Cohomogeneity one hypersurfaces of Euclidean Spaces

Francesco Mercuri, Fabio Podestà, José A. P. Seixas and Ruy Tojeiro

Abstract. We study isometric immersions $f: M^n \longrightarrow \mathbb{R}^{n+1}$ into Euclidean space of dimension n+1 of a complete Riemannian manifold of dimension n on which a compact connected group of intrinsic isometries acts with principal orbits of codimension one. We give a complete classification if either $n \ge 3$ and M^n is compact or if $n \ge 5$ and the connected components of the flat part of M^n are bounded. We also provide several sufficient conditions for f to be a hypersurface of revolution.

Mathematics Subject Classification (2000). 53A07, 53C42.

Keywords. Cohomogeneity one manifolds, hypersurfaces.

1. Introduction

An interesting problem in submanifold theory is to study isometric immersions $f: M^n \longrightarrow \mathbb{R}^N$ into Euclidean space of a connected complete Riemannian manifold of dimension n acted on by a closed connected subgroup of its isometry group $\mathrm{Iso}(M^n)$. This study was initiated by Kobayashi [8], who proved that if N = n + 1 and M^n is compact and *homogeneous*, i.e., $\mathrm{Iso}(M^n)$ acts transitively on M^n , then $f(M^n)$ must be a round sphere.

In this paper we consider isometric immersions $f: M^n \longrightarrow \mathbb{R}^{n+1}$ of a complete Riemannian manifold M^n on which a *compact, connected* subgroup G of $\mathrm{Iso}(M^n)$ acts with maximal dimensional orbits of codimension one. We call f a *hypersurface of G-cohomogeneity one*. Observe that the group G may not be realizable as a group of extrinsic isometries of the ambient space. For instance, consider the cohomogeneity one action of $\mathrm{SO}(n)$ on \mathbb{R}^n and isometrically immerse \mathbb{R}^n into \mathbb{R}^{n+1} as a cylinder over a plane curve. However, such examples can only arise if f is not rigid. Recall that f is rigid if any other isometric immersion $\tilde{f}: M^n \to \mathbb{R}^{n+1}$ differs from f by an isometry of \mathbb{R}^{n+1} .

Examples of cohomogeneity one hypersurfaces may be obtained as follows. Start with a cohomogeneity two compact subgroup $G \subset SO(n+1)$, so that the orbit space \mathbb{R}^{n+1}/G is a two dimensional manifold, possibly with boundary. Now consider

a curve that is either contained in the interior of \mathbb{R}^{n+1}/G or meets its boundary orthogonally. Then the inverse image of such a curve by the canonical projection onto the orbit space is a cohomogeneity one hypersurface. We shall call these examples the *standard examples*. Among them, the simplest ones are the *hypersurfaces of revolution*, which are invariant by the action of $SO_l(n+1)$, the subgroup of SO(n+1) that fixes a straight line l.

Our main result states that, under natural global assumptions, the standard examples comprise all cohomogeneity one hypersurfaces.

Theorem 1.1. Let $f: M^n \to \mathbb{R}^{n+1}$ be a complete hypersurface of G-cohomogeneity one. Assume either that $n \geq 3$ and M^n is compact or that $n \geq 5$ and the connected components of the flat part of M^n are bounded. Then f is either rigid or a hypersurface of revolution. In particular, f is a standard example.

We also provide several sufficient conditions for a hypersurface of G-cohomogeneity one as in Theorem 1.1 to be a hypersurface of revolution.

Theorem 1.2. Under the assumptions of Theorem 1.1, any of the following conditions implies that f is a hypersurface of revolution:

- (i) there exists a principal orbit with positive curvature;
- (ii) there exists a principal orbit that is totally geodesic in M^n ;
- (iii) the principal orbits are umbilical in M^n ;
- (iv) $n \neq 4$ and there exists a principal orbit that is homeomorphic to a sphere.

Moreover, in this case G is isomorphic to one of the closed subgroups of SO(n) that act transitively on S^{n-1} .

