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Pointwise taut Riemannian manifolds
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Abstract. In the present work, we investigate pointwise taut Riemannian manifolds by using
methods from Riemannian geometry, Morse theory and topology.

Using ideas of Terng and Thorbergsson, we extend a result ofWarner and show that a compact
simply connected pointwise taut n-dimensional manifold is homeomorphic to a compact rank
one symmetric space, if the first conjugate locus of a point is of constant multiplicity. We apply
this result to study compact simply connected pointwise taut manifolds in dimensions three and
four.

Mathematics Subject Classification (2000). 53C25.

Keywords. Pointwise taut, Blaschke, cut locus.

Introduction

Let N be a complete Riemannian manifold. A point q ∈ N is called taut, if the energy
functional Ep : P(N, q × p) → R is perfect for every p ∈ N that is not conjugate
to q along some geodesic. We call a complete manifold pointwise taut, if each of its
points is taut.

The purpose of the present work is to study pointwise taut manifolds, especially
in low dimensions, by using methods from Riemannian geometry, Morse theory and
topology. Some of the frequently used notions are those of conjugate and cut loci,
critical manifolds and path spaces.

According to a theorem of Bott and Samelson ([BS]), compact simply connected
symmetric spaces are pointwise taut. All known examples of compact simply con-
nected pointwise taut manifolds being symmetric, one is led to the natural ques-
tion of whether the converse of their result holds. An affirmative answer to this
question would imply the Blaschke conjecture (see Theorem 1.6 due to Terng and
Thorbergsson).

For compact simply connected pointwise taut manifolds with the additional prop-
erty that their first conjugate points be of the same multiplicity, we obtain the following
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Theorem. Let M be a compact simply connected pointwise taut n-dimensional Rie-
mannian manifold. If there exists a point p in M for which each point of the first
conjugate locus C1(p) in TpM has the constant multiplicity k, then one of the fol-
lowing holds:

(i) k = n−1, and M is isometric to the standard sphere Sn with constant sectional
curvature.

(ii) k = 1, n = 2λ for λ = 2, 3, 4, . . . and M is homeomorphic with the complex
projective space P λ(C). If n > 4, then M is even diffeomorphic with P λ(C).

(iii) k = 3, n = 4λ for λ = 2, 3, 4, . . . and M is homeomorphic with the quater-
nionic projective space P λ(H).

(iv) k = 7, n = 16 and M is homeomorphic with the projective Cayley plane P 2(O).

This result constitutes the foundation of our subsequent studies. By applying it
to the three-dimensional case, we prove the following

Theorem. Let M be a compact simply connected pointwise taut three-manifold. Then
M is isometric to the standard sphere S3.

As one would expect, the four-dimensional case is much more difficult. From
dimension four on, the first conjugate locus of a point in a pointwise taut manifold
can include points of different multiplicities. For example, multiplicities one and
two appear in the first conjugate locus of a point in S2 × S2. Therefore, a direct
application of our results from the constant multiplicity case is not possible. Though,
techniques from that case can be used locally, when we consider open subsets of
constant multiplicity in the first tangent conjugate locus of a point. We assume our
pointwise taut manifolds to be compact and simply connected, because then the cut
locus of a point coincides with the first conjugate locus, as was shown by Terng
and Thorbergsson ([TT]). Their result leads us to some facts about the cut locus,
which in turn allow us to draw conclusions about the geometry of pointwise taut
four-manifolds, i.a. the following

Theorem. Let M be a compact simply connected pointwise taut four-manifold. Then
each point of M is conjugate to itself along a suitable geodesic.

In Section 1, we give some preliminaries on taut immersions into complete Rie-
mannian manifolds, stressing the case of taut points, and quote the basic results on
pointwise taut manifolds that are due to Terng and Thorbergsson ([TT]).

In Section 2, the constant multiplicity case is studied, using Warner’s work ([Wa1],
[Wa2]) and various results about Blaschke manifolds. In Sections 3 and 4, we apply
our results on the constant multiplicity case to compact simply connected pointwise
taut manifolds of dimensions three and four respectively.
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1. Preliminaries

We begin by recalling that a Morse function on a manifold M is called perfect with
respect to a field F , if the number of index k critical points is equal to the k-th Betti
number of M with respect to F for all k.

A submanifold M of R
n is called taut if there is a field F such that, for generic

a ∈ R
n, the squared distance function fa : M → R is perfect with respect to F .

This terminology was introduced by Carter and West ([CW]), but some results on
taut submanifolds actually go back to Bott ([Bo2]) and Bott and Samelson ([BS]).

A definition similar to the one above can be also used for submanifolds of Sn.
In fact, one can call a submanifold M of Sn taut if a squared distance function fa

of M is a perfect Morse function for generic a. Though, this notion of tautness
cannot be directly generalized for submanifolds in arbitrary Riemannian manifolds
N . One of the problems is that the squared distance function fa : N → R defined by
fa(x) = d(p, x)2 is not differentiable if the cut locus of a is not empty. In N = Sn,
this is not a problem since a submanifold of Sn does not meet the cut locus of a for
generic a. But this is not true for a general manifold N .

Using a different approach, Grove and Halperin ([GH]) and, independently of
them, Terng and Thorbergsson ([TT]) defined a general notion of a taut immersion
into a complete Riemannian manifold. It was proved ([TT]) that for submanifolds
of the Euclidean space and those of the sphere, the new tautness definition coincides
with the one previously known. Now we are going to introduce this generalized
tautness notion, using the exposition in the paper [TT].

