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Bubbling location for F -harmonic maps and inhomogeneous
Landau–Lifshitz equations

Yuxiang Li and Youde Wang∗

Abstract. Let f be a positive smooth function on a closed Riemann surface (M, g). The
f -energy of a map u from M to a Riemannian manifold (N, h) is defined as

Ef (u) =
∫

M

f |∇u|2 dVg.

In this paper, we will study the blow-up properties of Palais–Smale sequences for Ef . We will
show that, if a Palais–Smale sequence is not compact, then it must blow up at some critical
points of f . As a consequence, if an inhomogeneous Landau–Lifshitz system, i.e. a solution of

ut = u × τf (u) + τf (u), u : M → S2,

blows up at time ∞, then the blow-up points must be the critical points of f .
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Keywords. f -harmonic map, inhomogeneous Landau–Lifshitz equation, f -harmonic flow,
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1. Introduction

Let (M, g) and (N, h) be two Riemannian manifolds. A C1-smooth map u from
M into N is called a harmonic map if and only if u is a critical point of the energy
functional E(v), which is defined in local coordinates by

E(v) ≡
∫

M

Traceg(v
∗h) dVg,

where

Traceg(v
∗h) = gij ∂uα

∂xi

∂uβ

∂xj
hαβ(u).
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National Science Fund for Distinguished Young Scholars 10025104 of the People’s Republic of China.
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It is well known that the energy functional is conformally invariant when dim(M) = 2.
In this paper we would like to study a class of C1-smooth maps from a Riemann

surface into a compact Riemannian manifold which are defined as the critical points
of the inhomogeneous energy functional written as

Ef (v) ≡
∫

M

Traceg(v
∗h)f dVg,

where f is a smooth real function. In [L] and [E-L] (see page 48, (10.20)), such
maps are called f -harmonic from M into N . Obviously, they are just harmonic maps
if f ≡ 1. Moreover, when m = dim(M) �= 2, an f -harmonic map is nothing but

a harmonic map from
(
M, f

2
n−2 g

)
to (N, h). In local coordinates, the f -harmonic

map satisfies the following Euler–Lagrange equation

f τ(u) + ∇f · ∇u = 0.

Here τ(u) is the tension field of u which can be written as

τα(u) = �gu
α + gij�α

βγ (u)
∂uβ

∂xi

∂uγ

∂xj
.

To see the physical motivation for the f -harmonic maps, we consider a smooth
domain 	 in the Euclidean space R

m. An inhomogeneous Heisenberg spin system is
given by

∂tu = f (u ∧ �u) + ∇f · (u ∧ ∇u),

where f is a real-valued function defined on 	, u(x, t) ∈ S2, ∧ denotes the cross
products in R

3 and � is the Laplace operator on R
m. Physically, the function f

is called the coupling function, and is the continuum limit of the coupling constants
between the neighboring spins. It is easy to see that if u is a smooth stationary solution
of the above equation, then u is just an f -harmonic map from 	 into S2. Indeed, in
this case the tension field of u can be written as �u + |∇u|2u, therefore, the right
hand side of the above equation can be expressed by u ∧ (f τ(u) + ∇f · ∇u), and u

satisfies the following equation

f τ(u) + ∇f · ∇u = 0.

The above inhomogeneous Heisenberg spin system is also called inhomogeneous
Landau–Lifshitz system. Landau and Lifshitz also suggested considering the follow-
ing dispersive system

∂tu = u ∧ (f τ(u) + ∇f · ∇u) − u ∧ (u ∧ (f τ(u) + ∇f · ∇u)),

with an initial value condition
u(0) = u0.
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For the well-known equation, Tang [T] proved that it admits a global weak solu-
tion which is smooth except for finitely many points, if the domain manifold M is
2-dimensional closed , f is a smooth positive function and the initial value map be-
longs to W 1,2(M, S2) (see also [St] and [G-H]). The bubbles which the weak solution
blows are called the magnetic bubbles ([Sh]). A natural question arises: Where do
the bubbling points of the Landau–Lifshitz equation locate? In this paper, we intend
to answer this problem partially.