Theorem 1.2 generalizes and gives new (and shorter) proofs of various known results. Namely, it was proved under condition (iii) in [12] in the compact case for $n \ge 4$ and later in [9] in the general case (even for n = 3, 4). It was also proved in [4] (resp., [2]) in the compact case for $n \ge 5$ (resp., $n \ge 4$) under the assumption that *all* orbits have positive (resp., constant) sectional curvature. We also point out that closed subgroups of SO(n) that act transitively on the sphere are completely classified (cf. [7], p. 392).

2. The proofs

Given an isometric immersion $f: M^n \longrightarrow \mathbb{R}^{n+1}$, let A_{ξ_p} denote the shape operator of f at $p \in M^n$ with respect to a normal vector $\xi_p \in T_p^{\perp} M^n$, that is, the symmetric endomorphism of $T_p M^n$ given by $A_{\xi_p} X = -\tilde{\nabla}_X \xi$ for any $X \in T_p M^n$, where ξ is

a smooth local normal vector field extending ξ_p and $\tilde{\nabla}$ stands for the derivative of \mathbb{R}^{n+1} . Recall that the *relative nullity subspace* of f at $p \in M^n$ is the kernel of A_{ξ_p} . It is well-known that on any open subset of M^n where the relative nullity subspaces of f have constant positive dimension, they define a smooth distribution whose leaves (called the *leaves of relative nullity*) are mapped by f onto open subsets of affine subspaces of \mathbb{R}^{n+1} .

Our approach to the study of hypersurfaces of cohomogeneity one is based on the following variant due to Ferus of a rigidity theorem of Sacksteder [14].

Theorem 2.1. Let $f, \tilde{f}: M^n \longrightarrow \mathbb{R}^{n+1}$ be isometric immersions of a complete Riemannian manifold of dimension $n \geq 3$. If there exists no complete leaf of relative nullity of dimension n-1 or n-2 (in particular if M^n is compact), then the shape operators of f and \tilde{f} satisfy $A(p) = \pm \tilde{A}(p)$ for every $p \in M^n$. As a consequence, if the subset of totally geodesic points of f does not disconnect M^n then f is rigid.

The relation between the shape operators of f and \tilde{f} in the statement means, more precisely, that $\tilde{A}_{\psi(\xi_p)} = \pm A_{\xi_p}$ for any $p \in M^n$ and for any $\xi_p \in T_p^\perp M_f^n$, where $\psi: T^\perp M_f^n \to T^\perp M_{\tilde{f}}^n$ is one of the two vector bundle isometries between the normal bundles of f and \tilde{f} .

By means of Theorem 2.1 we now derive the following result for hypersurfaces of G-cohomogeneity one, which is the main tool for the proofs of Theorems 1.1 and 1.2. We refer to [1] and the references therein for the basic facts on cohomogeneity one manifolds that are used in the sequel.

Proposition 2.2. Let $f: M^n \longrightarrow \mathbb{R}^{n+1}$ be a complete hypersurface of G-cohomogeneity one. If either f is rigid or there exists no complete leaf of relative nullity of f of dimension n-1 or n-2 (in particular if M^n is compact), then

- (i) B, the set of totally geodesic points of f, is G-invariant.
- (ii) There exists a Lie group homomorphism $\Psi \colon G \longrightarrow SO(n+1)$ such that $f \circ g = \Psi(g) \circ f$ for every $g \in G$, that is, f is G-equivariant.
- (iii) If Σ is a principal orbit of G, then $f(\Sigma)$ is a principal orbit of the action of $\widetilde{G} = \Psi(G)$ on \mathbb{R}^{n+1} . In particular, $f(\Sigma)$ is an isoparametric hypersurface of a sphere.
- (iv) If $f(\Sigma)$ is a round sphere for some principal orbit Σ of G, then f is a hypersurface of revolution and Ψ is a monomorphism. In particular, G is isomorphic to one of the closed subgroups of SO(n) that act transitively on S^{n-1} .