Let (N, g) be a Riemannian manifold and φ : M → N an immersion. For B ⊂
N ×N , denote by P(N, B) the set of all H 1-paths γ in N such that (γ (0), γ (1)) ∈ B.
Notice that a path is H 1 if it is absolutely continuous and the norm of the derivative
is square integrable. For a fixed p ∈ N , let π : P(N, N × p) → N be the fibration
defined by π(γ ) = γ (0), and let P(N, φ × p) denote φ�(P (N, N × p)), i.e., the
space of pairs (q, γ ) such that q ∈ M and γ is a H 1-path γ : [0, 1] → N such that
(γ (0), γ (1)) = (φ(q), p). The space P(N, φ × p) is a Hilbert manifold ([Pa]). If
M ∈ N and φ is the inclusion map, then P(N, φ × p) is isomorphic to the space
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P(N, M × p). Let

Ep : P(N, φ × p) → R, Ep(q, γ ) =
∫ 1

0
‖γ ′(t)‖2 dt

be the energy functional. Then it is well known that (q, γ ) ∈ P(N, φ×p) if and only
if γ is a geodesic normal to φ(U) at φ(q) = γ (0) parametrized proportionally to arc
length, where U is a neighborhood of q on which φ is injective. It is also well known
that Ep is a Morse function if and only if p is not a focal point of M . Notice that
we do not require that the levels of critical points of a Morse function are different,
only that all critical points are non-degenerate. The Morse index theorem says that
the index of Ep at a critical point (q, γ ) is the sum of integers m such that γ (t) is a
multiplicity m focal point of M with respect to q with 0 < t < 1.

Let μk denote the number of index k critical points of Ep in P(N, φ × p), and
let bk denote the k-th Betti number of P(N, φ × p). It is known that Ep is bounded
below and satisfies the Palais–Smale condition. So if p is not a focal point of M , then
for an arbitrary number r the number μk(r) of critical points of index k on the subset

P(N, φ × p)r = {(q, γ ) ∈ P(N, φ × p) | Ep(q, γ ) ≤ r}
is finite for all k (see [PS]). The well-known Morse inequalities μk(r) ≥ bk(P (N,

φ × p)r) hold for all k and r . The functional Ep is called perfect if each of these
inequalities is an equality, that is if μk(r) = bk(P (N, φ × p)r) for all k and r .

Remark. In the sequel, we will deal with a special case, in which M is just a point
q ∈ N . In this situation, we will not use the rather complicated notation P(N, q ×p)

and denote this path space by �pq(N) instead. In the literature, this notation is often
used to denote the space of continuous paths from p to q in N . We can use the
same notation for our space of H 1-paths, since these spaces are homotopy equivalent
([Pa]). Moreover, we set

�r
pq(N) = {γ ∈ �pq(N) | Ep(γ ) ≤ r}

and

�r−
pq (N) = {γ ∈ �pq(N) | Ep(γ ) < r}.

Definition 1.1. Let N be a complete Riemannian manifold. An immersion
φ : M → N of N is called taut if there is a field F , so that the energy functional
Ep : P(N, φ × p) → R is perfect with respect to F for every p ∈ N that is not a
focal point of M . In particular, a point q ∈ N is called a taut point if {q} is a taut
submanifold of N , i.e., Ep : �qp(N) → R is perfect for every p ∈ N that is not
conjugate to q along some geodesic.
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Now we are going to turn our attention to the energy functional Ep, where p is a
focal point of M . According to the above, this Ep is not a Morse function. Therefore,
the critical points of Ep need not be isolated. Among such functions, one distin-
guishes the so-called Morse–Bott functions, which are defined by the property that
each connected component of the set of critical points is a non-degenerate critical sub-
manifold (of �qp(N) in our situation). The non-degeneracy of a critical submanifold
means that all critical points in it have the same nullity, which equals the dimension
of the submanifold. For further information on critical submanifolds, one can consult
[Bo1]. The concept of critical submanifolds was applied by Ozawa ([Oz]) to study
taut submanifolds in Euclidean spaces and spheres. Terng and Thorbergsson showed
in [TT] that Ozawa’s result carries over to taut immersions into complete Rieman-
nian manifolds. They proved, that for a taut immersion into a complete Riemannian
manifold, the energy functional Ep is a Morse–Bott function for an arbitrary point p.
We formulate their result for the special case of taut points, which is to be studied in
the present work.

Theorem 1.2. Let N be a complete Riemannian manifold with a taut point q and
p a point in N conjugate to q along a geodesic γ . Then the critical point γ of
Ep : �qp → R lies in a non-degenerate connected critical submanifold Cr ⊂ �qp

of dimension m, where m is the multiplicity of p (or, in other words, the nullity of γ

as a critical point). Moreover, the geodesics from q to p, which belong to Cr , have
the same length.

Now we give some basic information about the pointwise taut manifolds.

Definition 1.3. We call a Riemannian manifold (M, g) pointwise taut, if each of its
points is taut.

In terms of this definition, a result due to Bott and Samelson ([BS]) signifies that
any symmetric space is pointwise taut. The field with respect to which the symmetric
spaces are pointwise taut is Z2. Of course, some of these spaces are also pointwise
taut with respect to other fields.

