
sin(θ0) + sin(θ0) cos(θ0) − 2 cos(θ)

+ 1

2
sin(θ) − sin(θ) cos(θ) + 1

2
(sin(θ) cos(θ0) − sin(θ0) cos(θ))

}
and note that for θ0 = 0,

A(0) = {θ | 2 − 2 cos(θ) + sin(θ) − sin(θ) cos(θ) = 0} = {2nπ}.
Thus θ0 = 0 is an isolated point. Considering θ as a function of θ0, we see in Figure 4b
that there is another isolated point for θ0 slightly less than π . We will denote this value
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of θ0 by α. Observing Figure 4b, we see that for each θ0 = (0, α) we can connect
c1(θ0) to the unique point c1(ϕ(θ0)). Figure 4c illustrates several of the constructed
rules connecting points on the curve and Figure 4d shows the projections of Figure 4c
to the xy-plane.
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Figure 4. An example without an obstruction.

Of course, the example above is just about as well behaved as possible. However,
the situation is often much more complicated. For example, if one considers the curve

c(θ) = (1 − cos(θ), sin(θ), sin(4 sin(θ)(1 − cos(θ)))).
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Figure 5 shows θ plotted as a function of θ0 (as in Figure 4b in the previous example).
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Figure 5. A more complicated example.

Example 3. In this example, we show an instance of the obstruction. In this case
ϕ′(t) changes sign and we explore the effect of the sign change when building the
ruled surface. Consider the curve (see Figure 6a)

c2(θ) = (1 − cos(θ), sin(θ), 1/5 − 1/5 cos(θ) + sin2(θ)).

In this case, as in the first case, θ0 = 0 is an isolated point and we can begin
constructing a ruled surface. Figure 6b shows θ plotted as a function of θ0. While
tedious computation can confirm this, the figure clearly shows that ϕ′ changes sign
at roughly π

2 . Figures 6c and 6d illustrate how the construction fails – endpoints of
the rules “backtrack” on the curve, creating a folded surface which, of course, is no
longer a graph.

We end this discussion by noting the genericity of each of these classes. As the
obstruction is defined by the monotonicity of ϕ, we note that strict monotonicity and
non-monotonicity are open conditions in the C1 topology by the implicit function
theorem. To make this precise, we make the following definition.

Definition 6.6. A C2 curve c is generically nonmonotone if there exists an ε > 0 so
that for any associated function ϕ, there are parameter values t1, t2 so that ϕ′(t1) > ε

and ϕ′(t2) < −ε.

Proposition 6.7. Suppose for a given c ∈ C2, there exists a C1 ruled spanning
H-minimal graph. If the associated function ϕ is strictly monotone, then there ex-
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ists an open neighborhood, G, of C2 closed curves with respect to the C1 topol-
ogy containing c so that any curve in G has no obstruction to building a C1 ruled
H-minimal spanning surface.

In addition, if d is a C2 generically nonmonotone curve, then there exists an
open neighborhood of d with respect to the C1 topology so that any curve in this
neighborhood cannot be spanned by a ruled minimal graph.
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(b) θ vs. θ0
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(c) Some rules of the spanning surface
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(d) Projection to the xy-plane

Figure 6. An example with an obstruction.

Proof. This is a consequence of formula (30). For example, assume that ϕ is strictly
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monotone decreasing:

ϕ′(t) = c′
3(t) + 1

2c(ϕ(t)) · c′(t)⊥

c′
3(ϕ(t)) + 1

2c(t) · c′(ϕ(t))⊥
< −a2 < 0.

Then, if we replace c(t) with c̃(t) = c(t) + ε(t) where |ε(t)| < δ and |ε′(t)| < δ, we
have

ϕ′
ε(t) = c̃′

3(t) + 1
2 c̃(ϕ(t)) · c̃′(t)⊥

c̃′
3(ϕ(t)) + 1

2 c̃(t) · c̃′(ϕ(t))⊥

< −a2 + oδ(1).

