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Cohomogeneity one hypersurfaces of Euclidean Spaces

Francesco Mercuri, Fabio Podestà, José A. P. Seixas and Ruy Tojeiro

Abstract. We study isometric immersions f : Mn −→ R
n+1 into Euclidean space of dimension

n+ 1 of a complete Riemannian manifold of dimension n on which a compact connected group
of intrinsic isometries acts with principal orbits of codimension one. We give a complete
classification if either n ≥ 3 and Mn is compact or if n ≥ 5 and the connected components
of the flat part of Mn are bounded. We also provide several sufficient conditions for f to be a
hypersurface of revolution.
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1. Introduction

An interesting problem in submanifold theory is to study isometric immersions
f : Mn −→ R

N into Euclidean space of a connected complete Riemannian mani-
fold of dimension n acted on by a closed connected subgroup of its isometry group
Iso(Mn). This study was initiated by Kobayashi [8], who proved that if N = n + 1
and Mn is compact and homogeneous, i.e., Iso(Mn) acts transitively on Mn, then
f (Mn) must be a round sphere.

In this paper we consider isometric immersions f : Mn −→ R
n+1 of a complete

Riemannian manifold Mn on which a compact, connected subgroup G of Iso(Mn)

acts with maximal dimensional orbits of codimension one. We call f a hypersurface
ofG-cohomogeneity one. Observe that the groupGmay not be realizable as a group of
extrinsic isometries of the ambient space. For instance, consider the cohomogeneity
one action of SO(n) on R

n and isometrically immerse R
n into R

n+1 as a cylinder
over a plane curve. However, such examples can only arise if f is not rigid. Recall
that f is rigid if any other isometric immersion f̃ : Mn → R

n+1 differs from f by
an isometry of R

n+1.
Examples of cohomogeneity one hypersurfaces may be obtained as follows. Start

with a cohomogeneity two compact subgroupG ⊂ SO(n+1), so that the orbit space
R
n+1/G is a two dimensional manifold, possibly with boundary. Now consider
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a curve that is either contained in the interior of R
n+1/G or meets its boundary

orthogonally. Then the inverse image of such a curve by the canonical projection onto
the orbit space is a cohomogeneity one hypersurface. We shall call these examples
the standard examples. Among them, the simplest ones are the hypersurfaces of
revolution, which are invariant by the action of SOl(n+1), the subgroup of SO(n+1)
that fixes a straight line l.

Our main result states that, under natural global assumptions, the standard exam-
ples comprise all cohomogeneity one hypersurfaces.

Theorem 1.1. Let f : Mn −→ R
n+1 be a complete hypersurface of G-cohomo-

geneity one. Assume either that n ≥ 3 and Mn is compact or that n ≥ 5 and the
connected components of the flat part of Mn are bounded. Then f is either rigid or
a hypersurface of revolution. In particular, f is a standard example.

We also provide several sufficient conditions for a hypersurface of G-cohomo-
geneity one as in Theorem 1.1 to be a hypersurface of revolution.

Theorem 1.2. Under the assumptions of Theorem 1.1, any of the following conditions
implies that f is a hypersurface of revolution:

(i) there exists a principal orbit with positive curvature;

(ii) there exists a principal orbit that is totally geodesic in Mn;

(iii) the principal orbits are umbilical in Mn;

(iv) n �= 4 and there exists a principal orbit that is homeomorphic to a sphere.

Moreover, in this case G is isomorphic to one of the closed subgroups of SO(n) that
act transitively on Sn−1.

Theorem 1.2 generalizes and gives new (and shorter) proofs of various known
results. Namely, it was proved under condition (iii) in [12] in the compact case for
n ≥ 4 and later in [9] in the general case (even for n = 3, 4). It was also proved in
[4] (resp., [2]) in the compact case for n ≥ 5 (resp., n ≥ 4) under the assumption that
all orbits have positive (resp., constant) sectional curvature. We also point out that
closed subgroups of SO(n) that act transitively on the sphere are completely classified
(cf. [7], p. 392).