Up to now, all known examples of compact pointwise taut manifolds are symmet-
ric. Therefore, one is tempted to conjecture that there are no other compact pointwise
taut manifolds. Although it does not seem possible to prove such a general theorem,
some encouraging partial results have been achieved by Terng and Thorbergsson and
motivated us to continue research in this direction. Now we are going to quote their
results from [TT], which establish a connection between pointwise taut manifolds
and Blaschke manifolds. We remind the reader that the latter can be defined in the
following manner:

Let p and q be distinct points in a complete Riemannian manifold M . Set d =
d(p, q). Then the link from p to q is defined to be the set �(p, q) of unit vectors
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X = γ ′(d) in Tq(M) where γ : [0, d] → M is a length minimizing geodesic between
p and q. A compact Riemannian manifold is said to be a Blaschke manifold at p

for every point q in the cut locus Cut(p) of p the link �(p, q) is a totally geodesic
sphere in the unit sphere of TqM . A Riemannian manifold is said to be Blaschke, if
it is Blaschke at all of its points.

Theorem 1.4. Let (Mn, g) be a simply connected compact Riemannian manifold
with a taut point p.

(i) If the first two non-vanishing Betti numbers of the based loop space are b0 and
bn−1 and p ∈ M , then (M, g) is Blaschke at p and M is homeomorphic to Sn.

(ii) If a point q is the first conjugate point to p along a geodesic, so that the mul-
tiplicity of q is n − 1, then (M, g) is Blaschke at p and M is homeomorphic
to Sn. �

Remark. In [TT], the first part of this theorem is stated explicitly, whereas the second
statement follows trivially from the proof of the first one. We state the theorem in
this way because it is mainly the second claim which we will use in our work.

Theorem 1.5. Let (Mn, g) be a simply connected compact Riemannian manifold.
Suppose the first three nonvanishing Betti numbers bi of the based loop space of M

are b0, ba and ba+n−1 for some 1 ≤ a ≤ n − 1 and ba = 1. If p is taut in M , then
(M, g) is Blaschke at the point p. In particular, if all points are taut, then (M, g) is
Blaschke. �

Remark. The homology groups under consideration above are those with coefficients
in F , where F is the field with respect to which the tautness assumption holds.

Terng and Thorbergsson also proved the following

Theorem 1.6. Let (M, g) be a simply connected Blaschke manifold. Then it is
pointwise taut. �

It can be easily checked that all compact symmetric spaces of rank one are
Blaschke. No other examples of Blaschke manifolds are known. In fact, the so-
called Blaschke conjecture (never conjectured by Blaschke in this generality) states
that every Blaschke manifold is isometric to a compact symmetric space of rank one.

The basic facts about Blaschke manifolds, which we have gathered, enable us to
better understand the theorems of Terng and Thorbergsson quoted above. Because
Blaschke manifolds are conjectured to be compact rank one symmetric spaces, Terng
and Thorbergsson had to assume in Theorem 1.4 and Theorem 1.5 that the based loop
spaces of the manifolds considered there have the right Betti numbers in order to have
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any reasonable chance of proving those manifolds to be Blaschke. Their successful
investigation of this situation means that, when studying a manifold whose based loop
space has the same Betti numbers as that of a compact rank one symmetric space, we
can use vast information gathered about Blaschke manifolds. We will quote some
advanced information about them in the later sections whenever necessary.

If we knew that pointwise taut manifolds are symmetric spaces, then Theorem 1.6
would imply the Blaschke Conjecture, which is still unsettled. Thus, we will not try
to prove that a pointwise taut manifold is isometric to a symmetric space. Even the
objective of showing that a compact pointwise taut manifold is homeomorphic to a
symmetric space is not achievable in general, but we will solve this problem under
an additional assumption on the conjugate locus in Section 2.

We conclude this section with an elementary topological remark clarifying the
role of the based loop space in the theorems above. Indeed, it was the path space
�pq that was mentioned in the definition of tautness in Section 2, not the based loop
space. But, due to a well-known result by Serre ([Se], p. 480), the path spaces �xy

and �zw are of the same homotopy type, for arbitrary points x, y, z, w.

2. The constant multiplicity case

Let Mn be a compact simply connected pointwise taut manifold. In this section, we
are going to assume that there exists a point p ∈ M for which each point of the first
conjugate locus C1(p) ⊂ TpM has the constant multiplicity k.

The case 2 ≤ k ≤ n − 1 has been treated by Warner ([Wa2]). In fact, without
making any tautness assumption, he proved the following result.

Theorem 2.1. Let M be a compact simply connected n-dimensional Riemannian
manifold, and let k be an integer with 2 ≤ k ≤ n − 1. If there exists a point p in
M for which each point of the first conjugate locus C1(p) in TpM has the constant
multiplicity k, then one of the following holds:

(i) k = n − 1, and M is homeomorphic with the sphere Sn.

(ii) k = 3, and n = 4λ for λ = 2, 3, 4, . . . and the integral cohomology ring of M

is isomorphic to that of the quaternionic projective space P λ(H).

(iii) k = 7, and n = 16, and the integral cohomology ring of M is isomorphic to
that of the projective Cayley plane P 2(O). �

Because of this theorem, the main object of our studies is the case k = 1. In this
case, we want to prove that M is even-dimensional and that the integral homology of
M is isomorphic to that of the complex projective space of the right dimension. After
achieving this goal, we will use our tautness assumption again to sharpen the results
in each case.
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We are going to take advantage of the general strategy which was used byWarner to
prove the theorem cited above. Warner had to assume k ≥ 2, because some arguments
of his proof break down in the case k = 1, but we will overcome these problems by
using the pointwise tautness of M . We begin by introducing some terminology and
results of Warner ([Wa1]), which will be used in the sequel. First we cite an important
theorem about the exponential map of a manifold.

