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Iterated integrals and higher order automorphic forms

Nikolaos Diamantis and Ramesh Sreekantan

Abstract. Higher order automorphic forms have recently been introduced to study important
questions in number theory and mathematical physics. We investigate the connection between
these functions and Chen’s iterated integrals. Then using Chen’s theory, we prove a structure
theorem for automorphic forms of all orders. This allows us to define an analogue of a mixed
Hodge structure on a space of higher order automorphic forms.
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1. Introduction

In [4] the notion of Eisenstein series with modular symbols was introduced in order to
study a new approach towards a conjecture of Szpiro. This series is not invariant under
the action of the relevant group, but instead it satisfies a 4-term functional equation.
Motivated by the applications of this Eisenstein series ([4], [5], [10], [11]), and the
form of its functional equation which generalizes that of the classical automorphic
forms, the first author and others began the general study of classes of functions
satisfying equations of this type ([2]). Similar objects were defined and studied from
a different viewpoint by Kleban and Zagier ([8]).

In this paper we complete the classification of a the space of automorphic forms
of all orders and weights for a Fuchsian group of the first kind � without elliptic
elements along the lines of the classification of the space of second-order modular
forms proved in [2]. It should be noted that the space classified here is larger than
that studied in [2]. This was motivated by the desire to study certain automorphic
forms that do not seem to belong to the smaller space.

For the classification we use Chen’s theory of iterated integrals. Although it is
possible that there exists an alternative proof of the classification that does not use
iterated integrals, we wanted to highlight this connection with the important theory
of iterated integrals. In this approach, higher order modular forms can be loosely
viewed as antiderivatives of iterated integrals on the modular curve. (See [7], [9] for
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other applications of iterated integrals to modular forms which however do not deal
with higher orders).

Based on this classification, we impose a Mixed-Hodge-type structure on the
space of automorphic forms of all orders in the case of weight 0. Because of the
infinite dimensionality of the quotients of the “weight filtration”, this structure is not
a standard Mixed Hodge Structure.

However the structure described here reflects in a very natural way the algebraic
structure of our space and it seems likely that certain subspaces of these automorphic
forms could have a usual Mixed Hodge Structure.

Acknowledgment. The authors thank the referee for a very careful reading of the
paper and for many useful suggestions.

2. Higher order automorphic forms

Let� ⊂ PSL2(Z) be a Fuchsian group of the first kind with parabolic elements acting
in the standard manner on the upper half-plane H.We use the set of generators of �
given by Fricke and Klein. Specifically, if�\H has genus g, r elliptic fixed points and
m cusps, then there are 2g hyperbolic elements γ1, . . . , γ2g, m parabolic elements
γ2g+1, . . . , γ2g+m and r elliptic elements γ2g+m+1, . . . , γ2g+m+r generating �. Fur-
thermore, these generators satisfy the r + 1 relations:

[γ1, γg+1] . . . [γg, γ2g]γ2g+1 . . . γ2g+mγ2g+m+1 . . . γ2g+m+r = 1, γ
ej
j = 1

for 2g + m + 1 ≤ j ≤ 2g + m + r and integers ej ≥ 2. Here [a, b] denotes the
commutator aba−1b−1 of a and b.

We set Y (�) for the modular curve �\H and we consider the natural projection
map π : H → Y (�). For a function f on H and an even integer k, set

(f |kγ )(z) := (cz+ d)−kf (γ z)

for γ = (
a b
c d

)
in �. This defines an action of � on the space of complex functions

on H.We extend this action to C[�] by linearity.
A classical automorphic form of weight k for � is a smooth function f of “at most

polynomial growth at the cusps” such that

f |k(γ − 1) = 0.

Let J denote the augmentation ideal of the group ring which lies in the exact sequence

0 → J → Z[�] deg−−−→ Z → 0.
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J is generated by elements of the form (γ − 1) with γ in �, so we can define a
classical automorphic form as a function of “at most polynomial growth at the cusps”
which is annihilated by J via |k . We call holomorphic automorphic forms, modular.

With that in mind, we define an automorphic form f of order s to be a smooth
function on H such that

f |kδ = 0 for all δ ∈ J s.
LetMs

k(�) denote the automorphic forms of weight k and type s. From the definition,
for a fixed k, we have

M0
k (�) ⊆ M1

k (�) ⊆ M2
k (�) ⊆ · · · ⊆ Ms

k(�).

Classical automorphic forms are elements in M1
k (�) that satisfy certain growth con-

ditions at the cusps. Of course, there are several variations of the definition of higher
order modular forms. See [2], [3] for a related discussion.

