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Uniqueness of constant mean curvature surfaces properly
immersed in a slab

Luis J. Alías∗and Marcos Dajczer†

Abstract. We study complete properly immersed surfaces contained in a slab of a warped
product R ×� P

2, where P
2 is complete with nonnegative Gaussian curvature. Under certain

restrictions on the mean curvature of the surface we show that such an immersion does not exists
or must be a leaf of the trivial totally umbilical foliation t ∈ R �→ {t} × P

2.
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To prove that a compact hypersurface of constant mean curvature embedded in Eu-
clidean space must be a round sphere Alexandrov [1] introduced what nowadays is
known as Alexandrov’s reflexion method. He observed that the method also works
in standard hyperbolic space and that it gives a similar result:

Any compact hypersurface embedded with constant mean curvature in hy-
perbolic space H

n+1 is a round sphere.

To see this result in the context of this paper it is convenient to observe that it is
completely equivalent to assume compactness or completeness plus proper without
any point at the asymptotic boundary of H

n+1.
Since the hyperbolic space carries other totally umbilical hypersurfaces, namely,

horospheres and hyperspheres, one may want to characterize these too. This was done
by do Carmo and Lawson [4] making use of Alexandrov’s method. In particular, they
showed:

Any complete hypersurface properly embedded with constant mean cur-
vature in hyperbolic space H

n+1 with a single point at the asymptotic
boundary is a horosphere.

∗Partially supported by MEC/FEDER Grant MTM2004-04934-C04-02 and Fundación Séneca Grant
00625/PI/04, Spain.

†Partially supported by MEC Grant SAB2003-0275, Spain, and CNPq Grant 200299/2004-2, Brazil.
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Moreover, they also observed that the statement is no longer true if we replace em-
bedded by immersed since around that time J. Gomes [6] pointed out the existence
of counterexamples. In fact, in unit hyperbolic space he proved that any element
of the one-parameter family of complete parabolic rotation hypersurfaces with con-
stant mean curvature (and parameter) H ≥ 1 (defined by do Carmo and Dajczer
in [2]) has a single point at the asymptotic boundary, and auto-intersect along a single
(n− 1)−dimensional horosphere if H = 1 and infinite such horospheres if H > 1.

Since Lawson [8] established what is now known as the cousin correspondence
between minimal surfaces in Euclidean space R

3 and surfaces with constant mean
curvature H(= ‖ �H‖) = 1 in the unit hyperbolic space H

3, the latter have been ex-
tensively studied. The one parameter family of catenoids cousins (see [11]) contains
the immersed parabolic rotation surface discussed above. For what on the subject
directly concerns this paper we also recall the half-space theorem obtained by Ro-
dríguez and Rosenberg [10]. They proved that a properly embedded complete surface
withH = 1 that lies on one side of an horosphere must be an horosphere itself when-
ever (i) it is inside the horoball bounded by the horosphere, or (ii) lies outside and
its mean curvature vector �H points toward the horoball. In relation to the latter case,
there exist catenoids cousins with two points in the asymptotic boundary (see [12] or
[13]) that provide counterexamples if we allow �H to point in the opposite direction.

By an immersed surface being contained in a slab of H
3 we mean that the sub-

manifold lies between two horospheres that share the same point in the asymptotic
boundary of H

3. It turns out that each parabolic rotation surface with constant mean
curvature H > 1 lies inside a slab (see [6]) but this is not the case for the cousin
catenoid (H = 1) in the family. This surface lies on one side of an horosphere but
not in a slab (because the generating curve is asymptotic to the asymptotic boundary;
see [11]) and thus shows that the assumption on the mean curvature in Theorem 1 is
sharp.

Theorem 1. If f : �2 → H
3 is a properly immersed complete surface with constant

mean curvature ‖ �H‖ ≤ 1 contained in a slab then f (�) is a horosphere.

In fact, the preceding result is a consequence of general theorems on surfaces
properly immersed in a large class of ambient spaces, discussed next, that carry a
foliation of parallel umbilical surfaces; thus making natural the concept of slab there.
On the other hand, there is a nice geometric technique to prove Theorem 1 but that
will not work in general cases; see Remark 6.

Let P
2 be a complete Riemannian surface and let M3 = R ×� P

2 denote the
product manifold R × P

2 endowed with the complete Riemannian warped metric

〈 , 〉M3 = dt2 + �2(t)〈 , 〉P2

where � : R → (0,+∞) is smooth. The family of surfaces Pt = {t} × P
2 form a
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foliation of M3 by complete totally umbilical leaves of constant mean curvature

H(t) = (log �)′(t) = (�′/�)(t).

