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The canonical subgroup: a “subgroup-free” approach
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Abstract. Beyond the crucial role they play in the foundations of the theory of overconver-
gent modular forms, canonical subgroups have found new applications to analytic continuation
of overconvergent modular forms. For such applications, it is essential to understand various
“numerical” aspects of the canonical subgroup, and in particular, the precise extent of its over-
convergence. In this paper, we develop a theory of canonical subgroups for a general class
of curves (including the unitary and quaternionic Shimura curves), using formal and rigid ge-
ometry. In our approach, we use the common geometric features of these curves rather than
their (possible) specific moduli-theoretic description; it allows us to reproduce, for the classical
cases, the optimal radii of definition for the canonical subgroup, usually derived by employing
the theory of formal groups.
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1. Introduction

Canonical subgroups are essential to the theory of overconvergent modular forms.
An elliptic curve E with an ordinary reduction modulo a prime p has a distinguished
subgroup of rankp, which is the kernel of multiplication byp on its formal group. This
subgroup is a canonical lift of the kernel of Frp on E modulo p. The overconvergence
of the canonical subgroup, i.e. the fact that it can also be defined for elliptic curves
with a “not too supersingular” reduction modulo p, allows one to define and study
the Up operator for overconvergent modular forms (See [Kat, §3.11].). Recently, in
[Buz2], [Kas3], this theory has found new applications to the problem of analytic
continuation of overconvergent modular forms. In these applications it is essential
to understand the precise extent of overconvergence of the canonical subgroup, and
to determine the “measure of supersingularity” of a quotient of an elliptic curve by
a subgroup of order p (including the canonical subgroup). These results appear in
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[Kat, Thms. 3.1, 3.10.7], where they are attributed to Lubin. A slightly more general
version can be found in [Buz2].

Classically, the canonical subgroup of an elliptic curve (when it exists) is con-
structed by a close study of the power series of multiplication by p in its formal group.
In [Kas1], [Kas2] this approach was used to develop a similar theory over certain PEL
Shimura curves. Generalizing this approach to higher dimensions seems to pose a
serious challenge, because it uses the one-dimensionality of the formal group in an
essential way, including the existence of Newton polygon for power series in one
variable.

The problem of constructing a canonical subgroup for each elliptic curve belong-
ing to a certain region of a modular curve X(�) can be rephrased as finding a partial
section to the forgetful morphism of rigid analytic curves π : X(�0(p)∩�) → X(�)

whose moduli-theoretic description is (E, γ, H) �→ (E, γ ) where (E, γ ) is an ellip-
tic curve with level �-structure and H ⊂ E[p] is a finite flat subgroup of order p.
Our approach ignores this moduli-theoretic description and just takes into account
the geometry of the morphism π . This is what we call the “subgroup-free” approach.
It has been known for a while that one can prove, using a general principle of rigid
geometry due to Berthelot [Ber], that such a section defined over the ordinary locus
overconverges (to an a priori non-tractable extent) beyond the ordinary locus. This
approach, which is expected to work in other situations, was used in [KL] to prove
the overconvergence of canonical subgroups in the case of Hilbert modular varieties.
However, other aspects of the theory, which were discussed in the opening paragraph,
remain unsettled even in the case of Hilbert modular varieties. These aspects are also
not fully covered by other recent approaches [AM], [AG], [Con], [Nev].

The purpose of this article is to derive all aspects of the theory of canonical
subgroups via the“subgroup-free” approach. Our thesis is that the rigid geometric (or
formal schematic) picture that arises in the familiar setting of the relevant Shimura
varieties suffices by itself to guarantee the existence of the canonical subgroup and
many of its properties. In this manuscript we demonstrate that for Shimura varieties
of dimension one, even if they do not possess a natural modular interpretation. In
fact, this lack of a moduli interpretation can be taken as a further motivation for our
approach. Notice that our approach is such that inspires generalization to higher
dimensional settings. More specifically, one constructs a section over the ordinary
locus by lifting a section from characteristic p. One separately studies sections over
the non-ordinary locus by using the theory of local models for the special fibre of
the Shimura variety in question, and finally these two sections are glued together by
using the above-mentioned principle of rigid geometry along with a certain uniqueness
result. The authors hope to pursue this subject in a future publication.

Let p be a prime. Let O = OK be the ring of integers of a finite extension K

of Qp, � a uniformizer of O, κ = O/(�) the residue field, and val = valK be
the valuation normalized so that val(�) = 1. By a “curve” X over O we mean a
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flat finite-type morphism f : X → O of relative dimension 1 of a reduced separated
scheme X, such that the geometric fibres of f are connected; f need not be proper.

Let X, Y be curves over O. We assume that X, Y are regular schemes, X →
Spec(O) is smooth and π : Y → X is a finite flat morphism of degree e + 1. More-
over, we assume that (i) there exists a section s : X ⊗ κ → Y ⊗ κ to π ⊗ κ , that
(ii) the special fibre Y ⊗κ is a reduced normal crossing divisor with two components,
and (iii) the set theoretic preimage (π ⊗κ)−1(π ⊗κ)(Q) is equal to Q for any singular
point Q ∈ Y ⊗κ . To remove any doubt, we assume that Y ⊗κ is singular and by a nor-
mal crossing divisor we mean that each intersection is defined over κ and its completed
local ring is isomorphic to κ[[s, t]]/(st). We define (Y ⊗κ)∞ = s(X⊗κ)\(Y ⊗κ)sing,
and (Y ⊗ κ)0 = (Y ⊗ κ) \ s(X ⊗ κ).

From the point of view of a general theory this is a very specific situation, nonethe-
less it (and its appropriate generalization) is the one that occurs for Shimura curves
(respectively, higher-dimensional PEL Shimura varieties); see §5. In fact, condition
(iii) is only put to have “cleaner statements”; it holds in the case of Shimura curves.
Under these conditions, we prove in §3 the following result.

Let X, Y be the formal schemes obtained, respectively, by completing X, Y

along their special fibres. The induced morphism Y → X is still denoted by π .
Let πrig : Yrig → Xrig be the induced morphism of rigid K-spaces à la Raynaud;
c.f. §2.1. In §2.3 we define a “measure of singularity” νX(P ) ∈ Q≥0 (respec-
tively, νY(Q) ∈ Q≥0) of a point P of Xrig (respectively, Yrig); the definition is
modelled over the notion of measure of supersingularity for modular curves. For
every interval I ⊂ R we have an admissible open set YrigI , whose closed point
are {Q ∈ Yrig : νY(Q) ∈ I }. The set XrigI is defined similarly. The following
theorem is proven in §3.

Theorem A. Assume e > 1. The morphism πrig : Yrig → Xrig admits a section

srig : Xrig[0, e/(e + 1)) → Yrig.

This section is maximal, namely, it can not be extended to any connected admissible
open properly containing Xrig[0, e/(e + 1)).

The reader acquainted with the theory of canonical subgroups will recognize that
this theorem implies the classical existence theorem for canonical subgroups over
modular curves, including the further statement (that to the best of our knowledge is
not recorded in the literature) that the region over which one defines the canonical
subgroup is the maximal possible, even from the point of view of maps of rigid spaces.
The following theorem, proven in § 4, will also be familiar to that reader as giving the
behavior of the measure of supersingularity upon passing to a quotient by a subgroup
of order p. We introduce the following terminology: Let Q ∈ Yrig. We say that Q

is (i) canonical if νY(Q) < e/(e + 1); (ii) anti-canonical if νY(Q) > e/(e + 1); and
(iii) too singular if νY(Q) = e/(e + 1).
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Theorem B. Let w be an automorphism of Y that permutes the two components
of Y. We denote by w also the induced automorphism of Yrig and its effect of points
by Q �→ Qw.

(1) νX(πrigQ) = 0 ⇔ νX(πrigQ
w) = 0. In this case Q is canonical if and only

if Qw is anti-canonical.

(2) If νX(πrigQ) < (e + 1)−1 and Q canonical, then νX(πrigQ
w) = e · νX(πrigQ)

and Qw is anti-canonical.

(3) If νX(πrigQ) = (e + 1)−1 and Q is canonical then Qw is too singular.

(4) If (e+1)−1 < νX(πrigQ) < e(e+1)−1 and Q is canonical, then νX(πrigQ
w) =

1 − νX(πrigQ) and Qw is canonical.

(5) If νX(πrigQ) < e(e + 1)−1 and Q is anti-canonical, then νX(πrigQ
w) =

e−1νX(πrigQ), and Qw is canonical.

