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Reflections in abstract Coxeter groups

W. N. Franzsen, R. B. Howlett and B. Miihlherr

Abstract. Let W be a Coxeter group and r € W areflection. If the group of order 2 generated by
r is the intersection of all the maximal finite subgroups of W that contain it, then any isomorphism
from W to a Coxeter group W’ must take r to a reflection in W’. The aim of this paper is to show
how to determine, by inspection of the Coxeter graph, the intersection of the maximal finite
subgroups containing . In particular we show that the condition above is satisfied whenever W
is infinite and irreducible, and has the property that all rank two parabolic subgroups are finite.
So in this case all isomorphisms map reflections to reflections.
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1. Introduction

The dihedral group of order 12 can be considered as Coxeter group of type I>(6) or
as Coxeter group of type A1 x I2(3). This example shows that, in general, the set of
reflections in a Coxeter system is not determined by the abstract group W alone, but
does indeed depend on the choice of the Coxeter generating set R. However there are
a lot of examples of Coxeter systems (W, R) where the abstract group does determine
the set of reflections or even the set R up to W-conjugacy. The main motivation for
the present paper is to show that the latter holds for infinite Coxeter groups having
a finite, irreducible and 2-spherical Coxeter generating set, which is our Theorem 1
below.

In view of the main result of [5] it suffices to show that these Coxeter groups
determine the set of reflections. In order to achieve this goal we provide a handy
criterion for an involution in an abstract Coxeter group W to be a reflection with
respect to any Coxeter generating set of W. Our principal observation is the following.
Let (W, R) be a Coxeter system and let w € W be an involution. If w ¢ R"W, then
the centralizer of w in W contains a finite normal subgroup properly containing (w).
This is an immediate consequence of Richardson’s result in [16]. Thus, if w € W is
an involution having the property that (w) is a maximal finite normal subgroup of its
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centralizer in W, then w is a reflection with respect to any Coxeter generating set of
w.

It turns out that it is more convenient to work with the finite continuation of an
involution rather than to consider finite normal subgroups of its centralizer. The
finite continuation of a finite order element w in a Coxeter group is defined to be the
intersection of all maximal finite subgroups containing it; we write FC(w) for the
finite continuation of w. In this paper we restrict our attention to finitely generated
Coxeter groups. For these it is a consequence of a result of Tits that every element
of finite order is contained in some maximal finite subgroup; so FC(w) is a finite
subgroup of W (see Corollary 14 below). The main result of the present paper is
a complete description of the finite continuation of a simple reflection in a Coxeter
system of finite rank. Its proof constitutes the bulk of this paper.

Main Result. Let (W, R) be a Coxeter system of finite rank. Then the following
holds.

a) For eachr € R the finite continuation of r can be described.

b) Given an involution w € W such that FC(w) = (w), then w € RV.

Part a) of our main result is Theorem 7. Its precise statement requires some
preparation. Part b) is Corollary 24.

The main result of this paper is in fact the first of two steps to reduce the isomor-
phism problem for Coxeter groups to its ‘reflection-preserving’ version. The second
step is given in [12]. We refer to [15] for further information about the applications
to the general isomorphism problem.

A special instance of the isomorphism problem for Coxeter groups is the question
about their rigidity (see [3] for further information). In combination with the main
result of [5] a consequence of our main result is the following rigidity result.

Theorem 1. Let (W, R) be an irreducible, non-spherical Coxeter system such that
R is finite and such that rr’ has finite order for all r,r' € R. Then the following
assertions hold.

a) Foreachr € R we have FC(r) = (r).

b) If S € W is such that (W, S) is a Coxeter system, then there exists w € W such
that S¥ = R.

¢) All automorphisms of W are inner-by-graph.
In the language of [3], Part b) of the previous theorem means that an infinite, irre-

ducible, 2-spherical Coxeter system is strongly rigid. Part c), which is an immediate
consequence of Part b), improves the result of [13].
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To conclude this introduction we remark that characterization results for reflec-
tions in even Coxeter groups have been obtained in [1]. Some of the results there can
be deduced as corollaries of our main result as well.

Acknowledgements. The authors thank Frédéric Haglund for helpful discussions on
the subject, and the Australian Research Council for support. The third author thanks
the University of Sydney for hospitality when this research was undertaken.

2. Precise statement of the main result

Recall that a Coxeter group is a group with a presentation of the form
W =gp{{rqa|aell}| (rgrp)"® = 1foralla, b € 1) 2.1

where I1 is some indexing set, whose cardinality is called the rank of W (relative to
this presentation), and the m,;, satisfy the following conditions: mgp, = mp,, each
mgp liesinthe set {m € Z | m > 1} U {00}, and m,p, = 1 if and only if a = b. When
mgp = oo the relation (r,rp)™e» = 1 is interpreted as vacuous. We shall restrict
attention to Coxeter groups of finite rank.

A reduced expression for an element w € W is a minimal length word expressing
w as a product of elements of the distinguished generating set {r, | a € I1}. We
define £(w) to be the length of a reduced expression for w.

As is well known (and as we shall describe in Section 3 below), every Coxeter
group W can be realized geometrically as a group generated by reflections. In this
realization of W the reflections in W are the conjugates of the generators r,,.

The Coxeter graph associated with the presentation above is the graph with vertex
set IT and edge set consisting of those pairs of vertices {a, b} for which m,, > 3.
The edge {a, b} is given the label m,,. The components of I1 are the connected
components of the graph, and we say that W is irreducible if the graph is connected.

For each I C I1 we define W, to be the subgroup of W generated by the set
{ra | a € I}; we call these subgroups the visible subgroups of W. A parabolic
subgroup of W is any conjugate of a visible subgroup. We say that I < II is
spherical if Wy is finite, and we say that I1 (or W) is k-spherical if all k-element
subsets of I are spherical.

The definitions given so far are fairly standard. In order to facilitate the precise
statement of the main result, we introduce some nonstandard notation and terminology
(in Definitions 2, 3, 4, 5 and 6 below).

Definition 2. If w € W has finite order, define the finite continuation of w, written
FC(w), to be the intersection of all maximal finite subgroups of W containing w.
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Definition 3. The odd graph of W is the graph Q(IT) obtained from the Coxeter graph
by deleting the edges whose labels are infinite or even. For each a € I1 we define
Odd(a) to be the connected component of €2(IT) containing a. For each connected
component M of Q2(IT) we define E(M) to be the union of M with the setof all b € T1
such that m, is even for some ¢ € M. We also abbreviate E(Odd(a)) to EOdd(a).

In the discussions below, when we refer to the components of E(M) we regard
E(M) as the full subgraph of the Coxeter graph spanned by the vertices in E(M). In
other words, the edges with even and infinite labels, deleted when forming the odd
graph, are restored in E(M).

Note that if a € L C IT and Wy, is finite then m,;, < oo for all b € L. Whether
mgp 1s odd or even it follows that b € EOdd(a). Thus L € EOdd(a).

Definition 4. Let M C II be a connected component of Q(IT). We call b € TT \ M
a Cz-neighbour of M if mp. € {2, 4} for all c € E(M), the case mp, = 4 occurring
for at least one ¢, and for each ¢ € E(M) with mp. = 4 there is an a € M such that
the following conditions are satisfied:

(1) mpy =2and my, =3,and meq = oo foralld € M \ {a, c};
(2) foralle € TT\ (M U {b}), either mc, = 00 OF Mge = Mce = Mpe = 2.

Definition 5. Let M C II be a connected component of 2(IT), and let « € M and
b € IT1\ M. We call the pair (a, b) a focus of M in II if the following conditions all
hold.

(1) All the edge labels of M are 3, and M is a tree.

(2) For each ¢ € M, the set C[b..c] C II consisting of b and those elements of M
that form the path from a to ¢ in M constitutes a system of type Cy (for some k
dependent on c).

(3) Ifc,de MU {b}withc ¢ C[b..d]and d ¢ C[b..c] then m.q = oo.

(4) If mee # coforsomec € M ande € 1\ (M U {b}), then m., = 2 = my, for
alld € C[b..c].

(5) The vertices of M U {b} do not form a spherical component of E(M).

Definition 6. Let M C IT be a connected component of 2(IT), and leta, b € M. We
call the two-element set {a, b} a half focus of M in I1 if m,p, = 2 and the following
conditions all hold.

(1) We have my. = mp, € {2,3} forall c € M \ {a, b}, and m,. = mp, € {2, 00}
forallc e IT\ M.

(2) All the edge labels of M \ {b} are 3, and M \ {b} is a tree.
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(3) For each ¢ € M \ {a, b}, the set D[a, b..c] C II consisting of b and those
elements of M \ {b} that form the path from a to ¢ constitutes a system of
type Dy (for some k dependent on c).

4) Ifc,d e M\ {a, b} withc ¢ Dla,b..d] andd ¢ Dla, b..c] then m.q = oc.

(5) If mee # oo for some c € M \ {a, b} and e € I1 \ M, then m., = 2 = mg, for
alld € Dla, b..c].

(6) The vertices of M do not form a spherical component of E(M).
We are now able to give a precise statement of Part a) of our main result.

Theorem 7. For each connected component M of Q2(I1) there is at least one a € M
such that FC(r,) is a visible subgroup of W. We have the following possibilities.

Case A: Suppose that the component of E(M) containing M is spherical, and let
a € M be arbitrary. Then FC(r,) = W, where J is the union of the spherical
components of E(M).

Case B: Suppose that the component of E(M) containing M is not spherical, and M
does not have any focus or half-focus in I, and let J' be the union of the spherical
components of E(M) and the set of C3-neighbours of M. If a € M is not adjacent in
IT to any C3-neighbour of M then FC(ry) = W jya), and if a € M is adjacent in T1
to a Cz-neighbour of M then FC(r,) is not visible.

Case C: Suppose that (a, b) is a focus of M. Then FC(r,) = Wy where J is the union
of {a, b} and the spherical components of E(M), and FC(r;) is not visible for any
c e M\ {al.

Case D: Suppose that {a, b} is a half-focus of M. Then FC(r,) = FC(rp) = Wy,
where J is the union of {a, b} and the spherical components of E(M), and FC(r;) is
not visible for any c € M \ {a, b}.

3. Reflections and root systems

Let R be the real field, and V the vector space over R with basis I1. Let B the bilinear
form on V such that for all a, b € I,

B(a,b) = —cos(w/mgp).

To make our notation more compact we define u - v = B(u, v) forallu, v € V. Note
thata -a = 1 for all a € I, since my, = 1.