Thus, for δ sufficiently small (i.e. c̃ sufficiently close to c in the C1 topology), ϕ′
ε

is strictly monotone decreasing. A similar argument shows the same genericity result
for curves where ϕ is generically nonmonotone. �

6.2. Totally non-Legendrian curves

Theorem 6.8. Suppose c is a C1 curve with no Legendrian points which is contained
in an open C1 ruled H-minimal graph, S. Then there exists an interval, I , so that
c(I ) is contained in a plane.

Proof. We first record some easy observations:
• S cannot have a characteristic point at any point of c. If c(t0) were a characteristic

point, then any smooth curve through c(t0) would be tangent to Hc(t0), including
c itself.

• Consider a point c(t0) and let γ be a seed curve through c(t0). Use Theorem A
to parameterize a neighborhood, N , of c(t0) that includes c(t) for t ∈ J where J

is an appropriate interval containing t0. By the non-Legendrian assumption and
continuity of the normal vector, we may assume that there are no characteristic
points in N and hence, by Theorem 3.8, γ ∈ C2. Using the parametrization
given by Theorem A, there exist functions s(t) and r(t) so that c(t) ∩ N is
parametrized by(
γ1(s(t)) + r(t)γ ′

2(s(t)), γ2(s(t)) − r(t)γ ′
1(s(t)), h0(s(t)) − r(t)

2
γ · γ ′(s(t))

)
.

• A rule through c(t0) is transverse to c(t). Indeed, if the rule were tangent then,
by definition, c(t0) is Legendrian.

• For every t ∈ J , γ (s(t)) is twice differentiable and, applying formula (18) at
these points determines the characteristic points along the rules passing through
those points.
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Let Lt (r) be the rule through c(t) and let Lt (r) be the projection of the rule to
the xy-plane.

Claim. There exists two rules of S that intersect in the interior of the portion of S

bounded by c.

To show the claim, we assume there are no such rules. First pick a parameter
value θ1 and let Lθ1(r) be the rule through c(θ1). Under the assumption that the
rule does not intersect any other rules inside c, it must intersect another point on c,
dividing c (and the surface) into two parts. Next, pick a parameter value, θ2, so that
c(θ2) is on the “left hand side” of the cut (see Figure 7). The rule, Lθ2(r) again must
cut the remaining portion into two parts. We continue this iterative process, picking
a sequence of parameter values {θi}. By construction, this sequence must converge
to a value θ∞. Moreover, if the rule Lθ∞(r) does not intersect any of the {Lθi

(r)}, it
must be tangent to c at θ∞. This implies that c(θ∞) is a Legendrian point, violating
the hypothesis.

θ2

θ3

θ1

Figure 7. Heuristic for picking points in the proof of Theorem 6.8.

Now, by the claim, we can pick t1, t2 so that Lt1(r) ∩ Lt2(r) �= ∅. Then the
projection of these two rules must not be parallel and hence, as the projections are
lines, they must intersect in a single point, {x}. As S is a graph over the xy-plane, we
see that Lt1(r) ∩ Lt2(r) = {x} where x is the point on S over x. By Lemma 3.11, x

must be a characteristic point of S. A consequence of this observation is that⋂
t∈J

Lt = {x}.

Suppose that this claim is not true, i.e. that there exists t0 so that Lt1(r)∩Lt0(r) =
{x′} �= {x}. Then along Lt1 there must be 2 characteristic points. By Lemma 3.12,
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as S is a graph over the xy-plane, this cannot happen. Using a left translation, we
may assume that {x} is the origin. Let I be the interval between t0 and t1.

Denote the portion of S bounded by c(I ), Lt0(r) and Lt1(r) by S0. We finish the
proof by showing that S0 is a portion of a plane. Since the origin is a characteristic
point, S must be tangent to the xy-plane at the origin. As each rule is a horizontal
straight line and every rule in S0 passes through the origin, we have that every such
rule lies in the xy-plane. Thus, S0 is a piece of the xy-plane and so c(I ) is planar.