(6) If Q is too singular then νX(πrigQ
w) = (e + 1)−1 and Qw is canonical.

Acknowledgments. The authors benefited from an example of R. Coleman (private
communication) that inspired the proof of Proposition 3.8. We also wish to thank the
referees for a very careful reading of the manuscript and useful suggestions.

The first-named author was partially supported by an NSERC grant no. 227040.
The second-named author would like to thank CICMA and the department of math-
ematics at McGill university for their support and hospitality.

2. Background material

2.1. Rigid analytic varieties and formal schemes. We recall here the connection
between rigid analytic varieties and formal schemes as developed by Raynaud and
Berthelot. Our exposition follows [BLI], [BLII], [Ber], [deJ2].

Let R be a valuation ring of Krull dimension 1, complete and separated with
respect to the I-adic topology, where I = (�) is contained in the maximal ideal
of R. Let K be the field of fractions of R. For free variables ξ = (ξ1, . . . , ξn) we
let R〈ξ〉 = {∑ν cνξ

ν ∈ R[[ξ ]] : lim cν = 0} be the strictly convergent powerseries,
i.e. precisely those that converge on the polydisc {(a1, . . . , an) : |ai | ≤ 1 for all i}.

Recall that for a general commutative ring B and an ideal J of B one defines the
J -torsion of B as the ideal {b ∈ B : J nb = 0 for some n ∈ N}. If J = (g1, . . . , gr),
the J -torsion is the kernel of the canonical homomorphism R → ∏r

i=1 R[g−1
i ]. If

this ideal is {0} we say that B has no J -torsion.
An admissible R-algebra is an R-algebra with no I-torsion (equivalently, flat

over R) that is isomorphic to R〈ξ〉/a, where ξ = (ξ1, . . . , ξn) for some integer n; it
implies that a is a finitely generated ideal. For us, the admissible R-algebras are the



Vol. 81 (2006) The canonical subgroup: a “subgroup-free” approach 621

building blocks of two different categories - a category of rigid spaces and a category
of formal schemes.

An affine formal R-scheme X is called admissible if it is of the type X = Spf(A),
where A is an admissible R-algebra. We may then write X = lim

λ→∞Xλ, where

Xλ := X⊗ (R/(�λ)), λ ∈ N, can be identified with the scheme Spec(A⊗R/(�λ)).
Being admissible is a local property and so one gets a natural definition of an admis-
sible formal R-scheme.

The notion of admissible blow-up is needed to define an equivalence of categories
between a category of formal schemes and a category of rigid spaces. The definition
of admissible formal blow-up is designed to be local on the base. We review, thus,
only the affine case. Let X = Spf(A) be an affine admissible R-formal scheme,
A = R〈ξ〉/a. Let A be an open ideal, i.e., containing (�λ) for some λ > 0. The
admissible formal blow-up of X at A is X′ = lim

λ→∞ Proj
⊕∞

n=0

(
A n ⊗ OX/(�λ)

)
with the canonical map ϕ : X′ → X. Then X′ is an admissible formal R-scheme over
which A OX′ is invertible.

Let A = (f0, . . . , fm) and let ϕ̃ : X̃′ → X̃ = Spec(A) be the usual scheme the-
ory blow-up of A at the ideal A . Then, upon taking (�)-completion of ϕ̃ : X̃′ → X̃

we get ϕ : X′ → X. On the other hand, ϕ̃ : X̃′ → X̃ admits a local description.
The scheme X̃′ has an affine cover by {Spec(A′

i ) : i = 0, 1, . . . , m}, where

A′
i = A′′

i /(fi − torsion) and A′′
i = A

[
f0
fi

, . . . ,
fm

fi

]
= A

[
ζ0
ζi

, . . . ,
ζm

ζi

] /(
fi

ζj
ζi

−fj

)
.

To clarify, in the definition of A′
i (and similarly below), the notation (fi − torsion)

refers to the J -torsion ideal, where J is the principal ideal (fi). Then the (�)-com-
pletions of A′

i , A
′′
i are given by Â′

i = Â′′
i /(fi −torsion) and Â′′

i = A
〈f0
fi

, . . . ,
fm

fi

〉 =
A

〈
ζ0
ζi

, . . . ,
ζm

ζi

〉/(
fi

ζj
ζi

− fj

)
; they give rise to an affine covering {Spf(Â′

i ) : i =
0, 1, . . . , m} of X′.

For an admissible R-algebra A = R〈ξ〉/a, let Arig := A ⊗R K = K〈ξ〉/aK〈ξ〉;
this is an affinoid K-algebra. This construction extends to provide a functor

rig : {admissible formal R-schemes} → {rigid K-spaces}, X �→ Xrig.

One calls Xrig the generic fibre of the formal R-scheme X.

Theorem 2.1 (Raynaud). The functor rig is an equivalence of categories between
(i) the category of quasi-compact admissible formal R-schemes, localized by admis-
sible formal blow-ups, and (ii) the category of quasi-compact and quasi-separated
rigid K-spaces.

It is easy to see from the construction that a flat morphism of formal schemes
induces a flat morphism of rigid spaces. The converse is also true [BLII, Thm. 5.2]:
every flat morphism of rigid K-spaces comes from a flat morphism of suitable formal



622 E. Z. Goren and P. L. Kassaei CMH

schemes yielding the given rigid spaces. A flat morphism in the category of rigid
spaces has image which is a finite union of affinoids, in particular, it is open [BLII,
Cor. 5.11].

We will need to use the specialization map. In the affine case, the points of Xrig are
the maximal ideals of the algebra A ⊗R K; these are in bijection with quotients of A

that are integral, finite and flat over R. If T is such a quotient (it is the valuation ring of
a finite extension of K), corresponding to a point t ∈ Xrig, we get a closed immersion
of formal R-schemes Spf(T ) → Spf(A), whose image is supported on a closed point
of X that we denote by sp(t). The definition can be extended to any formal R-scheme.
We get a morphism of ringed spaces sp : Xrig → X [SGA4, IV 4.9]. For every affine
open U = Spf(B) ⊂ X, we have sp−1(U) = Urig.

Assume that R is a discrete valuation ring with residue field κ . In [Ber] Berthelot
generalizes the above construction to associate a generic fibre to any locally noetherian
formal scheme X flat over R that satisfies a condition weaker than admissibility: that
the special fibre of X, denoted by X0 and defined by the ideal of definition I , is
a scheme locally of finite type over κ . This condition is independent of the choice
of I and coincides with admissibility if �OX is an ideal of definition for X. We will
describe the construction in the affine case. Let X = Spf(A) and I = H 0(X,I )

with generators g1, . . . , gr . For n ≥ 1 define

An = A〈T1, . . . , Tr〉/(gn
1 − �T1, . . . , g

n
r − �Tr).

The condition on X implies that An/�An is finitely generated over κ , and hence Xn =
Spf(An) is an admissible formal scheme over R. Applying Raynaud’s construction we
obtain a rigid analytic space Xn

rig. For m > n we have a homomorphism Am → An,

defined by sending Ti to gm−n
i Ti , inducing a morphism of rigid spaces Xn

rig → Xm
rig.

It is easy to see that this morphism is an open immersion and identifies Xn
rig with the

subdomain of Xm
rig over which |gi(x)| ≤ |� |1/n. The generic fibre of X, denoted as

before by Xrig, is defined to be the union of Xn
rig via the above inclusions. The rigid

spaces Xn
rig form an admissible cover of Xrig. The construction yields a functor rig

whose target is the category of quasi-separated rigid K-spaces.
As an illustration, take X to be Spf(R[[ξ1, . . . , ξr ]]) with the ideal of definition

I = (�, ξ1, . . . , ξr ). Then Xrig is simply the open unit polydisc of dimension r ,
which is not quasi-compact, and Xn

rig ⊂ Xrig is the affinoid subdomain over which

|ξi | ≤ |� |1/n, which is isomorphic to a closed unit polydisc, and hence is quasi-
compact. Similarly, for X = Spf(R[[x1, x2]]/(x1x2 −a)), where a ∈ R, one sees that
Xrig is the open annulus over K with radii (|a|, 1).

As in the admissible case, one can define a specialization map sp : Xrig → X by

taking the direct limit of the maps Xn
rig

sp−→ Xn → X. The following is Proposi-
tion 0.2.7. of [Ber].
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Proposition 2.2. Let notation be as above. Let Z ⊆ X0 be a closed subscheme.
Let X∧Z denote the formal completion of X along Z. Then sp−1(Z) is an admissible
open subset of Xrig and the canonical morphism X∧Z

rig → Xrig induces a functorial

isomorphism X∧Z
rig

∼= sp−1(Z).