For each a € V such that a - a = 1, the reflection along a is the transformation
of V given by v — v — 2(a - v)a. It is well known (see, for example, Corollary 5.4
of [14]) that W has a faithful representation on V such that, for all a € II, the
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element r,, acts as the reflection along a. We shall identify elements of W with their
images in this representation. We also use the notation r, for the reflection along a
whenevera € V satisfiesa-a = 1. Itis straightforward to show that each reflection r,,
preserves the form B; hence all elements of W preserve B. Furthermore, the equation
grag ' = ¥¢q holds for all @ € V such that a - a = 1 and all transformations g that
preserve B.

We write Ref(W) for the set of all reflections in W. It is immediate from the
above comments that if ® = {wa | w € W, a € 1} then {ry, | b € &} C Ref(W).

The set @ is called the root system of W, and elements of & are called roots.
Elements of the basis IT are called simple roots, and the reflections r, for a € IT are
called simple reflections. A root is said to be positive if it has the form ), Aqa
with A, > 0 for all a € I1, and negative otherwise. We write ® for the set of all
positive roots and ®~ for the set of all negative roots.

Lemma 8. With the notation as above, the following statements hold.

(1) Every negative root has the form )" . Aqa with Ay < 0 for all a € T1. Fur-

thermore, ®~ = {—b | b € ®T}.
2) Ifw e W and a € Tl then

acll

Lw)+1 ifwa e ®F,
L(wry) = X
L(w)—1 ifwaed.
(3) Ift € Ref(W) thent = ry, for some b € .
(4) The group W is finite if and only if the bilinear form B is positive definite.
(5) The root system ® is finite if and only if the group W is finite.

Proof. Proofs of (1) and (2) can be found in [14, Section 5.4], Theorem 4.1 in [7]
includes both (4) and (5), and (3) is [13, Lemma 2.2]. O

The following result is well known.
Lemma 9. Leta € I1. Then Odd(a) = I1N Wa.

For each w € W we define N(w) = {b € ®* | wb € ®~}. By Part (2) of
Lemma 8, if w # 1 then N(w) N I1 # #. An easy induction shows that N (w) has
exactly £(w) elements. In particular, N (w) is a finite set. It is also easily shown that
if @ is finite then there is a unique w € W such that N(w) = ®*. This element,
which we denote by wr, is also the unique element of maximal length in W (which
is a finite group). Furthermore, wIT = —I1.
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For each ' € @ the subgroup Wr generated by the set {r, | a € I'} is called
a reflection subgroup of W. The set &1 = {a € ® | r, € Wr} is called the root
subsystem generated by I". Let @; = ®r N ®* and & = dpr N d7, and define

Mr = {a € &} | N(r,) N @r = {a}}.

The main theorem of Deodhar [8] and Theorem (3.3) of Dyer [9] yield the following
result.

Theorem 10. For each I' C ® the group Wr is a Coxeter group on the generating
set{ro, | a € TIp}. The set{a -b | a, b € Tlr anda # b} is a subset of € =
{—cos(m/m) | 2 < m € Z} U (—o0, —1]. Moreover; if A is any subset of ®* such
that{a-b | a, b € A and a # b} C € then Wp is a Coxeter group on the generating
set{ry | a € A}.

Note that the notation Wr introduced above is an extension of the notation for
visible subgroups introduced in Section 2. However, if " Q IT then Wt need not be
visible.

It is clear that if I C TIT then W, preserves the subspace V; of V spanned by I,
and acts on this subspace as a Coxeter group with I as its set of simple roots. In this
case ; =dNVyand I1; = 1.

The following simple facts are well known.

Lemma 11. In the above situation, ®; = ® N\ V. Furthermore, w € W normalizes
Wi ifandonly ifw®; = ®;. In particular, for all a € ®, the reflection r, normalizes
Wi ifand onlyifa € ®jora-b=0forallb € I.

Suppose that I € [Tand a € IT\ I, and let L be the component of (the Coxeter
graph of) I U {a} to which a belongs. If W is finite we define v[a, I = wiw\ (4}
It is easily seen that v[a, I]] € I U {a}, and that v[a, I]1b = b forallb € I \ L. In
particular, v[a, Il € & = {J C I1 | J = wl forsome w € W }. It was proved
in [11] (for finite Coxeter groups) and in [7] (in the general case) that every element
w € W satisfying wl C II can be expressed as a product of elements of the form
vla,I'],with I’ € # anda € T \ I'. That is,

w = vlay, 1]vlaz, I2] ... vlau, 1,] (3.1)

for some I;, a; such that (for each i) the component of /; U {a;} containing a; cor-
responds to a finite visible subgroup, v([a;, [;1l; = I;_; for 1 <i < n,and I,, = I.
Furthermore, the following result holds.

Proposition 12. Let I, J C I1. Then {w € W | wWyw™' = Wy} = N(J, )Wy,
where N(J,I) = {w € W | wl = J}. Furthermore, for each w € N(J,I) and
each a € T1 N N(w) there is an expression for w of the form (3.1) above, with
(an. In) = (a. I) and £(w) = Y1y L(vlar, ;).
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The following lemma, which appears in [2, Exercise 2d, p. 130], is fundamental
to all of our arguments.

Lemma 13 (Tits). If W is a Coxeter group and H < W is finite, then H is contained
in a finite parabolic subgroup of W.

One immediate consequence of Lemma 13 is that every maximal finite subgroup
of a Coxeter group is parabolic. Another consequence of the previous lemma is
that each finite subgroup of W is contained in a maximal finite parabolic subgroup.
(Remember that we always assume that W is finitely generated.) Thus the set of
maximal finite subgroups of W containing a given finite order element of W is not
empty, and hence we have the following fact.

Corollary 14. Ifw € W has finite order, then FC(w) is a well-defined finite subgroup
of W.

Lemma 15 (Kilmoyer). Let I, J C I1. Then every (Wi, W) double coset in W
contains a unique element of minimal length;, moreover, if d is the minimal length
element of WidWj then W; N dW;d=' = Wk, where K = 1 NdJ.

Proof. See [6, Theorem 2.7.4]. O

Corollary 16. The intersection of a finite number of parabolic subgroups is a para-
bolic subgroup.

The following consequence of Lemmas 13 and 15 is proved in [10, Lemma 11].

Lemma 17. If J is a maximal spherical subset of T1 then W; is a maximal finite
subgroup of W. Furthermore, Wj is not conjugate to any other visible subgroup
of W.

Another important tool in our analysis of automorphisms is the classification of
involutions in Coxeter groups, due to Richardson [16].

Proposition 18. Suppose that w € W is an involution. Then there isat € W and
a spherical I C T1 such that w = t~ w;t with £(w) = €(wy) + 24(t), and w; is
central in Wj.

Proof. See [10, Proposition 5]. O

Definition 19. We say that I C IT is of (—1)-type if Wy is finite and wy is central
in W].
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The reason for the terminology is that / is of (—1)-type if and only if there is an
element of Wy that acts on V; as multiplication by —1.
We need the following lemma.

Lemma 20. Suppose that I, J C I1 with I of (—1)-type, and suppose thatt € W
has the property that twyt~' € Wy. Then tW;t~! € Wj.

Proof. Leta € I. Thenwy(a) = —a, andso (tw;t~ ") (ta) = —ta, whence it follows
that either ta or —ta is in the set N(rw;t~!). But N(tw;t~') € &;:s0ta € &y,
and therefore tr t~! = r;, € Wy. Since Wy is generated by {r, | a € I}, the result
follows. O

In particular, it follows from Lemma 20 that if 7, J are both of (—1)-type and
twit ! = wy then Wit = W;. Conversely, suppose that Wil = W, so that
in fact dW;d—! = W, for all d in W;¢tW; (which equals ¢t Wy). Taking d to be the
shortest element in tW;, Lemma 15 yields that d/ = J, and hence x > dxd!
is a length-preserving isomorphism W; — W;; consequently dw;d~' = wy. If
wy, wy are central in Wy, W, we deduce that rw;t~! = w;. So we have proved the
following result.

Lemma 21. Suppose that 1, J are subsets of Tl that are both of (—1)-type. Then
{teWltwit ' =wy={teW|tWit~! =W,

Proposition 22. Let I C Il be of (—1)-type. Then Wi < FC(wy).

Proof. Let F be a maximal finite subgroup of W such that w; € F. By Lemma 13
there existf € W and J C IT such that  Fr~! = W;. By Lemma 20 and the fact that
w; € F it follows that tW;r—1 € W;. Hence W; C ¢t~ 'W;r = F. O

Proposition 23. Let W, W’ be Coxeter groups of finite rank and a: W — W' an
isomorphism. Let T1 be the set of simple roots corresponding to the distinguished
generating set of W, and let a € T1. Ifr$ is not a reflection in W’ then the intersection
of all maximal finite subgroups of W containing r, is a parabolic subgroup of order
greater than 2.

Proof. Write TT’ for the set of simple roots of W’. Observe that Lemma 13 and
Corollary 16 trivially imply that FC(r,) is a parabolic subgroup of W.

Since r% is not a reflection it follows from Proposition 18 that r% = rw;¢~! for
some t € W and I C IT' of (—1)-type and of rank at least 2. Clearly FC(r,)% =
tFC(w,)t’l, and by Proposition 22 we know that W; C FC(wj). Therefore

(tWyt™! )"‘71 C FC(r,), so that FC(r,) has order greater than 2, as required. O

Corollary 24. Let w € W be an involution such that FC(w) = (w) and let S C W
be such that (W, S) is a Coxeter system. Then w € sW.
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4. The finite continuation of a reflection

Let r be a reflection in W. Replacing r by wrw™! replaces FC(r) by w FC(r)w™!,
and so choosing w suitably enables us to assume that FC(r) = Wy, a visible parabolic
subgroup. Furthermore, replacing r by 7z~ for suitabler € W enables us to assume
that » = r, for some a € J. (Note that these observations yield the first assertion of
Theorem 7.)

Proposition 25. Let a € J C I1, and suppose that Wj is the intersection of all
maximal finite subgroups of W containing rq. Then {w € W | wraw™! € Wy}
is a subset of the normalizer of Wy in W. Thus each W-conjugate of r, in Wy is
Nw (Wj)-conjugate to rq, and Cyw (rg) € Nw(Wy). Moreover, if b € T1\ J is such
that W jyuipy is infinite then mp. = 00 for all ¢ € J such that r. is conjugate to r,
in W.

Proof. Let . be the set of all maximal finite subgroups of W containing r,, so that
W; = FC(r,) = ﬂFey F. Suppose that w € W satisfies wraw™l € Wy, and
let F € .. Then wraw ! € Wy C F,andsor, € w ' Fw. Thus w 'Fw is a
maximal finite subgroup of W containing r,, whence w™! Fw € .. So

N Fe)w'Fu

Fevs Fey

and so W; € w~!'W,w. Since W; is finite it follows that w € Ny (Wy).

