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Fixed point sets of parabolic isometries of CAT(0)-spaces
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Abstract. We study the fixed point set in the ideal boundary of a parabolic isometry of a proper
CAT(0)-space. We show that the radius of the fixed point set is at most π/2, and study its
centers. As a consequence, we prove that the set of fixed points is contractible with respect to
the Tits topology.
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1. Introduction

CAT(0)-spaces are generalizations of Hadamard manifolds in Riemannian geome-
try to geodesic spaces. The classification of isometries of the hyperbolic plane into
elliptic, hyperbolic, and parabolic applies to the CAT(0) setting. The flat torus the-
orem (cf. [B], [BH]), which is one of the important results concerning hyperbolic
isometries, remains true for CAT(0)-spaces.

In the study of isometries of Hadamard manifolds and CAT(0)-spaces, hyperbolic
isometries have been extensive. We remark that in a cocompact, proper, isometric
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group action, there are no parabolic isometries. However, if one does not include the
cocompactness assumption, then the group could contain parabolics.

In this paper, we focus on parabolic isometries of CAT(0)-spaces. We generalize
the results of Schroeder fromAppendix 3 in [BGS] on the fixed point set of a parabolic
isometry in the ideal boundary of an Hadamard manifold to the setting of proper
CAT(0)-spaces. Our results are not straightforward generalizations since much less
has been known concerning analysis on proper CAT(0)-spaces than on Hadamard
manifolds. As a new ingredient in our argument, we study the geometry of complete
improper CAT(1)-spaces. We then apply the results to the Tits ideal boundary of a
CAT(0)-space. At the end, as an example of our theorems, we examine a symmetric
space in detail.

1.1. Main theorems and examples. LetX be a complete CAT(0)-space andX(∞)

the ideal boundary of X defined as the asymptotic classes of rays in X. We classify
an isometry f of X as elliptic, hyperbolic (or axial), or parabolic. f is called elliptic
if it has a fixed point in X, and hyperbolic if there exists an invariant geodesic line,
called axis, γ in X such that f acts on γ by a non-trivial translation. If f is neither
elliptic nor hyperbolic, then it is called parabolic. We recall that f is parabolic if
and only if the displacement function df (p) := d(p, f (p)) of f does not attain its
infimum in X. X(∞) is equipped with a natural topology called sphere topology.
Any isometry of X also acts as a homeomorphism of X(∞) since the isometry takes
geodesics to geodesics.

It is known that if X is proper (i.e., any closed bounded subset is compact), then
any parabolic isometry ofX has at least one fixed point inX(∞) (cf. [B], [BH]). This
does not necessarily hold ifX is improper. In fact, there is an example of a parabolic
isometry f of a separable Hilbert spaceX of infinite dimension, which is an improper
CAT(0)-space, such that f has no fixed point in X(∞) (and in X) (cf. [BH]). We
denote by Xf (∞) the fixed point set of f in X(∞).

The ideal boundaryX(∞) has a natural metric, called the Tits metric, denoted Td.
The metric space (X(∞),Td), the Tits ideal boundary, is a complete CAT(1)-space.
The topology defined by the Tits metric onX(∞) is stronger than the sphere topology.

For a metric space (Y, d), we define

rad Y = rad(Y, d) := inf
x∈Y

sup
y∈Y

d(x, y),

which is called the radius of Y . For p ∈ X, we denote by�pX the space of directions
at p. As one of the main results of this paper, we state the following:

Theorem 1.1. Let X be a proper CAT(0)-space such that �pX is compact for every
p ∈ X, and letf be a parabolic isometry ofX. Then we have rad(Xf (∞),Td) ≤ π/2.
In particular, (Xf (∞),Td) is contractible.
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Schroeder has proved Theorem 1.1 for smooth Hadamard manifolds inAppendix 3
in [BGS]. We remark that π/2 is the optimal upper bound of radXf (∞) even
for Hadamard manifolds (cf. Example 1.4). We also have some examples with
0 < radXf (∞) < π/2 (cf. Examples 1.5 and 1.6). Notice that if X is proper
and geodesically complete, then �pX is compact for any p ∈ X.

Recall that X is visible if and only if Td(x, y) = ∞ for any distinct points
x, y ∈ X(∞). By Theorem 1.1, we immediately obtain:

Corollary 1.2. Under the same assumption as in Theorem 1.1, if X is visible, then
Xf (∞) consists of a single point.

Buyalo [Bu] has shown that if X is a complete, not necessarily proper, Gromov-
hyperbolic CAT(0)-space, then the infimum of the displacement function of any
parabolic isometry f of X is equal to zero, and Xf (∞) consists of a single point.
LetX be a proper CAT(0)-space. IfX is Gromov-hyperbolic, thenX is visible. IfX
admits a cocompact group action, then the converse is true (cf. [BH]).

Next, we study the centers ofXf (∞). A center of a metric space (Y, d) is a point
in Y where the function Y � x �→ supy∈Y d(x, y) ∈ [0,∞] attains the infimum,
rad Y . We denote by C(A) the set of all centers ofA, and define C2(Y ) := C(C(Y )).

Theorem 1.3. Let X be a proper CAT(0)-space of finite covering dimension such
that �pX is compact for every p ∈ X. Let f be a parabolic isometry of X. Then
C2(Xf (∞)) consists of a single point, which is fixed by any isometry of X leaving
Xf (∞) invariant. In particular, the point is a fixed point of any isometry of X
commuting f .

Theorem 1.3 for Hadamard manifolds has been shown by Eberlein [E] following
Schroeder’s work in Appendix 3 in [BGS].

We give some examples.

Example 1.4. Let us denote the hyperbolic plane by H
2. We consider the product

Riemannian manifoldX := R × H
2 × · · · × H

2︸ ︷︷ ︸
m times

,m ≥ 1. Form parabolic isometries

h1, h2, . . . , hm of H
2, we define the product map f := (idR, h1, . . . , hm), where idR

is the identity map on R. f is a parabolic isometry of X. We denote by S
m−1(1) the

standard unit (m− 1)-sphere in the Euclidean m-space E
m and set


m−1
1 := {(x1, . . . , xm) ∈ S

m−1(1) ⊂ E
m | xi ≥ 0 for all i}, (1.1)

which we call the standard spherical (m − 1)-simplex. Xf (∞) is isometric to the
spherical suspension over
m−1

1 . We refer [BBI] for the definition of spherical suspen-
sion. We have radXf (∞) = π/2. C(Xf (∞)) is isometric to 
m−1

1 andC2(Xf (∞))

consists of the barycenter of 
m−1
1 .
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The following example is discussed in Section 6.

Example 1.5. We consider X := SL(3,R)/SO(3), which is a five-dimensional,
irreducible symmetric space of non-compact type and rank two. SL(3,R) is the
identity component of the isometry group ofX. The Tits ideal boundary (X(∞),Td)
is a thick spherical building of dimension one. Weyl chambers ofX are corresponding
to edges of the building (X(∞),Td) and any edge has length π/3. By Theorem 6.1,
for any parabolic isometry f ∈ SL(3,R) of X, Xf (∞) is one of the following:

(1) an edge,

(2) a closed interval of length π consisting of three edges,

(3) the union of an edge c and all edges incident to c.

In (3), Xf (∞) has uncountably many edges.

For the irreducible symmetric space X := SL(n,R)/SO(n), n ≥ 3, let f be any
isometry ofX. Since for any Weyl chamber c at infinity, f c∩ c is a (possibly empty)
face of c and since rad c ≥ π/6 (cf. [BH]), we have either radXf (∞) = 0 or ≥ π/6.

For any given θ ∈ (0, π/2), we have an example with radXf (∞) = θ , where X
is a manifold with boundary.

Example 1.6. Let h be a parabolic isometry of H
2 and x its fixed point in H

2(∞).
Let γ be a ray in H

2 tending to x, and bγ the Busemann function associated with γ
(see Section 2 for the definition of bγ ). Note that h leaves every horosphere b−1

γ (t)

invariant. For an arbitrarily given θ ∈ (0, π/2), we consider the closed convex subset

X := {(p, s) ∈ H
2 × R | bγ (p) ≤ −t, |s| ≤ t sin θ for some t ≥ 0}

of H
2 × R. X is a proper CAT(0)-space and (X(∞),Td) is isometric to a closed

interval of length 2θ whose midpoint corresponds to x. The product map (h, idR)

leaves X invariant, and its restriction, f , on X is a parabolic isometry of X. Since
Xf (∞) coincides with X(∞), we have radXf (∞) = θ .

1.2. Key ideas of the proof of main theorems. We prove Theorem 1.1 in Section 3
by using the gradient curves for the displacement function, the existence of which is
established by Jost and Mayer ([J], [M]). Our proof is based on Schroeder’s original
argument for Hadamard manifolds in Appendix 3 in [BGS]. Since a CAT(0)-spaceX
is not differentiable in general, we need to investigate the directional derivatives of a
Lipschitz continuous, convex function onX. It is non-trivial to prove a first variation
formula for such a function (see Lemma 3.5).

For Theorem 1.3, the original proof in [BGS] does not seem to work for a CAT(0)-
space. We take a new approach using the geometry of the Tits ideal boundary
(X(∞),Td) as explained in the following.
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For a topological space Y , dimC Y is defined as the supremum of the covering di-
mensions of compact subsets of Y (cf. [K]). A key theorem needed for understanding
the set of centers of Xf (∞) is the following.

Theorem 1.7. Let Y be a complete CAT(1)-space of dimC Y < ∞ and diameter
diam Y ≤ π/2. Then there exists a constant δ > 0, which depends only on dimC Y ,
such that rad Y ≤ π/2 − δ. In particular, C(Y ) consists of a single point.