2.2. Algebraic geometric input. As in the Introduction, let O be the ring of integers
of a finite extension K of Qp, � a uniformizer of O and κ = O/(�) the residue
field. Let X, Y be relative curves over O. We assume that X, Y are regular schemes,
X → Spec(O) is smooth and π : Y → X is a finite flat morphism of degree e + 1.
Moreover, we assume that (i) there exists a section s : X ⊗ κ → Y ⊗ κ to π ⊗ κ , that
(ii) the special fibre Y ⊗κ is a reduced normal crossing divisor with two components,
and that (iii) the set theoretic preimage (π ⊗ κ)−1(π ⊗ κ)(Q) is equal to Q for any
singular point Q ∈ Y ⊗ κ .

The following lemma must be known to the experts; for lack of a reference we
provide a proof.

Lemma 2.3. Let (A, m) be a regular two-dimensional complete local ring contain-
ing O, such that O is integrally closed in A, m ∩ O = (�), and κ ⊆ A/m is an
algebraic extension.

(1) If A ⊗ κ is regular then A ∼= O[[x]].
(2) If A ⊗ κ ∼= κ[[s, t]]/(st) then A ∼= O[[x, y]]/(xy − �).

Proof. First note that A/m ⊇ κ and so the local homomorphism W(A/m) → A

has image containing W(κ) viewed as a subring of O. Since A/m is an algebraic
extension of κ , W(A/m) is integral over W(κ). Since O is integrally closed in A it
follows that W(A/m) is contained in O. In particular, A/m = κ .

If A⊗ κ is regular it follows by Cohen’s Theorem that A⊗ κ ∼= κ[[x]]. This gives
a morphism O[[x]] → A which is surjective by Nakayama’s lemma; since both rings
are domains of the same dimension, we conclude that O[[x]] → A is an isomorphism
(the kernel is a prime ideal of height 0).

Assume then that A ⊗ κ ∼= κ[[s, t]]/(st). Let x′, y′ ∈ A be elements reducing
to s, t , respectively. The homomorphism O[[x, y]] → A, taking x, y to x′, y′
respectively, is surjective by Nakayama’s lemma. Let p be the kernel; it is a prime
ideal of height 1. In fact p is a principal ideal, because O[[x, y]] is a factorial ring and
by a theorem of Krull every prime ideal of height 1 is principal. We may therefore
write p = (h(x, y)), where h(x, y) = xyv − �z for some v, z ∈ O[[x, y]]. It
follows that A ⊗ κ ∼= κ[[x, y]]/(xyv̄), where v̄ is the reduction of v modulo � .
Since κ[[x, y]]/(xyv̄) ∼= κ[[s, t]]/(st) by the map taking x �→ s and y �→ t , it follows
that v̄ is a unit. This implies that v itself is a unit and so A ∼= O[[x, y]]/(xy − �z).

We next claim that the ring A is regular if and only if z is a unit. Indeed, if z

is a unit then A ∼= O[[x, yz−1]]/(x · yz−1 − �), which is easily checked to be
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regular. Assume now that A is regular. Then (�, x, y)/I is a 2-dimensional κ =
A/m vector space, where I = (�, x, y)2 + (xy − �z) and m, the maximal ideal
of A, is the image of (�, x, y). So, for some c1, c2, c3 ∈ A, not all in m, we have
c1� + c2x + c3y ∈ I . Such a relation gives modulo � the relation c2x + c3y ∈
(x, y)2. Since the cotangent space at the singular point is two dimensional with
basis {x, y}, it follows that modulo � we have c2, c3 ∈ (x, y). Thus, we must
have c2, c3 ∈ m. Therefore, A is regular implies that � ∈ I . Thus, � (mod m2) ∈
I/m2 = (�z)/m2. It follows that z is a unit modulo m2 and hence is a unit. �

Lemma 2.4. Let Q ∈ Y be a singular point and P = π(Q). There is a choice of
local coordinates at Q and P giving O∧Q

Y
∼= O[[x, y]]/(xy − �) and O∧P

X
∼= O[[t]],

respectively, such that on the level of completed local rings at Q and P the morphism π

is given by
t �→ x + (yu)e + f (y) + �g, (2.1)

where f (y) ≡ 0 (mod (ye+1)) and u is a unit congruent to 1 modulo � .

Proof. It follows from Lemma 2.3 that the map Y → X can be written at a singu-
lar point Q ∈ Y in the form of an O-algebra local homomorphism π∗ : O[[t]] →
O[[x, y]]/(xy −�). Now, upon reduction modulo � , we get a homomorphism of κ-
algebras π∗ ⊗ κ : κ[[t]] → κ[[x, y]]/(xy). By our assumptions on π ⊗ κ , the compo-
sitions κ[[t]] → κ[[x, y]]/(xy) −−→

y �→0
κ[[x]] and κ[[t]] → κ[[x, y]]/(xy) −−→

x �→0
κ[[y]] are

given, w.l.o.g., by t �→ x and t �→ ye + f1(y), where f1(y) ≡ 0 mod (ye+1) (the
existence of the section implies that every ramification index is equal to e). Thus, the
map π∗ ⊗ κ is determined by the image of t which has the form x + ye + f1(y) +
xyf2(x, y).

Our goal now is to change coordinates on A := O[[x, y]]/(xy − �) so as to sim-
plify this map and still have the same presentation, namely, find x̂, ŷ ∈ A such
that O[[x, y]]/(xy − �) = O[[x̂, ŷ]]/(x̂ŷ − �). First note that since A is � -
adically complete the map of units A× → (A ⊗ κ)× is surjective. Let u′ =
(1 + yf2(x, y)) ∈ (A ⊗ κ)× and û any lift of it to A×. Let x̂ = xû, ŷ = yû−1.
Then we have O[[x̂, ŷ]](x̂ŷ − �) = O[[x, y]]/(xy − �) and the map O[[t]] →
O[[x̂, ŷ]]/(x̂ŷ − �) has the form t �→ x̂ + (ŷû)e + f̂ (ŷ) + �ĝ, where f̂ is a lift
of f1 satisfying f̂ (y) ≡ 0 (mod (ye+1)). �

2.3. A measure of singularity. Let π : Y → X be a morphism of curves as in §2.2.
We denote by X, Y the formal schemes obtained from X, Y by completion along
their special fibres. Let β1, . . . , βh be the singular points of Y . Let αi = π(βi)

for i = 1, . . . , h. Recall that by assumption the αi’s and βi’s are defined over κ .
Let Dαi

(respectively Dβi
) denote the inverse image of αi (respectively βi) under the

specialization map sp : Xrig → X (respectively sp : Yrig → Y).
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By Proposition 2.2 Dαi
is the rigid space associated to Spf(O∧αi

X ) ∼= Spf(O[[t]]),
using Lemma 2.3. Therefore Dαi

is an open disc of radius 1 with parameter t . This
parameter is unique up to t �→ t ′ = tε + �z, where ε ∈ O× and z ∈ O[[t]].
For a general closed point P ∈ Dαi

the value val(t (P )) depends on t , however,
if val(t (P )) < 1 then val(t (P )) = val(t ′(P )) for any t ′ as above. We abuse notation
and define

νX(P ) = val(t (P )),

bearing in mind that this is well defined only if val(t (P )) < 1.
Similarly, Dβi

is the rigid space of Spf(O∧βi

X ) ∼= Spf(O[[x, y]]/(xy−�)). There-
fore, Dβi

is an open annulus of radii (|� |, 1) with parameter x. For any closed point Q
in Dβi

, define
νY(Q) = val(x(Q)).

This definition is independent of the choiceof the parameters if chosen as in Lemma2.4.
The reason is that any other such parameter x′ is of the form x′ = xε + �z,
where ε ∈ O× and z ∈ O[[x, y]]/(xy − �), and val(x(Q)) < 1.

Let Z denote the complement in Xrig of sp−1({α1, . . . , αh}). For a closed point P
in Z we define νX(P ) = 0. By Proposition 3.1 below, the complement in Yrig
of sp−1({β1, . . . , βh}) has two connected components,

Z 0 = sp−1 (
(Y ⊗ κ)0 − {β1, . . . , βh}

)
,

and

Z ∞ = sp−1 (
(Y ⊗ κ)∞ − {β1, . . . , βh}

)
.