Suppose that ¢ € J with r. = wr,w™! for some w € W. Clearly F > wFw™!
is a bijection from the set of maximal finite subgroups of W containing r, to the set
of maximal finite subgroups of W containing r., and so FC(r,) = w FC (ra)w™'. But
wECrH)w ' =wWyw ! =w, by the first part of the proof, and so FC(r.) = Wj.
Now suppose that b € IT \ J with m¢, < 0o. Then Wi, 3 is finite, and so contained
in a maximal finite subgroup F. Since r. € F we must have FC(r.) C F. It follows
that the finite group F contains both W, and r, and therefore Wy is finite. O

Assume, as in Proposition 25, thata € J C IT and W; = FC(r,), and suppose
now that J # {a}. Suppose that L C ITissuchthatJ C L and Wy is finite. Then W,
is a finite Coxeter group possessing a visible parabolic subgroup W, of rank greater
than 1 that is normalized by the centralizer of some simple reflection r, € Wj.
Indeed, W is normalized by all w € W such that wr,w™! € W;. Equivalently, by
Lemma 8 (3), {w € WL | wa € ®;} C Ny (Wjy). This is a very restrictive condition,
which we now proceed to examine with a case-by-case investigation of the different
types of finite Coxeter groups. For the course of this investigation, we can (and shall)
assume that L = IT.

So we assume for now that W is a finite Coxeter group of rank n, and our aim is to
find all examples of the following phenomenon: there exist {a} ; J C IT such that
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the set Q = {w € W | wa € ®,} is a subset of Ny (W;). We assume that J # I,
since the condition is trivially satisfied otherwise.

If K C IT is a component of the Coxeter graph such that J N K = ¢ then W is
a direct factor of Ny (W;); moreover, Q = (Q N W\ gx) Wk . So removing K from
the graph will have no bearing on whether or not the condition Q € Nw (Wj) holds.
So we assume that there are no such components of I1. Exactly the same comments
apply for a component K of IT such that K € J. So we also assume that there are
none of these.

Assume that {a} G J & ITand Q C Nw(W,). Suppose that K C ITis a
component of the Coxeter graph such thata ¢ K. Then rpa = a forall b € K; so
rp € QO € Nw(Wy), and it follows that rp,c € ®; whenever ¢ € J. If b - ¢ # 0 then
b is in the support of r,c, and so rpc € @ implies b € J. Since K is connected it
follows that if K contains any element of J then K € J. So either K N J = @ or
K C J. But we have assumed that there are no such components. So the component

of IT that contains a is the only component; that is, IT is irreducible.

Observe that the group Stab(a) = {w € W | wa = a} is a subset of Q and
hence of Nw (Wy). Note also that Ny (Wy) = {w € W | wd; = &}, which is
also the stabilizer of the subspace V; (since V; is the subspace spanned by ®; and
®; = V; N ®). Now Stab(a) is a parabolic subgroup of W whose root system is
® N at, and the following table gives the type of this root system in all cases.

w Stab(a) w Stab(a)
Ay Ap2 E7 Dg
Cn Cha+ Ay Eg Eq
Cn Cn-1 Hj A+ Ay
D, Dy 2+ Ay Hy Hj
Fy C3 I, (2k) Al
E¢ As L2k + 1) ]

(For C,, there are two W orbits of roots, giving two possibilities for Stab(a). For
F4 and I,(2k) there are also two W-orbits of roots, but Stab(a) has the same type
of root system whichever orbit a belongs to.) Since each irreducible constituent of
its root system spans an irreducible Stab(a)-submodule of V, the table shows that
as a Stab(a)-module, V has composition length two or three or (in one case only)
four: a itself spans a trivial Stab(a)-submodule of dimension 1, and at is either
irreducible of dimension n — 1 (for types Fu, Eg, E7, Eg, H4, I5(2k) and one of
the C, possibilities), or the direct sum of irreducibles of dimensions 1 and n — 2
(for types A,, C,, D, when n > 4, Hz and I>(2k + 1)), or the direct sum of three
irreducibles of dimension 1 (for type D4). Furthermore, the summands of a' are
pairwise nonisomorphic as Stab(a)-modules, since even if they are of the same type
their centralizers in Stab(a) are different.
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Since {a} G J & TTand V; is Stab(a)-invariant, we see thatat = (Vy;Nab)@ Vi,
with both summands nonzero Stab(a)-modules. So IT is of type A,, C,, D,, or H3.
Furthermore, except in type D, the two direct summands of a' are irreducible and
not isomorphic, and are therefore the only proper Stab(a)-submodules of a-. We
conclude that V; is spanned by a and one of the summands of a*, while VJJ- is the
other summand. In type D4 we similarly deduce that V; is spanned by a and one
or two of the three 1-dimensional summands of a*, and, correspondingly, VjL is of
either of type A + Aj or of type Aj.

If T1 is of type A, then one of the summands of a* is of type A,_» while the
other is a trivial 1-dimensional Stab(a)-module. If V]l is of type A,,—> then V; must
be of type A1, since the orthogonal complement of a subsystem of type A,—2 in A,
contains only a rank 1 root system. This contradicts the assumption that {a} ;Ct J. So
J is of type A1 + A, —>. Since W} is visible, we deduce that a is an end node of the
A, diagram, and the node adjacent to a is the unique simple root not in J. However,
if n > 3 then the maximal length element of W is in Q but not in the normalizer
of Wj. Son =3 and J = {a, c}, where c is the other end node. It is readily checked
that Q has 8 elements and coincides with Ny (W;) (which is generated by W; and
an element that interchanges a and c).

If T1 is of type C, then one summand of a* is of type C,_» and the other of
type A1. The roots in the A; summand are in the same W-orbit as a. If V]l is the
A1 component of at then V; = (VJJ-)J- is of type C,,—» + A1. This determines J
uniquely, since Wy is visible. If n > 4 and w is the longest element of the visible
parabolic subgroup of type A, _1, then —wa € [T\ {b} = J,but w ¢ Nw(W,). This
contradicts the fact that O € Nw(W;). So n = 3, and the elements of J are the
end nodes a, c of the C3 diagram, the middle node b being in the same W-orbit as a.
Since ®; = {#£a, £} and c is not in the same W-orbit as a and b we deduce that
QO = {w € W | wa = =a}. Furthermore, of the 6 roots in the W-orbit of ¢, only ¢
and —c are orthogonal to a. So if wa = +a then we = %c¢. Thus if w € Q then
wd; = Py, as required.

Continuing the discussion of C,, suppose now that VJl is the C,,_» component
of at. Then V; = (V/L)l is of type C,. Writing J = {a, b}, the fact that Stab(a)
is of type A] + C,,—> means that it is b rather than a that is the end node of the C,,
diagram. If we put ¢ = rpa then {#c} is the component of ® N a' of type Aj. It
follows that {4-a} = {&rpc} is the A-component of ® N (rpa)™ = ® N ct. We see
that Stab(a) = (r.) x W’ and Stab(c) = (r,) x W/, where W' is a parabolic (not
visible) subgroup of W of type C,,—». Indeed, the root system of W' is ® N VJJ-. The
roots in ®; that are in the same W-orbit as a are =a and *c, and so

Q = {17 raa rb7 rbra}Stab(a) = {1’ ra7 rb’ rbra}{L rC}W, = WJW/

Hence our requirement that Q stabilizes ®; = {4a, b} is indeed satisfied.
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If IT is of type D, with n > 4 then one summand of a* is of type D,_> and
the other of type Aj. The roots orthogonal to a D,_j subsystem form a system of
type A1+ A1. There are in fact two W -orbits of parabolic A+ A subsystems, and the
orthogonal complement of a D,,_, is perhaps better thought of as type D, since the
visible parabolic in this orbit corresponds to the two nodes of the diagram that form
the fork. So if Vj- is the D,,_» summand of g then J = {a, b} consists of the two
nodes of valency 1 that are adjacent to ¢, the node of valency 3. A similar statement
applies for D4 in the case that Vf is of type A1 + A;. In both cases the element
w = rergrpre € W osatisfies wa = b and wb = a, and since ®; = {+a, b} we see
that Q = {1, r,, w, wry} Stab(a). But Stab(a) = (rp) x W/ and Stab(b) = (r,) x W/,
where W’ is the parabolic subgroup corresponding to the subspace Vi, and it follows
readily that Q stabilizes ®; = {+a, £b}, as required.

Continuing the discussion of D,,, where n > 4, suppose now that VJl is an Aj
component of a-. Then V; = (VJL)L isof type A; + D,_». But the maximal length
element of a visible A,_| subsystem containing a takes a to an element of ®; but
does not normalize W;. So our requirement that Q € Nw (W) is not met.

Finally, suppose that IT is of type H3, so that Stab(a) is of type A1+ A1. Then VJJ-
is of type Ay, and hence J is of type A| 4+ A;. Let J = {a, c}, and note that c = wa
for some w € W. Since Nw(Wj) is generated by W; and the central involution
of W, we see that c is not in the Ny (Wy)-orbit of a. Hence the element w above is
in Q but not in Ny (W}), and so our requirements are not met.

We have thus established the following result.

Proposition 26. Let I1 be the set of simple roots for the finite irreducible Coxeter
group W, and suppose thata € J C Il. Then {w € W | wa € ®,} is a subset of
Nw (W) if and only if one of the following situations occurs:

(1) J ={a};

2 J =11,

(3) T ={a, b, c} is of type C3, withmge = 3 and m¢ep, = 4, and J = {a, b} of type
A+ Ag;

4) M isof type C,, and J = {a, b} is of type C,, with b an end node of T1;

(5) M is of type D,, or A3z, and J = {a, b}, where a and b are end nodes that are
both adjacent to some ¢ € TI.

We return now to investigation of an arbitrary finite rank Coxeter group W. The
next proposition is an immediate consequence of Proposition 26 and the discussion
preceding it.

Proposition 27. Leta € J € L C II, and suppose that the group Wy is finite and
that W; = FC(r,). Let Jo be the component of J containing a and L the component
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of L containing Jo. Then every component of J that is not contained in Lg is a
component of L. Furthermore, if {a} # J N Ly # Lo then J N Ly = {a, b} for
some b, and one of the following alternatives occurs:

(1) Lo ={a,c, b} isof type C3, withmy. = 3 and mp, = 4;
(2) Lo isof type C,, for some n = 3, with b an end node and Jy = {a, b} of type Ca;

(3) Lo is of type Az or type D,, for some n > 4, the nodes a and b having valency 1
and sharing a common neighbour.

One of the ingredients of alternative (2) of Proposition 27 is that the component
of FC(r,) containing a is of type C». We shall see that when this situation arises,
Odd(a) has a focus in IT.

Proposition 28. Suppose that a € J < Il with Wy = FC(r,), and let Jy be the
component of J containing a. Suppose that Jo = {a, b} is of type Ca. Then either
Odd(a) U {b} is a spherical component of EOdd(a), or else (a, b) is a focus of
Odd(a) in II.