The first step towards the classification of automorphic forms of order s is

Proposition 2.1. Let

ψ : Ms+1
k →

(2g+m−1)s⊕
i=1

M1
k

be defined by

ψ(f ) = (f |k(γi1 − 1) . . . (γis − 1))1≤i1,...,is≤2g+m−1.

Then

0 → Ms
k ↪→ Ms+1

k

ψ−→
(2g+m−1)s⊕

i=1

M1
k

is an exact sequence.

Proof. To prove that ker(ψ) ⊂ Ms
k , we first observe that, if f ∈ Ms+1

k , then for each
δ1 ∈ Jm, δ2 ∈ J s−m−1, we have

f |kδ1(γ1γ2 − 1)δ2 = f |kδ1(γ1 − 1)δ2 + f |kδ1(γ2 − 1)δ2. (1)

This follows from the observation that

γ1γ2 − 1 = (γ1 − 1)(γ2 − 1)+ (γ1 − 1)+ (γ2 − 1). (2)

Now let f be in ker(ψ). Using (1) we observe that to prove f is inMs
k(�), it suffices

to verify that
f |k(g1 − 1) . . . (gs − 1) = 0

for each s-tuple of generators gi of �.
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From the definition of ψ , f |k(g1 − 1) . . . (gs − 1) = 0 for all the non-elliptic
generators gi ∈ {γ1, . . . , γ2g+m−1} of �.

Further, let γ ∈ � be one of the elliptic generators with γ e = 1.As δ1(γ
l − 1) is

in Jm+1, for every δ1 ∈ Jm, we have

f |kδ1γ
l(γ − 1)δ2 = f |kδ1(γ − 1)δ2

for δ1 ∈ Jm, δ2 ∈ J s−m−1, l = 0, . . . e − 1. Therefore,

ef |kδ1(γ − 1)δ2 = f |kδ1

( e−1∑
l=0

γ l
)
(γ − 1)δ2 = f |kδ1(γ

e − 1)δ2 = 0

so
f |kδ1(γ − 1)δ2 = 0 for all δ1 ∈ Jm, δ2 ∈ J s−m−1.

Finally, using the relation between the generators, we can write

γ2g+m = ([γ1, γg+1] . . . [γg, γ2g]γ2g+1 . . . γ2g+m−1)
−1(γ2g+m+1 . . . γ2g+m+r )−1

and, by (2), γ2g+m+1 − 1 can be expressed in terms of the other generators. This
implies that f |k(g1 − 1) . . . (gs − 1) = 0 for all gi’s in the set of generators of � and
the middle term of the sequence is exact. �

The surjectivity of ψ will be studied in Section 4. To this end, we will need to
define Chen’s iterated integrals and to review their basic properties.

3. Iterated integrals

Let X be a smooth manifold. Let P(X) denote the space of paths on X, namely
piecewise smooth

γ : [0, 1] → X.

A function φ : P(X) → C is said to be a homotopy functional if φ depends only
on the homotopy class of γ relative to its endpoints, that is, it defines a function on
� = π1(X, x0), where x0 is a fixed point of X. Equivalently, it induces an element
of Hom(Z[�],C).

Let w be a smooth 1-form on X. The map

γ →
∫
γ

w =
∫ 1

0
f (t) dt,

where γ ∗(w) = f (t) dt , defines a function on P(X). This defines an element of
Hom(Z[�],C) if and only if w is closed. Hence this only detects elements of �
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visible in the homology of X – it vanishes on J 2 (J denotes the augmentation ideal
of Z[π1(X, x0)] here).

The iterated integrals studied by Chen (e.g. [1]) detect more elements of the group
ring. Specifically, suppose that w1, w2, . . . , wr ∈ E1(X), where E1(X) denotes the
space of smooth 1-forms on X. We will write

w1 . . . ws = w1 ⊗ · · · ⊗ ws ∈
s⊗
E1(X)

and call it a “product” of the wi’s. We set w1 . . . ws = 1, when s = 0.
If γ is a path on X, we set∫
γ

w1w2 . . . wr =
∫
. . .

∫
0≤t1≤t2···≤tr≤1

f1(t1)f2(t2) . . . fr(tr )dt1dt2 . . . dtr , (3)

where γ ∗(wi) = fi(t)dt . This defines a function on the space of paths of X which
will be denoted by

∫
w1 . . . wr and is called a iterated line integral of length r . A

linear combination of such functions is called an iterated integral and its length is
the length of the longest line integral. However, it is not necessarily a homotopy
functional.