2. The proofs

Given an isometric immersion f : Mn −→ R
n+1, let Aξp denote the shape operator

of f at p ∈ Mn with respect to a normal vector ξp ∈ T ⊥
p M

n, that is, the symmetric

endomorphism of TpMn given by AξpX = −∇̃Xξ for any X ∈ TpM
n, where ξ is
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a smooth local normal vector field extending ξp and ∇̃ stands for the derivative of
R
n+1. Recall that the relative nullity subspace of f at p ∈ Mn is the kernel ofAξp . It

is well-known that on any open subset of Mn where the relative nullity subspaces of
f have constant positive dimension, they define a smooth distribution whose leaves
(called the leaves of relative nullity) are mapped by f onto open subsets of affine
subspaces of R

n+1.
Our approach to the study of hypersurfaces of cohomogeneity one is based on the

following variant due to Ferus of a rigidity theorem of Sacksteder [14].

Theorem 2.1. Let f, f̃ : Mn −→ R
n+1 be isometric immersions of a complete Rie-

mannian manifold of dimension n ≥ 3. If there exists no complete leaf of relative
nullity of dimension n− 1 or n− 2 (in particular if Mn is compact), then the shape
operators of f and f̃ satisfy A(p) = ±Ã(p) for every p ∈ Mn. As a consequence,
if the subset of totally geodesic points of f does not disconnect Mn then f is rigid.

The relation between the shape operators of f and f̃ in the statement means,
more precisely, that Ãψ(ξp) = ±Aξp for any p ∈ Mn and for any ξp ∈ T ⊥

p M
n
f , where

ψ : T ⊥Mn
f → T ⊥Mn

f̃
is one of the two vector bundle isometries between the normal

bundles of f and f̃ .
By means of Theorem 2.1 we now derive the following result for hypersurfaces

of G-cohomogeneity one, which is the main tool for the proofs of Theorems 1.1 and
1.2. We refer to [1] and the references therein for the basic facts on cohomogeneity
one manifolds that are used in the sequel.

Proposition 2.2. Let f : Mn −→ R
n+1 be a complete hypersurface of G-cohomo-

geneity one. If either f is rigid or there exists no complete leaf of relative nullity of
f of dimension n− 1 or n− 2 (in particular if Mn is compact), then

(i) B, the set of totally geodesic points of f , is G-invariant.

(ii) There exists a Lie group homomorphism� : G −→ SO(n+ 1) such that f 	g =
�(g) 	 f for every g ∈ G, that is, f is G-equivariant.

(iii) If � is a principal orbit of G, then f (�) is a principal orbit of the action of

G̃ = �(G) on R
n+1. In particular, f (�) is an isoparametric hypersurface of

a sphere.

(iv) If f (�) is a round sphere for some principal orbit � of G, then f is a hyper-
surface of revolution and� is a monomorphism. In particular,G is isomorphic
to one of the closed subgroups of SO(n) that act transitively on Sn−1.

Proof. Given g ∈ G, let Ag denote the shape operator of f 	 g. If f is rigid then
Ag = A for every g ∈ G. We claim that this is also the case if there exists no complete
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leaf of relative nullity of f of dimension n−1 or n−2. In fact, on one hand we have

g∗(p) 	 Ag(p) = A(g(p)) 	 g∗(p) for each p ∈ M. (1)

This implies that for each fixed p ∈ Mn the map φp : G → End(TpMn) given by

φp(g) = Ag(p) = (g∗(p))−1 	 A(g(p)) 	 g∗(p)

is continuous. On the other hand, it follows from Theorem 2.1 that for each p ∈ Mn

either Ag(p) = A(p) or Ag(p) = −A(p). We obtain that φp is a continuous map
taking values in {A(p),−A(p)}. SinceG is connected and φp(I) = A(p), our claim
follows.