Proof. Given $g \in G$, let A^g denote the shape operator of $f \circ g$. If f is rigid then $A^g = A$ for every $g \in G$. We claim that this is also the case if there exists no complete

leaf of relative nullity of f of dimension n-1 or n-2. In fact, on one hand we have

$$g_*(p) \circ A^g(p) = A(g(p)) \circ g_*(p)$$
 for each $p \in M$. (1)

This implies that for each fixed $p \in M^n$ the map $\phi_p \colon G \to \operatorname{End}(T_p M^n)$ given by

$$\phi_p(g) = A^g(p) = (g_*(p))^{-1} \circ A(g(p)) \circ g_*(p)$$

is continuous. On the other hand, it follows from Theorem 2.1 that for each $p \in M^n$ either $A^g(p) = A(p)$ or $A^g(p) = -A(p)$. We obtain that ϕ_p is a continuous map taking values in $\{A(p), -A(p)\}$. Since G is connected and $\phi_p(I) = A(p)$, our claim follows.

In particular, the set B^g of totally geodesic points of $f \circ g$ coincides with B for every $g \in G$. In view of (1), this is equivalent to saying that B is G-invariant. Moreover, by the Fundamental Theorem of Hypersurfaces, for each $g \in G$ there exists $\tilde{g} \in \operatorname{Iso}(\mathbb{R}^{n+1})$ such that $f \circ g = \tilde{g} \circ f$. It now follows from standard arguments (cf. [12]) that $\Psi \colon G \longrightarrow \operatorname{Iso} \mathbb{R}^{n+1}$, $\Psi(g) = \tilde{g}$, is a Lie-group homomorphism whose image lies in (a conjugacy class of) $\operatorname{SO}(n+1)$, because it is compact (and hence has a fixed point) and connected. Assertion (iii) now follows from (ii).

Finally, if $f(\Sigma)$ is a round sphere for some principal orbit Σ of G then, since G is connected, it must fix the line ℓ orthogonal to the linear span of $f(\Sigma)$. Hence f is a hypersurface of revolution with ℓ as axis. Moreover, the restriction of f to Σ must be injective. Since $f \circ g = \Psi(g) \circ f$ for any $g \in G$, if $\Psi(g) = I \in SO(n+1)$ for some $g \in G$ we obtain that g(y) = y for all $y \in \Sigma$. Now, since Σ is a principal orbit, this implies that, for every $y \in \Sigma$, g_* acts trivially on the normal space at y to the inclusion of Σ into M^n . As a consequence, if $\gamma : \mathbb{R} \to M^n$ is a normal geodesic through $y \in \Sigma$, i.e., a complete geodesic that crosses Σ (and hence any other G-orbit) orthogonally, then g fixes any point of $\gamma(\mathbb{R})$. Since every point of M^n lies in a normal geodesic through a point of Σ , we obtain that $g = I \in G$, and the last assertion in (iv) follows.

Our next result classifies complete hypersurfaces of G-cohomogeneity one with dimension $n \ge 5$ that carry a complete leaf of relative nullity of dimension n - 2.

Proposition 2.3. Let $f: M^n \to \mathbb{R}^{n+1}$, $n \geq 5$, be a complete hypersurface of G-cohomogeneity one. If there exists a complete leaf of relative nullity of dimension n-2 then $M^n=S^2\times\mathbb{R}^{n-2}$ and f splits as $f=i\times id$, where $i:S^2\to\mathbb{R}^3$ is an umbilical inclusion and $id:\mathbb{R}^{n-2}\to\mathbb{R}^{n-2}$ is the identity map. In particular, f is rigid.