Theorem 2.2. Let M be a Riemannian manifold, p ∈ M be arbitrary. Consider the
exponential map expp : TpM → M . Then for each non-zero point x in TpM there
exists a convex neighborhoodU ofx such that the number of conjugate points (counted
with multiplicities) on r ∩ U , for each ray through the origin which intersects U , is
constant and equals the multiplicity of x as a conjugate point to p along expp(tx). �

Remark. This theorem, which will help us understand the structure of the conjugate
locus of our pointwise taut manifolds, is not explicitly stated in [Wa1] in the above
form. In [Wa1], Warner introduces a notion of regular exponential maps, which in
particular satisfy Theorem 2.2 by their definition. He proceeds in that article by
showing that the usual Riemannian exponential map is regular.

Definition 2.3. A conjugate point x ∈ TpM is called regular if there exists a neigh-
bourhood U of x such that each ray through the origin of TpM contains at most one
point in U which is a conjugate point. A conjugate point which is not regular is called
a singular point.

We let CR(p) denote the regular points in C1(p) and CS(p) denote the singular
points. Theorem 2.2 implies the following useful

Lemma 2.4. The regular conjugate locus CR(p) is open. Therefore, the singular
conjugate locus is closed. Moreover, all conjugate points of multiplicity one are
regular. �

Examples 2.5. We consider two four-manifolds, which we will encounter in Sec-
tion 4. We think of these manifolds as endowed with their standard metrics.

(i) M = P 2(C). It is well known that each first conjugate point of the complex
projective space has multiplicity one. Lemma 2.4 implies that the first conjugate
locus consists of regular points only.

(ii) M = S2 × S2. Let (p, q) be an arbitrary point of M and (V , W) ∈ T(p,q)M

be an arbitrary tangent vector. The multiplicity of the first conjugate point with
respect to (p, q) in direction (V , W) can be easily computed. One obtains the
following results: is ‖V ‖ > ‖W‖, then the first conjugate point to (p, q) in the
direction (V , W) is (−p, r) with r 
= −q. The multiplicity of this conjugate
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point is one. Analogously, if ‖W‖ < ‖V ‖, then the first conjugate point to (p, q)

in the direction (V , W) is (r, −q) with r 
= −p. Again, the multiplicity of this
conjugate point is one. Eventually, if ‖V ‖ = ‖W‖, then the first conjugate point
to (p, q) in the direction (V , W) is (−p, −q). The multiplicity of this conjugate
point equals two.

The regular conjugate locus admits a particularly nice description which was given
by Warner in [Wa1].

Theorem 2.6. Let Mn be a Riemannian manifold, p ∈ M be arbitrary. Then
the regular conjugate locus CR(p) is an open everywhere dense subset of C(p)

which can be given a manifold structure of dimension n − 1 such that the inclu-
sion i : CR(p) → TpM is a submanifold with the relative topology, and such that
(TpM)x = (CR(p))x ⊕ rx for every x ∈ CR(p). �

Let x ∈ CR(p), let expp : TpM → M be the exponential map. We define T (x) to
be the subspace of the null space N(x) of d expp(x) tangential to the regular conjugate
locus at x, i.e., T (x) = N(x) ∩ (CR(p))x .

Consider an open connected submanifold C of the regular conjugate locus CR(p).
The multiplicity of the conjugate points comprising C is a constant k. The null space
N(x) of d expp(x) intersects the tangent space Cx to C in either a k or (k − 1)-
dimensional subspace which we have denoted by T (x). Let Ck be the subset of
points x in C where the dimension of T (x) is k and Ck−1 the subset where the
dimension of T (x) is k −1. For the case k ≥ 2, Warner ([Wa1]) proved the following

Theorem 2.7. The set Ck−1 is empty for k ≥ 2. That is, if x is a regular conjugate
point of the exponential map expp : TpM → M and if the multiplicity of x is ≥ 2,

then the null space N(x) of d expp(x) is contained in the tangent space (CR(p))x to
the regular conjugate locus at x. �

We will need an analogous theorem for k = 1, but in this case Warner’s proof
breaks down. We are going to prove the desired result in a different way, using our
assumption that M is pointwise taut. Moreover, we can restrict ourselves to the first
conjugate locus, because we will not need a more general result.

Proposition 2.8. Let M be a compact simply connected pointwise taut manifold and
p ∈ M arbitrary. Then the set C0(p) ∩ C1(p) is empty. That is, if x ∈ TpM

is a regular first conjugate point and if the multiplicity of x is one, then the null
space N(x) of d expp(x) is contained in the tangent space (CR(p))x to the regular
conjugate locus at x.
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Proof. Let x ∈ TpM be a regular first conjugate point of multiplicity one. Let c(t)

be the line segment between 0 and x in Tp(M) and q = expp(x). According to
Theorem 1.2, the geodesic segment expp(c(t)), viewed as a point of the path space
�pq(M), is contained in a one-dimensional compact critical manifold Cr . All the
points of this critical manifold are geodesic segments of the same length. Moreover,
Cr is homeomorphic to S1 according to the well-known classification of 1-manifolds.
We can think of Cr as of a closed curve σ in C1(p) with σ(0) = x = σ(1), with the
correspondence between Cr and σ provided by the exponential map expp. All we
need to prove now is the differentiability of σ .