In particular, the set Bg of totally geodesic points of f 	 g coincides with B
for every g ∈ G. In view of (1), this is equivalent to saying that B is G-invariant.
Moreover, by the Fundamental Theorem of Hypersurfaces, for eachg ∈ G there exists
g̃ ∈ Iso(Rn+1) such that f 	 g = g̃ 	 f . It now follows from standard arguments
(cf. [12]) that� : G −→ Iso R

n+1,�(g) = g̃, is a Lie-group homomorphism whose
image lies in (a conjugacy class of) SO(n+ 1), because it is compact (and hence has
a fixed point) and connected. Assertion (iii) now follows from (ii).

Finally, if f (�) is a round sphere for some principal orbit � of G then, since G
is connected, it must fix the line � orthogonal to the linear span of f (�). Hence f
is a hypersurface of revolution with � as axis. Moreover, the restriction of f to �
must be injective. Since f 	 g = �(g) 	 f for any g ∈ G, if �(g) = I ∈ SO(n+ 1)
for some g ∈ G we obtain that g(y) = y for all y ∈ �. Now, since � is a principal
orbit, this implies that, for every y ∈ �, g∗ acts trivially on the normal space at y to
the inclusion of � into Mn. As a consequence, if γ : R → Mn is a normal geodesic
through y ∈ �, i.e., a complete geodesic that crosses� (and hence any otherG-orbit)
orthogonally, then g fixes any point of γ (R). Since every point ofMn lies in a normal
geodesic through a point of �, we obtain that g = I ∈ G, and the last assertion in
(iv) follows. �

Our next result classifies complete hypersurfaces of G-cohomogeneity one with
dimension n ≥ 5 that carry a complete leaf of relative nullity of dimension n− 2.

Proposition 2.3. Let f : Mn −→ R
n+1, n ≥ 5, be a complete hypersurface of G-

cohomogeneity one. If there exists a complete leaf of relative nullity of dimension
n − 2 then Mn = S2 × R

n−2 and f splits as f = i × id, where i : S2 → R
3 is an

umbilical inclusion and id : R
n−2 → R

n−2 is the identity map. In particular, f is
rigid.

Proof. SinceMn carries a complete leaf of relative nullity F , it can not be compact.
Thus the orbit space	 = Mn/G is homeomorphic to either R or [0,∞). Moreover,
if π : Mn → 	 denotes the canonical projection and γ : R → Mn is a normal
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geodesic parameterized by arc-length, then π 	 γ maps R homeomorphically onto	
in the first case, and it is a covering map of R\{0} onto the subset	0 of internal points
of	 in the latter. Set I = γ−1(G(F )). SinceG(F ) is a closed unbounded connected
subset, using that G(F ) = G(γ (I)) it follows easily that if I �= R then I = [a,∞)

for some a ∈ R in the first case and I = (−∞,−b] ∪ [a,∞) for some a, b > 0 in
the latter. Now observe that the type number of f (i.e., the rank of its shape operator)
is everywhere equal to 2 on G(F ). This is because the relative nullity subspace
coincides with the nullity of the curvature tensor at a point where the type number is
at least 2, whence the subset where the type number is 2 is invariant under isometries.
Let (t0 −ε, t0 +ε) ⊂ I be such that� : (t0 −ε, t0 +ε)×�p → π−1((t0 −ε, t0 +ε))
given by �(t, g(p)) = g(γ (t)), p = γ (t0), is a G-equivariant diffeomorphism. We
call 
 = π−1((t0 − ε, t0 + ε)) a tube around�p. We have a well-defined vector field
ξ on 
 given by ξ(y) = g∗(γ (t))γ ′(t) for y = g(γ (t)), t ∈ (t0 − ε, t0 + ε), and ξ(y)
is orthogonal to �γ(t) at y.