�

Corollary 6.9. If c is a smooth curve with no Legendrian points and no portion of c

is contained in a plane then c cannot be spanned by a C1 ruled H-minimal graph.

In particular, the solution to the Plateau Problem for such a curve cannot be C2

and, if it is C1, cannot be a ruled surface. The best result in this case would be a C1

H -minimal surface composed of ruled C1 H -minimal patches glued along common
intersections.

Example 4. Let
c(θ) = (1 − cos(θ), sin(θ), f (θ)).

Then,

c′(θ) = sin(θ) X1 + cos(θ) X2 +
(

f ′(θ) − cos(θ)

2
+ 1

2

)
T .

Thus, for any periodic f so that∣∣∣∣f ′(θ) − cos(θ)

2
+ 1

2

∣∣∣∣ > ε > 0

for some fixed ε, we have an example that is totally non-Legendrian.
An explicit example is given by

f (θ) = 1

2
sin(θ) + 1

8
sin2(θ).

It is easy to show that no portion of this curve is planar.

A. Integral curves of continuous vector fields

In this appendix, we will review the existence of integral curves for continuous vector
fields and prove some results needed in the main body of the paper. The results
here are consequences of Picard’s standard iterative construction of solutions to first
order ordinary differential equations (see, for example, [13]). Our only modification
is to restrict our view to merely continuous vector fields (as opposed to Lipschitz
continuous ones). We make the following standing assumptions:
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(1) Let X be a vector field defined on a compact domain �.

(2) Let {Xk} be a sequence of C∞ vector fields, defined on �, which converge
uniformly to X on �.

Let {Mk} be a sequence constants tending to zero so that |Xk − X| ≤ Mk on �.
By compactness and the continuity of X, there exist constant M and a non-increasing
continuous function C : R+ → R+ with C(0) = 0 so that

M = max
�

|X|

and for x, y ∈ �,
|X(x) − X(y)| ≤ C(|x − y|).

By the compactness of � and the continuity of Xk , we have, for each k, constants
M(k) and non-increasing continuous functions Ck : R+ → R+ with Ck(0) = 0 so
that

M(k) = max
�

|Xk|.
Moreover, since Xk → X uniformly on �, there exists a constant α so that

M(k) ≤ αM

for all k. Next, we construct integral curves for X and Xk emanating from a point
x0 ∈ � using Picard’s approximation method. To do so, let

ϕ0
0(t) = 0, ϕk

0(t) = 0

and

ϕ0
n(t) = x0 +

∫ t

0
X(ϕ0

n−1(s)) ds, ϕk
n(t) = x0 +

∫ t

0
Xk(ϕ

k
n−1(s)) ds.

Lemma A.1. {ϕ0
n} has a subsequence which converges uniformly on �.

Proof. First, since

|ϕ0
n(t)| =

∣∣∣x0 +
∫ t

0
X(ϕ0

n−1(s)) ds

∣∣∣ ≤ |x0| +
∫ t

0
|X(ϕ0

n−1(s))| ds ≤ |x0| + Mt

we have that the sequence is pointwise bounded. Second, since

|ϕ0
n(t1) − ϕ0

n(t0)| =
∣∣∣∣
∫ t1

t0

X(ϕn−1(s)) ds

∣∣∣∣ ≤ M|t1 − t0|

we have that the sequence is equicontinuous (in fact uniformly Lipschitz). By the
theorem of Arzela–Ascoli, there exists a subsequence that converges uniformly on �.

�
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We note that the same argument applies (with appropriately defined constants) for
{ϕk

n} as well:

Lemma A.2. {ϕk
n}k,n has a subsequence which converges uniformly (in both k and n)

on �.

Proof. As in the previous lemma, we have

|ϕk
n(t)| ≤ |x0| +

∫ t

0
|Xk(ϕ

k
n−1(s))| ds ≤ |x0| + tM(k) ≤ |x0| + tαM.