To show the latter, we use the proof of Theorem 1.2, which is due to Terng and
Thorbergsson ([TT]). They work with the standard finite dimensional approximation
of the path space �pq(M) on the product of a suitable number of copies of M . Since
we assumed that q is contained in the first conjugate locus, one copy of M is actually
enough in our case. The geodesic segments, which make up Cr ⊂ �pq(M), are
approximated in M by their midpoints. We denote the “approximating manifold” by
Cr , which is a closed curve in M . The proof of Terng and Thorbergsson establishes
the differentiability of this curve. Therefore, the closed curve σ = exp−1

p (Cr) in TpM

is differentiable as well. This implies the differentiability of the curve σ = 2σ . �

Another important result which was shown by Warner for the case k ≥ 2 can be
stated as follows:

Theorem 2.9. Let M be a simply connected complete Riemannian manifold, and
let p ∈ M . Suppose that, whenever there exists a first conjugate point to p along
a geodesic issuing from p, that conjugate point has multiplicity ≥ 2. Then the cut
locus and the first conjugate locus in TpM coincide. �

This statement was proven by Warner without any tautness assumption, but his
proof is not valid in the k = 1 case. Using tautness, Terng and Thorbergsson ([TT])
obtained a similar result without assuming k ≥ 2:

Theorem 2.10. Suppose M is a complete simply connected Riemannian manifold
with a taut point p. Then the first conjugate point of p along a geodesic coincides
with the cut point of p along that geodesic and vice versa. �

Now we are ready to state and prove the key result of this section. The proof
resembles Warner’s proof of Theorem 2.1 ([Wa2]) closely. Nevertheless, we do
not omit it, because some statements which are shown on course of this proof (for
example, Lemma 2.14) are also interesting in their own right and used in Section 4.

Theorem 2.11. Let M be a compact simply connected n-dimensional manifold. If
there exists a taut point p in M for which each point of the first conjugate locus in
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TpM has the constant multiplicity one, then n is even (say, n = 2λ with a λ ∈ Z) and
the integral cohomology ring of M is isomorphic to that of P λ(C).

Proof. As usual, we let C1(p) denote the first conjugate locus in TpM . It is well
known (for example, see [dC], p. 272) that there is a homeomorphism f between
the unit sphere S ∈ TpM and the tangent cut locus, which coincides with C1(p),
as we know from Theorem 2.10. According to Lemma 2.4, C1(p) is a connected
component of the regular conjugate locus. By Theorem 2.6, C1(p) has a unique
manifold structure for which (C1(p), i) is a submanifold of TpM , where i is the
inclusion map. With this manifold structure on C1(p), f becomes a diffeomorphism.

Let x ∈ C1(p) be arbitrary. We let C1(p)x denote the tangent space to the first
conjugate locus at x. Moreover, let Sx be the subspace of C1(p)x tangent to the sphere
about the origin in TpM , passing through x and Nx be the kernel of d expp |(TpM)x .
According to Proposition 2.8, Nx is contained in C1(p)x . Thus the Nx define a one-
dimensional distribution N on C1(p). Moreover, Nx is contained in Sx because of
the Gauss lemma. We obtain

Nx ⊂ Sx ⊂ C1(p)x

with dimensions 1, n − 1 or n − 2, and n − 1 respectively. The following lemma can
be obtained by arguing exactly like Warner did in the proof of Theorem 2.1. But in
the case k = 1, we can also use the classification of one-dimensional manifolds.

Lemma 2.12. Each maximal connected integral manifold of the distribution N is
diffeomorphic with S1. �

Following his proof further, we can easily show the following

Lemma 2.13. Let x ∈ expp(C1(p)) be arbitrary. Then exp−1
p (x) ∩ C1(p) consists

of a single maximal connected integral manifold of N . �

Since the exponential map is 1 : 1 on the integral manifolds of N , it follows that
the cut locus Cut(p) in the relative topology has a unique differentiable structure such
that (Cut(p), i) is a submanifold of M where i is the inclusion map. Moreover, the
map

expp | C1(p) : C1(p) → Cut(p)

is C∞. According to Wolf ([Wo]), this map is a differentiably locally trivial fiber
bundle, its structural group being the group of all diffeomorphisms of the fiber in the
compact open topology. The total space C1(p) is diffeomorphic with Sn−1 and the
fiber is S1. The base of this fibering is Cut(p). Obviously, the dimension of Cut(p)

is n − 2 > 0. From [Wa2], we know that Cut(p) is simply connected, because M

is. It follows from the Gysin sequence that the dimension of Cut(p) must be even,
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say 2(λ− 1) (whence n = 2λ) and that the integral cohomology ring H�(Cut(p); Z)

is a truncated polynomial ring with one generator x in dimension 2 and the relation
xλ = 0.

Thus, according to Warner ([Wa2]), the integral cohomology group H�(M; Z) is
a free abelian group with free basis {1, y, . . . , yλ−1, z}, where y ∈ H 2(M; Z) and z

is a generator of Hn(M; Z). To finish the proof of Theorem 2.11, we have to verify
that the ring structure is correct. In other words, we have to show that z = ±yλ. We
fix an orientation on M and denote by D the Poincaré duality. Since H�(M; Z) has
no torsion, we have an isomorphism

φ : Hi(M; Z) → Hom(Hn−i (M; Z)),

where φ(σ)(τ ) = D(Dσ ∪ Dτ) for σ ∈ Hi(M; Z) and τ ∈ Hn−i (M; Z). So there
exists σ ∈ Hn−2(M; Z) such that φσ (Dy) = 1; i.e., Dσ ∪ y = ±z. Since there is an
m ∈ Z so that Dσ = myλ−1, we obtain myλ−1 = ±z. But there is an l ∈ Z so that
yλ = lz. Therefore mn = ±1, whence m = ±1 and z = ±yλ. �

Before proceeding further, we draw a consequence from the proof above, which
will later help us study those pointwise taut manifolds to which our current “constant
multiplicity” assumption does not apply. To make a statement about that general
situation, we use the definition of regular conjugate points to see that on any connected
component of the regular conjugate locus, the multiplicity of the conjugate points is
constant. Thus we obtain the following

Lemma 2.14. Let Mn be a compact simply connected manifold with a taut point p.
Let A be a connected component of the regular conjugate locus CR(p) in the first
tangent conjugate locus C1(p) and set CutA = expp(A). Then CutA is an (n−k−1)-
dimensional submanifold of M and expp : A → CutA is a differentiable locally trivial
fibration with fiber Sk , where k is the common multiplicity of the conjugate points
in A. �

Our next goal is to strengthen the result of Theorem 2.11 and those of Theorem 2.1
by using our pointwise tautness assumption once again. We begin with the case k = 1.
According to Theorem 2.11, the integral cohomology of M is isomorphic to that of
the complex projective space of the right dimension. Poincaré Duality implies that
the same isomorphy holds in homology. Let F be the field with respect to which M

is pointwise taut. Due to the Universal Coefficients Theorem, the homologies with
coefficients in a field F are isomorphic as well. Now we want to show that M is
in fact homeomorphic to that space. We begin by quoting a well-known topological
result which will give us the information we need on the Betti numbers of �M:

Proposition 2.15. Let Mn be a differentiable manifold, so that the homology of M

with coefficients in a field F is isomorphic to that of a compact rank one symmetric
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space. Then the homology of the based loop space �(M) with coefficients in F is
isomorphic to that of the based loop space of the symmetric space. �

Remark. One of the ways of proving this proposition is by applying the Leray–Serre
spectral sequence to the path-loop fibration. For the spherical case, this calculation
can be found in [BT], p. 204. The remaining cases can be handled in the same way.

The proposition above and the well-known data on the Betti numbers of compact
rank one symmetric spaces together imply the following obvious conclusion, which
we will use later. If M has the homology of P λ(C), P λ(H) or P 2(O), then the first
three non-vanishing Betti numbers bi of �(M) are b0, ba and ba+n−1. Here a = 1
in the complex projective case, a = 3 in the quaternionic projective case, a = 7 in
the Cayley projective case and ba = 1 in each case. If M has the homology of Sn,
then the first two non-vanishing Betti numbers of �(M) are b0 and bn−1.

From Theorem 2.11 and Proposition 2.15, we deduce the following statement:
Let M be a compact simply connected pointwise taut manifold, so that there is a
point p ∈ M for which each point of the first conjugate locus has the multiplicity
one. Then the first three non-vanishing Betti numbers bi of the based loop space of
M are b0, b1 = 1 and bn. According to Theorem 1.5, M is Blaschke. Therefore, we
can apply a result on Blaschke manifolds, which is due to Yang ([Ya]).

Theorem 2.16. Let M2λ be a Blaschke manifold, so that the homology of M is
isomorphic to that of P λ(C). Then M is homeomorphic to P λ(C). If λ > 2, then M

is even diffeomorphic to P λ(C). �

Hence, we obtain the following

Theorem 2.17. Let Mn be a compact simply connected pointwise taut manifold, so
that there is a point p in M for which each point of the first conjugate locus has the
multiplicity one. Then n is even (say, n = 2λ) and M is homeomorphic to P λ(C). If
n > 4, then M is even diffeomorphic to P λ(C). �

Next, we consider the spherical case k = n − 1 in Theorem 2.1. Because M is
homeomorphic to Sn according to that theorem, we deduce from Proposition 2.15
that the first non-vanishing Betti numbers of �(M) are b0 and bn−1. The first claim
of Theorem 1.4 and our assumption about pointwise tautness imply together that M

is Blaschke. It is known that the spherical Blaschke conjecture has been solved by
Green ([Gr]) in dimension two and by Berger and Kazdan in arbitrary dimension
([Be], p. 236):

Theorem 2.18. If (Sn, g) is a Blaschke manifold, then (Sn, g) is the standard sphere
with constant sectional curvature. �
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We conclude that M is isometric to the standard sphere (Sn, g) with constant
sectional curvature.

Now we investigate the quaternionic case k = 3. We know from Theorem 2.1 that
the cohomology of Mn is that of P λ(H), where n = 4λ. Proposition 2.15 implies that
the first non-vanishing Betti numbers of �(M) are b0, bk = 1 and bk+n−1, as these
are known to be the first three non-vanishing Betti numbers of �(P λ(H)), see the
paper of Terng and Thorbergsson ([TT]). Theorem 1.5 and pointwise tautness imply
that M is Blaschke. From a paper by Sato ([Sa]), we deduce that M is homeomorphic
to P λ(H).

Last but not least, we consider the Cayley case k = 7. From Theorem 2.1,
we know that the cohomology of Mn is that of P 2(O). The Cayley version of
Proposition 2.15 implies that the first non-vanishing Betti numbers of �(M) are b0,
bk = 1 and bk+n−1, as these are known to be the first three non-vanishing Betti
numbers of �(P 2(O)). Theorem 1.5 and pointwise tautness again imply that M

is Blaschke. From a paper by Gluck and Warner ([GW]), we deduce that M is
homeomorphic to P 2(O). Summarizing our results, we obtain the first theorem
stated in the introduction.

3. The three-dimensional case

In this section we are going to apply the results of the previous section to the three-
dimensional case.