Throughout this paper, we will always assume that f is smooth and positive. In
order to answer the above question, mathematically we need to consider the conver-
gence and bubbling of the sequence of f -harmonic maps with coupling function f .
Precisely, we obtain the following results.

Theorem 1. Let D be the unit disc in R
2. If u : D \ {0} → N is a W

2,2
loc -map with

finite energy and satisfies the following equation

τ(u) = α∇u + g,

where α ∈ C0(D) and g ∈ Lp(D, T N) for some p > 2, then u may be extended to
a map ũ ∈ W 2,p(D, N).

Theorem 2. Let (M, g) be a closed Riemann surface and N a compact submanifold
of R

K . Let f be a smooth positive function on M . Assume that uk ∈ W 2,2(M, N) is
a sequence which satisfies

f τ(uk) + ∇f · ∇uk = αk

and ∫
M

|∇uk|2f dVg ≤ C,

where αk lies in L2(u−1
k (T N)) and satisfies

||αk||L2 → 0 as k → +∞.

If p is a blow-up point of the sequence, i.e.,

lim
r→0

lim inf
k→+∞

∫
Br(p)

|∇uk|2f dVg > 0,

then p must be a critical point of f .

Applying the above theorem to the inhomogeneous Landau–Lifshitz equation we
can partially answer the above question. Concretely, we come to the following result.



436 Y. Li and Y. Wang CMH

Theorem 3. Let (M, g) be a closed Riemann surface, and let S2 be the unit sphere
with standard metric. Suppose that the coupling function f is smooth and positive
on M and u ∈ L2((0, ∞); W 2,2(M, S2)) is the unique weak solution for the ini-
tial value problem of the inhomogeneous Landau–Lifshitz equation with initial map
u0 ∈ W 1,2(M, S2). If u(t) ≡ u(·, t) blows up at time infinity, then the blow-up points
must be the critical points of the coupling function f .

2. Removable singularity

It is well known that the removable singularity theorem of Sacks and Uhlenbeck says
that a harmonic map from D \ {0} → N with finite energy can be extended to 0
smoothly. The main aim of this section is to generalize Sacks–Uhlenbeck’s theorem
to the present case, i.e., to prove Theorem 1. The method adopted here is essentially
due to Sacks and Uhlenbeck. One still sees that the Hopf differential is the key in the
proof. However, in our case the Hopf differential is no longer holomorphic, thus the
proof will be a little more delicate than theirs.

Let us first recall the ε-regularity discovered by Sacks and Uhlenbeck.

Lemma 2.1. Suppose that u ∈ W 2,2(D, N) satisfies

τ(u) = g ∈ L2(D, T N).

Then there exits ε > 0 such that if
∫
D

|∇u|2 ≤ ε we have

||u − u||W 2,2(D 1
2
) ≤ C(||∇u||L2(D) + ||g||L2(D)).

Here u is the mean value of u over the unit disc and D 1
2

is a disc with radius 1
2 and

centered at the origin.

Proof. Cf. [S-U], or [D], or [D-T]. �

Using the standard elliptic estimate, we have

Corollary 2.2. Suppose that u ∈ W 2,2(D, N) satisfies

τ(u) = α∇u + g, (2.1)

where α(x) ∈ C0(D) and g ∈ Lp(D, T N) for some p > 2. Then there exists ε > 0
such that whenever

∫
D

|∇u|2 ≤ ε we have

|∇u|(0) ≤ C(||α||C0(D), p)(||∇u||L2(D) + ||g||Lp(D)).
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In this section, we always assume u to be a map from D \ {0} to N which belongs
to W

2,2
loc (D \ {0}, N) and satisfies the equation (2.1). In order to prove Theorem 1,

we need to prove the following lemmas. First, we have

Lemma 2.3. There exists ε > 0 such that if
∫
D

|∇u|2dx < ε, then there holds true

|x||∇u|(x) ≤ C(||∇u||L2(D2|x|) + |x|2− 2
p × ||g||Lp(D2|x|)) for all x ∈ D 1

2
,

where C is a positive constant which depends only on ε.