Let s : R → J be given by s(t) = s(0) − ∫ t
0 �

−1(u)du, where J = s(R). Then
R ×� P

2 is isometric to the product manifold J × P
2 endowed with the conformal

metric
〈 , 〉 = λ2(s)

(
ds2 + 〈 , 〉P2

)
with λ(s) = �(t (s)),

by means of the isometry τ(t, x) = (s(t), x) that is orientation reversing since it
reverses the orientation in the ∂/∂t direction. We have that H

3 = R ×et R
2 since τ

is an isometry from R ×et R
2 to H

3 in the half-space model. It is worthwhile to
observe that, in general, if

∫ +∞
0 �−1 < +∞ and

∫ 0
−∞ �−1 = +∞, then taking

s(0) = ∫ +∞
0 �−1 we get J = (0,+∞), and thus P

2 acts as a boundary at infinite of

R ×� P
2 as does R

2 in H
3. Hence, the leaves Pt can be thought as horospheres in a

fixed direction of H
3.

In the context of surfaces in R ×� P
2 by being contained in a slab with boundary

Pt1 ∪ Pt2 we mean between two leaves Pt1,Pt2 with t1 < t2 of the foliation Pt .
Throughout the paper we assume that P

2 is complete, its Gaussian curvatureKP is
nonnegative and the geodesic curvature of the geodesic circles (from a fixed point p0)
of radius r̂ ≥ r0 > 0 satisfies kg ≥ −c/r̂ for some positive constant c. One of the
aforementioned general results is the following.

Theorem 2. In a slab of R ×� P
2 with boundary Pt1 ∪ Pt2 there is no complete

properly immersed surface with mean curvature satisfying

sup
�

‖ �H‖ < min[t1,t2]
H(t). (1)

There are two cases to consider (after normalization) for which H(t) = H0 is
constant. Either � = 1 (thus H0 = 0) and the ambient space is just a Riemannian
product M3 = R × P

2 or � = et (thus H0 = 1) and M3 = R ×et P
2. In the latter

case, M3 belongs to a class of manifolds called in [14] a pseudo-hyperbolic space.
In particular, we have the following consequence of Theorem 2.

Corollary 3. There is no properly immersed complete surface �2 with mean curva-
ture satisfying sup� ‖ �H‖ < 1 contained in a slab of a pseudo-hyperbolic manifold
R ×et P

2.

Our second general result specifically deals with pseudo-hyperbolic manifolds as
ambient spaces and has our Theorem 1 as a corollary.

Theorem 4. If f : �2 → M3 = R ×et P
2 is a properly immersed complete surface

with constant mean curvature ‖ �H‖ ≤ 1 contained in a slab then f (�) is a leaf Pt .
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In the preceding result we are assuming that in (1) equality may hold. The other
case in which this may happen, i.e., minimal surfaces in products spaces R×P

2, was
considered by Rosenberg [12] who proved the following half-space theorem.

IfKP ≥ 0 and the geodesic curvature of all geodesic circles in P
2 of radius

at least one from some fixed point is bounded by some constant then any
properly immersed minimal surface in a half space [0,∞)× P

2 is a slice.

We would like to heartily thank Harold Rosenberg and Wayne Rossman for several
comments.

The proofs

Throughout the paper M3 = R ×� P
2 denotes the product manifold endowed with

the complete Riemannian warped metric

〈 , 〉 = π∗
R
(dt2)+ �2(πR)π

∗
P
(〈 , 〉P) (2)

where � : R → (0,+∞) is the warping function, πR and πP are the projections from
R × P

2 onto each factor, and 〈 , 〉P the Riemannian metric on P
2. Recall from the

introduction that P
2 is complete of nonnegative Gaussian curvature and the geodesic

curvature of the geodesic circles from a fixed point p0 of radius r̂ ≥ r0 > 0 satisfies
kg ≥ −c/r̂ for a positive constant c.

The height functionh ∈ C∞(�) along an isometric immersionf : �2 → R ×� P
2

of a Riemannian surface �2 is defined as

h = πR � f.
Hence, that a submanifold lies inside a slab means that its height function is bounded
on both sides.