For points in Z ∞ we define νY to be 0, and on Z 0 we define νY to be 1. We
refer to νX and νY as measures of singularity. For an interval I of real numbers, we
define XrigI to be the set of points of Xrig where νX belongs to I . For U an admissible
open subset of Xrig we set UI = U ∩ XrigI . We use a similar notation for Yrig.
We call Z the ordinary locus of Xrig and its complement sp−1({α1, . . . , αh}) =
Xrig(0, ∞) the singular locus of Xrig. We have πrig

−1(Xrig(0, ∞)) = Yrig(0, 1) =
sp−1({β1, . . . , βh}) which we call the singular locus of Yrig.

3. Main theorem

In this section we prove Theorem A of the Introduction, using the same notation.
Our strategy is to construct sections separately on the ordinary locus and the singular
locus and glue them by means of a general principle of rigid geometry. We start by
constructing a section to πrig over the ordinary locus of Xrig.
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Proposition 3.1. The map πrig induces an isomorphism between Z ∞ and Z . There-
fore there is a unique section s∞

rig : Z → Yrig to πrig whose image is Z ∞. Further-

more, both Z ∞ and Z 0 are connected. If e > 1, then any section to πrig on Z
coincides with s∞

rig.

Proof. We show the existence of the section on the level of the formal schemes. The
curves (Y ⊗ κ)∞, (Y ⊗ κ)0 are connected reduced affine curves. Let U be the open
subset of Y equal to the underlying set of (Y ⊗ κ)∞ ∪ (Y ⊗ κ)0. Then U is affine
in the formal schemes sense, namely, we have an open immersion Spf(B) → Y

whose set theoretic image is U . Under the specialization map sp : Yrig → Y we
have sp−1(U) = Z 0 ∪ Z ∞ and, moreover, Z 0 ∪ Z ∞ = Urig (c.f. the discussion
in § 2.1). We conclude the following: We have a morphism Spf(B) → Spf(A),
induced by a homomorphism of � -adically complete O-algebras A → B, that yields
the morphism Z 0 ∪ Z ∞ → Z and reduces to the morphism Y ⊗ κ \ {βi}hi=1 →
X ⊗ κ \ {αi}hi=1. It transpires that B ⊗ κ = (A ⊗ κ) ⊕ B1. Using Hensel’s lemma
to lift idempotents, we conclude that we have B = A+ ⊕ B+

1 , with A+ ⊗ κ =
A ⊗ κ, B+

1 ⊗ κ = B1. Using that A → A+ is a finite flat homomorphism reducing
to an isomorphism after ⊗κ , we conclude that A = A+. This gives the existence
of the section s∞ : Spf(A) → Spf(B), the analytification of which is the desired
section s∞

rig : Z → Z 0∪Z ∞ with image Z ∞. In particular, Z ∞, being isomorphic
to Z , which is a curve minus finitely many residue discs, is connected.

Furthermore, the morphism Spf(B+
1 ) → Spf(A) is finite flat of degree e. To

show Z 0 is connected it is enough to show that Spf(B+
1 ) is flat over Spf(O),

and has a reduced and connected special fibre (see Remark 3.2). But this is clear
since Spec(B+

1 ⊗ κ) = (Y ⊗ κ)0.
For the final assertion, note that the image of any section to πrig on Z must be a

connected component of πrig
−1(Z ) = Z ∞ ∪ Z 0, and hence it must be either Z ∞

or Z 0. The latter cannot happen since πrig : Z 0 → Z is e-to-1 and e > 1. �

Remark 3.2. Let B = Spf(B) be an admissible formal scheme, with associated rigid
space Brig. It is possible that Brig is disconnected, yet the underlying topological
space of B is connected. An example is provided when O is a ramified extension
of Zp and we let B = O〈x, y, T 〉/(xy − p, (x + y)T − �). The associated rigid
space is a disjoint union of two annuli. The special fibre is three lines meeting at a
single point. Note though that B ⊗ κ = k[x, y, T ]/(xy, (x + y)T ) in which xT is
nilpotent.

On the other hand, assume B is an admissible formal scheme over O such that Brig
is affinoid (in particular Brig = Spm(B ⊗O K) where B = H 0(B, OB)). If B ⊗ κ

is reduced, then the connectedness of B implies the same for Brig. Indeed, if not,
then there is a non-trivial idempotent element e ∈ B ⊗O K . We show that e ∈ B.
Note that by flatness of B over O we know that B ↪→ B ⊗ K . If e �∈ B, we can
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write e = f/�n, where n > 0 is minimal, and f ∈ B. Then we have f 2 = �nf .
Reducing modulo � , we get f̄ �= 0 and f̄ 2 = 0 which contradicts our assumption
on B ⊗ κ . Therefore e ∈ B. It then follows that the decomposition of the “generic
fibre” B ⊗ K , namely of the rigid space, induces a decomposition of the formal
scheme Spf(B).

Let X be a K-rigid analytic space, and U ⊂ X be an admissible affinoid subdo-
main. An affinoid subdomain U ⊂ V ⊂ X is called a strict neighborhood of U in X
if the reduction of the inclusion ι : U → V factors through an affine scheme which is
finite over Spec(κ). See [CGJ, §3] for more details. Any strict neighborhood of Z
in Xrig contains a domain of the form Xrig[0, a] for some positive a ∈ Q; c.f. [KL,
Prop. 2.3.2]. The following is Lemma 6 of [CGJ]. See also [Ber].

Lemma 3.3. Let f : Y → X be a finite flat morphism of rigid analytic curves. Let U
be an affinoid subdomain of X, and s : U → Y a section to f . Then s can be extended
to a strict neighborhood of U in X.

Corollary 3.4. The section s∞
rig extends to a section s†

rig over Xrig[0, a] for some
positive a ∈ Q.

Next we discuss sections to πrig over the singular locus, i.e. where νX > 0.

Proposition 3.5. The map πrig : Yrig(0, 1) → Xrig(0, ∞) admits a section t on
Xrig(0, e/(e + 1)) whose image is Yrig(0, e/(e + 1)). Such a section is unique. If
e > 1, then we have the following stronger uniqueness result: any section to πrig on
a connected admissible open subset of Xrig(0, e/(e + 1)) which contains some circle
Dαi

[a, a] is obtained by the restriction of t.

Proof. We have Yrig(0, 1) = ∐
i Dβi

and Xrig(0, ∞) = ∐
i Dαi

. Since by our
assumptions π−1(αi) = {βi} as sets, we have πrig

−1(Dαi
) = Dβi

, and hence, for the
first assertion, it suffices to show that for each i the map πrig : Dβi

→ Dαi
admits a

section on Dαi
(0, e/(e+1)) whose image is Dβi

(0, e/(e+1)). The map πrig : Dβi
→

Dαi
is the analytification of the map π : Spf(O∧βi

Y ) → Spf(O∧αi

X ) by Proposition 2.2.
By Lemma 2.4, choosing local coordinates, this map is given by

O[[t]] → O[[x, y]]/(xy − �), t �→ x + uye + f (y) + �g,

where f (y) ≡ 0 (mod ye+1), u, g ∈ O[[x, y]]/(xy − �), and u is a unit. Let ũ, g̃

denote arbitrary liftings of u, g to O[[x, y]] and define g0(x) = g̃(x, �/x), u0(x) =
ũ(x, �/x), and f0(x) = f (�/x). Then the map πrig : Dβi

→ Dαi
is the map

characterized by

t (πrigQ) = x(Q) + u0(x(Q))(�/x(Q))e + f0(x(Q)) + �g0(x(Q)).



628 E. Z. Goren and P. L. Kassaei CMH

Lemma 3.6. Let Q ∈ Yrig.

(1) If νY(Q) < e/(e + 1) then νX(πrigQ) = νY(Q).

(2) If νY(Q) > e/(e + 1) then νX(πrigQ) = e(1 − νY(Q)) < e/(e + 1).

(3) If νY(Q) = e/(e + 1) then νX(πrigQ) ≥ e/(e + 1).

0 a e/(e + 1) 1 − a/e ∞

Dβi

Dαi

π

1

Figure 3.1. The effect of πrig on measures of singularity.

Proof. The statement is clear for Q ∈ Z ∞ ∪ Z 0. If Q ∈ Dβi
satisfies νY(Q) =

val(x(Q)) < e/(e + 1), then

val(x(Q)) < min
{
val((�/x(Q))e), val(f0(x(Q))), val(�g0(x(Q)))

}
.