Proof. Fix an x0 ∈ D 1
2
, we define ũ = u(x|x0| + x0). Then we have

τ(ũ) = |x0|2g + |x0|∇ũ.

Notice that |∇ũ|(0) = |∇u||x0|, hence we get this lemma from Corollary 2.2. �

Now, let

� = 〈ux, ux〉 − 〈uy, uy〉 − 2i〈ux, uy〉 = 4
〈∂u

∂z
,
∂u

∂z

〉
,

where z = x + iy. It is easy to see that

∂ z� = 8
〈
�u,

∂u

∂z

〉
= 8

〈
A(u)(du, du) + α∇u + g,

∂u

∂z

〉
= 8

〈
α∇u + g,

∂u

∂z

〉
.

(2.2)

We need to prove a Stokes type equality for the 1-form z�.

Lemma 2.4. There holds true that∫
|z|=r

z� dz =
∫

Dr

z∂ z� dz ∧ dz.

Proof. As
d(z�dz) = ∂ z(z�dz) = z∂ z�dz ∧ dz,

by applying the Stokes formula, for any r0 < r we have∫
|z|=r\|z|=r0

z� dz =
∫

Dr\Dr0

z∂ z� dz ∧ dz.

By (2.2), ∫
Dr0

|z∂ z�dz ∧ dz| ≤ Cr0

∫
Dr0

(|α∇u|2 + |g|2) dx → 0
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as r0 → 0. Therefore, to complete the proof of the lemma, we only need to prove∫
|z|=r0

z� dz = √−1
∫ 2π

0
z2� dθ ||z|=r0 → 0.

However this last equality follows from Lemma 2.3. �

Lemma 2.5. There holds∫
Dr

〈ur, ur〉 −
∫

Dr

〈uθ , uθ 〉 = O(r).

Proof. By a direct computation, we have

Re(z2�) = −|uθ |2 + |z|2|ur |2.
Then ∣∣∣∣ Re

∫ 2π

0
z2� dθ

∣∣∣∣ =
∣∣∣∣ Im

∫
|z|=r

z�dz

∣∣∣∣ =
∣∣∣∣ Im

∫
Dr

z∂ z� dz ∧ dz

∣∣∣∣
≤

∫
Dr

|z∂ z� dz ∧ dz|

≤ r

∫
Dr

|α∇u + g||∇u| dx

≤ Cr

∫
Dr

(|g|2 + |α∇u|2) dx,

i.e., ∫ 2π

0
|ur(r, θ)|2r2 dθ −

∫ 2π

0
|uθ (r, θ)|2 dθ = O(r).

Therefore ∫
Dr

(〈ur, ur〉 − 〈uθ , uθ 〉) =
∫ r

0

∫ 2π

0

(
|ur |2 − 1

r2 |uθ |2
)

r dθdr

=
∫ r

0

1

r
O(r) dr =

∫ r

0
O(1) dr

= O(r). �

Proof of Theorem 1. As in [S-U] we approximate u by the function q which is har-
monic on every domain,

Dm(r0) = {z : 2−m−1r0 < |z| < 2−mr0},
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and equals
1

2π

∫ 2π

0
u(2−mr0, θ) dθ

and
1

2π

∫ 2π

0
u(2−m−1r0, θ) dθ,

respectively, on the boundaries {z : |z| = 2−mr0} and {z : |z| = 2−m−1r0}. Then
q is piecewise linear in log r and depends only on the radial coordinate. Now, for
2−m−1r0 ≤ r ≤ 2−mr0,

|q(r) − u(r, θ)| ≤ |q(r) − q(2−mr0)| + |q(2−mr0) − u(r, θ)|
≤ |q(2−m−1r0) − q(2−mr0)|

+ 1

2π

∫ 2π

0
|u(2−mr0, θ

′) − u(r, θ)| dθ ′

≤ C sup
2−m−1r0≤|r|≤2−mr0

r|∇u|

≤ C(||∇u||L2(D2r )
+ r

2− 2
p ||g||Lp(D2r )).