Let T ∈ TR denote a smooth unit vector field fixing an orientation for R and,
simultaneously, its lift to a vector field in TM . Thus T = ∂/∂t coordinate wise.
Hence, the gradient of πR ∈ C∞(M) is ∇̄πR = T , and the gradient of h ∈ C∞(�) is

∇h = (∇̄πR)
� = T − 〈T ,N〉N, (3)

where 〈 , 〉 also stands for the Riemannian metric on �2, ( )� denotes taking the
tangential component of a vector field along the immersion andN is a (local) smooth
unit normal vector field.

We use next that for (2) we have that ∇̄T T = 0 and

∇̄ZT = ∇̄T Z = T (log �)Z = �′

�
Z = HZ (4)
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if Z ∈ TM is the lift of a vector field Z ∈ T P, where ∇̄ stands for the Levi-Civita
connection inM3 and, as before, H = (log �)′ = �′/�. For simplicity, we are using
the same notation for a vector field in P

2 and its lift to M3, as well as for functions
on R (i.e., � and �′) and their lift to M3 (i.e., � � πR and �′ � πR). Later on we also
use that

∇̄ZW = ∇̂ZW − H〈Z,W 〉T , (5)

where now Z,W ∈ TM are both lifts of fields in T P, and ∇̂ denotes the Levi-Civita
connection in P

2.
Notice that (4) is tensorial in Z, and thus holds for any Z ∈ TM satisfying

〈Z, T 〉 = 0. For every vector field V ∈ TM , we thus have

∇̄V T = ∇̄V−〈V,T 〉T T = H(V − 〈V, T 〉T ). (6)

In particular, observe that Y = �T ∈ TM determines a non-vanishing closed con-
formal vector field on R ×� P

2 (see Remarks 7 below) since

∇̄V Y = T (�)V = �′V for any V ∈ TM.
We have from (3) and (6) that

∇̄XT = H(h)(X − 〈X,∇h〉T ) for any X ∈ T�.
It follows easily that

∇X(∇h) = (∇̄X(T − 〈T ,N〉N))�
= H(h)(X − 〈X,∇h〉∇h)+ 〈N, T 〉AX for any X ∈ T�,

where ∇ is the Levi-Civita connection in �2 and A = AN denotes the second fun-
damental form of f . We conclude that the Laplacian of h is

�h = H(h)(2 − ‖∇h‖2)+ 2〈 �H, T 〉 (7)

where �H is the mean curvature vector field of f .
Next observe that any function ψ̂ ∈ C∞(P) defines a function ψ̄ ∈ C∞(M) by

ψ̄(t, x) = ψ̂(x).

In turn, we associate to ψ̂ ∈ C∞(P) a function ψ ∈ C∞(�) defined by ψ = ψ̄ � f .

Lemma 5. Along f : �2 → R ×� P
2 we have that

�̄ψ̄ = �ψ − 2(〈 �H,N〉 + H(h)〈N, T 〉)〈N∗, ∇̂ψ̂〉P + ∇̂2ψ̂(N∗, N∗), (8)

where N is a (local ) smooth unit normal field and N∗ = πP∗(N) = N − 〈N, T 〉T .
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Proof. Since ∇̄ψ̄ = ∇ψ+(∇̄ψ̄)⊥,where ( )⊥ denotes taking the normal component
of a vector field along f , then the Hessians of ψ̄ and ψ relate as

∇̄2ψ̄(X,X) = ∇2ψ(X,X)− 〈A(∇̄ψ̄)⊥X,X〉
where X ∈ T�. Therefore, along the immersion

�̄ψ̄ = �ψ − 2〈 �H, ∇̄ψ̄〉 + ∇̄2ψ̄(N,N). (9)

Observe that ∇̄ψ̄ = �−2∇̂ψ̂ . Moreover, from (5) we get that

∇̄N∗∇̂ψ̂ = ∇̂N∗∇̂ψ̂ − H(h)〈N∗, ∇̂ψ̂〉T
and from (4) that ∇̄T ∇̂ψ̂ = H∇̂ψ̂ . We obtain

∇̄N ∇̄ψ̄ = 〈N, T 〉T (�−2)∇̂ψ̂ + �−2∇̄N ∇̂ψ̂
= �−2∇̂N∗∇̂ψ̂ − �−2H〈N, T 〉∇̂ψ̂ − �−2H〈N∗, ∇̂ψ̂〉T
= �−2(∇̂N∗∇̂ψ̂ − H〈N, T 〉∇̂ψ̂) − H〈N∗, ∇̂ψ̂〉PT ,

where � = �(h) and H = H(h), and therefore

∇̄2ψ̄(N,N) = ∇̂2ψ̂(N∗, N∗)− 2H〈N, T 〉〈N∗, ∇̂ψ̂〉P. (10)