This implies that val(t (πrigQ)) = val(x(Q)). The other cases are similar. �

From the lemma it follows that

πrig
−1Dαi

(0, e/(e + 1)) = Dβi
(0, e/(e + 1))

∐
Dβi

(e/(e + 1), 1).

Indeed the lemma proves something stronger: for any a ∈ Q satisfying 0 < a <

e/(e + 1) we have

πrig
−1(Dαi

[a, a]) = Dβi
[1 − a/e, 1 − a/e] ∪ Dβi

[a, a]. (3.1)

This shows that the inverse image of Dαi
(0, e/(e + 1)) under πrig has two connected

components each of which maps onto Dαi
(0, e/(e + 1)) in a finite flat manner.

We show that the finite flat morphism πrig : Dβi
(0, e/(e+1)) → Dαi

(0, e/(e+1))

is of degree one and hence is an isomorphism. The inverse of this map provides the
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desired section t. To calculate the degree we restrict the map to a circle Dαi
[a, a] with

0 < a < e/(e + 1). It is therefore enough to show that πrig : Dβi
[a, a] → Dαi

[a, a]
has degree one. We show this by reduction modulo � . Our argument is based on the
following general principle.

Let φ : Spm(B) → Spm(A) be a finite flat morphism of K-affinoids. Let L

be a finite field extension of K and let φL : Spm(B ⊗K L) → Spm(A ⊗K L) be
the induced morphism. Let θ be a uniformizer of L and let n be a positive integer;
let (B ⊗K L)� denote the OL-algebra of functions of supremum norm at most 1.
Define B = (B ⊗K L)�/(θn), and similarly for A. Let φL : Spec(B) → Spec(A)

be the induced map. Then, if φL is an isomorphism so is φ. The argument reduces
to proving that φ∗

L : (A ⊗K L)� → (B ⊗K L)� is surjective, which, in turn, follows
from Nakayama’s lemma.

To prove that the reduction of πrig : Dβi
[a, a] → Dαi

[a, a] is an isomorphism,
we first re-scale. We pass to a finite extension L of K with uniformizer θ in which
there exists an element λ of valuation a. Setting x = λx0 and t = λt0 the map πrig
becomes a map between circles of radius one characterized by

t0(πrigQ) = x0(Q) + u0(λx0(Q))(�e/λe+1)x0(Q)−e

+ λ−1f0(λx0(Q)) + λ−1�g0(λx0(Q)).

Using 0 < a < e(e+1)−1 and f (y) ≡ 0 (mod ye+1), one sees that this map reduces
modulo θ to the identity map of OL/(θ)[T , 1/T ].

For the second statement we argue as follows. Let U ⊇ Dαi
[a, a] be a connected

admissible open of Xrig(0, e/(e + 1)) over which there is a section t′ to πrig. Then
U , being connected, lies entirely within Dαi

(0, e/(e + 1)). By Lemma 3.6 the image
of U under t′ is either a subset of Dβi

(0, e/(e + 1)), or a subset of Dβi
(e/(e + 1), 1).

In the former case, by the construction of t, it is clear that t′ = t|U . In the latter case,
t′(Dαi

[a, a]) is a connected component of Dβi
[1 − a/e, 1 − a/e] by Equation (3.1).

However, since Dβi
[1−a/e, 1−a/e] is connected and πrig : Dβi

[1−a/e, 1−a/e] →
Dαi

[a, a] is e-to-1, we find that e = 1, which contradicts our assumption. �

Corollary 3.7. Assume e > 1. The morphism πrig : Yrig → Xrig admits a unique
section

srig : Xrig[0, e/(e + 1)) → Yrig

which extends s∞
rig.

Proof. By Corollary 3.4, s∞
rig extends to a section s†

rig on Xrig[0, a] for some positive
rational number a < e/(e + 1). By the uniqueness assertion in Proposition 3.5 we
know that the restriction of s†

rig to Xrig(0, a] is obtained as the restriction of t. This
implies that s∞

rig and t glue together to form the desired unique section. �
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Proposition 3.8. Assume e > 1. The section srig constructed in Corollary 3.7 is
maximal in the following sense: Let U be a connected affinoid inside Xrig(0, ∞)

such that it intersects both Xrig(0, e/(e + 1)) and Xrig[e/(e + 1), 1) nontrivially .
Then there is no section to πrig on U .

Proof. Assume there is a section s to πrig on such U . As U is connected it lies in-
side some Dαi

, and intersects both Dαi
(0, e/(e + 1)) and Dαi

[e/(e + 1), e/(e + 1)]
nontrivially. By [BGR, §9.7.2, Thm. 2] any connected affinoid of Dαi

is the com-
plement of a union of finitely many disjoint open discs in a closed disc. A simple
calculation using the non-archimedean property of the norm shows that a closed disc
which intersects both Dαi

(0, e/(e + 1)) and Dαi
[e/(e + 1), e/(e + 1)] nontrivially,

must contain all of Dαi
[e/(e+1), e/(e+1)]. Therefore, U contains the complement

of a union of finitely many disjoint open discs V1, . . . , Vr (which we may assume to
have radius e/(e + 1)) in the circle Dαi

[e/(e + 1), e/(e + 1)].
We first re-scale as in the proof of Proposition 3.5: let λ ∈ L be such that val(λ) =

e/(e + 1). Setting x = λx0 and t = λt0 the map πrig : Dβi
[e/(e + 1), e/(e + 1)] →

Dαi
[e/(e + 1), ∞) becomes a map between a circle C of radius one and the closed

unit disc D characterized by

t0(πrigQ) = x0(Q) + u0(λx0(Q))(�e/λe+1)x0(Q)−e

+ λ−1f0(λx0(Q)) + λ−1�g0(λx0(Q)).

The section s is defined on W , the complement in D of finitely many residue discs
which are the open unit disc together with λ−1V1, . . . , λ

−1Vr . The reduction s̄

of s : W → C, then, gives a map between A1
OL/(θ) minus a finite number of points

(with parameter t̄0), and A1
OL/(θ) (with parameter x̄0) characterized by

t̄0(Q) = x̄0(s̄(Q)) + (�e/λe+1)x̄0(s̄(Q))−e.

Here x̄0(s̄(−)) is a rational function in t̄0 and �e/λe+1 is nonzero by our choice of λ.
Degree considerations show that this is impossible. �

We summarize the above results as a theorem (Theorem A of the Introduction).

Theorem 3.9. Assume e > 1. The morphism πrig : Yrig → Xrig admits a section

srig : Xrig[0, e/(e + 1)) → Yrig.

This section is maximal, namely, it can not be extended to any connected admissible
open set properly containing Xrig[0, e/(e + 1)).

The canonical subgroup of an elliptic curve can be thought of as a certain lifting
of the kernel of Frobenius from characteristic p [Kat, Thm. 3.1]. We prove a similar
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result in our setting. The section s∞
rig = srig|Z was constructed on the level of formal

schemes, and by its construction it reduces to s mod � .
Fix Dαi

and let t be a coordinate on it, obtained from an isomorphism O∧αi

X
∼=

O[[t]] as in Lemma 2.4. Also fix an isomorphism O
∧βi

Y
∼= O[[x, y]]/(xy − �) as in

loc. cit.; x is a parameter on Dβi
and xy = � .

Let γP : Spm(L) → Dαi
correspond to a closed point P which is contained

in Dαi
(0, e/(e + 1)). Thus L is a finite extension of K . Let γsrig(P ) = srig �

γP : Spm(L) → Dβi
correspond to the image of P under srig. Let γ̃P : Spf(OL) → X

denote the extension of γP to the formal model, and similarly define γ̃srig(P ). Let
γ P , γ srig(P ) denote, respectively, the reductions of γ̃P , γ̃srig(P ) modulo the element
�/t(P ) of OL. Let s′ denote the base change of s : X ⊗ κ → Y ⊗ κ from κ to
OL/(�/t(P )). For simplicity we denote the κ-algebra OL/(�/t(P )) by R.

Proposition 3.10. For closed points P ∈ Dαi
(0, e/(e + 1)) with t (P ) = r ∈ OL the

section srig reduces modulo �/r to s′. More precisely, for any P ∈ Dαi
(0, e/(e+1))

we have γ srig(P ) = s′ � γ P .