Now, we estimate the difference between q and u:

∫
Dr0

|∇(u − q)|2 =
∞∑

m=0

r

∫ 2π

0
(u(r, θ) − q(r))(ur(r, θ) − q ′(r)) dθ

∣∣∣2−mr0

2−m−1r0

−
∫

Dr

(q − u)�(q − u) dx.

(2.3)

Since q ′(r) = constant × 1
r

on Dm(r0),∫ 2π

0
(u(r, θ) − q(r))q ′(r) dθ = 0, for all r = 2−mr0.

Hence,

∞∑
m=0

r

∫ 2π

0
(u(r, θ) − q(r))(ur(r, θ) − q ′(r)) dθ

∣∣∣2−mr0

2−m−1r0

= r0

∫ 2π

0
(u(r0, θ) − q(r0))ur(r0, θ) dθ

− lim
m→+∞ 2−mr0

∫ 2π

0
(u(2−mr0, θ) − q(2−mr0))ur(2

−mr0, θ)) dθ.
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By Lemma 2.3, we have

2−mr0

∫ 2π

0
(u(2−mr0, θ) − q(2−mr0))ur(2

−mr0, θ) dθ

≤ ||u(2−mr0, θ) − q(2−mr0)||L∞ sup
r=2−mr0

r|∇u(r, θ)| → 0

as m → +∞.
Moreover, we have

r0

∫ 2π

0
(u(r0, θ) − q(r0))ur(r0, θ) dθ

≤ r0

(∫ 2π

0
(u(r0, θ) − q(r0))

2 dθ

∫ 2π

0
|ur(r0, θ)|2dθ

) 1
2

≤
(∫ 2π

0
|uθ (r0, θ)|2dθ

) 1
2
(∫ 2π

0
r2

0 |ur(r0, θ)|2dθ

) 1
2

≤ 1

2

∫ 2π

0
(|uθ (r0, θ)|2 + |ur(r0, θ)|2r2

0 ) dθ = r0

2

∫ 2π

0
|∇u(r0, θ)|2r0 dθ

(2.4)

and∫
Dr0

|(q − u)(�(q − u))| =
∫

Dr0

|q − u| × |A(u)(du, du) − α∇u − g| dx

≤ ||q − u||L∞(Dr0 )(||A||L∞
∫

Dr0

|∇u|2dx + √
πr0||α∇u + g||L2(Dr0 )).

(2.5)

Obviously, for any 1 > δ > 0, we can always pick up r0 which is small enough such
that ∫

Dr0

|(q − u)(�(q − u))| ≤ δ

( ∫
Dr0

|∇u|2dx + r0

)
.

Applying Lemma 2.5, we get∫
Dr0

|∇(u − q)|2 dx ≥
∫

Dr0

〈uθ , uθ 〉 dx

= 1

2

∫
Dr0

(〈uθ , uθ 〉 + 〈ur, ur〉) dx

+ 1

2

∫
Dr0

(〈uθ , uθ 〉 − 〈ur, ur〉) dx

= 1

2

∫
Dr0

|∇u|2 dx + O(r0).

(2.6)
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Then, from (2.3), (2.4), (2.5) and (2.6) we can derive that

λ

∫
Dr0

|∇u|2 ≤ r0

∫ 2π

0
|∇u(r0, θ)|2r0 dθ + Cr0,

where λ is a positive constant which is smaller than 1.
Set

f (r) =
∫

Dr

|∇u|2 dx.

Then we have

λf (r) < rf ′(r) + Cr,

and hence (
f

rλ

)′
≥ −Cr−λ.

By integrating the above differential inequality over the interval [r, 1] we obtain

f (r) ≤ Crλ

∫ 1

r

s−λds + f (1)rλ ≤ Crλ.

By applying Lemma 2.3, it follows from the above inequality that

|∇u|(x) ≤ |x|λ−1.