Let M be a compact simply connected pointwise taut three-manifold. Obviously,
the only possible multiplicities of conjugate points in M are one and two. First, we
assume that there is a point p ∈ M so that each point in the first conjugate locus
C1(p) has multiplicity one. Then the dimension of M must be even due to the first
theorem stated in the introduction, which contradicts our assumption dim(M) = 3.

Therefore, the only remaining possibility is the following: for each point p ∈ M ,
there is a point q ∈ C1(p) so that the multiplicity of q is two. Theorem 3.3 implies now
that M is Blaschke and homeomorphic to S3. Using Theorem 2.18, we immediately
obtain the following

Theorem 3.1. Let M be a compact simply connected pointwise taut three-manifold.
Then M is isometric to the standard sphere S3. �

Remark. Of course, the two-dimensional case can be trivially handled in the same
way. One can immediately verify that a compact simply connected pointwise taut
two-manifold is isometric to the standard sphere S2.
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4. The four-dimensional case

In this section, we will prove some geometric and topological results about compact
simply connected pointwise taut four-manifolds by means of studying the regular
subset CR(p) of the first tangent conjugate locus C1(p), where p is an arbitrary
point. Theorem 2.2 implies that the conjugate points on a connected component of
CR(p) have constant multiplicity and thus we can locally apply our techniques from
Section 2.

Let M be a compact simply connected pointwise taut four-manifold. In this case,
the possible multiplicities of conjugate points in M are one, two and three. If we
assume that for some point p ∈ M there is a point x ∈ C1(p) which is of multiplicity
three, then Theorem 1.4 implies that M is homeomorphic to S4.

Therefore, we can assume in the sequel that there are no points of multiplicity
three in the first conjugate locus. If all the first conjugate points are of multiplicity
one, then M is homeomorphic to P 2(C) due to Theorem 2.17. If all the points in the
first conjugate locus were of multiplicity two, that would contradict the first theorem
stated in the introduction. Therefore, we are left with the case where some of the first
conjugate points are of multiplicity one and the others are of multiplicity two. An
example of this situation is the manifold S2 × S2, endowed with the product metric.

As usual, let C1(p) denote the first conjugate locus, where p is an arbitrary
base point of a compact simply connected pointwise taut manifold M . Due to Theo-
rem 2.10, C1(p) is homeomorphic to S3. Let x ∈ C1(p) be a point of multiplicity two
and q = expp(x). Then Theorem 1.2 implies that there is a compact two-dimensional
critical submanifold Cr in the path space �pq(M), its points being geodesics from
p to q of common length d. We can map each of these geodesics γ |[0,d] ∈ Cr to
the intersection point dγ ′(0) of C1(p) with the ray exp−1

p (γ |[0,d]). This map is a
bijection, for q is the first point conjugate to p along any of these geodesics. The
image of Cr under this map in C1(p) is a smooth two-dimensional manifold, as one
can see by repeating the argument from the proof of Proposition 2.8. As a compact
two-dimensional manifold embedded into the three-dimensional C1(p), the critical
manifold Cr must be orientable. It is well known that every compact orientable
two-dimensional manifold is a sphere or a connected sum of tori. Thus we have
established the following

Lemma 4.1. Let M be a compact simply connected pointwise taut four-manifold
and p be an arbitrary point in M . Let x ∈ C1(p) be a point of multiplicity two and
q = expp(x). Then x ∈ T (x) ⊂ C1(p), where T (x) is a sphere or a connected sum
of tori and consists of conjugate points of multiplicity two. �

Remark. Obviously, the statement above also holds for a compact simply connected
four-manifold with a taut point p, as we did not use the tautness of other points.
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Now we are going to study how the set CS(p) of singular conjugate points parti-
tions the first conjugate locus (recall that the latter is a three-dimensional sphere up
to homeomorphy). Due to Lemma 2.4, all points in CS(p) are of multiplicity two.
Theorem 1.2 assures that CS(p) is a disjoint union of critical surfaces.

We are going to use the example M = S2 × S2 as our source of intuition. In this
case, CS(p) consists of just one critical surface. This surface is a torus T dividing
the sphere C1(p) into two connected components, both of which are solid tori. We
could view one of these as the “inner side” of T and the other as the “outer side” of
T , but in this case, they are homeomorphic to each other. In order to remedy this
ambiguity and define the notion of the inner side, we choose an arbitrary multiplicity
one conjugate point � in C1(p), where � stands for “infinity”. Now we call the
component of C1(p)\T , which does not contain � , the inner side of T . The point �
can not belong to CS(p) because each conjugate point of multiplicity one is regular,
according to Lemma 2.4.

In the general case, there can be more than two connected components in the set
of regular conjugate points CR(p) = C1(p)\CS(p). A priori, there could be even
infinitely many (compact oriented) critical surfaces in CS(p). Any critical surface T

splits the topological sphere C1(p) into two connected components, and our choice
of the infinity point indicates which of these two components to consider the inner
side of T . If a subset of CR(p) is bounded by (only) one surface belonging to CS(p),
then we call that subset an inner component of CR(p). Of course, not every critical
surface in CS(p) gives rise to an inner component in CR(p). Though, one intuitively
expects CR(p) to contain at least one inner component. Our next goal is to prove
this fact. Before doing that, we use Theorem 1.2 to observe that the critical surfaces
in CS(p) are always pairwise disjoint.

Lemma 4.2. Let M be a compact simply connected four-manifold with a taut point
p ∈ M . Let C1(p) be its first tangent conjugate locus and CS(p) ⊂ C1(p) be the
subset of singular conjugate points. Then there is an inner component in CR(p).