Proof. Let us denote the image of an element a ∈ OL in R := OL/(�/t(P )) by a.
Since P ∈ Dαi

, the map γ̃P : Spf(OL) → X factors through Spf(O∧αi

X ). Similarly

γ̃srig(P ) factors through Spf(O∧βi

Y ). Therefore, it is enough to prove the statement

after replacing X with Spf(O∧αi

X ) and Y with Spf(O∧βi

Y ). Then

γ P : Spec(R) → Spec(O∧αi

X ⊗ R) ∼= Spec(R[[t]])
is given by t �→ t (P ). Similarly, the map

γ srig(P ) : Spec(R) → Spec(O∧βi

Y ⊗ R) ∼= Spec(R[[x, y]]/(xy))

is given by x �→ x(srig(P )), y �→ y(srig(P )). From the proof of Lemma 2.4, we see
that the section

s′ : Spec(R[[t]]) ∼= Spec(O∧αi

X ⊗ κ ⊗κ R) → Spec(O∧βi

Y ⊗ κ ⊗κ R)

∼= Spec(R[[x, y]]/(xy))

is given by x �→ t, y �→ 0. Hence, it is enough to show that y(srig(P )) = 0
and x(srig(P )) = t (P ). For the first equality notice that by Lemma 3.6 we have
val(t (P )) = val(x(srig(P ))) and hence y(srig(P )) = �/x(srig(P )) is divisible by
�/t(P ). Since val(t (P )) = val(x(srig(P ))), to prove the second equality it is enough
to show that t (P ) and x(srig(P )) have the same reduction modulo y(srig(P )) =
�/x(srig(P )). But that is clear since from the proof of Proposition 3.5 we have

t (P ) = x(srig(P )) + u0(x(srig(P )))(y(srig(P )))e

+ f0(x(srig(P ))) + �g0(x(srig(P ))),
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and f0(x(srig(P ))) ≡ 0 (mod y(srig(P ))e+1). �

Definition 3.11. Let Q ∈ Yrig.

(1) We say that Q is canonical if Q is in the image of srig. By the construction
of srig, this is equivalent to having νY(Q) < e/(e + 1). If Q is canonical, then
by Lemma 3.6 we have νY(Q) = νX(πrigQ).

(2) We say that Q is anti-canonical if νY(Q) > e/(e+1). In this case by Lemma 3.6
we have νY(Q) = 1 − e−1νX(πrigQ).

(3) We say that Q is too singular if νY(Q) = e/(e + 1). This is equivalent
to νX(πrigQ) ≥ e/(e + 1).

Remark 3.12. In the context of modular curves, the measure of singularity νY was
first introduced by Buzzard in §4 of [Buz2]. In [Co] this measure, referred to as the
Buzzard invariant, was used to identify “circles” corresponding to the image in X0(p)

of points on X0(p
2) whose reductions lie on the horizontal components of the special

fibre of Edixhoven’s stable model of X0(p
2). As it was pointed to us by one of the

referees, the setting in this work seems suitable for carrying out Coleman’s approach
(which is less explicit than this work, but contains observations in the same spirit),
and hence clarifying how his results can be extended to the case of non-trivial tame
level and to corresponding situations for other Shimura varieties.

4. Throwing in an “involution”

In this section we prove the following theorem (Theorem B of the Introduction).

Theorem 4.1. Let w be an automorphism of Y that permutes the components of Y.
We denote by w also the induced automorphism of Yrig and its effect of points by
Q �→ Qw. Then:

(1) νX(πrigQ) = 0 ⇔ νX(πrigQ
w) = 0. In this case Q is canonical if and only

if Qw is anti-canonical.

(2) If νX(πrigQ) < (e + 1)−1 and Q canonical, then νX(πrigQ
w) = e · νX(πrigQ)

and Qw is anti-canonical.

(3) If νX(πrigQ) = (e + 1)−1, and Q is canonical, then Qw is too singular.

(4) If (e+1)−1 < νX(πrigQ) < e(e+1)−1, and Q is canonical, then νX(πrigQ
w) =

1 − νX(πrigQ) and Qw is canonical.

(5) If νX(πrigQ) < e(e + 1)−1, and Q is anti-canonical, then νX(πrigQ
w) =

e−1νX(πrigQ), and Qw is canonical.

(6) If Q is too singular, then νX(πrigQ
w) = (e + 1)−1 and Qw is canonical.
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We begin by proving the following lemma.

Lemma 4.2. For any Q ∈ Yrig we have

νY(Q) + νY(Qw) = 1.

Proof. We first note that w(Z ∞) = Z 0, and hence for Q ∈ Z ∞ ∪ Z 0 the result
follows from the definition of νY. Assume Q ∈ Dβi

for some 1 ≤ i ≤ h. The
automorphism w induces an isomorphism between Dβi

and Dβj
where βj = βw

i .
Let x, y be coordinates on Dβi

as in Lemma 2.4. Then η := w∗x and ξ := w∗y
are coordinates on Dβj

such that Dβj
is the analytification of Spf(O[[ξ, η]]/(ξη −

�)). Because w switches the two components of Y ⊗ κ , ξ is a local parameter on
the component containing (Y ⊗ κ)∞ at the point βj . Examination of the proof of
Lemma 2.4 shows that there is a local parameter τ on Dαj

, and local parameters (ξ̂, η̂)

on Dβj
such that ξ̂ = ξ û, η̂ = ηû−1, where û is a unit in O[[ξ, η]]/(ξη − �), and

such that (τ, ξ̂, η̂) are related as in the statement of Lemma 2.4.
By our definition, we can use ξ̂ to calculate νY on Dβj

. Therefore

νY(Qw) = val(ξ̂(Qw)) = val(ξ(Qw))

= val(y(Q)) = 1 − val(x(Q)) = 1 − νY(Q). �

We now prove the theorem.

(1) is clear.

(2) As Q is canonical, Lemma 3.6 implies that νY(Q) = νX(πrigQ) < (e + 1)−1.
Therefore by Lemma 4.2 we have νY(Qw) > e(e + 1)−1, which means that Qw is
anti-canonical. It now follows from Lemma 3.6 that νX(πrigQ

w) = e(1−νY(Qw)) =
eνY(Q) = eνX(πrigQ).

(3) As Q is canonical, Lemma 3.6 implies that νY(Q) = νX(πrigQ) = (e + 1)−1,
and therefore νY(Qw) = e(e + 1)−1. This shows that Qw is too singular. It follows
from Lemma 3.6 that νX(πrigQ

w) ≥ e(e + 1)−1.

(4) Since Q is canonical, we have νY(Q) = νX(πrigQ) > (e + 1)−1, and hence
νY(Qw) < e(e + 1)−1. This shows that Qw is canonical. Therefore, νX(πrigQ

w) =
νY(Qw) = 1 − νY(Q) = 1 − νX(πrigQ).

(5) SinceQ is anti-canonical, Lemma 3.6 shows thatνY(Q) = 1−e−1νX(πrigQ) >

e(e+1)−1. Therefore, νY(Qw) = 1−νY(Q) < (e+1)−1 and hence Qw is canonical.
We have νX(πrigQ

w) = νY(Qw) = 1 − νY(Q) = e−1νX(πrigQ).

(6) Since νX(πrigQ) ≥ e(e + 1)−1, by Lemma 3.6 we have νY(Q) = e(e + 1)−1,
and hence νY(Qw) = (e + 1)−1, This shows that Qw is canonical. Therefore, we
have νX(πrigQ

w) = νY(Qw) = (e + 1)−1.
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5. Applications

In this section we review some of the structure theory for Shimura curves and show
that our results apply to these situations. Our main references are Drinfeld [Dri1],
[Dri2] and Carayol [Car]. In particular, we reproduce the classical results on canonical
subgroups [Kat], as well as more recent developments [Kas1], [Kas2].

Let F be a totally real field of degree d with ring of integers OF and let B/F be
a quaternion algebra split at exactly one infinite prime of F . Let R be a maximal
order of B. Let p be a finite prime of F at which B splits, Fp the completion of F

at the prime p, OF,p its ring of integers with a uniformizer � , and identify B ⊗F Fp

with M2(Fp) so that R⊗OF
OF,p = M2(OF,p). With B there is associated a projective

system of Shimura curves, initially over the complex numbers but, by Shimura’s
theory of canonical models, in fact over F . Let G = ResF/Q(B×). Let X be
the G(R)-conjugacy class of the homomorphism C× → G(R) sending x + iy to[( x y

−y x

)
, 1, . . . , 1

] ∈ GL2(R) × (H×)d−1. Let K be an open compact subgroup of
G(Af ) of the form Kp ×Kp, where Kp ⊆ GL2(OF,p) and Kp is “away from p”. The
Shimura curve associated with K is MK(G, X)(C) = G(Q)\G(Af ) × X/K .