Let Bs(X) denote the space of iterated integrals of length ≤ s. If � is in Bs(X)
and α ∈ P(X) we denote the evaluation map by 〈� , α〉. We extend it to all 1-chains
by linearity.

The next theorem states that in some cases an iterated integral can be modified to
be a homotopy functional.

Theorem 3.1 (Chen [1], Section 3). Let X be a connected, smooth manifold with
H 2(X) = 0 and let w1, . . . ws be closed 1-forms on X. Then there is an � ∈ Bs(X)
which is a homotopy functional and a K ∈ Bs−1(X) satisfying

〈� , α〉 =
∫
α

w1 . . . ws + 〈K, α〉,

for each path α ∈ P(X).

Proof. An example of an � satisfying these conditions can be constructed using an
extended defining system for a Massey product of w1, . . . , ws : Fix smooth 1-forms
w12, w23, . . . , w123, . . . such that

w1 ∧ w2 + dw12 = 0, . . . , ws−1 ∧ ws + dw(s−1)s = 0, . . .

w1 ∧ w23 + w12 ∧ w3 + dw123 = 0, . . .

w1 ∧ w2...s + w12 ∧ w3...s + · · · + dw1...s = 0.
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We then set

� =
∫
u

where

u := w1w2 . . . ws + w12w3 . . . ws + w1w23 . . . ws + · · ·
+ w123w4 . . . ws + w1w234 . . . ws + · · · + w1...s .

Note that
∫
u − ∫

w1w2 . . . ws is of length < s. The proof of the independence of
path can be found in [1], page 366. �

If w is a 1-form and α, β are two loops based at x0, then it is easy to see〈 ∫
w, (α − 1)(β − 1)

〉
= 0.

We will need the following lemmas. The first lemma generalizes the above comment.

Lemma 3.2 ([6], Lemma 2.10, Proposition 2.13). Let w1, . . . wr be smooth 1-forms
on X and let α = ∏s

i=1(αi − 1), where αi are loops based at x0. Then

〈 ∫
w1 . . . wr, α

〉
=

{
0 if r < s,∏s
i=1

∫
αi
wi if r = s.

The second lemma describes what happens under composition of paths.

Lemma 3.3 ([6], Proposition 2.9). Let w1, . . . ws be smooth 1-forms on X and let
α, β be paths such that α(1) = β(0). Then〈 ∫

w1 . . . ws, αβ
〉
=

〈 ∫
w1 . . . ws, α

〉
+

〈 ∫
w1 . . . ws, β

〉

+
s−1∑
j=1

〈 ∫
w1 . . . wj , α

〉 〈 ∫
wj+1 . . . ws, β

〉
.

An application of Lemma 3.3 and Theorem 3.1 is the following.

Lemma 3.4. Let X be a connected, smooth manifold with H 2(X) = 0 and let
w1, . . . ws be closed 1-forms on X. If {w12, . . . , w(s−1)s, . . . , w1...s} is an extended
defining system for a Massey product of w1, . . . ws , we set

uj = w1 . . . wj + w12w3 . . . wj + w1w23 . . . wj + · · · + w1...j , j = 1, . . . s

uj = wj+1 . . . ws + w(j+1)(j+2)wj+3 . . . ws

+ wj+1w(j+2)(j+3) . . . ws + · · · + wj+1...s j = 1, . . . s − 1.
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We also set u := us. Then for each pair of paths α and β on X with α(1) = β(0), we
have ∫

αβ

u =
∫
α

u+
∫
β

u+
s−1∑
j=1

∫
α

uj

∫
β

uj . (4)

Proof. From the construction of u, all combinations of 1, 2, . . . , s appear in u (in
this order) as indices of “products” ofw’s. Applying Lemma 3.3, we can decompose
the integral of each individual “product” as a sum of products of iterated integrals on
α and on β. Thus, ∫

αβ

u =
s∑

j=0

( ∑
vj

( ∑
vj

∫
α

vj

∫
β

vj
))

where
∑
vj

(resp.
∑
vj ) ranges over all “products” vj (resp. vj ) with index sequences

formed by the integers 1, . . . , j (resp. j + 1, . . . s). (Here we have set
∫
v0 =∫

vs+1 ≡ 1.) For example
∑
v3

∫
α
v3 = ∫

α
(w1w2w3 + w1w23 + w12w3 + w123).