In other words, the sequence is pointwise bounded in both k and n. Next,

|ϕk
n(t1) − ϕk

n(t0)| ≤
∫ t1

t0

|Xk(ϕ
k
n−1(s))| ds ≤ M(k)|t1 − t0| ≤ αM|t1 − t0|.

And so the sequence is equicontinuous as well. Thus, by the theorem of Arzela–
Ascoli, we may extract a subsequence that converges uniformly in both k and n on �.

�

For the purposes of this discussion, we assume that we have taken the appropriate
subsequences so that ϕ0

n → ϕ0 and ϕk
n → ϕk uniformly on �. This gives us the

existence of integral curves for these vector fields. Of course, these integral curves
may not be unique.

We next show that, using these integral curves, Xk(ϕ
k(t)) → X(ϕ0(t)).

Lemma A.3.

|ϕk
n(t) − ϕ0

n(t)| ≤ Mkt + Cn−1(k, t),

where

Cm(k, t) = tC(Mkt + tC(Mkt + tC(Mkt + · · · + tC(Mkt))))

and the nested applications of the function C occur m times.

Proof. We proceed by induction. First, we note several initial cases:

|ϕk
0(t) − ϕ0

0(t)| = 0,

|ϕk
1(t) − ϕ0

1(t)| ≤
∫ t

0
|Xk(0) − X(0)| ds ≤ Mkt = Mkt + C0(k, t),
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|ϕk
2(t) − ϕ0

2(t)| ≤
∫ t

0
|Xk(ϕ

k
1(s)) − X(ϕ0

1(s))| ds

≤ Mkt +
∫ t

0
|X(ϕk

1(s)) − X(ϕ0
1(s))| ds

≤ Mkt +
∫ t

0
C(|ϕk

1(s) − ϕ0
1(s)|) ds

≤ Mkt + tC(Mkt) (by the previous calculation)

= Mkt + C1(k, t).

(31)

Now assume that

|ϕk
n−1(t) − ϕ0

n−1(t)| ≤ Mkt + tCn−2(k, t).

Then

|ϕk
n(t) − ϕ0

n(t)| ≤
∫ t

0
|Xk(ϕ

k
n−1(s)) − X(ϕ0

n−1(s))| ds

≤ Mkt +
∫ t

0
|X(ϕk

n−1(s)) − X(ϕ0
n−1(s))| ds

≤ Mkt +
∫ t

0
C(|ϕk

n−1(s) − ϕ0
n−1(s)|) ds (32)

≤ Mkt +
∫ t

0
C(Mkt + Cn−1(k, t)) ds (by the induction hypothesis)

≤ Mkt + tC((Mkt + Cn−1(k, t))) = Mkt + Cn(k, t).

This completes the induction and the proof. �

We note that as Mk is a coefficient in every term of each argument of C in Cm(k, t)

and C(0) = 0, we have that limk→∞ Cm(k, t) = 0 as limk→∞ Mk = 0. Moreover,
in light of Lemma A.2, we know that ϕk

n tends to some function uniformly as k → ∞,
we see that the previous lemma implies that ϕk

n → ϕ0
n as k → ∞.

We now prove the claim:

Lemma A.4. limk→∞ |Xk(ϕ
k(t)) − X(ϕ0(t))| = 0.

Proof.

lim
k→∞ |Xk(ϕ

k(t)) − X(ϕ0(t))| = lim
k→∞ lim

n→∞ |Xk(ϕ
k
n(t)) − X(ϕ0

n(t))|
= lim

n→∞ lim
k→∞ |Xk(ϕ

k
n(t)) − X(ϕ0

n(t))|
= lim

n→∞ |X(ϕ0
n(t)) − X(ϕ0

n(t))| = 0.
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In the second equality, we may switch the order of the limits because ϕk
n → ϕk

uniformly in both � and k as n → 0 by Lemma A.2. �
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