Proof. Since M^n carries a complete leaf of relative nullity \mathcal{F} , it can not be compact. Thus the orbit space $\Omega = M^n/G$ is homeomorphic to either \mathbb{R} or $[0, \infty)$. Moreover, if $\pi: M^n \to \Omega$ denotes the canonical projection and $\gamma: \mathbb{R} \to M^n$ is a normal

geodesic parameterized by arc-length, then $\pi \circ \gamma$ maps \mathbb{R} homeomorphically onto Ω in the first case, and it is a covering map of $\mathbb{R}\setminus\{0\}$ onto the subset Ω^0 of internal points of Ω in the latter. Set $I=\gamma^{-1}(G(\mathcal{F}))$. Since $G(\mathcal{F})$ is a closed unbounded connected subset, using that $G(\mathcal{F})=G(\gamma(I))$ it follows easily that if $I\neq \mathbb{R}$ then $I=[a,\infty)$ for some $a\in \mathbb{R}$ in the first case and $I=(-\infty,-b]\cup [a,\infty)$ for some a,b>0 in the latter. Now observe that the type number of f (i.e., the rank of its shape operator) is everywhere equal to 2 on $G(\mathcal{F})$. This is because the relative nullity subspace coincides with the nullity of the curvature tensor at a point where the type number is at least 2, whence the subset where the type number is 2 is invariant under isometries. Let $(t_0-\varepsilon,t_0+\varepsilon)\subset I$ be such that $\Phi\colon (t_0-\varepsilon,t_0+\varepsilon)\times \Sigma_p\to \pi^{-1}((t_0-\varepsilon,t_0+\varepsilon))$ given by $\Phi(t,g(p))=g(\gamma(t)),\ p=\gamma(t_0),$ is a G-equivariant diffeomorphism. We call $\Gamma=\pi^{-1}((t_0-\varepsilon,t_0+\varepsilon))$ a tube around Σ_p . We have a well-defined vector field ξ on Γ given by $\xi(y)=g_*(\gamma(t))\gamma'(t)$ for $y=g(\gamma(t)),\ t\in (t_0-\varepsilon,t_0+\varepsilon),$ and $\xi(y)$ is orthogonal to $\Sigma_{\gamma(t)}$ at y.

Now let η be a local unit normal vector field to f on Γ and A_{η}^f the shape operator of f with respect to η . Given a principal orbit $\Sigma_q = G(q) \subset \Gamma$ of G, the vector fields $\bar{\xi} = f_*(\xi|_{\Sigma_q})$ and $\bar{\eta} = \eta|_{\Sigma_q}$ determine an orthonormal normal frame of the restriction $f|_{\Sigma_q} \colon \Sigma_q \to \mathbb{R}^{n+1}$ of f to Σ_q . Denote by $A_{\bar{\eta}}$ and $A_{\bar{\xi}}$ the corresponding shape operators. Notice that $A_{\bar{\xi}} = A_{\bar{\xi}}^i$, where $i \colon \Sigma_q \to M^n$ is the inclusion of Σ_q into M^n . Thus $A_{\bar{\xi}} \circ g_* = g_* \circ A_{\bar{\xi}}$ for any $g \in G$, hence the eigenvalues of $A_{\bar{\xi}}$ are constant. On the other hand, $A_{\bar{\eta}} = \Pi \circ A_{\eta}$, where Π is the orthogonal projection of TM^n onto $T\Sigma_q$. In particular, rank $A_{\bar{\eta}} \le \mathrm{rank}\ A_{\eta}$, so we have $\mathrm{rank}\ A_{\bar{\eta}} \le 2$ on Σ_q . We have two cases to consider:

- (i) rank $A_{\bar{\eta}} \leq 1$ on each principal orbit contained in Γ ;
- (ii) rank $A_{\bar{n}} = 2$ on some principal orbit contained in Γ .

First we show that (i) can not occur. Assume otherwise. Then, it follows from Theorem 2 of [4] that the principal orbits in Γ are either isometric to Euclidean spheres or isometrically covered by Riemannian products $\mathbb{R} \times S^{n-2}(a)$ (in what follows we suppose a=1). In the former case, for each principal orbit $\Sigma_q \subset \Gamma$ it follows from the Gauss equation of the restriction $f|_{\Sigma_q} \colon \Sigma_q \to \mathbb{R}^{n+1}$ that $A_{\overline{\xi}}$ must be a multiple of the identity tensor, that is, the principal orbits in Γ are umbilical in M^n . This is in contradiction with Lemma 2.8 of [9], taking into account that $n \geq 5$ and that f has type number 2 on Γ .