5.1. The case F = Q. In this case the Shimura curves MK(G, X)/Q afford a natural
modular description. Consider the functor associating to a scheme S the isomorphism
classes of triples (A, ι, α)/S, where A/S is an abelian scheme of relative dimension 2,
ι : R → EndS(A) is an injective ring homomorphism and α : R/NR → A[N] is an
isomorphism of R-group schemes; c.f. [Dri2, §4], [DT, §4], [Buz1]. (Such objects
are sometimes called “false elliptic curves” because of the similarity with the case
of B = M2(Q) and the usual modular curves.) This corresponds to the case where K

is �(N) – the elements of (R ⊗Z Ẑ)× (viewed as a subgroup of G(Af )) that reduce
to the identity element under (R ⊗Z Ẑ)× → (R ⊗Z Z/NZ)×. For a general K , K

contains �(N) for some N and we take α up to K-equivalence (étale locally). This
makes sense in all characteristics once the level structure is understood in Drinfeld’s
sense for which we refer to [Dri1], [KM]. For K small enough, there is therefore a
scheme MK over Spec(Z) representing this functor such that MK⊗ZQ ∼= MK(G, X).

As a module over R ⊗ Zp = M2(Zp), the p-divisible group A[p∞] of A/S is a
direct sum A[p∞]1 ⊕ A[p∞]2 of two isomorphic p-divisible groups over S, where
the decomposition is determined by the orthogonal idempotents

(
1 0
0 0

)
and

(
0 0
0 1

)
in

M2(Zp); furthermore, these idempotents are conjugate under
(

0 1
1 0

)
, which induces

the isomorphism A[p∞]1 ∼= A[p∞]2. Let Kp be small enough and let Kp be the
standard Iwahori subgroup of GL2(Zp). The open compact subgroup K = Kp ×Kp

corresponds to a choice of level structure away from p (given by Kp) and a choice
of a non-trivial ideal H ⊂ M2(Z/pZ). Such H corresponds, via the Kp-equivalence
class of α, to an R-invariant subgroup of A[p] of degree p2. The level structure at p

can therefore also be expressed as an isogeny f : A1 → A2 of false elliptic curves
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whose kernel is of degree p2 and is killed by p. The conditions on f can also be
formulated by requiring f to have “false degree” p, i.e. that f t � f = [p] (see below
for the exact meaning of this formula); c.f. [DT, p. 453], [Kas1, §§10–11].

Let A/k be a false elliptic curve over an algebraically closed field k of char-
acteristic p. One can prove, by means of the idempotents we have chosen, that the
functor of infinitesimal deformations of A (resp., together with an Iwahori level struc-
ture Kp ⊂ GL2(Zp)) is equivalent to the functor of deformation of a 1-dimensional
p-divisible group of height 2 over k (resp., with a �0(p)-level structure). Thus, this
is exactly the situation arising for elliptic curves and is well understood; c.f. [Buz1].
One concludes for such choice of K that every geometric connected component of
the special fibre MK ⊗Fp of MK consists of two smooth curves crossing transversely
at the supersingular points and so is a normal crossing divisor. Moreover, the natural
morphism MK ⊗Fp → MGL2(Zp)×Kp ⊗Fp is finite flat of degree p+1 and admits the
usual section taking a false elliptic curve A with Kp-structure to (A, Ker(FrA)) with
the same Kp-structure. The other component is isomorphic to MGL2(Zp)×Kp ⊗ Fp

as well. Indeed, the morphism MK ⊗ Fp → MGL2(Zp)×Kp ⊗ Fp induces on it a map
which is bijective on geometric points (the pre-image of a point A is (A, Ker(VerA)).
Hence the map is purely inseparable of degree p.

There is an automorphism w of MK that is best described by its action on objects:
an Iwahori level structure f : A1 → A2 of false elliptic curves is sent by duality
to f t : At

2 → At
1. We remark here that every false elliptic curve carries a principal

polarization compatible with the R-action [Dri2, §4], hence we get f t : A2 → A1,
whose isomorphism class is well defined (independent of the choice of polarization).
If the kernel of f is connected (resp. étale) then the kernel of f t is étale (resp. con-
nected). It follows that w permutes the two irreducible components of every geometric
connected component of MK ⊗ Fp. Finally, there is a finite extension Fq ⊇ Fp over
which all the connected components of MK ⊗Fp and MGL2(Zp)×Kp ⊗Fp are defined
and each connected component is a normal crossing divisor. Using argument as in Re-
mark 3.2, and the fact that MK ⊗W(Fq) is flat over W(Fq) and has reduced special fi-
bre, one find that the connected components of MK⊗Fq (resp. MGL2(Zp)×Kp ⊗Fq ) are
in bijection with the connected components of the generic fibre. We conclude that each
connected component Y of MK ⊗W(Fq) and its image X ⊆ MGL2(Zp)×Kp ⊗W(Fq)

satisfy the hypotheses of this paper. Moreover, a descent argument, using the unique-
ness of the section on each connected component (see Proposition 3.5), allows one to
get a section over MGL2(Zp)×Kp ⊗Qp defined over Qp. The application of our results
gives a new proof for the existence and other properties of canonical subgroups of
false elliptic curves, recovering Theorem 11.1 and Lemma 12.5 of [Kas1].
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5.2. The case [F : Q] = d > 1. In contrast to the previous case, when F �= Q there
is no natural modular description of the Shimura curves associated to B. Instead, by
making an auxiliary choice of a CM field L/F in which p splits, one can associate
to the algebra B ⊗F L another algebraic group G′ with the same derived group as
that of G. The curves MK ′(G′, X′)/F associated to G′ are PEL Shimura curves.
These auxiliary curves play an important role in Carayol’s construction of an integral
model for MK(G, X)/F over O = OF,p, since they are closely related to the Shimura
curves defined by G [Car, §4]. Carayol proves that such a model MK exists, and
that there is a universal p-divisible O-module G of (O-) height 2 over the projective
limit M∞ of MK over K . This p-divisible group is constructed as a certain “piece”
of the p-divisible group of the universal abelian variety with additional structure
existing over (the projective limit of) the Shimura curves MK ′(G′, X′)/OF . Note
that the p-divisible group G does not carry an R ⊗O-structure. In a moral sense, this
structure was already used in reducing the height of the p-divisible O-module to 2 (this
corresponds to choosing a particular piece of the p-divisible group of the universal
abelian variety over MK ′(G′, X′)/OF and is analogous to the process indicated above
for F = Q). For details see [Car], in particular §§3.3, 6.3. We discuss this further.

Assume first that K = GL2(O) × Kp. Thus, no level structure is imposed at p.
Carayol constructs a p-divisible group G over M∞, which is a p-divisible O-module
of height 2. For any geometric point x of MK , there is a way to define the fibre Gx

by lifting x to a geometric point of M∞. Over a geometric characteristic 0 point x

of MK we have Gx
∼= (Fp/O)2. The prime-to-p level structure plays a somewhat

dormant role. For example, Carayol proves [Car, §6.6] a “Serre–Tate theorem” to the
effect that the formal completion of the henselization of MK at a geometric point x

of its special fibre pro-represents the functor of infinitesimal deformations for the p-
divisible O-module Gx . There are two cases:

(1) The ordinary case, where Gx is isomorphic to Fp/O ⊕ (Fp/O)t , where (−)t

denotes the dual p-divisible group;

(2) The supersingular case where Gx is the “unique” formal O-module of dimen-
sion 1 and height 2 [Dri1, Prop. 1.7].

The deformation theory was worked out by Drinfeld. One concludes that in either
case the completed local ring is isomorphic to Ônr[[t]] and hence that MK is a regular
surface with a smooth special fibre; c.f. [Dri1, Prop. 4.2, 4.5], [Car, App. §3].