Proof. Weuseinductiononk toprovethatforallk > 2,ifb =cy, a =c¢3, ¢3, ..., ¢k
are simple roots satisfying

(D) 2 <mge,, <ooforalli €{l,2,...,k— 1}, and

(2) c1, ¢2, ..., ci are distinct from each other,
then {c1, 2, ..., cx} forms a system of type Ci. The case k = 2 is immediately true.
Suppose that k& > 2. The inductive hypothesis tells us that {c1, ¢z, ..., ck—1}

is of type Cr—_1. The element w = v[ck—1, {ck—2}] ... vlca, {c3}]v[c3, {c2}] has the
property that wa = wcy = ci—1, and so if we write d = wb then

rg = wrbuf1 € wFC(ra)w*1 = FC(ck—1),
since it is given that b € FC(r,). But Wi, , ¢ is finite, and so it follows that

{ra,re,_;s 7, } generates a finite group. Now d - ¢x—1 = b -a = —cos(w/4) and
Ck—1 - ¢k = —cos(w/m) for some m > 2. If m > 4 then

k-1
ck-d=cy- (b+~/526i> < —V2(ck - er1) € —1,
i=2

whence the reflection subgroup Wy, re) is infinite (by Theorem 10), a contradiction.
Som =3.If m¢,, >2foranyi € {1,2,...,k—2} then

cx-d <N2cp - cro1) Fep i < —1,
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again giving a contradiction. Som,,, = 2foralli € {1,2, ..., k—2}andm ¢, =
3, and since {c1, ¢3, . . ., ck—1} is a system of type Cx—1 it follows that {c1, ¢3, . . ., ¢k}
is a system of type Cy, as claimed.

If there were ¢, d € Odd(a) with 3 < m.q < oo then b together with a minimal
length odd-labelled path from a to {c, d} would yield ¢y, ¢z, ..., cx € IT satisfying
(1) and (2) above and not forming a system of type Cy, contradicting the result proved
above. The same argument yields a contradiction if ¢ € Odd(a) and d € IT\ Odd(a)
with 3 < m.q < 00, unless {c,d} = {a, b}. So all edge labels in Odd(a) are 3, if
¢, d € Odd(a) are not adjacent in Odd(a) then m.s € {2, 0o}, and if ¢ € Odd(a)
and d € IT1\ Odd(a) then m.; € {2, oo} unless {c, d} = {a, b}. Furthermore, any
circuit in Odd(a) would similarly yield a contradiction (by combining the circuit with
a minimal finite-labelled path connecting it to ). So Odd(a) is tree.

Foreachc € Odd(a)let C[b..c] € I consistof b and the unique path froma to c in
Odd(a). The discussion above shows that C[b..c] is always of type C. Now suppose
that c € Odd(a) and e € IT1\ C[b..c] withm., = 2. Write C[b..c] = {c1, c2, ..., Ck},
withcy = band ¢ = ¢, and letd = b + /2 Zf:z ¢i. An argument similar to one
used above shows that ry; € FC(c), and hence Wi, ¢ ) is finite. Sod -e > —1.
If ¢;-e # Othen ¢ - e < —1/2; so it follows that there is at most one i with
¢i -e # 0. Suppose, for a contradiction, that there is exactly one such i. If i > 1 then
d-e= ﬁ(c,- -e),andsoc;-e > —l/ﬁ. Hence m,, = 3,andd -e = —1/«/5. But
this means that the edges {c, d} and {d, e} of the Coxeter graph of {d, c, e} are both
labelled 4, contradicting the fact that Wiy ¢ ) is finite. So we must have i = 1, and
finiteness of Wi 4. forcesb-e =d -e = —1/2. Butnow if we put L = {e} U J
then, in the notation of Proposition 27, we have that Ly = {e, b, a} is of type C3
with J N Lo = {b, a} of type C;, and Proposition 27 shows that this is not possible.
We conclude that if e € IT has the property that m., = 2 for some ¢ € Odd(a) then
mg, = 2foralld € C[b..c]. Inparticular, ife € IT\ (Odd(a)U{b}) and m,, # oo for
some ¢ € Odd(a) then m., = 2, as shown above, and somy, = 2 foralld € C[b..c].

All that remains to prove now is that if ¢, d € Odd(a) with ¢ ¢ C[b..d] and
d ¢ C[b..c], then m.qy = oo. Since ¢ and d are not adjacent in Odd(a) the only
alternative is that m.q = 2; so suppose, for a contradiction, that this holds. Choose
the vertex e € Odd(a) on the (unique) path from c to d such that the distance from
e to a is minimal. Let ¢/, d’ be the neighbours of e in the path from ¢ to d, with ¢’
between e and ¢ and d’ between ¢ and d. Then ¢’ € C[b..c], and since m.g = 2
it follows that m.; = 2. Now since d’ € C[b..d] and m.y = 2 it follows that
meg = 2. Thus the set L C TT consisting of ¢’ and d’ and the vertices on the path
from a to e form a system of type D (or A3 if e = a). So L is spherical, and since
b € FC(r,) it follows that L U {b} is spherical also. But this is impossible since
L U {b} is connected, has an edge labelled 4 (namely, {b, a}), and has a vertex of
valency 3 (namely e). O
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The situation of alternative (3) of Proposition 27 is very similar to that of alterna-
tive (2), and in this case it turns out that Odd(a) has a half-focus in IT.

Proposition 29. Suppose that a € J C Il with Wy = FC(r,) and {a} a component
of J, and suppose that J N Odd(a) # {a}. Then either Odd(a) is a spherical
component of EOdd(a), or else there exists an element b € Odd(a) such that {a, b}
is a half focus of Odd(a) in II.

Proof. Letb € (JNOdd(a))\{a},andletw € W withwa = b. Thenw € Ny (Wy),
by Proposition 25, and so

FC(rp) = FC(wr,w™") = wFC(r)w™ = wWyw™ = w,.

Moreover, w®; = &y, and since a - ¢ = 0 for all ¢ € &, \ {a}, it follows that
wa-d =0foralld € ®; \ {wa}. So {b} is a component of J. Note that m,, = 2,
since a and b are in different components of J.

Let ¢ € IT\ {a, b}, and suppose first of all that 2 < myp, < oco. Since {b, c} is
spherical and W; = FC(rp) it follows that J U {c} is spherical. Let L = J U {c} and
let L be the component of L containing a. By Proposition 27, every component of
J that is not contained in Lg is a component of L. But b is adjacent to ¢ in L; so
{b} is not a component of L, and it follows that b € Ly. Now {a} # J N Ly, since
be JNLg,and JNLy # Loy, sincec € Loandc ¢ J (since {b} is acomponent of J).
Furthermore, the conditions of alternative (2) of Proposition 27 are not satisfied, since
a and b are not adjacent in J. So either alternative (1) or alternative (3) must hold,
and since c is the only element of L not in J it follows that Lo = {a, ¢, b}, with
mge = 3. But a symmetrical argument, with the roles of a and b reversed, shows that
every d € Tl with 2 < m,4 < oo has the property that mp; = 3. Somge = mpe. =3,
and {a, c, b} is of type A3.

Now suppose that mp. = 2. Again since {b, c} is spherical it follows that J U {c}
is spherical, and so m,, < 0o. If my. > 2 then, as we have just observed, it follows
that mp,. = 3, contrary to our assumption that mp. = 2. So my. = mp, = 2, and
we have now shown that whenever mp. < oo we have m,. = mp. € {2, 3}. Since a
symmetrical argument gives the same conclusion whenever m,. < 0o, we conclude
also that m,. = oo if and only if mp, = oo.

We now use induction on k to prove that for all k > 3, if b = ¢, a =
¢, €3, ..., ¢ are simple roots satisfying

(D) 2 <mgey, <ooforalli € {2,3,...,k— 1}, and
(2) c1, ¢2, ..., ci are distinct from each other,

then {cy, c3, . .., cx} forms a system of type Dy or A3. The case k = 3 follows from
what we have proved above.
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Suppose that k > 3. The inductive hypothesis tells us that {cy, ¢z, .. ., ck—1} is of
type Di—1 (or Az ifk = 4). Theelementw = v[ck—1, {ck—2}] ... v[ca, {c3}]v[c3, {c2}]
has the property that wa = wcy = cx—1, and so if we write d = wb then

ra = wrew ' € wEC(r,)w™! = FC(cr_1),

since it is given that b € FC(r,). But Wi, _, ¢ is finite, and so it follows that
{ra, ey, re, ) generates a finite group. Now d - cx—1 = b-a =0and ck—1 - ¢ =

—cos(mr/m) forsomem > 2. If ¢ - ¢; #O0forsomei € {1,2,...,k — 2} then
k-2
ck-d=cg- <c1 + 2 + Ck—1 +2ch~) < —(%—kcos%) < -1,
i=3

whence the reflection subgroup Wy, o) is infinite (by Theorem 10), a contradiction.
Sock-d = cx—1 - ¢k = —cos-. Since the reflection subgroup generated by
{ra,re,_y> 7, } 1s finite it follows that m = 3. So we have shown that m¢, ¢, , = 3
and m,; = 2fori < k —1, and since {c1, c2, ..., cx—1} is a system of type Dy_ it
follows that {c1, ¢3, ..., cx} is a system of type Dy, as claimed.

Note that Odd(a) \ {} and Odd(b) \ {a} are both connected, since each element
¢ € Odd(a) that is adjacent to a is also adjacent to b, and vice versa. If there were
¢, d € Odd(a) \ {b} with 3 < m.q < oo then b together with a minimal length
odd-labelled path from a to {c, d} would yield c1, ¢2, ..., cx € II satisfying (1)
and (2) above and not forming a system of type Dy, contradicting the result proved
above. The same argument yields a contradiction whenever ¢ € Odd(a) \ {a, b}
and d € I1 \ Odd(a) with 3 < m.g < oco. So all edge labels in Odd(a) are 3, if
¢, d € Odd(a) are not adjacent in Odd(a) then m.s € {2, 0o}, and if ¢ € Odd(a)
and d € [T\ Odd(a) then m.qy € {2, oo}. Furthermore, any circuit in Odd(a) \ {b}
would similarly yield a contradiction (by combining the circuit with a minimal finite-
labelled path connecting it to »). So Odd(a) \ {b} is tree. Of course, Odd(b) \ {a} is
also a tree, by the same argument.