Suppose now that the principal orbits are covered by $\mathbb{R} \times S^{n-2}$. In this case, for any fixed principal orbit $\Sigma_q \subset \Gamma$ there must exist an open subset $U_0 \subset \Sigma_q$ where rank $A_{\overline{\eta}} = 1$. In fact, otherwise $A_{\overline{\eta}}$ vanishes identically, hence the first normal spaces of $f|_{\Sigma_q}$ (i.e., the subspaces of the normal spaces spanned by the image of the second fundamental form) have dimension one everywhere (notice that $A_{\overline{\xi}}$ can not vanish anywhere, otherwise it would be identically zero and $f|_{\Sigma_q}$ would be totally geodesic,

which is impossible). Then either $f(\Sigma_q)$ is contained in an affine hyperplane \mathcal{H} of \mathbb{R}^{n+1} or the first normal spaces of $f|_{\Sigma_q}$ are nonparallel along an open subset of Σ_q . Both possibilities lead to contradictions: the latter forces Σ_q to be flat (cf. [6], Theorem 1); in the former, since the shape operator of the isometric immersion $f: \Sigma_q \to \mathcal{H}$ is $A_{\bar{\epsilon}}$, which has constant eigenvalues, it follows that $f(\Sigma_q)$ is a round sphere, which is again impossible. We obtain that there exists an open subset $U \subset \Gamma$ where rank $A_{\bar{n}} = 1$ and $U \cap \Sigma_q = U_0$. Since the images of $A_{\bar{n}}$ and A_{η} are related by $\operatorname{Im}(A_{\overline{\eta}}) = \Pi(\operatorname{Im}(A_{\eta}))$, and on U the dimensions of $\operatorname{Im}(A_{\overline{\eta}})$ and $\operatorname{Im}(A_{\eta})$ are 1 and 2, respectively, we must have $\xi \in \text{Im}(A_{\eta})$ everywhere on U. Therefore, at any point $x \in U$ we have that $\ker A_n(x) \subset T_x \Sigma_x$, and hence $\ker A_n(x) = \ker A_{\bar{n}}(x)$. It follows that the leaves of the distribution on U_0 given by ker $A_{\overline{n}}$ are totally geodesic in Σ_q and \mathbb{R}^{n+1} . In particular, they are flat hypersurfaces of Σ_q . This is in contradiction with the fact that Σ_q is locally isometric to $\mathbb{R} \times S^{n-2}$. In fact, for any $x \in U_0$ let W be an (n-2)-dimensional subspace of $T_x(\Sigma_q)$ where the sectional curvatures of Σ_q are equal to 1 and let F_x be the totally geodesic flat hypersurface through x. Then $S = W \cap T_x(F_x)$ has dimension at least 2, since $n \ge 5$. At each bidimensional subspace of S, the sectional curvature of Σ_q is 1, because $S \subset W$ and, on the other hand, such a curvature must be zero, for $S \subset T_x(F_x)$. Therefore (i) is not possible, and we are left with (ii).