Schroeder has shown the same statement if Y is a closed convex subset of the
unit sphere of dimension n in Appendix 3 in [BGS]. The basic strategy of the proof
is following [BGS], however the proof is more delicate because Y is possibly non-
compact. Namely, we cannot avoid a discussion of error estimates (i.e., the estimate
of δ). We only need rad Y < π/2 for Theorem 1.3.

It is necessary for Theorem 1.7 that dimC Y is finite. In fact, the inductive limit,
Y , of the standard spherical (m− 1)-simplices 
m−1

1 ,m = 1, 2, . . . , given in (1.1) is
a complete CAT(1)-space such that dimC Y = ∞, diam Y = π/2, and rad Y = π/2.

For applying Theorem 1.7 to Y := Xf (∞), we need the next result.

Proposition 1.8. For a proper CAT(0)-space X we have

dimC(X(∞),Td) ≤ dimX − 1,

where dimX denotes the covering dimension of X.

Theorem C in [K] implies Proposition 1.8, provided thatX has a cocompact group
action. For the proof of the proposition, we use a result in [FSY] on the dimension
of X(∞) with sphere topology. There is another way to obtain the proposition using
Lemma 11.1 of [L]. We would like to thank A. Lytchak for bringing his work to our
attention. We do not know whether dimC in Proposition 1.8 can be replaced with the
covering dimension.

Theorem 1.3 is proved as follows. By Theorem 1.1, Y := C(Xf (∞)) has
diam Y ≤ π/2. Proposition 1.8 implies dimC Y < ∞. Therefore, applying The-
orem 1.7, we obtain Theorem 1.3. The details are given in Section 3.5.

We would like to thank the referee for carefully reading the original manuscript
and giving helpful comments.

2. Preliminaries

A minimizing geodesic is, by definition, a length-minimizing curve joining two points
in a metric space. We assume that all minimizing geodesics have unit speed parame-
ters. Denote by γpq a minimizing geodesic from a point p to a point q, and by [p, q]
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its image. A geodesic triangle 
(p, q, r) means a triple of minimizing geodesics
γpq , γqr , and γrp for three points p, q, and r , called vertices.

For κ ∈ R, let M2
κ be a complete, simply connected model surface of constant

curvature κ . We set Dκ := diamM2
κ . Note that Dκ is equal to π/

√
κ if κ > 0, and

to ∞ if κ ≤ 0. We say that a metric space X is a CAT(κ)-space if the following
properties (1) and (2) are satisfied.

(1) Any two points p, q ∈ X with d(p, q) < Dκ can be joined by a minimizing
geodesic in X.

(2) (CAT(κ)-inequality) Let 
(p, q, r) be any geodesic triangle inXwith perimeter
< 2Dκ and 
( p̃, q̃, r̃ ) a comparison triangle of it in M2

κ , i.e., having the
same side lengths as 
( p̃, q̃, r̃ ). For any four points x ∈ [p, q], y ∈ [r, p],
x̃ ∈ [ p̃, q̃ ], and ỹ ∈ [ r̃ , p̃ ] such that d(p, x) = d( p̃, x̃ ) and d(p, y) =
d( p̃, ỹ ), we have

d(x, y) ≤ d( x̃, ỹ ),

where d denotes the distance function.

LetX be a CAT(κ)-space. A minimizing geodesicγpq joining two pointsp, q ∈ X
with d(p, q) < Dκ is unique. For p ∈ X and q1, q2 ∈ X \ {p}, we denote by
�
p(γpq1, γpq2) the angle atp between γpq1 and γpq2 . �

p is a pseudo-distance function
on the set of all minimizing geodesics emanating from p. The quotient metric space
by the relation �

p = 0 is denoted by �∗
pX. Let �pX be the �

p-completion of �∗
pX,

which is called the space of directions at p. We denote by CpX the Euclidean cone
over�pX, and call this the tangent cone at p. �pX is a complete CAT(1)-space and
CpX is a complete CAT(0)-space. We denote by γ̇ (0) the equivalence class in �∗

pX

of a minimizing geodesic γ from p.
Assume that X is a complete CAT(0)-space. Two rays γ, σ : [0,+∞) → X are

said to be asymptotic if d(γ (t), σ (t)) is uniformly bounded for all t ≥ 0. The ideal
boundary X(∞) of X is defined as the set of all asymptotic equivalence classes of
rays inX. X(∞) is equipped with the sphere topology, which is the restriction of the
cone topology (cf. II.8 [BH]) on X � X(∞). We denote by γ (∞) the equivalence
class in X(∞) of a ray γ in X. For any p ∈ X and x ∈ X(∞) there exists a unique
ray γpx : [0,∞) → X from p to γ (∞) = x.

For x, y ∈ X(∞), we set � (x, y) := supp∈X �
p(x, y), the angle distance between

x and y, where we write �
p(x, y) := �

p(γpx, γpy). Note that � is a distance function
on X(∞) and is lower semi-continuous with respect to the sphere topology. We
remark that ifX is proper, thenX(∞) is compact with respect to the sphere topology.
The Tits distance on X(∞), denoted by Td, is the interior distance induced from
� . We have � = min{Td, π}. The Tits ideal boundary (X(∞),Td) of X is a
complete CAT(1)-space, which is non-compact in general. The Busemann function
bγ : X → R associated to a ray γ in X is defined as

bγ (p) := lim
t→∞{d(p, γ (t))− t}.
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This is a 1-Lipschitz continuous, convex function with bγ (γ (0)) = 0.
A subset A of a metric space X is said to be convex in X if any x, y ∈ A can be

joined by a minimizing geodesic and the image of every such geodesic is contained
in A. If this condition holds only for any x, y ∈ A with d(x, y) < r , then A is said
to be r-convex in X.

Let B be a closed subset of a metric space X. We define a function dB : X →
[0,∞) by dB(p) := d(p, B), the distance function from B. For p ∈ X \ B, we
denote by γpB a minimizing geodesic in X from p to B, i.e., to a point q ∈ B with
dB(p) = d(p, q).

Assume that B is a closed, convex subset of a complete CAT(0)-space. Then, for
any p ∈ X there exists a unique point q ∈ B with dB(p) = dB(p, q), in particular,
γpq = γpB . We note that dB is a 1-Lipschitz continuous, convex function.

3. Estimate of radii of fixed point sets

We prove Theorem 1.1.

3.1. Directional derivatives of convex functions. Let X be a complete CAT(0)-
space and F : X → R a locally Lipschitz continuous, convex function. We discuss
the directional derivatives of F . For any geodesic γ in X, F � γ has the left and
right derivatives. Recall that the tangent cone CpX is the quotient space [0,+∞)×
�pX/{0}×�pX. We identify the subspace {1}×�pX ofCpXwith�pX. Denote any
element (t, v) ∈ CpX by tv and define |tv| := t . Let C∗

pX := [0,∞)×�∗
pX/{0} ×

�∗
pX ⊂ CpX. The directional derivative DpF : C∗

pX → R of F at a point p ∈ X is
defined as

DpF(tv) := lim
s→0+

F(γv(s))− F(γv(0))

s
t,

where γv is a minimizing geodesic from p with v = γ̇v(0). The existence of the limit
above is guaranteed by the convexity of F . DpF(tv) is independent of the choice of
γv . DpF extends to a unique Lipschitz continuous function onCpX, which is convex
(cf. Lemma 2.4 in [K]). Moreover, it is linear along each ray from the vertex op of
CpX.

Assume that �pX is compact for every p ∈ X. We say that a point p ∈ X is a
critical point of F if DpF(u) ≥ 0 for every u ∈ �pX. Note that, by the convexity
of F , a point is critical for F if and only if it is a minimizer of F . For more general
functions, such as c-convex functions (cf. [BBI]), this is not true and we still have some
local properties stated below, e.g. Theorem 3.1 and Lemma 3.5. By the convexity of
DpF and the compactness of �pX, for any non-critical point p of F , there exists a
unique direction up ∈ �pX where DpF |�pX attains its minimum (< 0). We call up
the gradient direction of −F at p. Define the gradient vector gradp(−F) ∈ CpX
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of −F at a point p by

gradp(−F) := |DpF(up)|up ∈ CpX
if p is non-critical, and by gradp(−F) := op (the vertex) if p is critical. It follows
that | gradp(−F)| = −DpF(up).
3.2. Jost–Mayer’s gradient curves. The following theorem is a restricted version
of a result in [J], [M].

Theorem 3.1 ([J], [M]). LetX be a complete CAT(0)-space such that�pX is compact
for every p ∈ X, and let F : X → R be a convex function. Then, for every p ∈ X

there exists a Lipschitz continuous curve cp : [0,∞) → X from p = cp(0), called
the gradient curve from p for −F , such that for any t ≥ 0 we have

(1) lim
s→0+

d(cp(t + s), cp(t))

s
= lim
s→0+

−F � cp(t + s)+ F � cp(t)
d(cp(t + s), cp(t))

= lim sup
q→cp(t)

−F(q)+ F(cp(t))

d(q, cp(t))

= | gradcp(t)(−F)|,

(2) (F � cp)′+(t) = | gradcp(t)(−F)|2,
where (F � cp)′+(t) is the right derivative of F � cp at t . Moreover, for any r ≥ 0, the
gradient curve ccp(t) from cp(t) for −F satisfies

ccp(t)(r) = cp(t + r).

Under the same assumption as in Theorem 3.1, we have:

Lemma 3.2. For the gradient curve cp from p of −F , the right tangent vector
(ċp)+(0) ∈ CpX exists and coincides with gradp(−F).

Proof. By taking a sequence {si} with si → 0+, we have a limit v ∈ �pX of the
direction γ̇pcp(si )(0) as i → ∞. By Theorem 3.1(1), DpF(v) must be equal to
DpF(up) = −| gradp(−F)|. We see that v = up by the uniqueness of the gradient
direction up. �

3.3. First variation formula. The following is well known.

Lemma 3.3. Let X be a complete CAT(0)-space.
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(1) Let B be a closed, convex subset of X. Then for any p ∈ X \ B and v ∈ �pX
we have

DpdB(v) = − cos �
p(γ̇pB(0), v).