From the defining equations of uj and uj ,

∑
vj

∫
α

vj =
∫
α

uj and
∑
vj

∫
β

vj =
∫
β

uj .

This proves the identity. �

4. The classification of higher order automorphic forms

We now restrict ourselves to the case when X = Y (�), where � ⊂ PSL2(Z) is a
Fuchsian group of the first kind with parabolic elements, as in Section 2. In addition,
we assume that � has no elliptic elements and hence π1(X) = �. In this section, we
complete the classification of the vector space of automorphic forms of order s and
weight k for such groups. We first work in the case of weight 0 proving what amounts
to a variation of the general statement we will eventually prove.

Let M̃s+1
0 = M̃s+1

0 (�) denote the space of f ∈ Ms+1
0 = Ms+1

0 (�) such that
f |0δ ∈ C for every δ in J s .

Proposition 4.1. The sequence

0 → Ms
0 ↪→ M̃s+1

0
ψ−→

(2g+m−1)s⊕
i=1

C → 0

with ψ defined as in Proposition 2.1 is exact.



488 N. Diamantis and R. Sreekantan CMH

Proof. The exactness of the middle term follows from Proposition 2.1 because
M̃s+1

0 ⊂ Ms+1
0 . From that, we observe that to prove surjectivity, it suffices to

construct (2g +m− 1)s linearly independent elements of M̃s+1
0 /Ms

0 .

Let {f1, . . . , fg, g1, . . . , gm−1} be a basis of the space of holomorphic modular
forms of weight 2 for � with fi cuspidal and gi non-cuspidal. Let {wi}gi=1 be the

differentials on Y (�) corresponding to {fi(z)dz}gi=1, {wi}2g
i=g+1 the differentials cor-

responding to {fi−g(z)dz̄}2g
i=g+1 (where the bar stands for complex conjugation) and

{w2g+i}m−1
i=1 the differentials corresponding to {gi(z)dz}m−1

i=1 .
Then, allwi,’s are closed, as arewi∧wj (i, j = 1, . . . , 2g+m−1). Furthermore,

since Y (�) is non-compact, from the Gysin exact sequence, we have

H 2(Y (�),C) = 0.

Hence we can apply Theorem 3.1 to any selection of s forms from {wi; i = 1, . . . ,
2g + m − 1}. Let I = (i1, i2, . . . , is) be any indexing vector with elements in
{1, . . . , 2g+m− 1} and let �I ,KI and uI be induced by {wij }sj=1 as in the proof of
Theorem 3.1. Let x0 be a point in the upper half-plane lying over a point, which we
will also denote by x0 on the curve. If we let {x0, b} denote the image under π of the
line path from x0 to b in H, then the function

F�I (z) := FI (z) := 〈�I , {x0, z}〉, z ∈ H (5)

is well defined and independent of the path from x0 to z, since π maps homotopic
paths to homotopic paths.

We will now show the FI ’s are in M̃s+1
0 (�) for each I . In Lemma 4.3 we

will further show that they are linearly independent modulo Ms
0(�). As there are

(2g +m− 1)s of them, these two facts will suffice to prove Proposition 4.1.
We first use Lemma 3.4 to compute FI |0δ, (δ ∈ J s) and show that it is a constant.

We use the notation {a, b} for the path {a, x0} followed by {x0, b}.
Lemma 4.2. Let I = (i1, . . . , is) be an indexing vector with elements in {1, . . . ,
2g +m− 1} and set FI (z) = 〈�I , {x0, z}〉. Then, for any δ = ∏s

k=1(γk − 1) ∈ J s ,

(FI |0δ)(z) =
s∏
k=1

∫
{z,γkz}

wik .

In particular, since the wi correspond to classical modular forms of weight 2 and
their conjugates, this expression is independent of z and so FI (z) ∈ M̃s+1

0 (�).

Proof. For every γ ∈ �,
FI |0(γ − 1)(z) = 〈�I , {x0, γ z}〉 − 〈�I , {x0, z}〉.
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Combining this with Lemma 3.4 with α = {x0, z} and β = {z, γ z} gives

FI |0(γ − 1)(z) = 〈�I , {z, γ z}〉 +
s−1∑
j=1

∫
{x0,z}

uj

∫
{z,γ z}

uj . (6)

Observe that, if γ1, . . . , γs are in �, we have the following expressing generalizing
(2):

s∏
k=1

(γk − 1) = (γ1 . . . γs − 1)+ · · · + (−1)s−1(γ1 − 1) · · · + (−1)s−1(γs − 1).