If rank $A_{\bar{\eta}} = 2$ along a principal orbit $\Sigma_q \subset \Gamma$, then rank $A_{\bar{\eta}} = 2$ on a possibly smaller tube around Σ_q contained in Γ , which we still denote by Γ . By Theorem 3 in [4], each principal orbit Σ_x contained in Γ is isometric to a Riemannian product $S^2(a) \times S^{n-3}(b)$ of spheres and $f|_{\Sigma_x} \colon \Sigma_x \to \mathbb{R}^{n+1}$ splits as a product $f|_{\Sigma_x} = i_1 \times i_2 \colon S^2(a) \times S^{n-3}(b) \to \mathbb{R}^3 \times \mathbb{R}^{n-2} = \mathbb{R}^{n+1}$, where $i_1 \colon S^2(a) \to \mathbb{R}^3$ and i_2 : $S^{n-3}(b) \to \mathbb{R}^{n-2}$ are umbilical inclusions. Moreover, $\{\bar{\eta}, \bar{\xi}\}$ is precisely the orthonormal normal frame of $f|_{\Sigma_x}$ determined by the unit normal vector fields to the inclusions i_1 and i_2 , respectively. In particular, ξ and $\bar{\eta}$ are parallel with respect to the normal connection of $f|_{\Sigma_x}$. Hence, $A_{\bar{\eta}}$ coincides with the restriction of A_{η} to $T\Sigma_x$, which in turn implies that ξ is an eigenvector of A_{η} along Γ . Now, since rank $A_{\eta} = \operatorname{rank} A_{\bar{\eta}} = 2$ on Γ , it follows that $\xi \in \ker A_{\eta}$. Therefore, the segments of normal geodesics in Γ are contained in the leaves of ker A_{η} . Since these are assumed to be complete, we obtain that f has type number 2 on the whole M^n and that A_{η} is everywhere of the form $A_{\eta} = \operatorname{diag}(\varphi, \varphi, 0, \dots, 0)$, where φ is nonzero and constant along each principal orbit and the φ -eigenspaces of A_{η} (or $A_{\overline{\eta}}$) coincide with ker $A_{\bar{\xi}} = \ker A_{\xi}^{l}$. Now, let X be a vector field such that $A_{\eta}(X) = \varphi X$. By the Codazzi equation

$$\nabla_{X}(A_{\eta}(\xi)) - A_{\eta}(\nabla_{X}\xi) = \nabla_{\xi}(A_{\eta}(X)) - A_{\eta}(\nabla_{\xi}X)$$

we get

$$-A_{\eta}(\nabla_{X}\xi) = \xi(\varphi)X + \varphi\nabla_{\xi}X - A_{\eta}(\nabla_{\xi}X) = \xi(\varphi)X,$$

where the last equality follows from $\nabla_{\xi} X \in (\ker A_{\eta})^{\perp} = \ker(A_{\eta} - \varphi I)$, using that $\ker A_{\eta}$ is totally geodesic. Since $\nabla_{X} \xi = -A_{\xi}^{i}(X) = -A_{\overline{\xi}}(X) = 0$, it follows that $\xi(\varphi) = 0$. Therefore φ is a constant, which we may suppose to be 1. Standard arguments now show that M^{n} splits as $M^{n} = S^{2} \times \mathbb{R}^{n-2}$ (cf. [13]). By the main lemma in [10], f also splits as stated.

Proof of Theorem 1.1. Suppose that f is not rigid. If M^n is compact and $n \ge 3$, it follows from Theorem 2.1 that B, the set of totally geodesic points of f, disconnects M^n . In order to get the same conclusion in the non-compact case, we must show that there does not exist a complete leaf of relative nullity of f of dimension $\ell = n - 1$ or $\ell = n - 2$. For $\ell = n - 1$ this follows from our assumption on the flat part of M^n . Proposition 2.3 takes care of the case $\ell = n - 2$.

Since B disconnects M^n , it must contain a regular point p. Then the (principal) orbit Σ through p is contained in B, because B is G-invariant by Proposition 2.2 (i). It follows from Lemma 3.14 of [5] that $f(\Sigma)$ is contained in a hyperplane \mathcal{H} which is tangent to f along Σ , for Σ is connected. But $f(\Sigma)$ is an isoparametric hypersurface of a sphere by Proposition 2.2 (iii), and hence $f(\Sigma)$ must be a round hypersphere of \mathcal{H} . Proposition 2.2 (iv) now completes the proof.

Remark 2.4. In case M^n is complete non-compact of dimension $n \ge 5$, the arguments in the beginning of the proof of Proposition 2.3 show, more precisely, that the conclusion of Theorem 1.1 fails only when every point of $G(\gamma(I))$ is flat, where $\gamma: \mathbb{R} \to M^n$ is a normal geodesic parameterized by arc-length and I is either $[a, \infty)$ for some $a \in \mathbb{R}$ or $(-\infty, -b] \cup [a, \infty)$ for some a, b > 0, according to the orbit space being homeomorphic to \mathbb{R} or $[0, \infty)$, respectively. Notice that in the latter case M^n is flat outside a compact subset. We also point out that, since G is assumed to be compact, our assumption on the flat part of M^n is equivalent to M^n being *unflat at infinity* in the sense of [9].