(2) Let γ be a ray in X. Then for any p ∈ X and v ∈ �pX we have

Dpbγ (v) = − cos �
p(γ̇pγ (∞)(0), v).

Proof. (1) follows from a standard argument (cf. Section 4.5 of [BBI]).
We prove (2). Set Bt := b−1

γ (−∞,−t] for t > 0. Bt is convex in X. Let p ∈ X
be any point. If t > 0 is large enough for p, then p ∈ X \Bt and dBt (p) = bγ (p)+ t
(cf. Proposition II.8.22 in [BH]), which and (1) imply (2). �

Some variants of Lemma 3.3(1) are seen in Section 4.5 of [BBI]. Note that the
CAT(0)-condition for X is not essential for Lemma 3.3.

To prove a first variation formula for convex functions, we need a lemma.

Lemma 3.4. Let S be a sector in E
2 bounded by two distinct rays from the origin o.

Let F : S → R be a function that is linear along each ray from o. If the directional
derivative DuF : CuS → R of F at a point u ∈ S \ {o} exists, then DuF is linear
on CuS.

Lemma 3.4 is shown by a standard argument. We omit the proof.
We prove the following first variation formula.

Lemma 3.5. Let F : X → R be a locally Lipschitz continuous, convex function on a
complete CAT(0)-space X. Let p ∈ X be a non-critical point of F such that �pX is
compact. Then for any v ∈ �pX we have

DpF(v) ≥ −| gradp(−F)| cos �
p(up, v),

where up ∈ �pX is the gradient direction of −F at p.

Proof. Let v ∈ �pX be a direction. If �
p(up, v) = 0, the lemma is obvious. In the

case where �
p(up, v) = π , the minimizing geodesic γupv inCpX from up to v passes

through the vertex op, so that the convexity of DpF along γupv implies the lemma.
We assume that 0 < �

p(up, v) < π . Now consider the second derivative
DupDpF : CupCpX → R. Let S ⊂ CpX be the 2-dimensional flat sector gen-
erated by γupv . S is convex in CpX. We set ξ := γ̇upv(0) and η := γ̇upop (0),
both which belong to �upS. Note that CupS is a flat half plane in CupCpX. Take
the direction ζ ∈ �upS perpendicular to η. Setting θ := �

up(op, v), we see
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ξ = (cos θ)η + (sin θ)ζ . Since Lemma 3.4 implies the linearity of DupDpF , we
have

DupDpF(ξ) = DupDpF(η) cos θ +DupDpF(ζ ) sin θ.

The linearity ofDpF along γupop shows thatDupDpF(η) = −DpF(up) > 0. Since
up is the minimum point of DpF on �pX, we have DupDpF(ζ ) ≥ 0. Thus, by
noting 0 < θ < π/2,

DupDpF(ξ) ≥ −DpF(up) cos θ (> 0). (3.1)

It follows that the distance between up and v in CpX is equal to 2 cos θ , so that, by
the convexity of DpF along γupv ,

DpF(v) ≥ DpF(up)+ 2DupDpF(ξ) cos θ. (3.2)

Combining (3.1) and (3.2) yields

DpF(v) ≥ −DpF(up) cos 2θ = DpF(up) cos �
p(up, v),

which completes the proof of Lemma 3.5. �

Note that the equality in Lemma 3.5 does not necessarily hold. Lemma 3.5
remains true for a locally Lipschitz continuous, c-convex function F on a locally
CAT(κ)-space X, c, κ ∈ R.

3.4. Monotone points. LetX be a complete CAT(0)-space andF : X → R a convex
function. The following terminology was introduced by Eberlein in Section 4.1 of
[E] for a Riemannian manifold. A point x ∈ X(∞) is said to be F -monotone if
there exists a ray γ : [0,∞) → X with x = γ (∞) such that F � γ (t) is monotone
non-increasing in t ≥ 0. We denote by XF (∞) the set of all F -monotone points in
X(∞), called theF -monotone set. For an isometryf ofX, we recall the displacement
function df (p) := d(p, f (p)), which is a 1-Lipschitz continuous, convex function
onX. For a ray γ inX, γ (∞) is df -monotone if and only if f �γ is asymptotic to γ .
This leads to Xdf (∞) = Xf (∞).

The following lemma is obtained by the same discussion as in Section 4.1 of [E].
We omit the proof.

Lemma 3.6. Let F : X → R be a convex function.

(1) For a point x ∈ X(∞), the following properties are equivalent to each other.

(a) x is F -monotone.

(b) For any ray γ with x = γ (∞), F � γ (t) is monotone non-increasing in
t ≥ 0.
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(c) There exists a sequence {pi} of points in X converging to x in the cone
topology such that F(pi) is uniformly bounded from above.

(2) XF (∞) is closed with respect to the sphere topology.

(3) If X is proper, then XF (∞) is a closed, π -convex subset of (X(∞),Td).

3.5. Proof of Theorem 1.1. We prove the theorem in the same way as in [E] by using
Lemma 3.5. Let X be a proper CAT(0)-space such that �pX is compact for every
p ∈ X, and f a parabolic isometry of X. Since the displacement function df has
no minimal (or critical) point in X, we have the gradient direction up of −df at any
p ∈ X, which satisfies Dpdf (up) < 0. We fix a point p ∈ X and take the gradient
curve cp from p for −df . By Lemma 3.2, the right tangent vector (ċp)+(t) ∈ CpX
satisfies (ċp)+(t) = gradcp(t)(−df ) for any t ≥ 0. It follows from Theorem 3.1(1)
that df � cp(t) is strictly monotone decreasing in t ≥ 0. There exists a sequence
ti → ∞ such that cp(ti) converges to some point x ∈ X(∞) in the cone topology.
Lemma 3.6(1) implies x ∈ Xf (∞).

We take any y ∈ Xf (∞) and fix it. It suffices to prove that Td(x, y) ≤ π/2. Let
vt := γ̇cp(t)y(0). Consider the Busemann function b := bγpy associated with γpy .
Since y is df -monotone and by Theorem 3.1(1), Lemma 3.3(2), and Lemma 3.5, we
have

(b � cp)′+(t) = −| gradcp(t)(−df )| cos �
cp(t)(ucp(t), vt ) ≤ Dcp(t)df (vt ) ≤ 0

for any t ≥ 0, and hence b�cp(t) is monotone non-increasing in t . By Lemma 3.6(1),
x is b-monotone and, for any q ∈ X, b � γqx(t) is monotone non-increasing in t . It
follows from Lemma 3.3(2) that

− cos �
q(x, y) = (b � γqx)′+(0) ≤ 0,

which proves Td(x, y) ≤ π/2.
Since (X(∞),Td) is CAT(1), Xf (∞) is contractible. This completes the proof

of Theorem 1.1. �

Let X be as in Theorem 1.1. Then we have radXF (∞) ≤ π/2 for any locally
Lipschitz continuous, convex function F on X with no minimum in X.

4. Dimension of Tits ideal boundaries

We need the following to prove Proposition 1.8.

Proposition 4.1 ([FSY]). Let X be a proper CAT(0)-space. Then, the covering
dimension of X(∞) for the sphere topology satisfies

dimX(∞) ≤ dimX − 1.
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Proof of Proposition 1.8. By Proposition 4.1, it suffices to show that

dimC(X(∞),Td) ≤ dimX(∞).

We consider the identity map ι : (X(∞),Td) → X(∞), which is continuous. Take
any compact subsetK ⊂ (X(∞),Td). SinceX(∞) is Hausdorff, ι|K : K → ι(K) is
a homeomorphism. Thus, we have dimK = dim ι(K) ≤ dimX(∞). This completes
the proof. �

We denote by 
n = 
n(a0, a1, . . . , an) a (closed) n-simplex with vertices
a0, a1, . . . , an. Let Fi ⊂ ∂
n be the (n − 1)-simplex that is the opposite face to
ai , where ∂
n is the boundary of 
n. We say that a mapψ from 
n to a set collapses
∂
n if

ψ(F0) ∩ ψ(F1) ∩ · · · ∩ ψ(Fn) �= ∅.
The following is a consequence of Sperner’s lemma (cf. 2.1 in [F]).

Lemma 4.2. Let Y be a Hausdorff space of dim Y ≤ n − 1, n ≥ 1. Then any
continuous map ψ : 
n → Y collapses ∂
n.

Proof. Suppose that there exists a continuous mapψ : 
n → Y that does not collapse
∂
n. We set Ui := Y \ ψ(Fi), i = 0, 1, . . . , n, which are open in the Hausdorff
space Y . Since ψ does not collapse ∂
n, {Ui}ni=0 is an open covering of Y . By
dim Y ≤ n− 1, there exists a refinement {Vi} of {Ui} of order at most n. Since ψ is
continuous and the order of {Vi} is at most n, we can take a sufficiently refined trian-
gulation of 
n such that for each simplex s of it, ψ(s) intersects at most n members
of {Vi}. Then we give a label by i = 0, 1, . . . , n to each vertex of the refinement as
follows. A label of a vertex a is i if ψ(a) ∈ Vi , which implies that this label is a
Sperner label on 
n. Namely, each original vertex ai has the label i, and each vertex
in the refinement contained in a j -dimensional simplex 
j = 
j (ai0, ai1, . . . , aij )

is labelled by one of i0, i1, . . . , ij ; e.g., a vertex contained in Fi does not have the
label i. Therefore, by Sperner’s lemma there exists at least one n-simplex sn in the
refined triangulation of 
n such that the vertices of sn have the n+ 1 different labels,
0, 1, . . . , n.