On the other hand,

〈 �H, ∇̄ψ̄〉 = 〈 �H,N〉�−2〈N∗, ∇̂ψ̂〉 = 〈 �H,N〉〈N∗, ∇̂ψ̂〉P, (11)

and (8) follows from (9) using (10) and (11). �

Proof of Theorem 2. We claim that�2 is parabolic in the sense that it does not admit
a non-constant subharmonic function bounded from above. This is clear if �2 is
compact. To prove the claim when�2 is noncompact, by a result of Khas’misnkii [7]
(see also [5, Corollary 5.4]) it suffices to show that there exists a function g ∈ C∞(�)
that is superharmonic outside a compact set and such that g(q) → +∞ as q → ∞.
Here q → ∞ means that q is leaving any compact subset of �2.

Take ψ̂ = log r̂ where r̂(q) = dP(p0, q). By the Laplacian comparison theorem ψ̂
is superharmonic since

�̂ψ̂ = r̂−1(�̂r̂ − r̂−1) ≤ 0.

From �̄ψ̄ = �−2�̂ψ̂ we have that ψ̄ is also superharmonic, and (8) yields

�ψ ≤ 2(〈 �H,N〉 + H(h)〈N, T 〉)〈N∗, ∇̂ψ̂〉P − ∇̂2ψ̂(N∗, N∗). (12)
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Observe that
‖N∗‖P = �−1(h)‖N∗‖ = �−1(h)‖∇h‖,

where ‖∇h‖2 = 1 − 〈T ,N〉2 ≤ 1. By assumption

−∞ < h := inf
�
h ≤ h ≤ h̄ := sup

�

h < +∞,

so that inf� �(h) = mint∈[h,h̄] �(t) > 0 and

‖N∗‖P ≤ ‖∇h‖
inf� �(h)

≤ 1

inf� �(h)
. (13)

If v,w ∈ TqP and r̂ ≥ r0 > 0, then

∇̂2ψ̂(v,w) = 〈∇̂v(r̂−1∇̂ r̂), w〉P
= r̂−1∇̂2r̂(v, w)− r̂−2〈∇̂ r̂, v〉P〈∇̂ r̂, w〉P.

When v = w = ∇̂ r̂ , we get

∇̂2ψ(v, v) = −r̂−2.

When v = τ ⊥ ∇̂ r̂ of unit length, we have ∇̂2ψ̂(∇̂ r̂, τ ) = 0 and

∇̂2ψ̂(τ, τ ) = r̂−1∇̂2r̂(τ, τ ) = r̂−1kg(q).

Thus, for any v ∈ TqP we obtain

∇̂2ψ̂(v, v) = −r̂−2〈v, ∇̂ r̂〉2
P + r̂−1kg(q)〈v, τ 〉2

P

≥ −r̂−2〈v, ∇̂ r̂〉2
P − cr̂−2〈v, τ 〉2

P

≥ −Cr̂−2‖v‖2
P

where C = max{1, c}. In particular, from (13) we conclude that

∇̂2ψ̂(N∗, N∗) ≥ −C‖∇h‖2

r2(inf� �(h))2
≥ −C
r2(inf� �(h))2

, (14)

when r = r̂ � f is larger than r0. On the other hand, from (1) we see that

(〈 �H,N〉 + H(h)〈N, T 〉)〈N∗, ∇̂ψ̂〉P ≤ (‖ �H‖ + H(h))‖N∗‖P‖∇̂ψ̂‖P

≤ sup� ‖ �H‖ + H(h)

r inf� �(h)

≤ inf� H(h)+ sup� H(h)

r inf� �(h)
, (15)
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where inf� H(h)= mint∈[h,h̄] H(t) > 0 and sup� H(h)= maxt∈[h,h̄] H(t) <+∞.
Summing up, we conclude from (12) jointly with (14) and (15) that

�ψ ≤ a

(
1

r
+ 1

r2

)
(16)

for certain positive constant a when r is larger than r0.
Let g ∈ C∞(�) be given by

g = ψ − σ(h) = log r − σ(h),

where r = r̂ � f and σ(t) satisfies σ ′(t) = �(t). We have that the subsets Kj =
f−1([h, h̄] × B̄(p0, j)) are compact because f is proper. Therefore, since �2 is
noncompact, then r satisfies r(q) → +∞ as q → ∞, and hence the second condition
needed to conclude that g is parabolic is satisfied.