Thus, we can complete the proof of the theorem by standard elliptic estimate theory.
�

3. A variational formula

For the inhomogeneous functional Ef ( · ) defined on W 1,2(M, N), we can easily see
that the first variational formula at point u ∈ W 2,2(M, N) can be written as

dEf (ξ) =
∫

M

〈f τ(u) + ∇u∇f, ξ〉 dVg,

for any ξ ∈ TuW
1,2(M, N). Here, we need to derive another formula for Ef ( · )

with respect to the variation of the domain manifold. The following calculation is
essentially due to Price ([P]).
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Take a 1-parameter family of transformations {φs} of M which is generated by
the vector field X. We have

Ef (u � φs) = 1

2

∫
M

|∇(u � φs)|2f (x) dVg

= 1

2

∫
M

∑
α

|d(u � φs)(eα)|2f (x) dVg(x)

= 1

2

∫
M

∑
α

|du(φs∗(eα))|2(φs(x))f (x) dVg(x)

= 1

2

∫
M

∑
α

|du(φs∗(eα))|2(x)f (φ−s)Jac(φ−1
s ) dVg,

where {eα} is a local orthonormal basis of T M . Noting

d

ds
Jac(φ−1

s ) dVg

∣∣
s=0 = −div(X) dVg,

d

ds
f (φ−s) = −df (X),

we have

d

ds
Ef (u � φs)

∣∣
s=0 = − 1

2

∫
M

|∇u|2f div(X) dVg − 1

2

∫
M

df (X)|∇u|2 dVg

+
∑
α

∫
M

〈du(∇eαX), du(eα)〉f dVg.

So, we have proved the formula

dEf (u)(u∗(X)) = − 1

2

∫
M

|∇u|2f div(X)dVg − 1

2

∫
M

df (X)|∇u|2dVg

+
∑
α

∫
M

〈du(∇eαX), du(eα)〉f dVg.

4. The proof of the theorems

The task of this section is to prove Theorems 2 and 3. In fact, what concerns Theorem 2
this just means the blow-up analysis for a so-called Palais–Smale sequence of Ef (u).
We will focus on what occurs if the sequence is not compact in the Sobolev space
W 1,2(M, N).

Proof of Theorem 2. By the assumptions stated in Theorem 2, {uk} ⊂ W 2,2(M, N)

is a Palais–Smale sequence of maps from M into N . Then it satisfies

f τ(uk) + ∇f ∇uk = αk, (4.1)
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Ef (uk) ≤ C, (4.2)

where αk ∈ u−1
k (T N) fulfills

||αk||L2 → 0. (4.3)

First we note that in local complex coordinates (4.1) can be written as

f τ0(uk) + ∇0f · ∇0uk = |β|αk,

where τ0 and ∇0 are the operators defined on R
2 with standard Euclidean metric, since

τ is a conformally invariant operator. Without loss of generality, we may assume that
g = dx2 + dy2 in a complex coordinate system.

Set

S ≡
{
x : lim

r→0
lim inf
k→+∞

∫
Dr(x)

|∇uk|2 dVg > 0

}
.

Usually, we say that x is a bubbling point for the sequence {uk} if and only if x ∈ S.
It is easy to see that S contains only finitely many points. By the Lemma 2.1, for any
x0 ∈ S, we have

lim inf
k→+∞

∫
Dr(x)

|∇uk|2 dVg > ε for any r > 0.

By the weak compactness of W 1,2(M, N) we know that there exists a subsequence
of {uk}, still denoted by {uk}, and u ∈ W 1,2(M, N) with

Ef (u) < +∞,

such that {uk} converges weakly to u in W 1,2(M, N), which is an f -harmonic map.
Moreover, Theorem 1, Lemma 2.1, Corollary 2.2 and elliptic estimate theory tell us
that u ∈ C∞(M, N) and

uk → u

in W 1,q(	, N) for any 	 ⊂⊂ M \ S and q > 1.
Thus, to prove Theorem 2 we only need to show that

S ⊂ {the critical points of f }.
Now, pick up a point p ∈ S. As we have pointed out, we may assume g = dx2 +dy2

in a complex coordinate chart N around p. Without loss of generality, we may
assume that p = (0, 0), Q = [−1, 1] × [−1, 1] ⊂ N and Q ∩ S = {p}. If p is not a
critical point of f , then, without loss of generality, we may suppose that

df (0) = λdx,

where λ is a positive constant. Thus, in a neighborhood of p, df (x) = λdx + O(r)

where r2 = x2 + y2.
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We need to choose two functions to cut off the vector field ∂
∂x

in x and y directions,
respectively. First, we take a cut off function σ ∈ C∞(R) which is 1 on [−δ, δ], and 0
on [−2δ, 2δ]c, where

δ = λε

16||∇u||2
C0(Q)

||f ||C0
.