Now let η be a local unit normal vector field to f on 
 andAfη the shape operator
of f with respect to η. Given a principal orbit �q = G(q) ⊂ 
 of G, the vector

fields ξ = f∗(ξ |�q ) and η = η|�q determine an orthonormal normal frame of the

restriction f |�q : �q → R
n+1 of f to �q . Denote by Aη and A

ξ
the corresponding

shape operators. Notice that A
ξ

= Aiξ , where i : �q → Mn is the inclusion of �q
into Mn. Thus A

ξ
	 g∗ = g∗ 	 A

ξ
for any g ∈ G, hence the eigenvalues of A

ξ
are

constant. On the other hand, Aη = � 	 Aη, where � is the orthogonal projection of
TMn onto T�q . In particular, rankAη ≤ rankAη, so we have rankAη ≤ 2 on �q .
We have two cases to consider:

(i) rankAη ≤ 1 on each principal orbit contained in 
;

(ii) rankAη = 2 on some principal orbit contained in 
.

First we show that (i) can not occur. Assume otherwise. Then, it follows from
Theorem 2 of [4] that the principal orbits in 
 are either isometric to Euclidean
spheres or isometrically covered by Riemannian products R × Sn−2(a) (in what
follows we suppose a = 1). In the former case, for each principal orbit �q ⊂ 
 it
follows from the Gauss equation of the restriction f |�q : �q → R

n+1 that A
ξ

must
be a multiple of the identity tensor, that is, the principal orbits in 
 are umbilical in
Mn. This is in contradiction with Lemma 2.8 of [9], taking into account that n ≥ 5
and that f has type number 2 on 
.

Suppose now that the principal orbits are covered by R × Sn−2. In this case, for
any fixed principal orbit �q ⊂ 
 there must exist an open subset U0 ⊂ �q where
rankAη = 1. In fact, otherwiseAη vanishes identically, hence the first normal spaces
of f |�q (i.e., the subspaces of the normal spaces spanned by the image of the second
fundamental form) have dimension one everywhere (notice that A

ξ
can not vanish

anywhere, otherwise it would be identically zero and f |�q would be totally geodesic,
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which is impossible). Then either f (�q) is contained in an affine hyperplane H
of R

n+1 or the first normal spaces of f |�q are nonparallel along an open subset
of �q . Both possibilities lead to contradictions: the latter forces �q to be flat (cf.
[6], Theorem 1); in the former, since the shape operator of the isometric immersion
f : �q → H isA

ξ
, which has constant eigenvalues, it follows that f (�q) is a round

sphere, which is again impossible. We obtain that there exists an open subset U ⊂ 


where rankAη = 1 and U ∩ �q = U0. Since the images of Aη and Aη are related
by Im(Aη) = �(Im(Aη)), and on U the dimensions of Im(Aη) and Im(Aη) are 1
and 2, respectively, we must have ξ ∈ Im(Aη) everywhere on U . Therefore, at any
point x ∈ U we have that kerAη(x) ⊂ Tx�x , and hence kerAη(x) = kerAη(x). It
follows that the leaves of the distribution onU0 given by kerAη are totally geodesic in
�q and R

n+1. In particular, they are flat hypersurfaces of�q . This is in contradiction
with the fact that �q is locally isometric to R × Sn−2. In fact, for any x ∈ U0 let
W be an (n − 2)-dimensional subspace of Tx(�q) where the sectional curvatures
of �q are equal to 1 and let Fx be the totally geodesic flat hypersurface through x.
Then S = W ∩ Tx(Fx) has dimension at least 2, since n ≥ 5. At each bidimensional
subspace of S, the sectional curvature of �q is 1, because S ⊂ W and, on the other
hand, such a curvature must be zero, for S ⊂ Tx(Fx). Therefore (i) is not possible,
and we are left with (ii).