On the other hand, sinceψ(sn) is contained in at most n differentVi’s, the simplex
sn has at most n different labels. This is a contradiction. �

Lemma 4.2 plays a key role in the proof of Theorem 1.7 in Section 5. As another
application of Lemma 4.2, we have:

Proposition 4.3. Let Y be a CAT(1)-space of dimC Y ≤ m, m ≥ 1. Then, for any
embedding ψ from an m-sphere S

m into Y we have radψ(Sm) ≥ π . In particular, if
m = 1, then Y is locally an R-tree.
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Proof. Suppose that there exists an embedding ψ : S
m → Y satisfying radψ(Sm) <

π . Since Y is CAT(1), ψ(Sm) is contractible in Y . Hence, for a closed (m + 1)-
disk Dm+1 there is a continuous extension ψ : Dm+1 → Y of ψ . By identifying
Dm+1 with an (m + 1)-simplex, ψ does not collapse ∂Dm+1 and dimψ(Dm+1) ≤
dimC Y ≤ m. This contradicts Lemma 4.2. �

Remark 4.4. Let X be a proper CAT(0)-space of dimX ≤ n. By Proposition 1.8,
we can apply Proposition 4.3 to Y = (X(∞),Td) and m = n− 1.

5. CAT(1)-spaces of small diameter

In this section we shall prove Theorems 1.3 and 1.7.

5.1. Small triangles. Let Y be a CAT(1)-space. For x, y, z ∈ Y we set �
x(y, z) :=

�
x(γxy, γxz). Denote the image of γxy by [x, y]. Let 
 = 
(a0, a1, a2) be a

geodesic triangle in Y with sides [a0, a1], [a1, a2], [a2, a0], and 
̃ = 
( ã0, ã1, ã2)

a comparison triangle in S
2(1) of 
 with the same side-lengths as 
. Recall that

�
ai (aj , ak) ≤ �

ãi ( ãj , ãk) for distinct i, j, k = 0, 1, 2. We say that 
(a0, a1, a2) is
small if d(ai, aj ) ≤ π/2 for any i, j = 0, 1, 2. If 
(a0, a1, a2) is small, then we
have d(a2, x) ≤ π/2 for any x ∈ [a0, a1] by the CAT(1)-inequality. If 
(a0, a1, a2)

is small and if d(a2, x) = π/2 for some x ∈ [a0, a1] \ {a0, a1}, then the triangle is
an isosceles triangle and bounds a convex spherical surface.

As usual, O(ε) denotes Landau’s symbol, i.e., some universal function such that
lim supε→0 |O(ε)|/ε is finite. We assume that O(ε) is positive.

For the proof of Theorem 1.7, we first show:

Lemma 5.1. Let ε ∈ (0, 1) be a positive number. Let 
 = 
(a0, a1, a2) and

′ = 
(a′

0, a
′
1, a

′
2) be small geodesic triangles in Y and in S

2(1), respectively. Then
the following holds:

(1) if |d(ai, aj ) − d(a′
i , a

′
j )| ≤ ε for any i, j = 0, 1, 2 and if d(a0, aj ) ≥ ε1/2 for

each j = 1, 2, then we have

�
a0(a1, a2) < �

a′
0
(a′

1, a
′
2)+O(ε1/2);

(2) if �
a0(a1, a2) ≥ �

a′
0
(a′

1, a
′
2) − ε and |d(a0, aj ) − d(a′

0, a
′
j )| ≤ ε for each

j = 1, 2, then we have

d(a1, a2) > d(a′
1, a

′
2)−O(ε).

Proof. (1) Let 
̃ = 
( ã0, ã1, ã2) be a comparison triangle in S
2(1) of 
. Since Y

is CAT(1), we have �
a0(a1, a2) ≤ �

ã0( ã1, ã2). By the assumption of 
 and 
′, we
have the conclusion of (1).
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We omit the proof of (2). �

We next prove the following lemma.

Lemma 5.2. Let ε ∈ (0, 1), and let 
 = 
(a0, a1, a2) be a small geodesic triangle
in Y . Assume that there exists a point y ∈ [a0, a1] such that mini=0,1 d(ai, y) ≥ ε1/2

and d(a2, y) ≥ π/2 − ε. Then we have

(1) | �
y(a2, ai)− π/2 | < O(ε1/2), i = 0, 1,

(2) d(a2, x) > π/2 −O(ε1/2)

for any x ∈ [a0, a1].
Proof. (1) Let 
′

i = 
(y′, a′
i , a

′
2), i = 0, 1, be two spherical triangles in S

2(1)
such that d(y′, a′

i ) = d(y, ai), d(a′
i , a

′
2) = d(ai, a2), and d(a′

2, y
′) = π/2. Since

each 
′
i is small, we have �

y′(a′
2, a

′
i ) ≤ π/2. By d(a2, y) ≥ π/2 − ε, we have

|d(a2, y) − d(a′
2, y

′)| ≤ ε. Applying Lemma 5.1(1) to 
(y, ai, a2) and 
′
i yields

that �
y(a2, ai) < π/2 + O(ε1/2). Therefore, by π ≤ �

y(a2, a0) + �
y(a2, a1) we

have �
y(a2, ai) > π/2 −O(ε1/2).

(2) For any given x ∈ [a0, a1] \ {y}, let us take a small spherical isosceles triangle

′′ = 
(y′′, x′′, a′′

2 ) such that d(a′′
2 , x

′′) = d(a′′
2 , y

′′) = π/2 and d(x′′, y′′) =
d(x, y). Since �

y′′(a′′
2 , x

′′) = π/2 and by (1) we have �
y(a2, x) > �

y′′(a′′
2 , x

′′) −
O(ε1/2). Applying Lemma 5.1(2) to 
(y, x, a2) and 
′′ shows (2). �

Lemma 5.3. Let ε ∈ (0, 1) be a positive number. For two small geodesic triangles

 = 
(a0, a1, a2) in Y and 
′ = 
(a′

0, a
′
1, a

′
2) in S

2(1), we assume that

(1) d(a2, x) > π/2 − ε for any x ∈ [a0, a1];
(2) d(a′

2, x
′) = π/2 for any x′ ∈ [a′

0, a
′
1];

(3) |d(a0, a1)− d(a′
0, a

′
1)| < ε.

For any four points xi ∈ [a2, ai], x′
i ∈ [a′

2, a
′
i], i = 0, 1, such that

d(a2, xi)/d(a2, ai) = d(a′
2, x

′
i )/d(a

′
2, a

′
i ),

we have
|d(x0, x1)− d(x′

0, x
′
1)| < O(ε1/4). (5.1)

Proof. Take such four points x0, x1, x′
0, and x′

1. We may assume that d(a′
0, a

′
1) ≥

4ε1/2. Note that d(a0, a1) ≥ 3ε1/2. Take yi ∈ [a0, a1] and y′
i ∈ [a′

0, a
′
1] with

d(ai, yi) = d(a′
i , y

′
i ) = ε1/2 for i = 0, 1. Let yi ∈ [a2, yi] and y′

i ∈ [a′
2, y

′
i] be the

points determined by

d(a2, yi)

d(a2, yi)
= d(a2, xi)

d(a2, ai)
,

d(a′
2, y

′
i )

d(a′
2, y

′
i )

= d(a′
2, x

′
i )

d(a′
2, a

′
i )
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(cf. Figure 1). Let 
̃ = 
(̃y0, ỹ1, ã2) be a spherical comparison triangle in S
2(1)

of 
 = 
(y0, y1, a2), and ỹ0, ỹ1 ∈ 
̃ the corresponding points to y0, y1. Consider-
ing the two geodesic triangles 
̃ and 
(y′

0, y
′
1, a

′
2) in S

2(1), we have |d( ỹ0, ỹ1) −
d(y′

0, y
′
1)|, |d( ỹ0, ỹ1)− d(y′

0, y
′
1)| < O(ε),

d(y0, y1) < d(y′
0, y

′
1)+O(ε), (5.2)

and d(y0, y1) < d(y′
0, y

′
1) + O(ε). By d(xi, yi), d(x′

i , y
′
i ) < O(ε1/2), we have

d(x0, x1) < d(x′
0, x

′
1) + O(ε1/2). To obtain the opposite inequality, it suffices to

prove
d(y0, y1) > d(y′

0, y
′
1)−O(ε1/4). (5.3)

a2

y0

y1

x1

x0

y0 y1a0 a1

a′
2

y′
0

y′
1

x′
1

x′
0

y′
0 y′

1a′
0 a′

1

Figure 1. 
 = 
(a0, a1, a2) and 
′ = 
(a′
0, a

′
1, a

′
2).

Applying Lemma 5.2(1) to 
(a0, y1, a2) and 
(y0, a1, a2) yields

π/2 −O(ε1/2) < �
y0
(a2, y1), �

y1
(a2, y0) < π/2 +O(ε1/2). (5.4)

Consider 
(y0, y1, y0) and 
(y′
0, y

′
1, y

′
0). By �

y′
0
(a′

2, y
′
1) = π/2 and (5.4), we have

�
y0
(a2, y1) > �

y′
0
(a′

2, y
′
1) − O(ε1/2). Hence Lemma 5.1(2) implies d(y0, y1) >

d(y′
0, y

′
1)−O(ε1/2). This together with (5.2) implies

|d(y0, y1)− d(y′
0, y

′
1)| < O(ε1/2). (5.5)

Therefore, by Lemma 5.1(1) we see that �
y1
(y0, y0) < �

y′
1
(y′

0, y
′
0) + O(ε1/4). It

follows from (5.4) and �
y′

1
(a′

2, y
′
0) = π/2 that

�
y1
(y0, y1) ≥ �

y1
(y1, y0)− �

y1
(y0, y0)

> π/2 − �
y′

1
(y′

0, y
′
0)−O(ε1/4) = �

y′
1
(y′

0, y
′
1)−O(ε1/4).

(5.6)

By (5.5), (5.6), and Lemma 5.1(2), we have (5.3). This completes the proof. �
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5.2. Proof of Theorem 1.7. We need a lemma.