Then we define the second function as follows:

η(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if |t | ≤ b′,
(b − t)/(b − b′) if b′ ≤ t ≤ b,

(b + t)/(b − b′) if − b ≤ t ≤ −b′,
0 if t > b or t < −b.

Here b and b′ are chosen to satisfy 0 < a < b′ < b < 2a < 1, where a is a constant
such that ∫

[−2a,2a]×[−1,1]
|∇u|2 <

λε

8||σ ′||C0 ||f ||C0
. (4.4)

Set

X = η(x)σ (y)
∂

∂x
.

By a direct computation we have

div(X) = η′(x)σ (y),

and

∑
α

〈duk(∇eαX), duk(eα)〉 = η′(x)σ (y)

∣∣∣∣∂uk

∂x

∣∣∣∣
2

+ η(x)σ ′(y)
〈∂uk

∂x
,
∂uk

∂y

〉
.

By the formula derived in Section 3, we have

−
∫

Q

η′(x)σ (y)

( ∣∣∣∣∂uk

∂x

∣∣∣∣
2

−
∣∣∣∣∂uk

∂y

∣∣∣∣
2)

f dxdy − 2
∫

Q

η(x)σ ′(y)
〈∂uk

∂x
,
∂uk

∂y

〉
f dxdy

=
∫

Q

(λ + O(r))η(x)σ (y)|∇uk|2 dxdy + 2
∫

Q

〈αk, uk∗(X)〉 dxdy.

Note that

supp(η′(x)σ (y)) ∪ supp(η(x)σ ′(y)) ⊂ Q \ (−a, a) × (−δ, δ),

we can replace Q in the left side of the above equality with Q \ (−a, a) × (−δ, δ).
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For arbitrarily fixed a and δ, uk is bounded in W 2,2(Q \ (−a
2 , a

2 )× (− δ
2 , δ

2 )). So,
by taking a subsequence, we have ∇uk → ∇u in L2(Q\(−a, a)×(δ, δ)). Therefore

−
∫

Q

η′(x)σ (y)

( ∣∣∣∣∂uk

∂x

∣∣∣∣
2

−
∣∣∣∣∂uk

∂y

∣∣∣∣
2 )

f dxdy

−→ −
∫

Q

η′(x)σ (y)

( ∣∣∣∣∂u

∂x

∣∣∣∣
2

−
∣∣∣∣∂u

∂y

∣∣∣∣
2 )

f dxdy,

(4.5)

and

− 2
∫

Q

η(x)σ ′(y)〈∂uk

∂x
,
∂uk

∂y
〉f dxdy

−→ −2
∫

[−2a,2a]×[−1,1]
η(x)σ ′(y)〈∂u

∂x
,
∂u

∂y
〉f dxdy

≤ 2||σ ′||C0 ||f ||C0

∫
[−2a,2a]×[−1,1]

|∇u|2 dxdy

<
λε

4
,

(4.6)

where we have used (4.4) in the last inequality. Moreover, once δ and a are chosen,
then ∫

[−a,a]×[−δ,δ]
|∇uk|2 dxdy ≥ ε

when k is sufficiently large. Hence∫
Q

(λ + O(r))η(x)σ (y)|∇uk|2dxdy + 2
∫

Q

〈αk, uk∗(X)〉 dxdy >
1

2
λε. (4.7)

In view of (4.5), (4.6) and (4.7), we have∫
Q

η′(x)σ (y)

(
−

∣∣∣∣∂u

∂x

∣∣∣∣
2

+
∣∣∣∣∂u

∂y

∣∣∣∣
2 )

f dxdy >
1

4
λε.