Proof of Theorem 1.2. We already know from Theorem 1.1 that f is either rigid or a hypersurface of revolution. Thus, by Proposition 2.2 (iv) it suffices to prove that any of the conditions in the statement implies that $f(\Sigma)$ is a round sphere for some principal orbit Σ of G.

Assume first that Σ is a positively curved principal orbit. By Proposition 2.2 (iii), f immerses Σ as a positively curved isoparametric hypersurface of some hypersphere of \mathbb{R}^{n+1} . It follows easily from the Cartan identities for isoparametric hypersurfaces of the sphere (cf. [4], Corollary 2) that $f(\Sigma)$ is a round sphere.

As for condition (ii), if Σ is a totally geodesic principal orbit, then it is immersed by f as an isoparametric hypersurface of a sphere S^n whose first normal spaces in \mathbb{R}^{n+1} are one-dimensional. This can only happen if it is umbilical in S^n , and hence again a round hypersphere of S^n .

Now assume that (iii) holds. First notice that the position vector of f can not be tangent to f along $f(\Sigma)$ for every principal orbit Σ of G, otherwise f would be a cone over an isoparametric hypersurface of the sphere, in contradiction with the completeness of M^n . Now, if Σ is a principal orbit along which the position vector is nowhere tangent to f, then the normal bundle of the restriction $f|_{\Sigma} : \Sigma \to \mathbb{R}^{n+1}$ is spanned by the position vector and by $f_*\xi$, where ξ is a unit normal vector field to the inclusion of Σ into M^n . Since the shape operators of $f|_{\Sigma}$ with respect to both vector fields are multiples of the identity tensor, it follows that $f|_{\Sigma}$ is umbilical, and we obtain again that $f(\Sigma)$ is a round sphere.

Finally, under condition (iv) the conclusion is a consequence of the following result. $\hfill\Box$

Proposition 2.5. Let $P^n \subset S^{n+1}$, $n \geq 4$, be an isoparametric hypersurface. If the universal covering of P^n is (homeomorphic to) S^n , then P^n is isometric to a Euclidean sphere.

Proof. Let $\lambda_1, \lambda_2, \ldots, \lambda_g$ be the distinct (and constant) principal curvatures of P^n . Let m_1 be the common multiplicity of the λ_k , when k is odd, and let m_2 be the common multiplicity of the λ_k , when k is even. Denote by $\beta_0, \beta_1, \beta_2, \ldots, \beta_n$ the \mathbb{Z}_2 -Betti numbers of P^n . Then we have (cf. [11]):

- (i) [F. Münzner] $g \in \{1, 2, 3, 4, 6\}$;
- (ii) $2n = g(m_1 + m_2)$;
- (iii) [E. Cartan] If g = 3, then $m_1 = m_2 \in \{1, 2, 4, 8\}$;
- (iv) [U. Abresh] If g = 6, then $m_1 = m_2 \in \{1, 2\}$;
- (v) [F. Münzner] $\sum_{i=0}^{n} \beta_i = 2g$.

Suppose first that n, the dimension of P^n , is odd. Then (ii) and (iv) imply that $g \in \{1, 2, 3\}$. Since $n \ge 4$, it follows from (iii) that $g \in \{1, 2\}$. If g = 2, then P^n is a Riemannian product of spheres and thus it cannot be covered by a sphere. Hence we must have g = 1 and this implies that P^n is a Euclidean sphere.