Carayol also considers the case of level structure Kp(n) × Kp, where Kp(n)

is the subgroup consisting of matrices in GL2(O) congruent to 1 modulo pn,
and Kp is small enough. There is a moduli interpretation of a sort to the ensu-
ing morphism π : MKp(n)×Kp → MKp(0)×Kp ; the group scheme G [pn] descends
to MKp(n)×Kp and is equipped with a Drinfeld full pn-level structure, namely, a

morphism of O-group schemes α : (p−n/O)
2 → G [pn], such that the closed sub-

scheme
∑

P∈(p−n/O)2 α(P ) is equal to G [pn]. The scheme MKp(n)×Kp is a torsor over
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Aut((p−n/O)
2
)×MKp(0)×Kp and the morphism π is the natural one (in particular its

fibres are principal homogenous spaces for Aut((p−n/O)
2
)). Such level structures

were introduced and studied by Drinfeld in [Dri1, p. 572], developed more in [Car,
§7, Appendix], and studied extensively in [KM]. Again Carayol proves a “Serre–Tate
theorem” as to the nature of the completed local rings [Car, §7]. He also proves that the
morphism π extends the natural morphism MKp(n)×Kp(G, X) → MKp(0)×Kp(G, X)

induced by the inclusion Kp(n) × Kp ↪→ Kp(0) × Kp.
As Carayol remarks [Car, §0.4], the construction and results extend to any choice

of level subgroup at p; in particular, for K = Kp × Kp, where Kp is the Iwahori
subgroup. The scheme MKp×Kp then carries a finite flat group scheme H (étale
locally) with a Drinfeld level structure p−1/O → H such that

∑
P∈p−1/O α(P ) is

equal to H as a closed subscheme. The following conclusion follows from Carayol’s
work: The completion of the henselization of MKp×Kp at a geometric characteristic p

point x is the ring that pro-represents the functor of infinitesimal deformations of the
divisible O-module Gx together with an O-subgroup scheme of order q = |O/p|
killed by p. This moduli problem can also be phrased in a balanced manner. It can be
viewed as deforming a pair of divisible O-modules of height 2, say Gx,G ′

x , together
with an O-isogeny Gx → G ′

x of degree q whose kernel is p-torsion.
The situation is again very similar to elliptic curves with �0(p)-level structure, and

in particular the following holds. The scheme MKp×Kp is a regular two dimensional
scheme, flat over OF,p, the morphism π is finite flat of degree q + 1 and the nature
of π at every point is completely understood. In particular, there are two pre-images
to every ordinary point of MGL2(O)×Kp and MKp×Kp is regular at each; there is a
unique pre-image y to any geometric supersingular point and the completed local ring
of y is isomorphic to Ônr[[s, t]]/(st − �). For completeness we sketch an argument
below. We remark that one can also argue using the results in [Car] obtained for
full p-level structure. However, Carayol uses an explicit description of the formal
O-module to obtain his results. Since we do not anticipate such description to be
available (or indeed useful) in higher-dimensional cases, using Carayol’s result will
be contrary to our thesis. We therefore provide an argument that should extend to the
more general situation we have in mind.

5.2.1. A sample case. Firstly, we quickly recall the technique of local models in
the particular situation of elliptic curves, which serves as a good sample case for our
problem.

The deformation theory of elliptic curves (or abelian varieties) can be studied as
follows. Given a characteristic p closed point x of a moduli space M of elliptic curves
with level prime to p and its universal object f : E → M, choose an open affine neigh-
borhood U � x and a trivialization of H1

dR(E /U) ∼= O2
U . The variation of Hodge

structure R0f∗�E /U → H1
dR(E /U) provides a morphism U → Grass, where Grass
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is the Grassmann scheme of locally free, locally direct summands of rank 1 of O2
U .

One then shows, using the crystalline theory developed by Grothendieck, that this
morphism is étale and so is an isomorphism on the level of completed local rings
of x and its image in Grass; c.f. [deJ1, DP]. If one wants to work instead with the
p-divisible groups, one may replace H1

dR by a similar object provided by the theory
of displays as developed by Zink, or by the theory of Cartier–Dieudonné modules, or
any other theory studying deformations of p-divisible groups. For example, [RZ, §3]
choose the Lie algebra of the universal vectorial extension of the p-divisible group.
By analyzing the Grassmann scheme, one therefore establishes that the completed
local ring is D = W(k(x))[[t]].

Under this method, the formal scheme representing the infinitesimal deformation
problem of an elliptic curve with a subgroup of order p may be translated to a
(formal) incidence variety. We think of the moduli problem as the one for a cyclic
isogeny h : E1 → E2 of degree p between elliptic curves and we are interested in the
completed local ring of the point on the moduli space that corresponds to such data
over a finite field k of characteristic p. One may choose the trivialization of the two
H1

dR(E /Spf(Di)), Di (∼= D) the completed local ring at Ei , such that the isogeny is
given by

( 1 0
0 p

)
[DP, §5.3 ff.] or [deJ1]. We are then parameterizing a pair of locally

free, locally direct summands (L1, L2) of rank 1 of D2 such that
( 1 0

0 p

)
L1 ⊆ L2.

In the ordinary case we get an L1 whose reduction modulo p is not killed by
(

1 0
0 0

)
and the deformation problem is represented by the completion of the local ring of a
k-point x of P1

W(Fp)
and so is isomorphic to W(k)[[t]]. In the supersingular case we

get an L1 whose reduction is killed by
(

1 0
0 0

)
. Let x be a k-rational point of P1

W(k)

and let P be the blow-up of P1
W(k) at x. Its special fibre has a unique singular point

that we shall still denote by x. The deformation problem is pro-represented by the
completion of the local ring of x on P and so is isomorphic to W(k)[[s, t]]/(st − p).

5.2.2. The calculation of the completed local rings. Recall that the moduli problem
is phrased in a balanced manner. Let x′ be a closed point of MKp×Kp with finite
residue field k, and let x be a k̄-point supported on x′, where k̄ is an algebraic closure
of k. The situation we have is of two divisible O-modules Gx,G ′

x of dimension 1
and height 2 over k̄ and an O-isogeny h : Gx → G ′

x of degree q = |O/(�)|, whose
kernel is killed by p.

Let G be Gx or G ′
x . The Lie algebra of the universal vectorial extension of G ,

which serves as a substitute for the first de Rham cohomology, is a free k̄-module of
dimension 2. As mentioned above, the functor of infinitesimal deformations of G is
pro-representable by Ru = Ônr[[t]], which carries a universal object G u. This can also
be proven by the same technique of local models applied to the relative Lie algebra
Lie(G u) of G u and the Lie algebra Lie(V G u) ∼= (Ru)2 of its universal vectorial
extension V G u, which identifies the completed local ring of x with the completed
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local ring of the k̄-point, still called x, on the formal Grassmann scheme (P1
Ru)

∧x .
The analogue of Lemma 5.5 of [DP] holds. Namely, one can choose isomorphisms

Lie(V G u
x ) ∼= (Ru)2 and Lie(V G ′u

x ) ∼= (Ru)2 such that h is given by the matrix A =(
1 0
0 �

)
(one should use that the p-divisible groups are in fact polarized, are “special

O-modules” in Drinfeld’s sense and that h is compatible with the polarizations).
Therefore, the completed local ring of x̄ is isomorphic to the formal incidence variety
in (P1

Ru)
∧x × (P1

Ru)
∧x given by A, i.e., by the closed subscheme over which we have

A
(
Lie(G u

x )
) ⊆ Lie(G ′u

x ).

In the ordinary case we find that the complete local ring is Ônr[[t]], and in the
supersingular case we find that it is Ônr[[s, t]]/(st − �). Finally, one may conclude
that the completed local ring of x′ itself is O ⊗W(κ) W(k)[[t]] if x is ordinary and is
O ⊗W(κ) W(k1)[[s, t]]/(st − �) if x is supersingular, where [k1 : k] ≤ 2.

Given these results, it is straightforward to verify that the connected components
of the generic fibre of a suitable unramified base-change of MKp×Kp → MGL2(O)×Kp

satisfy the assumptions of this paper, including the existence of an automorphism w.
In particular, one has a unique (partial) section on each pair of connected components
of the generic fibres; a descent argument allows one to conclude that the section can
already be defined before base-change.

Remark 5.1. One may, of course, carry the same analysis for the Shimura curves
MK ′(G′, X′). If anything, the analysis is easier, since it is the one underlying
Carayol’s results. Hence, the results of this paper apply to these cases as well.

Remark 5.2. As is clear from our discussion, whenever we are in a situation of curves
Y → X such that Y (or the fibres) parameterizes group schemes, e.g. in the case of
usual modular curves where Y has a �0(p)-level structure, or for pairs MKp×Kp →
MKp(0)×Kp (or the analogous situations for the groups G′), the construction of a
section as in this paper provides one with a group scheme over the region where the
section is defined. In particular our results reprove Theorems 3.1 and 3.10.7 of [Kat],
and Theorem 9.1 of [Kas2] on canonical subgroups of abelian schemes parameterized
by MK ′(G′, X′), and in addition provide an analogue of Theorem 3.10.7 of [Kat] for
such canonical subgroups.
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