Letting b′ → b, we get∫
|x|=b

σ (y)

(
−

∣∣∣∣∂u

∂x

∣∣∣∣
2

+
∣∣∣∣∂u

∂y

∣∣∣∣
2 )

f dy >
1

4
λε.

Recall that suppσ ⊂ [−2δ, 2δ]. Then

δ >
λε

16||∇u||2
C0 ||f ||C0

,
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which contradicts the definition of δ. This means that λ must be zero. Therefore p is
a critical point of f . This completes the proof of Theorem 2. �

Now we return back to our problem on the location of the bubbling points of
the weak solutions to the inhomogeneous Landau–Lifshitz equations. Consider the
following initial value problem:

∂tu = u ∧ (f (x)�u + ∇f · ∇u) − u ∧ (u ∧ (f (x)�u + ∇f · ∇u)),

u(0) = u0(x) ∈ W 1,2(M, S2).

Noting |u|2 ≡ 1 and the identity

u∧(u∧(f (x)�u+∇f ·∇u))=(u·(f (x)�u+∇f ·∇u))u−(u·u)(f (x)�u+∇f ·∇u),

we can see easily that the above equations may be rewritten as

∂tu = f (x)τ(u) + ∇f · ∇u + u ∧ (f (x)τ (u) + ∇f · ∇u),

u(0) = u0(x) ∈ W 1,2(M, S2).

}
(4.8)

Here τ(u) = �u + |∇u|2u is the tension field of the map u : M → S2.
Tang has ever employed Struwe’s method to study the existence and uniqueness

of the above equation. We outline the argument in [T] as follows.

1. There exists T > 0 such that (4.8) is solvable in M × [0, T ).

2. u(t) blows up at finitely many points.

3. u(t) converges to a u(T ) ∈ W 1,2(M, N) weakly, and on any sub-domain which
does not contain a bubbling point, u(t) strongly converges to u(T ) locally.

Then we construct a new flow which stems from uT . Then, by the same argument
as in [St], we know that there exists T1 > 0 such that the new flow exists on the
interval [T , T1) and blows up at T1. At each bubbling point u(t) blows one or more
bubbles, i.e. one or more non-constant harmonic maps. It is well known that u(t)

must lose energy at every bubbling point. Hence, we always have a T̃ such that

∂tu = f (x)τ(u) + ∇f · ∇u + u ∧ (f (x)τ (u) + ∇f · ∇u),

u(0) = u(T̃ ) ∈ W 1,2(M, S2)

is solvable on [0, ∞). The results in [T] can be summarized in the following lemma.

Lemma 4.1. Let (M, g) be a closed Riemann surface and f be a smooth posi-
tive function on M . For any u0 ∈ W 1,2(M, S2) there exists a distribution solution
u : M × R

+ → S2 of the above equation which is smooth on M × R
+ away from

at most finitely many points (xk, tk), 1 ≤ k ≤ K0, 0 < tk ≤ ∞, which satisfies the
energy inequality Ef (u(s)) ≤ Ef (u(t)) for all 0 ≤ s ≤ t , and which assumes its
initial data continuously in W 1,2(M, S2). The solution is unique in this class.



Vol. 81 (2006) Bubbling location for F -harmonic maps 447

It is easy to see that the following identity holds for the solution to (4.8) and any
0 < t1 < t2 ≤ ∞:

Ef (u(t1)) − Ef (u(t2)) = −
∫ t2

t1

||∂tu||2
L2dt.

Hence, it follows that ∫ +∞

0
||∂tu||2

L2 < +∞.

This implies that there exists a sequence ∂tu(x, ti) such that

||∂tu(x, ti)||L2 → 0.

So, {u(ti)} is a Palais–Smale sequence of Ef (u). Therefore, if u(t) does blow up at
infinity, then by applying Theorem 2 we obtain the conclusion of Theorem 3.

As another example, we may also consider the gradient flow of the function Ef ,
i.e. a solution of

ut = f (x)τ(u) + ∇f · ∇u,

u(0) = u0(x) ∈ W 1,2(M, N).

If u(t) does blow up at infinity, we also have results similar to Theorem 3.
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