Lemma 5.4. Let ε and l be positive numbers, and let c : [0, l] → Y be a 1-Lipschitz
continuous curve from a point x0 to a point x1 in a metric space Y such that

l < d(x0, x1)+ ε. (5.7)

Assume that there exists a minimizing geodesic γx0x1 joining x0 to x1. Then, for any
s ∈ [0, 1], setting xs := γx0x1(s d(x0, x1)) we have

d(xs, c(sl)) < 2ε.

Note that the parameter of c is not necessarily proportional to the arc-length.

Proof. Since c is 1-Lipschitz continuous, it follows from (5.7) that

d(x0, c(sl))+ d(c(sl), x1) ≤ sl + (1 − s)l < d(x0, x1)+ ε,

and hence, by the triangle inequality,

0 ≤ sl − d(x0, c(sl)) < ε. (5.8)

By (5.7) and d(xs, x1) ≤ (1 − s)l, we have

sl ≥ d(x0, xs) = d(x0, x1)− d(xs, x1) > sl − ε.

Combining this and (5.8) yields

|d(x0, xs)− d(x0, c(sl))| < 2ε.

By the triangle inequality, this completes the proof. �

Let Y be a CAT(1)-space with diam Y ≤ π/2, and let ρ : Y → R be the function
defined by ρ(x) := supy∈Y d(x, y). By the definition, rad Y = infx∈Y ρ(x) ≤ π/2.
We define the constant δm := π/2 − rad 
m

1 , where 
m
1 is the standard spherical

simplex defined in (1.1). δm is strictly monotone decreasing inm = 1, 2, . . . . Denote
the barycenter of 
m

1 by b′
m.

The distortion disϕ of a map ϕ : A1 → A2 between metric spaces is defined by

disϕ := sup
x,y∈A1

|d(ϕ(x), ϕ(y))− d(x, y)|.

We prove the following:

Lemma 5.5. Let ε be a positive number with ε � δm. Assume that there exists
a 1-Lipschitz continuous map ϕm : 
m

1 → Y such that disϕm < ε and ρ(bm) >
π/2 − ε, where bm := ϕm(b

′
m). Then, there exists a 1-Lipschitz continuous map

ϕm+1 : 
m+1
1 → Y such that disϕm+1 < O(ε1/8).
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Proof. Denote by a′
0, . . . , a

′
m+1 the vertices of 
m+1

1 , and set ai := ϕm(a
′
i ). Let


m
1 ⊂ ∂
m+1

1 be the face opposite to a′
m+1. There exists a point am+1 ∈ Y with

d(am+1, bm) > π/2 − ε. We construct a map ϕm+1 : 
m+1
1 → Y as follows. For

any given x′ ∈ 
m+1
1 , the segment [a′

m+1, x
′] extends to a segment [a′

m+1, x
′] with

x′ ∈ 
m
1 . Set x := ϕm(x

′). There is a unique point x ∈ [am+1, x] such that

d(am+1, x)

d(am+1, x)
= d(a′

m+1, x
′)

d(a′
m+1, x

′)
.

We then define ϕm+1(x
′) := x. It follows that ϕm+1(a

′
m+1) = am+1 and ϕm+1|
m

1
=

ϕm. Note that ϕm and ϕm+1 are not necessarily injective.
Let us prove that for any z ∈ ϕm(
m

1 ),

d(am+1, z) > π/2 −O(ε1/2). (5.9)

Take a point z′ ∈ 
m
1 with ϕm(z′) = z. The segment [b′

m, z
′] extends to a segment

[z′0, z′1] with z′0, z′1 ∈ ∂
m
1 . Since δm coincides with the radius of the inscribed

sphere of 
m
1 centered at b′

m, we have d(b′
m, z

′
i ) ≥ δm for each i = 0, 1. Set

zi := ϕm(z
′
i ). Consider the 1-Lipschitz continuous curve c := ϕm � γz′0z′1 joining

z0 and z1. Note that c passes through z and bm. Choose a number s ∈ [0, 1] with
c(s d(z′0, z′1)) = bm and let b := γz0z1(s d(z0, z1)) (cf. Figure 2). Since disϕm < ε,

am+1 a′
m+1

z0 z1 z′0 z′1

b

bm
z

b′
m z′

c

Figure 2. 
(z0, z1, am+1) and 
(z′0, z′1, a′
m+1).

we see that d(z′0, z′1) < d(z0, z1)+ ε. Lemma 5.4 implies that d(b, bm) < 2ε and so
d(am+1, b) > π/2 − 3ε by the assumption for am+1. By ε � δm we have

d(b, zi) > d(b′
m, z

′
i )− 3ε ≥ δm − 3ε ≥ ε1/2
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for each i = 0, 1. Applying Lemma 5.2(2) to 
(z0, z1, am+1) yields that
d(am+1, y) > π/2 − O(ε1/2) for any y ∈ [z0, z1]. Therefore, by Lemma 5.4 we
obtain (5.9).

For any given two points x′
0, x

′
1 ∈ 
m+1

1 , either segment [a′
m+1, x

′
i] extends to

a segment [a′
m+1, x

′
i] with x′

i ∈ 
m
1 . Let xi := ϕm+1(x

′
i ) and xi := ϕm+1(x

′
i ).

Since ϕm is 1-Lipschitz continuous, we have d(x0, x1) ≤ d(x′
0, x

′
1). Comparing


(x0, x1, am+1) and 
(x′
0, x

′
1, a

′
m+1), the CAT(1)-inequality leads to d(x0, x1) ≤

d(x′
0, x

′
1). Thus, ϕm+1 is 1-Lipschitz continuous. It remains to prove that

d(x0, x1) > d(x′
0, x

′
1)−O(ε1/8). (5.10)

By Lemma 5.4, for any point w ∈ [x0, x1] there exists a point z ∈ ϕm([x′
0, x

′
1]) with

d(z,w) < 2ε. This and (5.9) imply

d(am+1, w) > π/2 −O(ε1/2). (5.11)

Consider the small geodesic triangles 
(x0, x1, am+1) in Y and 
(x′
0, x

′
1, a

′
m+1) in

a unit 2-sphere in 
m+1
1 . By disϕm < ε, (5.11), and applying Lemma 5.3 to their

triangles, we obtain (5.10). This completes the proof of Lemma 5.5. �

Let n := dimC Y + 1 < ∞ and let ε be a positive number with ε � δn. To prove
Theorem 1.7, we suppose that rad Y > π/2 − ε. Note that ρ(y) > π/2 − ε holds for
any y ∈ Y . Take a point a0 ∈ Y . There exists a point a1 ∈ Y with d(a1, a0)π/2 − ε.
Letϕ1 : 
1

1 → [a0, a1] be the linear bijective map. Sinceπ/2−ε < d(a0, a1) ≤ π/2,
this is a 1-Lipschitz continuous map 
1

1 → Y with disϕ1 < ε. By Lemma 5.5, we
inductively have 1-Lipschitz continuous maps ϕm : 
m

1 → Y , m = 1, 2, . . . , n, such
that disϕm < O(ε1/8m). Since dim ϕn(
n

1) ≤ dimC Y = n− 1, Lemma 4.2 implies
that ϕn collapses ∂
n

1. Hence, there exist n+ 1 points y′
i ∈ Fi , i = 0, 1, . . . , n, that

are all mapped by ϕn to a common point of Y , where Fi ⊂ 
n
1 is the opposite face to

a′
i . We set

αn := inf{ max
i,j

d(x′
i , x

′
j ) | x′

i ∈ Fi, x′
i �= x′

j for any i �= j } > 0.

Then for some i0 �= j0 we have αn ≤ d(y′
i0
, y′
j0
) ≤ disϕn < O(ε1/8n), which gives a

lower estimate of ε. Therefore we obtain rad Y < π/2− δ for some positive constant
δ depending only on n.

Since Y is complete,C(Y ) consists of a single point (cf. Proposition 3.1 in [LS2]).
This completes the proof of Theorem 1.7. �

Remark 5.6. For A ⊂ Y , we denote by CY (A) the set of all points where the
function Y � x �→ supy∈A d(x, y) ∈ [0,∞] attains the infimum. For an arbitrary
subset A of a CAT(1)-space Y with diamA ≤ π/2, we have diamA = diamB
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for the closure B of the convex hull of A (cf. Lemma 4.1 in [LS1]). By applying
Theorem 1.7 to B, we obtain the following generalization. Let Y be a complete
CAT(1)-space of dimC Y < ∞, and A ⊂ Y a subset of diamA ≤ π/2. Then
infx∈Y supy∈A d(x, y) < π/2 − δ, and CY (A) consists of a single point.

5.3. Proof of Theorem 1.3. Let f be a parabolic isometry of a proper CAT(0)-space
X and let B := Xf (∞). It follows from Theorem 1.1 and Lemma 3.6(3) that B is
a closed, π -convex subset of (X(∞),Td) with radB ≤ π/2. Hence, B itself is a
complete CAT(1)-space.

First, we verify that C(B) is non-empty. Let ρ : B → R be the function defined
by ρ(x) := supy∈B d(x, y). There exists a sequence {xi} in B with ρ(xi) → radB
as i → ∞. Since X(∞) is compact with respect to the sphere topology, some
subsequence of {xi} converges to a pointx. We havex ∈ B becauseB is closed. By the
lower semi-continuity of Tits distances, we have ρ(x) ≤ radB. Thus, ρ(x) = radB
and x ∈ C(B).

By the convexity of B, C(B) is a closed, convex subset of (X(∞),Td) with the
property that diamC(B) ≤ radB ≤ π/2. By setting Y := C(B), it is a complete
CAT(1)-space of diam Y ≤ π/2. By Proposition 1.8, dimC(X(∞),Td) is finite.
Therefore, by Theorem 1.7 we have rad Y < π/2, and C(Y ) consists of a single
point. Moreover, the second half follows from the uniqueness of the point and its
property. This completes the proof of Theorem 1.3. �

Theorem 1.7 and the proof of Theorem 1.3 imply the following:

Proposition 5.7. Let Y be a compact CAT(1)-space of dim Y < ∞ and rad Y ≤ π/2.
Then C2(Y ) consists of a single point.