For each ¢ € Odd(a) \ {a, b} let D[a, b..c] C TI consist of b and the unique
path from a to ¢ in Odd(a) \ {b}. The discussion above shows that D[a, b..c] is
of type D. Now suppose that ¢ € Odd(a) \ {a,b} and e € IT \ Dla, b..c] with
Mmee = 2. Write Dla, b..c] = {c1,c2,...,ck}, withcy = b, ¢cp = a and ¢, = ¢, and
letd =c1+c2+cr+2 Zf;; ¢i. An argument similar to one used above shows
that ry € FC(c), and hence Wiy ¢ ) is finite. Sod -e > —1. If ¢; - e # 0 then
ci e < —1/2; so it follows that {i | ¢; - e # 0} is a subset of {1, 2, k} with at most
one element. But ¢ - e = 0 since m¢, = 2, and ¢y - e = ¢; - e since myr = myy for
all f eIl. Soc;-e=0foralli € {1,2,...,k}. In particular, if ¢ € IT \ Odd(a)
and m., # oo for some ¢ € Odd(a) then m., = 2, as shown above, and so mg, = 2
foralld € Dla,b..c].
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All that remains to prove now is thatif ¢, d € Odd(a) \ {a, b} withc ¢ Dla, b..d]
and d ¢ Dla,b..c], then m.; = oco. Since c¢ and d are not adjacent in Odd(a) the
only alternative is that m.qy = 2; so suppose, for a contradiction, that this holds.
Choose the vertex e € Odd(a) \ {b} on the (unique) path from c to d such that the
distance from e to a is minimal. Let ¢/, d’ be the neighbours of e in the path from
¢ to d, with ¢’ between e and ¢ and d’ between e and d. Then ¢’ € C[b..c], and
since m.q = 2 it follows that m.4 = 2. Now since d’ € C[b..d] and mo4 = 2 it
follows that m. 4 = 2. Thus the set L C TI consisting of ¢’ and d’ and the vertices
on the path from a to e form a system of type Dy, or A3 if e = a. So L is spherical,
and since b € FC(r,) it follows that L U {b} is spherical also. If L = Aj3 then
My = Mgy = 3, and since mp = mye and mpgy = myq we see that L U {b} is of
type As, contradicting the fact that L U {b} is spherical. Similarly if L is of type Dy
then L U {b} is of type D, again giving a contradiction. O

We also need to obtain further information about the situation of alternative (1)
of Proposition 27. So for the next three lemmas we assume thata € J € L C II
with L spherical and W; = FC(r,), and there exist b € J and ¢ € L \ J such that
Lo = {a, c, b} is a component of L of type C3z, with m,. = 3 and m, = 4.

Lemma 30. Foralle € T1\ {a, c, b}, either m¢, = mye = Mpe = 2 0r M, = Q.
Moreover, J N Odd(a) = {a}.

Proof. If J N Odd(a) # {a} then, since {a} is a component of J, Proposition 29
applies, and it follows in particular that no vertex in Odd(a) lies on an edge with
finite label different from 3. This contradicts mp. = 4. So J N Odd(a) = {a}.

Suppose that e € I\ {a, c, b} with m, < co. The group r.r, Wic )77 is finite
and contains rerq Wicyrare = Wigy; so there exists a maximal finite subgroup G of W
containing r, and the reflection along (r.r,)e. Since r, € FC(r,) C G it follows that
Wib, (rora)e) 18 finite, and hence so is W(rp,e} = Fate Wib, (rorg)e}¥cta- Hence

(b+\/§c—{-\/§a)-e=(rarc)b~e> —1. “.1)

Assume, for a contradiction, that m¢, # 2. Thenc-e < —1/2 < —1/2+/2, and so
(b + ~/2a) - ¢ > —1/2, giving a contradiction if either mp, # 2 or mge # 2. So
b-e =a-e =0, and the inequality 4.1 above gives c - ¢ > —l/ﬁ. So me, = 3.
But now Wy, . ) is of type Az, hence finite, and hence contained in a maximal finite
subgroup that also contains FC(r,) = W;. Since b € J it follows that {a, c, e, b} is
spherical, which is false since it is of type B3. So m. = 2, and it remains to show
that mge = mp. = 2.

Since ¢ - ¢ = 0 we deduce from 4.1 that (b + ~/2a) - ¢ > —1, and in particular it
follows that m, is 2 or 3. In either case {e, a, c} is spherical (of type A3 or A| + A»),
and so {e, a, c, b} is also spherical (since r, € FC(r,)). If either m,, # 2 or mp, # 2
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then applying Proposition 27 with L” = JU{e, ¢} in place of L yields a contradiction,
since if L is the component of L” containing a then {a, b} S Ly N J # L (since
c ¢ J),but Ljisnotoftype C3 or D, sinceitcontains {a, c, b, e}. Somge = mp, = 2,
as required. O

Lemma 31. Let J' = J \ {a} and let d € Odd(a). Then meq # 2. If mgy # 2
for some b’ € J' then myy = 4, and there is a unique a’ adjacent to d in Odd(a);
moreover, {a’,d, b’} is of type C3, and FC(ry) = Wyyey. On the other hand, if
mqy =2 forallb' € J' then FC(rq) = Wyyay.

Proof. We use induction on the distance from d to a in Odd(a). Observe that if
d = a then myy = 2 for all b’ € J’, since {a} is a component of J, and we have
FC(rqy) = Wy = Wyygy and meqg = 3 # 2, as required.

Suppose now that d ;ﬁ a,and leta = dy, da, ..., dy = d be a minimal length
path from a to d in Odd(a). If 2 <i < k—1 then di does not have valency 1 in
Odd(a), and so mg,;y = 2 for all ¥’ € J', by the inductive hypothesis. The same is
true for i = 1, since {a} is a component of J.

We prove first that m.4 # 2. Assuming, for a contradiction, that m.4 = 2, then
clearly d ¢ {a, c, b}, and Lemma 30 tells us that m,q = 2 and mps = 2. It follows
that myy = 2 for all f in the set M = {d, d>, ..., di}, since {d;} is a component of
J' U{d;} whenl <i <k—1. Sowb = b for all w € Wy,. Furthermore, since
d and a lie in the same connected component of 2(IT), we can choose w € Wy
such that wd = a. Now since wc -a = ¢ -d = 0 we see that the reflection ry,.
centralizes r,, and hence normalizes FC(r,) = W;. By Lemma 11 it follows that
either we € ®; orwe-e =0foralle € J. Butwe-b=c-w 'b=c-b #0;s0
we must have we € @, and hence c € w'®; C ®; . Soc € M, contradicting
mpf _2fora11f € M. Someq # 2.

Write @’ = dy_1 and J = J' U {a’}. Note that {a'} is a component of 7, ~and
FC(ra/) = Wj (by the inductive hypothesis). Now since {d, a 1 is spherlcal L=
JU {d} is spherical also. Let Lo be the component of L containing a’.

Consider first the case that mg;, = 2 for all ¥’ € J'. Since also m,/,y = 2 for all
b’ € J', it follows that r; and r, both fix all elements of J'. Since v = v[d, {a'}] €
Wia' a4y satisfies va’ = d, we conclude that

FC(rg) = vFC(ra)v™" = oWy ™" = Wyripary = Wiy,

as required.

Now suppose that m gy # 2 for some b" € J'. Then b’ € J N Lo, and so {a’)} £
in L() # Lo. Applying Proposition 27, we see that the situation of alternative (1)
must hold: alternative (2) is ruled out since a’ is ‘acomponent of 7, , and alternative (3)
is ruled out since J' N Odd(a) = @. Hence Ly = {d’,d, b’} is of type C3, with
mgy = 4 and my, = 3. Furthermore, Lemma 30 tells us that my, € {2, oo} for
alle € TT\ {¢/, d, b'}; so @’ is the unique neighbour of d in Odd(a), as required. O
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Lemma 32. Let e € EOdd(a) \ Odd(a) with e # b. Then mp, = 2.

Proof. If e € J then it is clear that mp, = 2, since b is a component of J. So we
may assume thate ¢ J.

As above, write J = J \ {a}. Since e € EOdd(a) there exists a d € Odd(a)
with mg, even. If d is adjacent to some b’ € J’ then, by Lemma 31, there is
a unique @’ € Odd(a) adjacent to d; furthermore, {a’, d, b’} is of type C3, and
FC(ry) = Wyuiery. By Lemma 30, since mg, # oo it follows that my, = mg, = 2.
On the other hand, if d is not adjacent to any element of J’ then Lemma 31 tells us
that FC(ry) = Wiy So in either case there is an a’ € Odd(a) with m . even and
FC(ry) = Wiy

Choose such an a’. Since m, is even, v[e, {a’}]a’ = a’; moreover v[e, {a’}] is
the reflection along some root f = Ae + ua’. Note that f -a’ = 0, and hence A # 0.
Since e ¢ J it follows that f ¢ ®;. But ry centralizes r,/, and hence normalizes
FC(ry') = Wyyjey. By Lemma 11 it follows that f -5 = 0. Butalsoa’-b =0,
since {a’} and {b} are distinct components of J' U {a'}; so it follows that e - b = 0.
Thus mp, = 2, as required. O

Lemmas 30, 31 and 32 combine to yield the following result.

Proposition 33. Suppose thata € J C L C I, with L spherical and FC(r,) = Wy,
and let Lo be the component of L containing a. Suppose that Lo = {a, c, b} is of
type C3, withmge. = 3 and mp. = 4, and J N Lo = {a, b}. Then b is a C3-neighbour
of Odd(a). Furthermore, J N Odd(a) = {a}, and if a’ € Odd(a) is not adjacent to
any C3-neighbour of Odd(a) then FC(ry') = W pyjary, where J' = J \ {a}.

Proof. If mpg # 2 for some d € Odd(a), then mg, = 4, by Lemma 31. There is
at least one d € Odd(a) such that mp; = 4, namely d = c¢. Lemma 31 tells us that
for each d € Odd(a) with mpy = 4 there is an a’ € Odd(a) such that {a’, d, b} is a
system of type C3. Moreover, by Lemma 30, if e € IT \ (Odd(a) U {b}) then either
Mge = OO OF Mge = Mpe = Mg, = 2, While if e € Odd(a) \ {a, c} then mgy, = o0,
since mg, # 2 by Lemma 31. And if e € EOdd(a) \ (Odd(a) U {b}) then mp, = 2,
by Lemma 32. So b satisfies all the requirements of a C3-neighbour of M = Odd(a),
as specified in Definition 4.

It now follows from Lemma 31 that if a’ € Odd(a) is adjacent to some b’ € J’
then b’ is a C3-neighbour of Odd(a), and if a’ is not adjacent to any such b’ then
FC(ry) = Wyuiey- Finally, J N Odd(a) = {a}, by Lemma 30. O

Let a, a’ € TI, and suppose that w € W has the property that wa = a’. By
Proposition 12 there exist a; € Odd(a) and ¢; € II such that
(1) ag =aand agy = d,
(1) me,q; 7 o0 and v[c;, {a;}]a; = ajqq, foralli € {1,2,...,k},
(ii)) w = v[eg, {ak}]. .. vlez, {az}]v[cy, {ai}].
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Now let b be a C3-neighbour of Odd(a). For each ¢ € Odd(a) that is adjacent to b,
define X (¢) = b + ~/2¢ + +/2a, where a is the unique neighbour of ¢ in Odd(a),
and for each ¢ € Odd(a) that is not adjacent to b, define X (c) = b. We show that
vlci, {a;i}]1 X (a;) = X(aj4+1) foralli € {1,2,...k}.