On the other hand, from (7) we have

�σ(h) = 2�(h) (H(h)+ 〈 �H, T 〉). (17)

From (1) we get

H(h)+ 〈 �H, T 〉 ≥ inf
�

H(h)− sup
�

‖ �H‖ > 0.

Hence,
�σ(h) ≥ 2 inf

�
�(h) (inf

�
H(h)− sup

�

‖ �H‖) > 0.

Therefore, we obtain from (16) that

�g ≤ a

(
1

r
+ 1

r2

)
− 2 inf

�
�(h) (inf

�
H(h)− sup

�

‖ �H‖) ≤ 0

if r ≥ r1 for certain r1 ≥ r0. As a consequence, �2 is parabolic.
Once we know that�2 is parabolic, it suffices to observe that�σ(h) > 0 and that

σ(h) ≤ sup� σ(h) = σ(h̄). This implies that σ(h)must be constant and�σ(h) = 0,
which is not possible and concludes the proof of Theorem 2. �

Proof of Theorem 4. In view of Theorem 2 it suffices to argue for the case ‖ �H‖ = 1.
As in the preceding proof we first show that �2 is parabolic. This is clear if �2 is
compact. Assume then that �2 is noncompact. In the present case H(t) = 1, and
(12) reduces to

�ψ ≤ 2(1 + 〈N, T 〉)〈N∗, ∇̂ψ̂〉P − ∇̂2ψ̂(N∗, N∗) (18)
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where N = �H is a global unit normal vector field along the immersion. In this case
we also have 1 + 〈N, T 〉 ≥ 0, and by (13) that

(1 + 〈N, T 〉)〈N∗, ∇̂ψ̂〉P ≤ (1 + 〈N, T 〉) ‖∇h‖
r inf� �(h)

.

Using this in (18) and (14) we conclude that

�ψ ≤ 2(1 + 〈N, T 〉) ‖∇h‖
r inf� �(h)

+ C‖∇h‖2

r2(inf� �(h))2

= (1 + 〈N, T 〉)
(

2‖∇h‖
r inf� �(h)

+ C(1 − 〈N, T 〉)
r2(inf� �(h))2

)

≤ a(1 + 〈N, T 〉)
(

1

r
+ 1

r2

)
(19)

for certain positive constant a when r is larger than r0. On the other hand, in this case
σ(h) = eh and (17) becomes

�eh = 2(1 + 〈N, T 〉)eh ≥ 2(1 + 〈N, T 〉)eh ≥ 0. (20)

Therefore, we obtain from (19) that

�g ≤ (1 + 〈N, T 〉)
(a
r

+ a

r2 − 2eh
)

≤ 0

if r > r1 for certain r1 ≥ r0. Thus, reasoning as in the proof of Theorem 2 we see
that �2 is parabolic.

To conclude the proof, we have from (20) that�eh ≥ 0. Since eh ≤ eh̄ we obtain
from the parabolicity of �2 that eh and hence h must be constant. �

Remark 6. The following geometric proof of Theorem 1 was given by Harold Rosen-
berg (private communication) and observed by the referee. Assume first thatH < 1.
In the half-space model of H

3, consider a family of equidistant spheres coming up
from infinity, with their mean curvature vector pointing up, until it touches the sur-
face for the first time. At that point the mean curvature of the surface must point in
the same direction; and that is a contradiction to the maximum principle. If H = 1
assume that the surface is not an horosphere. A similar argument as before works but
now one has to start with the embedded half of a catenoid cousin whose boundary is
a small circle contained in a plane fully inside the slab, cf. [11]. The catenoid goes
down, so it can be taken disjoint from the surface, and its mean curvature points up.
If we shrink the circle to a point the compact piece of the catenoid inside the slab
converges to the plane that contains the circle. As before, we will have a first point
of contact that gives a contradiction.



662 L. J. Alías and M. Dajczer CMH

Remark 7. (i) The presence of a closed conformal vector field gives rise of a warped
structure as the ones considered in this paper. See [9] for a precise statement of this
correspondence and interesting additional information related to this article.

(ii) Strong results on the structure of the asymptotic boundary of properly em-
bedded hypersurfaces in H

n+1 with constant mean curvature H ∈ [0, 1) have been
given in [3].

(iii) Since any properly immersed submanifold in a complete Riemannian mani-
fold is itself complete, the assumption of completeness in the paper is a consequence
of the submanifold being properly immersed.
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