Proof. According to the above, CS(p) is a disjoint union of critical surfaces Ti , where
i ∈ I . Apriori, the index set I could be infinite. Let Ti and Tj be two of these surfaces.
We write Ti � Tj , if Ti lies in the inner side of Tj . It is straightforward to verify
that � is an equivalence relation. The set Crit of critical surfaces is partially ordered
by this relation, but � is not necessarily a total ordering on Crit. In fact, there can
obviously be two tori in C1(p), neither of which is contained in the inner side of the
other. Our goal is to prove that each totally ordered subset of Crit has a lower bound,
so that we can apply Zorn’s Lemma.

Let O be a totally ordered subset of Crit. We consider a monotonously decreasing
sequence (Tk) in O with the property that, for each T ∈ O, there is a Tk satisfying
Tk � T . For each k, we choose an arbitrary point xk ∈ Tk . Because C1(p) is
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compact, the sequence (xk) must possess a cluster point x0. Theorem 2.6 implies that
the set CS(p) of singular conjugate points is closed. Therefore, we have x0 ∈ CS(p)

and the multiplicity of x0 must be two. Let T0 be the critical surface which contains x0.
By its construction, the point x0 lies inside of each T ∈ O. By continuity, T0 � T

for all T ∈ O. We have shown that each totally ordered O ⊂ Crit has a lower bound.
By Zorn’s Lemma, Crit has a minimal element, which implies our claim. �

Having established the existence of an inner component, we are going to deal
with the question what is the multiplicity of the conjugate points in it. We recall that,
due to Lemma 2.4, all singular conjugate points in C1(p) must be of multiplicity
two. Now we show the converse statement for the inner components. (We remind
the reader of our standard assumption for this section that there be no first conjugate
points of multiplicity three).

Lemma 4.3. Let M be a compact simply connected four-manifold with a taut point p.
Let A be an inner component of CR(p). Then all conjugate points in A have multi-
plicity one.

Proof. Due to Theorem 2.2, the conjugate points in any connected component of
CR(p) have the same multiplicity. Assume that all points in A are of multiplicity
two. Let CutA = expp(A) and TA ⊂ CS(p) be the critical surface which bounds A.
Then, due to Lemma 2.14, CutA is a one-dimensional manifold and the restriction
expp : A → CutA is a fibration with fiber S2. Moreover, the union of CutA and the
point {exp(TA)} is connected and compact. The well-known classification of one-
dimensional manifolds implies that CutA is an interval I . The fibration expp : A →
CutA is trivial, for CutA is simply connected. We deduce that A = S2 × I . But
on the other hand, A is inner and therefore its boundary must be connected. This
contradiction shows that all points in A are of multiplicity one. �

After our preparatory discussion of inner components, we are ready to make this
concept work and obtain a purely geometric fact.

Proposition 4.4. Let M be a compact simply connected four-manifold. Let p ∈ M

be a taut point. Then p is conjugate to itself along a suitable geodesic. In particular,
if M is pointwise taut, then every point is conjugate to itself along a suitable geodesic.

Proof. Consider the first conjugate locus C1(p) in Tp(M) and the subset CS(p) of
singular conjugate points. According to Lemma 4.2, there is an inner component A

in C1(p)\CS(p), which is bounded by a critical surface TA. Since the set A ∩ TA is
compact, the norm function attains a minimum and a maximum on this set. Theorem
1.2 implies that all the elements of the boundary TA have the same norm. Therefore,
the norm function attains at least one of its extrema in A. Let x0 ∈ A be such
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an extremal point and S0 denote the critical circle passing through x0. For each
x ∈ S0, the ray rx from the origin through x must be orthogonal to C1(p) in x. From
Theorem 1.2 we know that the points on S0 have the same norm. Moreover, expp

maps S0 to one point in M , and we set q = expp(S0). Now we consider the restriction
expp |A : A → Cut(p) of the exponential map. From Lemma 2.14 and Lemma 4.3,
we deduce that the subset CutA = expp(A) ⊂ Cut(p) is a two-dimensional manifold.
We write Tq Cut for its tangent space at q. Using the Gauss Lemma, we realize that
each of the geodesics expp(tx) for x ∈ S0 is orthogonal to Tq Cut at the point q.
The unit direction vectors of these geodesics form a circle in TqM , which thus lies
in the two-dimensional orthogonal complement of Tq Cut. We conclude that each
of these geodesics comes back to p, because for each direction represented in this
circle, the opposite direction also belongs to the circle. Because the point p is taut and
infinitely many geodesics emanating from p return to p, that point must be conjugate
to itself. �

Remark. In the above theorem, we need not demand that there be no conjugate points
of multiplicity three in the first conjugate locus, nor that there be a point of multiplicity
two in the first conjugate locus, although these are our standard assumptions in the
current section. The theorem can be proved in the same way if all the conjugate points
in the first conjugate locus are of multiplicity one. If there is a conjugate point of
multiplicity three in the first conjugate locus, then Theorem 1.4 and Theorem 2.18
show that M is isometric to S4, endowed with the canonical metric, proving our
assertion about conjugate points.

Further results about pointwise taut four-manifolds can be achieved if one allows
for an additional assumption. For example, one can show that a compact homo-
geneous pointwise taut four-manifold is locally symmetric by using the well-known
classification of homogeneous four-manifolds and checking each of the homogeneous
metrics for pointwise tautness in a rather straightforward case-by-case study.
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