Suppose first that neither ¢; nor a; is adjacent to b. Then X (a;) = b, and since
aj+1 € {a;, c;} we have that X(a;+1) = b also. Since r,, and r., both fix b, and
vlci, {ai}] € Wi, ¢y, it follows that

vl[ci, {ai}1 X (a;) = vlci, {ai}]b = b = X (a;41),

as required.

Next, suppose that ¢; is adjacent to b, but g; is not adjacent to b. Since m.,,, 7 00
anda € Odd(a) it follows that ¢; € EOdd(a). Since b is a Cz-neighbour of Odd(a), it
is not adjacent to any element of EOdd(a) \ Odd(a); so ¢; € Odd(a), and, moreover,
me;e = oo forall e € Odd(a) \ {c;} apart from the unique neighbour of ¢; in Odd(a).
So g; is this unique neighbour, m,,, = 3, and a;+1 = vlc;, {a;}]a; = c¢;. Moreover,
me;p =4 and mg;p = 2. So

viei {ai}1X (@) = ra;re;b = b+ ~2c; + V2a; = X (¢;) = X (ai41)

as required.

Now suppose that a; is adjacent to b, and let a be the unique neighbour of «;
in Odd(a). Since my, = oo foralle € Odd(a) \ {a;, a}, if ¢; € Odd(a) then ¢; = a.
In this case we see that

vlei, (ail1X () = ra;re; (b +2¢; +2a;) = b = X (c;) = X (ai1).
since a;+1 = vlc;, {ai}la; = ¢;. If ¢; = b then v|[c;, {a;}] = rprg;rp, which fixes
both a; and X (a;) = b + ~/2a; + ~/2a. So vlc;, {a;}1X (a;) = X (aj4+1) in this case

too. Finally, suppose that ¢; ¢ Odd(a) U {b}. Since m,, 7# 00 we must have
Mea = Mejq; = Me;p = 2, (by the definition of a C3-neighbour). So

vlci, {ai1X (@) = re, (b + ~2¢; +v2d) = b+ V2¢; +2a = X (ai41)

since ajy1 = rqa; = a;.

We have now covered all cases, and shown that v[c;, {a;}]1X (a;) = X (a;j41) for
alli € {1,2,...k}. By atrivial induction it follows that X (ax+1) = wX (ay).

Thus we have established the following result.

Lemma 34. Let a € Il and w € W such that wa € Il. Suppose that b is a
Cs-neighbour of Odd(a) that is not adjacent to a. Then

b if wa is not adjacent to b,

wb =
b+ 2wa + ~2a if wa is adjacent to b,

where a is adjacent to wa in Odd(a).
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We are now able to give a detailed description of the components of J whenever
W is the finite continuation of a simple reflection.

Proposition 35. Suppose that a € J C I1 with W; = FC(r,), and suppose that K
is a component of J. Then one of the following alternatives holds.

(a) K ={a} =JNO0Odd(a).

(b) K ={a, b} is of type Co, and J N Odd(a) = {a}.

(¢) K = {a}or K = {b}, where {a, b} = J NOdd(a) is of type A1 + A;.
(d) K ={b} gz Odd(a), and b is a C3-neighbour of Odd(a).

(e) Odd(a) C K, and K is a component of EOdd(a).

) KNOdd(a) =0, and K is a component of EOdd(a).

Proof. We consider first the case that K N Odd(a) # ¢, and start by supposing that
there exists a spherical L C I1 with J € L and K not a component of L.

Choose such an L, and let Ly be the component of L containing a. By Proposi-
tion 27, since K is not a component of L we must have K € Lg. So either K = {a},
in which case (a) above holds, or else {a} ;Cé {a} UK C J N Lg. Furthermore,
J N Ly # Ly, since K # Lg. So if (a) does not hold then {a} # J N Ly # Lo, and
so one of the alternatives (1), (2) or (3) of Proposition 27 must hold.

Suppose that alternative (2) holds, so that K = {a, b} = J N Lo for some b,
and {a, b} is of type C,. By Proposition 28 we see that each ¢ € Odd(a) \ {a} lies
in a type C spherical subset L’ of IT containing {a, b}. Since J N L' = {a, b} (by
Proposition 27) it follows that ¢ ¢ J. So JNOdd(a) = {a}, and (b) above is satisfied.

Suppose that alternative (3) of Proposition 27 holds, so that J/ N Ly = {a, b} is of
type A1+ A1, and b € Odd(a). Proposition 29 immediately yields that / NOdd(a) =
{a, b}, and so (c) above is satisfied.

Suppose that alternative (1) of Proposition 27 holds, so that Ly = {a, ¢, b} with
mge = 3andm, = 4,and JNLg = {a, b}. By Lemma 30 we know thatb ¢ Odd(a),
and since we have assumed that K N Odd(a) # @, it follows that K = {a} =
J NOdd(a). So (a) holds.

We have now dealt with all cases that arise if there is a spherical L < II with
J € L and K not a component of L. So assume that K is a component of every
spherical L containing J. We show that in this case Odd(a) € K, and K is a
component of EOdd(a); that is, (e) above holds.

To show that Odd(a) C K it is clearly sufficient to show that if a’ € K N Odd(a)
and b is adjacent to @’ in Odd(a) then b € K. Note that since a’ € Odd(a) there exists
w € W with @’ = wa, and since Proposition 25 yields that w € Ny (W) it follows
that FC(r,/) = W;. Now the assumption that b and a’ are adjacent in Odd(a) implies
that {a’, b} is spherical, and therefore J U {b} is spherical. But K is a component of
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every spherical subset of IT containing J; so it is a component of J U {b}. Buta’ € K
and b is adjacent to a’; so b € K, as required.

Since K € J € EOdd(a) and K is connected, saying that K is a component of
EOdd(a) is equivalent to saying that mp. = 2 whenever b € K and ¢ € EOdd(a) \ K.
So suppose that ¢ € EOdd(a) \ K. Then there exists an a’ € Odd(a) such that m.
is even. Thus {a’, c} is spherical, and as above it follows that J U {c} is spherical. So
K must be a component of J U {c}, and since ¢ ¢ K it follows that m,. = 2 for all
b € K, as required.

It remains to consider the case that K N Odd(a) = @; we must show that either (f)
or (d) holds. We start by supposing that there exists a spherical L € [Tandaw € W
with wJ C L and wK not a component of L.

Choose such L and w, and let Ly be the component of L containing wa. By
Proposition 27, since wK is not a component of L we must have wK C Ly. Now
wJ N Ly # Lo since wK # Lo, and {wa} # wJ N Ly since wa ¢ wK. So one
of the alternatives (1), (2) or (3) of Proposition 27 must hold. Alternative (3) can
be ruled out, since in that case wJ N Ly € Odd(wa), which is impossible since
K NOdd(a) = @. If alternative (2) holds then wK = wJ N Lg contains wa and is of
type C2, whence K contains a and is of type C,, and (b) is satisfied. If alternative (1)
holds then since wK # {wa} it follows from Proposition 32 that wK = {b}, with b
a Cz-neighbour of Odd(a). Since wa is not adjacent to b, it follows from Lemma 34
that w—'b = b, unless a is adjacent to b, in which case w b = b+ V2a + V2a
for some @ in Odd(a). But this latter case cannot occur, since w—'b € K C I1. So
K = wK = {b}, with b a Cz-neighbour of Odd(a), and (d) holds.

Finally, suppose that wK is a component of every spherical L C II such that
wJ < L for some w € W. For each ¢ € EOdd(a) \ K there is then a sequence

a = ap,ai,...,a = cin I such that m,, 4, finite for all i € {1,2,...,k} and
odd for all i € {1,2,...,k — 1}. We shall show that, for every such sequence,
mpg; = 2forallb € K andi € {0,1,...,k}; in particular, this will show that

mpe = 2 whenever b € K and ¢ € EOdd(a) \ K, enabling us to conclude that K is a
component of EOdd(a).

The case k = Oisclear, sincea € J\ K and K is acomponent of J. Proceeding by
induction, we may assume thatk > Oand myp,, = 2foralli € {1,2, ..., k—1}andall
b € K. We see that the element u = v{ax—1, {ax—2}Ivlar—2, {ar—3}]...vl[a1, {ap}]
centralizes Wk and has the property thatua = a,_1, since the labels in the path from a
to ay—1 are all odd. The group ul Wia_1.a;yu 1 finite and contains u‘lra,(f1 Uu=rg,
and so there is a maximal finite subgroup G of W containing this group and also
containing Wj.

Note that Wy U {u"'reu} € G = w™' W, w, for some w € W and spherical
L C TI, the element u# being in the centralizer of Wx. We may choose w to be the
minimal length element of Wy w = Wy wW), and it then follows from Lemma 15 that
wJ € L. Hence wK is a component of L. Furthermore, since wu treuwt € Wi,
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we see that the root wu ¢ is in @7 and not in ®px = wu~'Pg (since ¢ ¢ k).

Sowu"'c-wu'b=0forallb € K. Soc-b =0, or (equivalently) mp, = 2 for all
b € K, as required. O

To complement the results we have obtained so far, our next task is to find condi-
tions that ensure that a visible subgroup W is contained in FC(r).

Lemma 36. Leta € Il and K a component of EOdd(a) such that Wk is finite. Then
Wk € FC(ry).

Proof. Let F be amaximal finite subgroup of W withr, € F, and choose w € W such
that w Fw~! = W for some L C I1. We may replace w by the minimal length ele-
ment in the double coset W w W(,}, since this does not affect the condition w Fw ™! =
Wr. Sowe havethatw 'L C &7, and, moreover, rq € w_leﬁW{a} = Ww—le{a}
by Lemma 15. So wa € L C TII, and by Lemma 12 we see that w is a product of fac-
tors of the form v[d, {c}], with ¢, d € EOdd(a). Since K is a component of EOdd(a)
it follows that each v[d, {c}] normalizes W, and therefore w normalizes Wg . More-
over, since wa € L and L is spherical, it follows that L € EOdd(wa) = EOdd(a).
So Wi normalizes Wi . But Wk is finite, by hypothesis, and Wy is a maximal finite
subgroup of W. So Wx € W, and Wg = w I Wrxw C w™ W, w = F. Thus Wg
is contained in all maximal finite subgroups of W containing r,, as required. O

Lemma 37. Let a € Tl and let b be a C3-neighbour of Odd(a). If a and b are not
adjacent in Tl then rp, € FC(ry).