Let now n be even, say n=2q. Then the Euler characteristics of S^{2q} and P^n are related by $\chi(S^{2q})=m\chi(P^n)$, where m is the number of sheets of the covering. Thus, either m=1 or m=2, since $\chi(S^{2q})=2$. Suppose m=2. Then $\chi(P^n)=\sum_{i=0}^n (-1)^i\beta_i=1$, which implies, using Poincaré duality, that the Betti number β_q is odd. On the other hand, we get from (v) that β_q must be even. This contradiction tells us that m=1 and, again using (v), we obtain that g=1. Therefore P^n is a Euclidean sphere.

Remark 2.6. Proposition 2.5 is no longer true for n = 3, as shown by Cartan isoparametric hypersurfaces of S^4 with three distinct principal curvatures [3], which are diffeomorphic to S^3/Q , where Q stands for the quaternion 8-group.

References

- [1] A. V. Alekseevsky, D. V. Alekseevsky, Riemannian *G*-manifold with one dimensional orbit space. *Ann. Global Anal. Geom.* **11** (1993), 197–211. Zbl 0810.53043 MR 1237453
- [2] A. C. Asperti, F. Mercuri, M. H. Noronha, Cohomogeneity one manifolds and hypersurfaces of revolution. *Boll. Un. Mat. Ital. B* 11 (1997), 199–215. Zbl 0882.53006 MR 1456261
- [3] E. Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante. *Ann. Mat. Pura Appl.* **17** (1938), 177–191. Zbl 0020.06505
- [4] H. P. Castro, M. H. Noronha, Homogeneous submanifolds of codimension two. *Geom. Dedicata* 78 (1999), 89–110. Zbl 0935.53023 MR 1722173
- [5] M. Dajczer, D. Gromoll, Rigidity of complete Euclidean hypersurfaces. J. Differential Geom. 31 (1990), 401–416. Zbl 0667.53003 MR 1037409
- [6] M. Dajczer, R. Tojeiro, Submanifolds with nonparallel first normal bundle. *Canad. Math. Bull.* 37 (1994), 330–337. Zbl 0812.53015 MR 1289768
- [7] J.-H. Eschenburg, E. Heintze, On the classification of polar representations. *Math. Z.* 232 (1999), 391–398. Zbl 0943.22014 MR 1719714
- [8] S. Kobayashi, Compact homogeneous hypersurfaces. *Trans. Amer. Math. Soc.* 88 (1958), 137–143. Zbl 0081.38102 MR 0096284
- [9] F. Mercuri, J. A. P. Seixas, Hypersurfaces of cohomogeneity one and hypersurfaces of revolution. *Differential Geom. Appl.* 20 (2004), 255–239. Zbl 1046.53043 MR 2038557
- [10] J. D. Moore, Isometric immersions of Riemannian products. J. Differential Geom. 5 (1971), 159–168. Zbl 0213.23804 MR 0307128
- [11] R. Palais, C.-L. Terng, *Critical Point Theory and Submanifold Geometry*. Lecture Notes in Math. 1353, Springer-Verlag, Berlin 1988. Zbl 0658.49001 MR 0972503
- [12] F. Podestà, A. Spiro, Cohomogeneity one manifolds and hypersurfaces of the Euclidean space. Ann. Global Anal. Geom. 13 (1995), 169–184. Zbl 0827.53007 MR 1336212
- [13] P. Ryan, Homogeneity and some curvature conditions for hypersurfaces. *Tôhoku Math. J.* 21 (1969), 363–388. Zbl 0185.49904 MR 0253243
- [14] R. Sacksteder, The rigidity of hypersurfaces. J. Math. Mech. 11 (1962), 929–939.
 Zbl 0108.34702 MR 0144286

Received April 13, 2005

Francesco Mercuri, Imecc-Unicamp, Campinas-SP, Brasil

E-mail: mercuri@ime.unicamp.br

Fabio Podestà, Math. Institute, Piazza Ghiberti, Firenze, Italy

E-mail: podesta@math.unifi.it

José A. P. Seixas, Mat-Ufal, Maceió-Al, Brasil

E-mail: adonai@mat.ufal.br

Ruy Tojeiro, Ufscar, São Carlos-SP, Brasil

E-mail: tojeiro@dm.ufscar.br