Remark 5.8. Let X be a complete CAT(0)-space and G a subgroup of the isometry
group of X. Set XG(∞) := ⋂{Xg(∞) | g ∈ G}. We say that G is admissible if
XG(∞) �= ∅ and radXG(∞) ≤ π/2. It follows from Theorem 1.3 that if G is an
abelian group containing a parabolic element, thenG is admissible, providedX is as
in Theorem 1.3. This is an extension of Proposition 4.4.2 of [E]. Similarly, we can
obtain some extensions of Propositions 4.4.3, 4.4.4, and Corollary 4.4.5 of [E] for
CAT(0)-spaces. Proposition 4.4.6 of [E] can be also extended by using the flat torus
theorem for CAT(0)-spaces (cf. Theorem II.7.1 of [BH]).

6. Example of a symmetric space

In this section we discuss the symmetric space SL(3,R)/SO(3,R) in detail as an
example for Theorems 1.1 and 1.3. A good reference for standard facts we use here
is II.10 in [BH]. We would like to thank M. Bestvina for suggesting this example,
and also K. Wortman for useful discussions and informations.



324 K. Fujiwara, K. Nagano and T. Shioya CMH

6.1. Manifolds P(n, R) and P(n, R)1. Let P(n,R) denote the space consisting
of all positive definite, symmetric (n× n)-matrices with real coefficients. Naturally,
P(n,R) is a differentiable manifold of dimension n(n + 1)/2. The tangent space
TpP (n,R) at a point p is naturally isomorphic (via translation) to the space of all
symmetric (n × n)- matrices, S(n,R). The inner product (u, v)p = tr(p−1up−1v)

on TpP (n,R) � S(n,R) defines a Riemannian metric on P(n,R), where tr u is the
trace of a matrix u. P(n,R) is a simply connected, complete, non-positively curved
Riemannian manifold, so that it is a proper CAT(0)-space.

Let P(n,R)1 ⊂ P(n,R) be the subset of matrices with determinant 1. P(n,R)1
is a totally geodesic submanifold, whose tangent space at p is the subspace in S(n,R)
of matrices with trace 0. P(n,R) is a simply connected, complete, non-positively
curved Riemannian manifold of dimension n(n + 1)/2 − 1, so that it is a proper
CAT(0)-space as well.

SL(n,R) acts on P(n,R) by isometries according to the rule

f (p) := fp tf, p ∈ P(n,R), f ∈ SL(n,R),

where tf is the transpose of f . The right hand side of the definition is by the multipli-
cation of matrices. We may write f ·p instead of f (p). P(n,R)1 is invariant by this
action, and the action is transitive on this submanifold. Let e be the identity matrix.
The stabilizer of e is SO(n), so that P(n,R)1 is identified as SL(n,R)/SO(n).

6.2. Geometry of P(3, R)1 and Tits boundary. We collect some standard facts on
P(3,R)1 from II.10 in [BH]. Most of them are true for all P(n,R)1, n ≥ 3 with
appropriate change. PutX := P(3,R)1. X is a 5-dimensional, irreducible symmetric
space of non-compact type of rank 2, which is a proper CAT(0)-space.

Let us denote the Tits boundary (X(∞),Td) by X(∞) for simplicity. X(∞) is
a “thick spherical building” of dimension 1 such that each apartment is isometric
to S

1(1) and each Weyl chamber at infinity is an edge of length π/3. Moreover,
diamX(∞) = π . Since X(∞) is a spherical building, any two Weyl chambers at
infinity are contained in at least one apartment.

The action of SL(3,R) induced on X(∞) is by simplicial isometries. It is tran-
sitive on pairs (A, c), where A is an apartment, and c ⊂ A is a Weyl chamber at
infinity. A Weyl chamber is a fundamental domain for the action. (cf. II.10.71, 75,
76, 77 in [BH]). Therefore there are two orbits in the vertices of X(∞) by the group
action, so that X(∞) is a bi-partite graph. It follows that any loop in X(∞) consists
of an even number of edges.

The isometry group of X, I (X), has two connected components, and the one
which contains the identity map, I0(X), is SL(3,R). Let σ be the involution of
X at e, which is an orientation reversing isometry. It is given by σ(f ) = tf−1.
I (X) = I0(X) ∪ σI0(X).
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Let f be an isometry of X. Min(f ) denotes the set of all points in X at which
the displacement function df of f attains its infimum |f | := infp∈X df (p), which is
the translation length. If f is elliptic, then Min(f ) coincides with the fixed point set
Fix(f ) of f in X. If f is hyperbolic, then the axes of f are parallel to each other,
and the union of their images is Min(f ). If f is parabolic, then Min(f ) = ∅. f is
said to be semi-simple if f is elliptic or hyperbolic.

In this section we calculate those geometric characters of f ∈ SL(3,R).

6.3. Real Jordan forms. It is known that f ∈ SL(3,R) is semi-simple as an isom-
etry ofX if and only if it is semi-simple as a matrix, i.e., diagonalizable in GL(3,C).
(cf. II.10.61 in [BH]).

Calculation of Xf (∞) and Min(f ) of f ∈ SL(3,R) is mostly by linear algebra.
Each f ∈ SL(3,R) is conjugate to g in SL(3,R) such that g is one (and only one)
of the following list. g is a real Jordan form of f . The symbol diag(a, b, c) is for the
(3 × 3)-diagonal matrix with entries a, b, c.

Since f and g are conjugate in I (X), f is elliptic, hyperbolic, or parabolic if and
only if so is g, respectively. If h ∈ I (X) is a conjugating element, i.e., hf h−1 = g,
then Xf (∞) = h · Xg(∞), Min(f ) = h · Min(g), and |f | = |g|. We discuss g
instead of f .

List of real Jordan forms in SL(3, R).

(1)

⎛
⎝1 0 0

0 1 1
0 0 1

⎞
⎠ .

(2)

⎛
⎝1/a2 0 0

0 a 1
0 0 a

⎞
⎠ , where 0, 1 �= a ∈ R.

(3)

⎛
⎝1 1 0

0 1 1
0 0 1

⎞
⎠ .

(4)

⎛
⎝ a b 0

−b a 0
0 0 1/(a2 + b2)

⎞
⎠ where a, b ∈ R with a2 + b2 �= 0 and b �= 0.

This one is conjugate to diag(a + ib, a − ib, 1/(a2 + b2)) by an element in
GL(3,C).

(5) diag(a, b, c) such that a, b, c ∈ R, abc = 1, a �= b �= c �= a.

(6) diag(a, a, 1/a2), a ∈ R, a �= 0, 1.

(7) e.
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6.4. Flat and Weyl chambers. Consider the following linear subspace in TeX.

a0 := {u | u = diag(u1, u2, u3), tr u = 0} ⊂ TeX.

Let
F0 := { exp(u) | u ∈ a0 } ⊂ X.

F0 is a flat plane in X and A0 := F0(∞) is an apartment in X(∞).
For x ∈ A0, let γex be the geodesic in F0 from e to x. γex is exp(tu(x)), t ≥ 0

for some u(x) ∈ a0. The tangent vector at e, u(x), is uniquely determined by x up
to scaling by a positive number, so that let us denote the one of unit length by u(x),
which we write as diag(u1(x), u2(x), u3(x)).

A0 is a 6-gon as a building with the following Weyl chambers (see Figure 3).
{ui(x) ≥ uj (x) ≥ uk(x)} means the set {x ∈ A0 | ui(x) ≥ uj (x) ≥ uk(x)}.

c1 := { u1(x) ≥ u2(x) ≥ u3(x) }, c2 := { u2(x) ≥ u1(x) ≥ u3(x) },
c3 := { u2(x) ≥ u3(x) ≥ u1(x) }, c4 := { u3(x) ≥ u2(x) ≥ u1(x) },
c5 := { u3(x) ≥ u1(x) ≥ u2(x) }, c6 := { u1(x) ≥ u3(x) ≥ u2(x) }.

A0 = c1 ∪ · · · ∪ c6. Define vi := ci−1 ∩ ci , i = 1, 2, . . . , 6, where c0 = c6. They
are the vertices of X(∞) in A0. We may write ci = [vi, vi+1], 1 ≤ i ≤ 6, where
v7 = v1.

γ0

v1

v2

v3

v4

v5

v6

c3c4

c5

c6 c1

c2

Figure 3. 6-gon.

A bi-infinite geodesic, or simply line, in X is always contained in some flat plane
because X is a symmetric space. If a line is contained in a unique flat, then it is
called regular (cf. 10.46 [BH]), and otherwise it is called singular. There are three
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singular bi-infinite geodesics (without orientation) onF0, which are γev1 ∪γev4, γev2 ∪
γev5, γev3 ∪ γev6 .

Set w2 := u(v2) = (1/
√

6) diag(1, 1,−2). This is a unit vector at e tangent to
F0, pointing the vertex v2 at infinity. Define a line in F0 by

γ0(t) := exp(tw2), t ∈ R.

γ0 is a line through e such that γ0(∞) = v2, γ0(−∞) = v5. As a set, γ0 =
{diag(s, s, 1/s2) | 0 < s ∈ R} = γev2 ∪ γev5 . γ0 is a singular geodesic.

For a line γ in X, let P(γ ) denote the union of all lines in X parallel to γ . This
is a convex subset in X, so that let P(γ )(∞) ⊂ X(∞) denote the set of points at
infinity of P(γ ).