If rankAη = 2 along a principal orbit �q ⊂ 
, then rankAη = 2 on a possibly
smaller tube around �q contained in 
, which we still denote by 
. By Theorem 3
in [4], each principal orbit �x contained in 
 is isometric to a Riemannian product
S2(a) × Sn−3(b) of spheres and f |�x : �x → R

n+1 splits as a product f |�x =
i1 × i2 : S2(a) × Sn−3(b) → R

3 × R
n−2 = R

n+1, where i1 : S2(a) → R
3 and

i2 : Sn−3(b) → R
n−2 are umbilical inclusions. Moreover, {η, ξ} is precisely the

orthonormal normal frame of f |�x determined by the unit normal vector fields to
the inclusions i1 and i2, respectively. In particular, ξ and η are parallel with respect
to the normal connection of f |�x . Hence, Aη coincides with the restriction of Aη
to T�x , which in turn implies that ξ is an eigenvector of Aη along 
. Now, since
rankAη = rankAη = 2 on 
, it follows that ξ ∈ kerAη. Therefore, the segments
of normal geodesics in 
 are contained in the leaves of kerAη. Since these are
assumed to be complete, we obtain that f has type number 2 on the whole Mn and
that Aη is everywhere of the form Aη = diag(ϕ, ϕ, 0, . . . , 0), where ϕ is nonzero
and constant along each principal orbit and the ϕ-eigenspaces ofAη (orAη) coincide
with kerA

ξ
= kerAiξ . Now, let X be a vector field such that Aη(X) = ϕX. By the

Codazzi equation

∇X(Aη(ξ))− Aη(∇Xξ) = ∇ξ (Aη(X))− Aη(∇ξX)
we get

−Aη(∇Xξ) = ξ(ϕ)X + ϕ∇ξX − Aη(∇ξX) = ξ(ϕ)X,
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where the last equality follows from ∇ξX ∈ (kerAη)⊥ = ker(Aη − ϕI), using that
kerAη is totally geodesic. Since ∇Xξ = −Aiξ (X) = −A

ξ
(X) = 0, it follows that

ξ(ϕ) = 0. Therefore ϕ is a constant, which we may suppose to be 1. Standard
arguments now show that Mn splits as Mn = S2 × R

n−2 (cf. [13]). By the main
lemma in [10], f also splits as stated. �

Proof of Theorem 1.1. Suppose that f is not rigid. If Mn is compact and n ≥ 3, it
follows from Theorem 2.1 that B, the set of totally geodesic points of f , disconnects
Mn. In order to get the same conclusion in the non-compact case, we must show that
there does not exist a complete leaf of relative nullity of f of dimension � = n − 1
or � = n− 2. For � = n− 1 this follows from our assumption on the flat part ofMn.
Proposition 2.3 takes care of the case � = n− 2.

Since B disconnects Mn, it must contain a regular point p. Then the (principal)
orbit � through p is contained in B, because B isG-invariant by Proposition 2.2 (i).
It follows from Lemma 3.14 of [5] that f (�) is contained in a hyperplane H which is
tangent to f along�, for� is connected. But f (�) is an isoparametric hypersurface
of a sphere by Proposition 2.2 (iii), and hence f (�) must be a round hypersphere
of H . Proposition 2.2 (iv) now completes the proof. �

Remark 2.4. In case Mn is complete non-compact of dimension n ≥ 5, the argu-
ments in the beginning of the proof of Proposition 2.3 show, more precisely, that
the conclusion of Theorem 1.1 fails only when every point of G(γ (I)) is flat, where
γ : R → Mn is a normal geodesic parameterized by arc-length and I is either [a,∞)

for some a ∈ R or (−∞,−b] ∪ [a,∞) for some a, b > 0, according to the orbit
space being homeomorphic to R or [0,∞), respectively. Notice that in the latter case
Mn is flat outside a compact subset. We also point out that, sinceG is assumed to be
compact, our assumption on the flat part of Mn is equivalent to Mn being unflat at
infinity in the sense of [9].