Combining this with (6), we have

FI |0(γ1 − 1) . . . (γs − 1)(z)

= FI |0((γ1 . . . γs − 1)+ · · · + (−1)s−1(γs − 1))(z)

= 〈�I , {z, γ1 . . . γsz}〉 + · · · + (−1)s−1〈�I , {z, γsz}〉

+
s−1∑
j=1

∫
{x0,z}

uj

( ∫
{z,γ1...γsz}

uj + · · · + (−1)s−1
∫

{z,γsz}
uj

)
.

(7)

Next we observe that, in H, the path from γ z to γ δz passing through x0 is homotopic
to γ (z, δz),where (z, δz) is the path from z to δz passing through x0. Since the image
of γ (z, δz) under π is {z, δz}, the loops {γ z, γ δz} and {z, δz} are homotopic in X
and hence {z, γ δz} is homotopic to {z, γ z}{z, δz}. On the other hand, by the proof
of Theorem 3.1, each

∫
uj is homotopy invariant. Therefore, by induction, for all

γ1, . . . γs ∈ �, we have

FI |0(γ1 − 1) . . . (γs − 1)(z)

= 〈�I , ({z, γ1z} − 1) . . . ({z, γsz} − 1)〉

+
( s−1∑
j=1

〈 ∫
uj , {x0, z}

〉 〈 ∫
uj , ({z, γ1z} − 1) . . . ({z, γsz} − 1)

〉)
.

Since the iterated integrals in the sum within the parenthesis are of length < s and
since �I ≡ ∏s

k=1

∫
wik up to an iterated integral of length < s, by Lemma (3.2) we

deduce

FI |0(γ1 − 1) . . . (γs − 1)(z) =
∫

{z,γ1z}
wi1 . . .

∫
{z,γsz}

wis . �

To complete the proof of Proposition 4.1 we show that the images of FI under the
natural projection

M̃s+1
0 → M̃s+1

0 /Ms
0

are linearly independent.
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Lemma 4.3. Suppose there exist complex numbers kI satisfying∑
I

kIFI ∈ Ms
0(�)

where I runs through the (2g + m − 1)s possible s-tuples of {1, . . . , 2g + m − 1}.
Then kI = 0 for all I .

Proof. We proceed by induction. Suppose s = 1 and that there are complex numbers
kr such that

2g+m−1∑
r=1

krFr ∈ M1
0 (�).

Then, from Lemma 4.2, for any γ ∈ � we have

2g+m−1∑
r=1

krFr |0(γ − 1)(z) =
2g+m−1∑
r=1

kr

∫
{z,γ z}

wr = 0

wherewr are the (holomorphic or anti-holomorphic) differential forms corresponding
to the basis of the space of weight 2 modular forms for � we fixed at the beginning
of the proof of Proposition 4.1. From the injectivity of the classical Eichler–Shimura
isomorphism, we have kr = 0 for all r .

Proceeding by induction, suppose there are complex numbers kI satisfying∑
I

kIFI ∈ Ms
0

where I runs through the (2g + m − 1)s possible s-tuples (i1, . . . , is) of the set
{1, . . . , 2g +m− 1}. Then∑

I

kIFI |0(γ1 − 1) . . . (γs − 1) = 0

for any γ1, . . . , γs in �.
Applying Lemma 4.2, this is equivalent to∑

I

kI

∫
{z,γ1z}

wi1 . . .

∫
{z,γsz}

wis = 0

or
2g+m−1∑
is=1

( 2g+m−1∑
is−1=1

· · ·
2g+m−1∑
i1=1

kI

∫
{z,γ1z}

wi1 . . .

∫
{z,γs−1z}

wis−1

) ∫
{z,γsz}

wis

=
2g+m−1∑
is=1

Ais

∫
{z,γsz}

wis = 0.
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From the Eichler–Shimura isomorphism once again, we have that Ais = 0 for all is .
For a fixed is , Ais is

∑
I ′
kI ′∪{is}

∫
{z,γ1z}

wi1 . . .

∫
{z,γs−1z}

wis−1

where I ′ runs through all possible (s − 1)-tuples. By induction,

kI ′∪{is} = 0.

As this is true for all is , kI = 0 for all I and the FI are linearly independent modulo
Ms

0(�). �

This completes the proof of Proposition 4.1. �

The following classification theorem is an application of Proposition 4.1.