Denote by F0 the set of all flat planes in X containing γ0. Then, P(γ0) = ⋃{F |
F ∈ F0}. P(γ0) is a totally geodesic, 3-dimensional submanifold, which is naturally
isometric to P(2,R)1 × R (cf. Proposition II.10.67 in [BH]). P(2,R)1 is isometric
to H

2 up to a scaling factor. We note that P(γ0)(∞) = ⋃{F(∞) | F ∈ F0}.

6.5. Theorem

Theorem 6.1. Suppose g ∈ SL(3,R) is one in the list of Subsection 6.3. Then we
have the following in the order of the list:

(1) g is parabolic andXg(∞) is the union of all edges incident to c2. Xg(∞) is not
compact in (X(∞),Td), with uncountably many edges; |g| = 0.

(2) g is parabolic and Xg(∞) = c1 ∪ c2 ∪ c3; |g| = 2
√

6 log |a|.
(3) g is parabolic and Xg(∞) = c1; |g| = 0.

(4) g is semi-simple, and

(a) Xg(∞) = {v2, v5}.
(b) If a2 + b2 = 1, then g is elliptic, and Fix(g) = γ0.

(c) If a2 + b2 �= 1, then g is hyperbolic and |g| = √
6 log(a2 + b2);

Min(g) = γ0.

(5) g is hyperbolic, and |g| = 2
√
(log |a|)2 + (log |b|)2 + (log |c|)2.

(a) Xg(∞) = A0.

(b) Min(g) = F0.

(6) g is hyperbolic, and |g| = 2
√

6 log |a|.
(a) Xg(∞) = P(γ0)(∞).

(b) Min(g) = P(γ0).

(7) g is the identity map, i.e. elliptic, with Fix(g) = X and Xg(∞) = X(∞).
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6.6. Stabilizers. The analysis of the stabilizing subgroup in SL(3,R) of a point
v ∈ X(∞) is important for the proof of the theorem. We quote Proposition II.10.64
in [BH] in the following form.

Lemma 6.2. Let g = (gij ) ∈ SL(3,R), and x ∈ A0. Then g(x) = x if and only if
gij e

−t (ui (x)−uj (x)) converges as t → ∞ for all i, j .

This implies the following.

Proposition 6.3. Let Gi be the subgroups of SL(3,R) stabilizing vi . Then,

G1 =
⎧⎨
⎩

⎛
⎝∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗

⎞
⎠

⎫⎬
⎭ , G2 =

⎧⎨
⎩

⎛
⎝∗ ∗ ∗

∗ ∗ ∗
0 0 ∗

⎞
⎠

⎫⎬
⎭ , G3 =

⎧⎨
⎩

⎛
⎝∗ 0 ∗

∗ ∗ ∗
∗ 0 ∗

⎞
⎠

⎫⎬
⎭ ,

G4 =
⎧⎨
⎩

⎛
⎝∗ 0 0

∗ ∗ ∗
∗ ∗ ∗

⎞
⎠

⎫⎬
⎭ , G5 =

⎧⎨
⎩

⎛
⎝∗ ∗ 0

∗ ∗ 0
∗ ∗ ∗

⎞
⎠

⎫⎬
⎭ , G6 =

⎧⎨
⎩

⎛
⎝∗ ∗ ∗

0 ∗ 0
∗ ∗ ∗

⎞
⎠

⎫⎬
⎭ ,

where ∗ ∈ R.

LetH1 be the following subgroup, parameterized by t ∈ R, which fixes edges c1,
c2, c3, pointwise.

H1 =
⎧⎨
⎩

⎛
⎝1 0 0

0 1 t

0 0 1

⎞
⎠ ∣∣∣ t ∈ R

⎫⎬
⎭ .

H1 fixes v1 ∈ X(∞). H1 acts transitively on the set of all edges incident to v1
other than c1. To see it, consider the following subgroup in SL(3,R) containing H1.

J1 =
⎧⎨
⎩

⎛
⎝∗ 0 0

0 ∗ ∗
0 0 ∗

⎞
⎠ ∣∣∣ ∗ ∈ R

⎫⎬
⎭ .

For a given edge c �= c1, incident to v1, we will find h ∈ H1 with h(c) = c6. Take
an apartment, A, containing c and c3. Then it automatically contains c1, c2 as well.
Recall that SL(3,R) acts transitively on the set of pairs of an apartment,A′, inX(∞)

and a Weyl chamber, c′, in A′, (A′, c′). Take j ∈ SL(3,R) which maps (A, c) to

(A0, c6). Clear that j ∈ J1 since it fixes c1, c2, c3. Let j =
(
p 0 0
0 q s
0 0 r

)
, pqr = 1.

Take k =
(

1/p 0 0
0 1/q 0
0 0 1/r

)
∈ SL(3,R). Then kj =

( 1 0 0
0 1 s/q
0 0 1

)
= h ∈ H1. We have

k(ci) = ci for all i, so it follows from j (c) = c6 that h(c) = kj (c) = k(c6) = c6.
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Also,H1 acts transitively on the set of all edges incident at v4 other than c3. Each
of the two sets is parameterized by t by the action.

Off-diagonal entries except for the (2, 3)-entries of matrices in H1 are 0. Since
there are 6 off-diagonal entries in (3 × 3)-matrices, we consider 5 other similar
subgroups, H2, H3, H4, H5, H6, which we define later.

6.7. Proof. We discuss each case in the order and prove Theorem 6.1. Case 7 is
trivial.

Case 1. g is parabolic since it is not diagonalizable as a matrix. By Proposition 6.3,
Xg(∞)∩A0 = c1 ∪ c2 ∪ c3. To see that any edge, c �= c2, c3, incident to v3 is fixed
by g, take a (unique) element h ∈ H6 such that h(c) = c3, where

H6 =
⎧⎨
⎩

⎛
⎝1 0 t

0 1 0
0 0 1

⎞
⎠ ∣∣∣ t ∈ R

⎫⎬
⎭ .

Since g(c3) = c3, h−1gh(c) = c. Then it follows from hg = gh that g(c) = c,
pointwise.

To see any edge c �= c2, incident to v2 is fixed by g, take a (unique) element
h ∈ H2 such that h(c) = c1, where

H2 =
⎧⎨
⎩

⎛
⎝1 0 0
t 1 0
0 0 1

⎞
⎠ ∣∣∣ t ∈ R

⎫⎬
⎭ .

As before, we have hg = gh, therefore g(c) = c, pointwise. We know Xg(∞) has
no more edges because it is connected and its diameter is at most π .

The edges inXg(∞) other than c1, c2, c3 are those which are parametrized byH2
and the others which are parametrized by H6, so that uncountable. It is not compact
because the mid points of the edges are at least π/3 apart from each other.

Let us prove |g| = 0 by computation. To deal with Case 3 at one time, suppose

g =
(

1 k 0
0 1 1
0 0 1

)
. It suffices for us to show that there exists a geodesic, γ (t), such that

limt→∞ d(g(γ (t)), γ (t)) = 0. We use the notations from the subsection 6.4. For
x ∈ A0, set γ (t) = γex(t) = exp(tu), where u is the diagonal matrix u(x) =
diag(u1, u2, u3). For simplicity, we write the result of the action by a group element
g on a point p as g · p, instead of g(p), in this discussion. Then,

d(g · exp(tu), exp(tu)) = d

(
exp

(
− t

2
u

)
· g · exp(tu), exp

(
− t

2
u

)
· exp(tu)

)

= d

(
exp

(
− t

2
u

)
g exp

(
t

2
u

)
· e, e

)
,
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because exp
(
t
2u

) · e = exp(tu). By the computation of matrix multiplications,
exp

(− t
2u

)
g exp

(
t
2u

)
is⎛

⎝1 k exp(t (u2 − u1)/2) 0
0 1 exp(t (u3 − u2)/2)
0 0 1

⎞
⎠ .

For g in Case 1, we have k = 0, so that if u2 > u3, then as t → ∞, this matrix
tends to e, which means that d(g · γ (t), γ (t)) → 0. We got |g| = 0. We remark that
u2 > u3 is satisfied for x ∈ A0 if and only if x ∈ (c1 ∪ c2 ∪ c3)\(v1 ∪ v4).

For g in Case 3, we have k = 1. So, if u1 > u2 > u3, then d(g ·γ (t), γ (t)) → 0,
which shows that |g| = 0. The condition u1 > u2 > u3 holds for x ∈ A0 if and only
if x ∈ c1\(v1 ∪ v2).

Case 2. As in Case 1, g is parabolic andXg(∞)∩A0 = c1 ∪ c2 ∪ c3. To see there are
not more edges than those inXg(∞), suppose there was an edge, c �= c2, c3, incident
to v3 with g(c) = c. Take, as before, h ∈ H6 such that h(c) = c3.

h =
⎛
⎝1 0 t

0 1 0
0 0 1

⎞
⎠ .

Then, hgh−1(c3) = c3. Since c �= c3, we have t �= 0, which is important to get a
contradiction in this case. By computation

hgh−1 =
⎛
⎝1/a2 0 t (a − 1/a2)

0 a 1
0 0 a

⎞
⎠ .

Since t (a−1/a2) �= 0, hgh−1 is not inG4, so that does not fix v4 ∈ c3, a contradiction.
To see there is no edge c �= c1, c2 at v2 with g(c) = c, use H2, as before. If there

was, take h ∈ H2 with h(c) = c1 such that

h =
⎛
⎝1 0 0
t 1 0
0 0 1

⎞
⎠ , t �= 0.

Then hgh−1(c1) = c1, pointwise. By computation,

hgh−1 =
⎛
⎝ 1/a2 0 0
t (1/a2 − a) a 1

0 0 a

⎞
⎠

such that t (1/a2 − a) �= 0, therefore hgh−1 �∈ G1 does not fix v1, which gives a
contradiction since it is supposed to fix c1 = [v1, v2].
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We get the claim because Xg(∞) is connected and with diameter at most π .
We postpone the computation of |g| until the proof of Case 6. It is not a coincidence

that |g| is the same number in Cases 2 and 6.