Proof of Theorem 1.2. We already know from Theorem 1.1 that f is either rigid or
a hypersurface of revolution. Thus, by Proposition 2.2 (iv) it suffices to prove that
any of the conditions in the statement implies that f (�) is a round sphere for some
principal orbit � of G.

Assume first that� is a positively curved principal orbit. By Proposition 2.2 (iii),
f immerses� as a positively curved isoparametric hypersurface of some hypersphere
of R

n+1. It follows easily from the Cartan identities for isoparametric hypersurfaces
of the sphere (cf. [4], Corollary 2) that f (�) is a round sphere.

As for condition (ii), if � is a totally geodesic principal orbit, then it is immersed
by f as an isoparametric hypersurface of a sphere Sn whose first normal spaces in
R
n+1 are one-dimensional. This can only happen if it is umbilical in Sn, and hence

again a round hypersphere of Sn.
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Now assume that (iii) holds. First notice that the position vector of f can not
be tangent to f along f (�) for every principal orbit � of G, otherwise f would be
a cone over an isoparametric hypersurface of the sphere, in contradiction with the
completeness of Mn. Now, if � is a principal orbit along which the position vector
is nowhere tangent to f , then the normal bundle of the restriction f |� : � → R

n+1

is spanned by the position vector and by f∗ξ , where ξ is a unit normal vector field
to the inclusion of � intoMn. Since the shape operators of f |� with respect to both
vector fields are multiples of the identity tensor, it follows that f |� is umbilical, and
we obtain again that f (�) is a round sphere.

Finally, under condition (iv) the conclusion is a consequence of the following
result. �

Proposition 2.5. Let Pn ⊂ Sn+1, n ≥ 4, be an isoparametric hypersurface. If
the universal covering of Pn is (homeomorphic to) Sn, then Pn is isometric to a
Euclidean sphere.

Proof. Let λ1, λ2, . . . , λg be the distinct (and constant) principal curvatures of Pn.
Letm1 be the common multiplicity of theλk , when k is odd, and letm2 be the common
multiplicity of the λk , when k is even. Denote by β0, β1, β2, . . . , βn the Z2-Betti
numbers of Pn. Then we have (cf. [11]):

(i) [F. Münzner] g ∈ {1, 2, 3, 4, 6};
(ii) 2n = g(m1 +m2);

(iii) [E. Cartan] If g = 3, then m1 = m2 ∈ {1, 2, 4, 8};
(iv) [U. Abresh] If g = 6, then m1 = m2 ∈ {1, 2};
(v) [F. Münzner]

∑n
i=0 βi = 2g.

Suppose first that n, the dimension of Pn, is odd. Then (ii) and (iv) imply that
g ∈ {1, 2, 3}. Since n ≥ 4, it follows from (iii) that g ∈ {1, 2}. If g = 2, then Pn is a
Riemannian product of spheres and thus it cannot be covered by a sphere. Hence we
must have g = 1 and this implies that Pn is a Euclidean sphere.

Let now n be even, say n = 2q. Then the Euler characteristics of S2q and
Pn are related by χ(S2q) = mχ(P n), where m is the number of sheets of the
covering. Thus, either m = 1 or m = 2, since χ(S2q) = 2. Suppose m = 2.
Then χ(P n) = ∑n

i=0(−1)iβi = 1, which implies, using Poincaré duality, that the
Betti number βq is odd. On the other hand, we get from (v) that βq must be even.
This contradiction tells us that m = 1 and, again using (v), we obtain that g = 1.
Therefore Pn is a Euclidean sphere. �

Remark 2.6. Proposition 2.5 is no longer true for n = 3, as shown by Cartan
isoparametric hypersurfaces of S4 with three distinct principal curvatures [3], which
are diffeomorphic to S3/Q, where Q stands for the quaternion 8-group.
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