Proof. Let F be a maximal finite subgroup of W with r, € F. As in the proof of
Lemma 36 there exist a w € W and a maximal spherical L C IT with wa = a’ € L
and F = w—'W,w. Since L is spherical, L € EOdd(a).

Suppose first that a’ is not adjacent to b. Then m.,» = oo for every ¢ € Odd(a)
that is adjacent to b, and since a’ € L it follows that no such c is in L. Thus mp, = 2
forall e € LN Odd(a). But since also mp, = 2 forall e € EOdd(a) \ (Odd(a) U {b}),
it follows that mp, = 2 for all e € L \ {b}. Thus {b} is a component of L U {b}, and
since L is spherical it follows that L U {b} is spherical. Maximality of L tells us that
b € L. Moreover, Lemma 34 gives wb = b, and sorp = wlrpwew 'Wow =F.

On the other hand, suppose that @’ is adjacent to b. In this case Lemma 34
gives wb = b + +/2a’ + +/2a, where a is the unique neighbour of @’ in Odd(a).
Furthermore, since m,, € {2, oo} foralle € I1\{a, a’, b}, we see thatm,, = 2 forall
e € L\{a, a’, b} (since L is spherical). But the definition of a C3-vertex also requires
that mz, = mp. = 2 whenever m,, = 2; so it follows that {a, a’, b} is a component
of LU{a, a’, b}, which is therefore spherical since L and {a, a’, b} are both spherical.
Maximality of L tells us that {@, a’, b} C L; so wb = b + /24’ + /24 € &, and
r, = w_lrwbw € w_IWLw =F.
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So r, € F in all cases, and so rp, is contained in all maximal finite subgroups of
W containing r,, as required. O

We now prove the converse to Proposition 28.

Proposition 38. Leta € I1 and b € T1 \ Odd(a), and suppose that (a, b) is a focus
of Odd(a) in I1. Then FC(r,) = Wy, where J is the union of {a, b} and the spherical
components of EOdd(a). Moreover, FC(r,) is not visible for any a’ € Odd(a) \ {a}.

Proof. Foreachc € Odd(a)let X (c) = b++/2 3" ciand Y (¢) = b+/2 37 i,
where c; = a, ¢, ..., ¢ = c is the unique path from a to ¢ in Odd(a), noting that
X (c) and Y (c) are roots in ®cyp._ . We remark, for later use, that X (c) and Y (c) are
fixed by the reflections rp, r¢;, ..., Fe,s-

Let F = w™! W, w be a maximal finite subgroup of W containing r,,, with L C TI
and w of minimal length in Wy wW,. Then wa = a’ € L, by Lemma 15. Put
Lo =L N0Odd(a).

Choose ¢ € Lo with C[b..c] of maximal cardinality. If d € Lo then m.q # 00
(since Ly is spherical), whence d € C[b..c] by condition (3) of Definition 5. So
Lo € C[b..c]. Nowife € L\ Lgis arbitrary then ¢ ¢ Odd(a) (sincee ¢ LNOdd(a))
and m., < oo (since ¢, e € L and L is spherical). By condition (4) of Definition 5
it follows that mg, = 2 for all d € C[b..c]. Since this holds for all e € L \ Lo, and
C[b..c] and L \ L are both spherical, it follows that C[b..c] U (L \ Lg) is spherical.
But this set contains L (since Lo € C[b..c]) and since L is a maximal spherical subset
of IT we conclude that L = C[b..c]U (L \ Ly).

By Proposition 12 and Lemma 9 there exist simple roots ej, €3, ..., ex and
di=a, ds, ..., dy1 =ad € 0dd(a) withw = vle, {dr}]...v[e2, {d2}]v[er, {d1}]
and v[e;, {d;}]d; = d;41 foralli € {1,2, ..., k}. Moreover, m,,q4;, < oo foralli. Let
wo = 1 and w; = vle;, {d;}]w;—_1; we will show that

{(wib, —w;ib, w; (b + ~2a), —w; (b + v2a)}
={Xi+1), =X diy+1), Y(di1+1), =Y di+1)}

foralli € {0, 1,...,k}. The casei = O is trivial.
Proceeding inductively, suppose that i > 1 and

{(Fwi_1b, Twi_1 (b +v2a)} = {(£X (d;), £Y (d;)}.

It will be sufficient to show that v[e;, {d;}1X (d;) and v[e;, {d;}]Y (d;) both lie in the
set {£X(di+1), Y (di+1)}

Suppose first that d; = a. Then X(d;) = b + V2a and Y(d;) = b. If ¢; ¢
Odd(a) then m,,q; is even, and d;1| = d; = a. Furthermore, by condition (4) of
Definition 5 we have either {e;, d;} = {b, a} or m,,, = m.;, = 2. In the former case
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vle;, {d;i}] = v[b, {a}] = rprarp, giving vle;, {di}]1b = —b — V2a = —X(a) and
vle;, {d;}1(b + V2a) = —b = —Y(a); in the latter case v[e;, {di}] = vlei{a}] =ro;,
giving vle;, {d;}1b = b = Y (a) and v[e;, {d;}](b++/2a) = b++/2a = X(a). Ife; €
Odd(a) thena € C[b..e;], and by condition (2) of Definition 5 we have m,,;, = 2 and
eitherme,q =20rme,q = 3. If mg;u = 2thend; | = d; = a, whileif m,,, = 3 then
d;+1 = e;. Furthermore, in former case we find that v[e;, {d;}1b = r,,b = b = Y (a)
and v[e;, {d;}1(b + «/za) =b++2a = X (a), while in the latter case we find that
vlei, (di}]b = rare,b = b4+~/2a = Y (e;) and ve;, {d;}1(b+~/2a+~/2¢;) = X (¢;).

Now suppose that d; # a. If ¢; ¢ Odd(a) U {b} then m,,q; = 2 and d; | = d;.
Moreover, m,,q = 2 foralld € C[b..d;], and so v[e;, {d;}] = r,, fixes all the roots in
®cip..a;1,including X (d;) = X (di+1) and Y (d;) = Y (di+1). If e; € Odd(a)U{b}and
{e;, d;} is not an edge of Odd(a) then we again have d; | = d; and vle;, {d;}] = r;.
By condition (3) of Definition 5 we either have d; € C[b..e;] or ¢; € C[b..d;]. In
the former case we have m,,q = 2 for all d € C[b..d;], and as above we see that r,,
fixes X(d;) and Y (d;). In the latter case the remark made at the start of the proof
implies that it is still true that r,, fixes X (d;) and Y (d;). So we have shown that
when m,, 4, = 2 itis true that v[e;, {d;}1X (d;) and v[e;, {d;}]1Y (d;) both lie in the set
{£X(di+1), £Y(di+1)}, and it remains only to consider the case that ¢; and d; are
adjacent in Odd(a). Note that in this case d;+1 = e;.

Let C[b..d;] = {b,c1,...,cn} with c; = a and ¢, = d;, and suppose that
e; = cp—1 1s the vertex adjacent to d; in C[b..d;]. Then

vlei, (diNX (@) = ey (b4 V2 Y c)

j=1

m m—1
= rcm<b—|—«/§ZCJ‘) :b+\/§ZCj = X(e),
j=1 j=1

and similarly

m—1
vlei. Ad)1Y (@) = reyre, (b + V2 Y <)

j=1
m—2 m—2
=rcm<b+«/§ZcJ~)=b+\/§ cj =Y(e).
j=1 j=1

The alternative possibility is that d; is adjacent to e; in C[b..e;]. Exactly the same
calculations show that v[e;, {d;}1X (d;) = X (e;) and v[e;, {d;}1Y (d;) = Y (e;) in this
case also.
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The induction is now complete, and it follows in particular that wb = wyb is one
of £X (a’) or £Y (a’). Hence

wb € Ocpp.a S Peppc) S Pr.

Thus wrbw_1 e Wr,andsorp € w~'W,w = F. Since F was an arbitrary maximal
finite subgroup of W containing r,, this shows that r, € FC(r,).

Let M be the component of EOdd(a) contammg Odd(a), and suppose, for a
contradiction, that M is spherical. Clearly b € M asMmpq = 4 but M = Odd(a)U{b}
is not permltted in view of condition (5) of Definition 5. So M \ (Odd(a) U{b}) # @.
But fore € M \ (Odd(a) U {b}) and ¢ € Odd(a) we have m., # oo, since M is
spherical, and by condition (4) of Definition 5 it follows that mpe = mc. = 2 for all
¢ € Odd(a). This contradicts the fact that M is connected.

Now suppose that ¢’ € Odd(a) is such that FC(r,) = W, for some J C TI,
and let Jy be the component of J containing a’. Since Jy # M it follows from
Proposition 35 that Jp has rank at most 2. Now since there exists w € Wcp o]
such that wa = —a’ and wb = X(a’), and since r, € FC(r,), it follows that
Fwb = wryw ™' € FC(wraw™") = FC(ry). Thus X (a’) € ®;, andso C[b..a’] C J.
Since Jy has rank at most 2, this means that a’ = a and Jy = {a, b}.

It remains to prove that J is the union of Jy and the spherical components
of EOdd(a). By Lemma 36 we know that all these components are contained in J.
But if K is any other component of J such that K N Odd(a) = @, then by Propo-
sition 35 we see that K = {b’}, with b’ a C3-neighbour of Odd(a). Since b is the
only element of IT such that mp. € {2, 4} for all ¢ € Odd(a), we must have b’ = b,
contradicting the fact that the component of J containing b is Jo = {a, b}. O

Next, we have the converse to Proposition 29.

Proposition 39. Let a € Il and suppose that there exists a b € Odd(a) such that
{a, b} is a half-focus of Odd(a) in I1. Suppose also that the vertices Odd(a) do not
comprise a spherical subset of I1. Then FC(r,) = Wy, where J is the union of {a, b}
and the spherical components of EOdd(a). Moreover, FC(r,) is not visible for any
a’ € 0dd(a) \ {a, b}.

Proof. For each ¢ € Odd(a) \ {a, b}, define

m—1
X()=bt+a+c+2) a
i=2
where c; = a, ¢2, ..., ¢, = cis the unique path from a to ¢ in Odd(a) \ {b}. Then
X (c)isarootin ®piq p. ] and is fixed by the reflections rp, r¢,, ..., r¢, , and re,.

Define also X (a) = b and X (b) = a.
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Let F = w™! W, w be a maximal finite subgroup of W containing r, with L C TI
and w of minimal length in W, wW,. Then wa = a’ € L, by Lemma 15. Put
Lo = LN0Odd(a).