Case 3. As in Case 1, g is parabolic andXg(∞)∩A0 = c1. To see this is all, suppose
there was an edge, c �= c1, incident to v1 with g(c) = c. Take h ∈ H1 such that
h(c) = c6. It follows that hgh−1(c6) = c6. Let

h =
⎛
⎝1 0 0

0 1 t

0 0 1

⎞
⎠ .

By computation

hgh−1 =
⎛
⎝1 1 −t

0 1 1
0 0 1

⎞
⎠ ,

therefore hgh−1 �∈ G6 does not fix v6 ∈ c6, a contradiction.
To see g does not fix any edge incident to v2 other than c1, use H5 and do the

same argument, where

H5 =
⎧⎨
⎩

⎛
⎝1 t 0

0 1 0
0 0 1

⎞
⎠ ∣∣∣ t ∈ R

⎫⎬
⎭ .

We get the claim since Xg(∞) is connected.
Since we already showed that |g| = 0 in the proof of Case 1, we finish Case 3.

Case 4. g is semi-simple because it is diagonalizable in GL(3,C).
(a) By Proposition 6.3, Xg(∞) ∩ A0 = {v2, v5}. To see this is all, we first show

that there is no edge incident to v2 in Xg(∞). Suppose there was one, c. We know

that c �= c1, c2. Take h ∈ H2 such that h(c) = c1. If h =
(

1 0 0
t 1 0
0 0 1

)
, then

hgh−1 =
⎛
⎝ a − tb b 0

−b(1 + t2) a + tb 0
0 0 1/(a2 + b2)

⎞
⎠ ,

which does not fix v1 because −b(1+t2) �= 0. But hgh−1(c1) = hg(c) = h(c) = c1,
so that it fixes v1 ∈ c1, a contradiction. Similarly there is no edge inXg(∞) incident
to v5.

To finish, suppose there was a vertex, v, in Xg(∞)\A0. Then Td(v, v2) = π ,
because if it was less than π , then the unique geodesic from v to v2 would have to be
in Xg(∞), which is impossible since there is no edge incident to v2 fixed by g. By
the same reason, Td(v, v5) = π . Consider a loop made of three geodesics: one from
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v to v2, one from v2 to v5 and one from v5 to v. This loop consists of 9 edges, which
is impossible because X(∞) is a bi-partite graph.

(b) Recall that we have γ0 = {diag(s, s, 1/s2) | 0 < s ∈ R}. Under the
condition a2 + b2 = 1, by computation, gp tg = p, p ∈ P(3,R)1 if and only if
p = diag(s, s, 1/s2), 0 < s ∈ R. We get the claim.

(c). By computation, g(γ0) = γ0. Since e ∈ γ0 and e �= g(e), g is hyperbolic,
and γ0 is an axis. The translation length, |g|, is d(e, g(e)) = d(e, getg) = d(e, gtg),
where

gtg = diag(a2 + b2, a2 + b2, 1/(a2 + b2)2) = exp[log(a2 + b2) diag(1, 1,−2)].
Since the norm | diag(1, 1,−2)|e = √

6, |g| = √
6 log(a2 + b2).

We know that γ0 ⊂ Min(g) ⊂ P(γ0) because an axis of g is parallel to γ0. Since
g leaves γ0 invariant, g leaves P(γ0) invariant as well. We remark that the action of
g is by a shift and a rotation about γ0. We define the following subgroup in SL(3,R),
which is in fact in SO(3).

R = {h = (hij ) ∈ SO(3) | (hij )1≤i,j≤2 ∈ SO(2), h33 = 1,

h13 = h31 = h23 = h32 = 0}.
If h ∈ R, h fixes e, v2, v5, so that h fixes all points on γ0. Therefore h leaves P(γ0)

invariant, and acts on F0.

Claim. The action of R on F0 is transitive.

To see it, let F ∈ F0 be a flat. Then there is an element w ∈ TeX such that w
andw2 commute as matrices and the image by exp of the subspace spanned byw,w2
in TeX is F . The two commuting symmetric matrices w,w2 are simultaneously
diagonalizable by an element, h, in SO(3). Moreover since w2 is diagonal, one may
assume that h commutes with w2. By computation, this implies that h is in R. We
claim that h maps F to F0. Indeed, let γ be the geodesic through e defined by
γ = exp(sw), s ∈ R. It is in F . Since h(γ0) = γ0, it suffices to show h(γ ) ⊂ F0.
Since h ∈ SO(3),

h(γ ) = h exp(sw)th = h exp(sw)h−1 = exp(shwh−1),

which is in F0 because hwh−1 is diagonal. We got the claim.

Suppose there was an axis of g, α, which is not γ0. Take the plane F ∈ F0 which
contains α. Such F exists since α is parallel to γ0. Take h ∈ R with h(F ) = F0.
Since h commutes with g, h(α) is an axis of g as well. It implies that F0 is invariant
by g, so that F0(∞) ⊂ Xg(∞), which is impossible. We got Min(g) = γ0. We
finished Case 4.

We are left with those g which are diagonal. Suppose e �= g = diag(a, b, c) ∈
SL(3,R). g is a semi-simple isometry and the flat F0 is g-invariant, so that
A0 ⊂ Xg(∞).
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Set

N =
√
(log |a|)2 + (log |b|)2 + (log |c|)2

and define a unit length element ug ∈ TeF0 by

ug := 1

N
diag(log |a|, log |b|, log |c|).

Let γg be the bi-infinite geodesic in F0 through e defined by

γg(t) := exp(tug), t ∈ R.

This is of unit speed. Computation shows that γg is g-invariant, therefore it is an axis.
|g| = d(e, g(e)) = d(e, gtg). gtg = diag(a2, b2, c2) = exp(2Nug) = γg(2N).
Since γg has unit speed, |g| = 2N .

There are two cases: γg is regular (Case 5) or singular (Case 6). We already know
that g is hyperbolic and calculated |g|.
Case 5.

(a) Since F0 is invariant by g, A0 = F0(∞) ⊂ Xg(∞). Let v ∈ Xg(∞). Then
there is a flat F with γg ⊂ F and v ∈ F(∞). Indeed, if γ is a bi-infinite geodesic
through e with γ (∞) = v, then since g(v) = v, γ and γg is on some flat.

Since γg is a regular geodesic, it is contained in only one flat, so that F = F0. We
get v ∈ F0(∞) = A0.

(b) Since F0 is g-invariant, F0 ⊂ Min(g). Min(g) consists of axes of g. Let γ
be an axis different from γg . Then there is a flat strip between them, so that there is
indeed a flat, F , containing both of them because it is in a symmetric space. Since
γg is regular, we have F = F0, so that γ is in F0.

Case 6.
(a) As in Case 5, A0 ⊂ Xg(∞). Since g commutes with any element in R,

Xg(∞) is R-invariant, so that R · A0 ⊂ Xg(∞). R · A0 = P(γ0)(∞) implies that
P(γ0)(∞) ⊂ Xg(∞). To see the other inclusion, let v ∈ Xg(∞). Then there is a
flat, F , such that γ0 ⊂ F and v ∈ F(∞) (cf. (a) in Case 5). By definition, F ∈ F0,
so that F ⊂ P(γ0). We get v ∈ P(γ0)(∞).

(b) In this case, γg = γ0. F0 is g-invariant, so that F0 ⊂ Min(g). Since g
commutes with any element in R, Min(g) is R-invariant, so that R · F0 ⊂ Min(g).
Because R · F0 = P(γ0), P(γ0) ⊂ Min(g). On the other hand, since P(γ0) is the
union of all geodesics parallel to γ0, Min(g) ⊂ P(γ0), therefore Min(g) = P(γ0).
Case 6 is done.

To finish the proof, we show |g| = 2
√

6 log |a| for g in Case 2. It is easy to see

that g is conjugate in SL(3,R) to the matrix, h =
(
a 1 0
0 a 0
0 0 1/a2

)
, so that it suffices to

show |h| = 2
√

6 log |a|.
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Although γ0 is not h-invariant, h fixes γ0(∞) = v2, γ0(−∞) = v5 because
h ∈ G2 ∩G5, so that h leaves not only the subset P(γ0), but also its product structure
P(γ0) = H

2 × R invariant.
The restriction of h to P = P(γ0), h|P , is also parabolic. Since P is convex inX

and h-invariant, |h|P | = |h|, so that we compute |h|P |. h|P acts on P = H
2 ×R by a

product of isometries: a parabolic isometry on H
2, denoted by h|H2 , and a translation

on R, denoted by h|R. Since |h|H2 | = 0, we have |h|P | = |h|R|.
Consider the following matrix in SL(3,R), k =

( 1 −1/a 0
0 1 0
0 0 1

)
. This is also a

parabolic isometry, which leaves P(γ0) invariant such that it acts on it as a prod-
uct of isometries of H

2 and R. The action of k on R is trivial since the (3, 3)-entry of
k is 1. This is because one can show by computation that the geodesic from e ∈ X
to k(e) is perpendicular to γ0 at e, so that k(e) ∈ H

2 in H
2 × R. Or, one may use the

fact that P(γ0) is the union of matrices of the following form in P(3,R)1;
( ∗ ∗ 0∗ ∗ 0

0 0 ∗
)
,

where the set of top-left (2 × 2)-matrices corresponds to H
2 and the (3, 3)-entries,

which are positive numbers, (by taking log) correspond to R in the product decompo-
sition P(γ0) = H

2 × R. By the definition of the action, k acts trivially on the second
factor. Therefore, |hk|P | = |h|P |. By the same reason as h, |hk|P | = |hk|. By
computation, hk = diag(a, a, 1/a2), which is hyperbolic. We have just computed
that | diag(a, a, 1/a2)| = 2

√
6 log |a|. To summarize,

|g| = |h| = |h|P | = |hk|P | = |hk| = 2
√

6 log |a|.
We finished the proof. �
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