Theorem 4.4. Let

ψ : Ms+1
k →

(2g+m−1)s⊕
i=1

M1
k

be defined by

ψ(f ) = (f |k(γi1 − 1) . . . (γis − 1))1≤i1,...,is≤2g+m−1

Then,

0 → Ms
k ↪→ Ms+1

k

ψ−→
(2g+m−1)s⊕

i=1

M1
k → 0

is an exact sequence.

Proof. In view of Proposition 2.1, the only part that needs to be proved is the surjec-
tivity of ψ. Let

(fI )I ∈
(2g+m−1)s⊕

i=1

M1
k

with I ranging through the (2g +m− 1)s possible s-tuples of {1, . . . , 2g +m− 1}.
We will show that there is a F ∈ Ms+1

k such that ψ(F) = (fI )I or equivalently,

F |k(γi1 − 1) . . . (γis − 1) = fI

for all s-tuples I = {ii , . . . , is}.
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From the surjectivity part of Theorem 4.1, for each s-tuple of integers L =
(l1, . . . ls) with lj ∈ {1, . . . , 2g +m− 1}, there is a �L ∈ M̃s+1

0 such that

�L|0(γi1 − 1) . . . (γis − 1) = δLI

for any s-tuple I , where δLI is the Kronecker delta function of the s-tuple, namely∏
k δ
lk
ik

.
An easy computation then shows that

F =
∑
L

fL�L

is in Ms+1
k and satisfies the desired equality. �

We shall finally use the last two propositions to show that the direct sum of allMs
0

can be endowed with a structure which in some respects is very similar to a Mixed
Hodge Structure.

Theorem 4.5. Set

V =
∞⊕
s=1

Ms
0 .

There exists

• a increasing filtration W• on V and

• a decreasing filtration F • on V

such that, for each m ∈ N, the filtration on Grm(W •) = Wm/Wm−1 defined by

Fp(Grm(W
•)) = (Wm ∩ Fp)/(Wm−1 ∩ Fp)

satisfies
Fp(Grm(W

•))⊕ F̄ m−p+1(Grm(W
•)) ∼= Grm(W

•).

Proof. It suffices to construct two filtrations W• and F • satisfying the following
property: If w ∈ Wm and p, q are integers such that p+ q = m+ 1, then there exist
w1 ∈ Fp ∩Wm, w2 ∈ Fq ∩Wm and w0 ∈ Wm−1 such that w = w1 + w̄2 + w0.
Moreover, this decomposition is unique modulo Wm−1.

We define W• setting Wm = Mm+1
0 .

To defineF • we first consider the set F of all functions that are induced by modular
forms of weight 2 and their conjugates as in (5). Specifically, F contains all functions
f : H → C with the property that

f (z) = 〈� , {x0, z}〉, for all z ∈ H,



Vol. 81 (2006) Iterated integrals and higher order automorphic forms 493

for a homotopy functional � ∈ Bs(X) such that

� ≡
∫
w1 . . . ws modBs−1(X)

for some wi corresponding to weight 2 modular forms and their conjugates. We do
not require that the modular forms inducing f belong to the basis fixed in the proof
of Proposition 4.1.

We next consider the set Fp of all F ∈ F induced by forms wi among which at
least p are holomorphic. Fp is then defined as the space generated by products of
the form f · F , with f in M1

0 and F ∈ Fp, i.e.

Fp := 〈f · F ; f ∈ M1
0 , F ∈ Fp〉.

Now, Theorem 4.4 implies that each F ∈ Wm = Mm+1
0 can be expressed as a sum

of functions of the form fL ·�L, where L is an indexing vector of lengthm and fL ∈
M1

0 . By the construction of �L, each of them can be expressed, uniquely modulo a
function in Mm

0 , as a linear combination of the FI ’s constructed in Proposition 4.1.
Here I is an indexing set of length m. Therefore, F can be written in the form

F =
∑
I

fIFI + F0 (8)

for some F0 ∈ Wm−1 = Mm
0 and fI ∈ M1

0 .
Let p, q be positive integers such that p + q = m + 1 and let FI be one of the

functions in the right-hand side of (8). If the set of 1-forms inducing FI contains less
than p holomorphic forms, then it contains at least q = m−p+ 1 anti-holomorphic
ones. In addition, by the construction of �I ’s and FI ’s, F̄I ∈ F. Hence F̄I is induced
by at least q holomorphic forms and fIFI ∈ Fq . This completes the proof. �

As mentioned above, this structure is not quite a MHS mainly as the Grm(W •)’s are
not finite dimensional. It is also not clear that the definition is functorial. However,
it appears that there is an interesting subspace which has a genuine mixed Hodge
structure. We will discuss this in a future paper.
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