Choose ¢ € Ly with Dl[a, b..c] of maximal cardinality. If d € Lo then m.4 7# 00
(since Lo is spherical), whence d € Dla, b..c] by condition (4) of Definition 6.
So Ly € Dla,b..c]. Now if e € L\ Ly is arbitrary then ¢ ¢ Odd(a) (since
e ¢ LNOdd(a)) and m., < oo (sincec, e € L and L is spherical). By condition (5)
of Definition 6 it follows that m4, = 2 for all d € DJa, b..c]. Since this holds
for alle € L\ Lo, and D[a, b..c] and L \ Lg are both spherical, it follows that
Dla, b..c]U(L\ L) is spherical. But this set contains L (since Lo € Dla, b..c]) and
since L is amaximal spherical subset of 1 we conclude that L = Dl[a, b..c]U(L\ Ly).

By Proposition 12 and Lemma 9 there exist simple roots ey, €3, ..., ey andd; =
a, dy, ..., dry1 = a € 0dd(a) with w = v(eg, {di}]...v[e2, {d2}]v[e1, {d1}] and
vle;, {di}ld; = di1 foralli € {1,2,..., k}. Furthermore, we have m,,4, < oo for
all i. Let wg = 1, and w; = v[e;, {d;}]w;—1 fori > 1. We will show that

{wib, —w;b} = {X(di+1), =X (di+1)}

foralli € {0, 1,...,k}.

The case i = 0Ois trivial. Proceeding inductively, suppose thati > 1 and w;_1b =
+X (d;). It will be sufficient to show that v[e;, {d;}]1X (d;) = =X (dj+1).

Suppose first that d; = a, sothat X (d;) = b. If e; # bthenmg,;p = me;q € {2, 3},
Since me;q = Me;q; 7= 00. We also have m,,, = 2 if e; = b. In the case m,,, = 3 we
have vle;, {d;}] = rare;, and d; | = rqre;a = e;. Furthermore,

vle;, {di}]1X(di) = rare,b=a+b+e = X(e;) = X(di+1),

as required. In the case m.,, = 2 we have v(e;, {d;}] = r,,;, giving d; | =re;a = a,
and
vlei, {di}1X(di) = re;b = £b = £X(d; 1),

since either e; = b or m,;p = 2.

The case d; = b is the same as the case d; = a with a and b interchanged; so
suppose that d; ¢ {a, b}. If ¢; ¢ Odd(a) then m,,4, = 2 and d; 11 = d;. Moreover,
meq = 2 for all d € Dla, b..d;], and so vle;, {d;}] = re, fixes all the roots in
D pla.p..4;1, including X (d;) = X(di+1). If ¢, € Odd(a) and {e;, d;} is not an edge
of Odd(a) then we again have d; 1 = d; and v[e;, {d;}] = r,,. By condition (4) of
Definition 6 we either have d; € DJa, b..e;j] or ¢; € D[a, b..d;]. In the former case
we have m,,q = 2 forall d € C[b..d;], and as above we see that r,, fixes X (d;). In
the latter case it is still true that r,, fixes X (d;), since the only simple reflection of
Dla, b..d;] that does not fix X (d;) is the one corresponding to the vertex adjacent
to d;. So we have shown that when m,,4 = 2 it is true that v[e;, {d;}]1X (d;) and
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vle;, {d;}1Y (d;) both lie in the set {+ X (d;+1), £Y (di+1)}, and it remains to consider
the case that ¢; and d; are adjacent in Odd(a). Note that in this case d; ] = e;.

Let Dla, b..d;] = {b,c1, ..., cy} with ¢c; = a and ¢,, = d;. Suppose first that
m > 2, and suppose that ¢; = ¢,,—1 is the vertex adjacent to d; in Dla, b..d;]. Then

m—1
vler (d1X (i) = 1o, re (b+a+en+2) ¢;)
j=2
m—2
=rcm(b+a+cm—i—cm_1 +ZZCJ')
j=1
m—2
—bt+aten1+2) cj=X(e).
j=1
If m =2 and ¢; = b then
vle;, {di}]1X (d;) = rprg;(a +b+d;) =a = X(b) = X(e),
and if ¢; = a then similarly

vlei, {di}]1X (di) = rarg;(a + b +d;j) = b = X(a) = X(e).

The alternative possibility is that d; = c¢,,— is the vertex adjacent to ¢; = ¢, in
Dla,b..e;j] =1{b,cy, ..., cn}. We calculate that

m—2
vler (dN1X (i) = 1o, 1o, (b+a+en1 +2) ¢;)
j=2
m—2
=T,y (b +a+cn+em_1+2 Z Cj)
j=l1
m—1
=b+a+con+2) c=X(),
Jj=1

as required.
The induction is now complete, and it follows that wb = wib = £X (a’). Hence

wb € Pprap.a] € Polap.c S Pr.

Thus wryw~! € Wy, andsor, € w™'W,w = F. Since F was an arbitrary maximal
finite subgroup of W containing r,, this shows that r;, € FC(r,).

Note that since W has a graph automorphism that swaps r, and r, and fixes all
the other simple reflections, it must also be true that r, € FC(r}).
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Let M be the component of EOdd(a) containing Odd(a), and suppose, for a
contradiction, that M is spherical. Note that M # Odd(a) in view of condition (5)
of Definition 5. So M\Odd(a) # (). Butforalle € M\Odd(a) and ¢ € Odd(a) we
have m., # oo, since M is spherical, and by conditions (1) and (5) of Definition 5
it follows that m., = 2 for all ¢ € Odd(a). This contradicts the fact that M is
connected.

Suppose that a’ € Odd(a) is such that FC(r,/) = W, for some J C II, and let Jo
be the component of J containing a’. Since Jo # M it follows from Proposition 35
that J NOdd(a) has rank at most 2. Now suppose, for a contradiction, thata’ ¢ {a, b}.
Since there exists an element w € Wp,p._o) such that wa = a’ and wb = X (a'),
it follows that r, = wryw™' € FC(wrow™!) = FC(ry). Thus X(a') € @y,
and so D[a, b..a’] C J, contradicting the fact that the rank of J N Odd(a) is at
most 2. So we deduce that a’ = b or @’ = a. Moreover, in either case we know
that {a, b} € J N Odd(a), and since J N Odd(a) has rank at most 2 it follows that
J NOdd(a) = {a, b}.

By Lemma 36 we know that all spherical components of EOdd(a) are components
of J, and by Proposition 35 all other components of J that intersect Odd(a) trivially
correspond to C3-neighbours of Odd(a). But clearly the conditions of Definition 6
imply that Odd(a) has no C3-neighbours. So we conclude that J is the union of {a, b}
and the spherical components of EOdd(a), as required. O

Proof of Theorem 7. Let M be a connected component of 2(IT), and write M for
the component of E(M) containing M.

Suppose first that M is spherical, so that the conditions of Case A of Theorem 7
are satisfied, aEd let a € M be arbitrary. Observe that all C3-neighbours of M are
contained in M. Choose a’ € M such that FC(ry) is visible, and let FC(r,/) =
W;. By Lemma 36 we know that M is contained in J, and hence a € J. So by
Proposition 25 it follows that FC(r,) = W also. By Proposition 35 the only possible
components of J apart from Jy are the other spherical components of E(M), and by
Lemma 36 all of these are indeed components of J. So J consists of the spherical
components of E(M), as required.

Now suppose that M is not spherical. If there exists a b € IT\ M such that (a, b)
is a focus of M then it follows from Proposition 38 that FC(r,) = W, where J is
composed of {a, b} and the spherical components of E(M), and FC(r,) is not visible
for any a’ € Odd(a) \ {a}. Similarly, if there exists a b € M such that {a, b} is a
half-focus of M, then it follows from Proposition 39 that FC(r,) = FC(rp) = Wy,
where J is composed of {a, b} and the spherical components of E(M), and FC(r,/)
is not visible for any a’ € Odd(a) \ {a, b}.

Finally, suppose that M is not spherical and M does not have a focus or a half
focus. Suppose that a € M is such that FC(r,) = W, for some J C I, and let K be
the component of J containing a.
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Suppose first that alternative (b) of Proposition 35 holds, so that K = {a, b} is of
type Co, and J N M = {a}. Since M does not have any focus in I1, it follows from
Proposition 28 that M U {b} is a spherical component of E(M). But the component
of E(M) containing M is M , which, by our assumptions, is not spherical. So this
case does not arise.

Alternative (c) of Proposition 35 is similarly impossible, by Proposition 29, and
alternative (e) is also incompatible with the assumption that M is not spherical. So we
conclude that alternative (a) holds: K = {a} = J N Odd(a). Note that all spherical
components of E(M) are components of J, and by Proposition 35 the only other
possible components are the sets {b} such that b is a C3-neighbour of M.

Suppose that b is a C3-neighbour of M that is adjacent to a. Let a be the unique
neighbour of @ in M. By Lemma 37 we know that r, € FC(r3), and so it follows that
FC(r,) = rzra FC(rz)r,r; contains the reflection along the root rzr,b = b + V2a +
V/2a. Since FC(r,) = Wy, it follows that both b and & are in J. But this contradicts
the fact that the component of J containing a is just {a}.

This reasoning has shown that if a € M is adjacent in I1 to a Cz-neighbour of M
then FC(7,) is not visible. On the other hand, we know that there is atleastonea € M
such that FC(r,) is visible. So we may choose an a € M such that FC(r,) = W,
for some J C II. Since a is not adjacent to any C3-neighbour of M it follows by
Lemma 37 that all C3-neighbours of M are in J. So we conclude that J = J' U {a},
where J' is the union of the spherical components of E(M) and the C3-neighbours
of M.

It remains to prove that if a’ is any other element of M that is not adjacent to
any Cs-neighbour of M then FC(r,/) = Wjjay. Given such an a’, since a’ lies in
M = Odd(a), we may choose w € W such that wa = a’. By Proposition 12 we
see that w € Wy;, and so w fixes all other components of E(M). And w fixes all
C3-neighbours of M, by Lemma 34. So w fixes J', and it follows that

FC(ry)) = wEC(r)w™ = wWimw ™" = Wy Giwa) = Wiy

as required. This completes the proof of Theorem 7.

Proof of Theorem 1. Leta € IT and M = Odd(a). As IT is 2-spherical it follows
that I[1 = E(M), and, as II is non-spherical, it follows that Case A of Theorem 7
does not hold for M. As there are no oo-labels in the Coxeter graph of I1, Cases C
and D do not hold either. Hence we are in Case B. Since there are no co-labels in the
Coxeter graph of I1, there are no C3 neighbors of M. As E(M) = II is irreducible,
there are no spherical components of E(M). It follows now from Theorem 7 that
there is an a’ € Odd(a) such that FC(r,/) = (r,). As r, and r, are W-conjugate we
have FC(r,) = (r,) as well, and this completes the proof of Part a) of Theorem 1.
Let S € W be such that (W, §) is a Coxeter system. It follows from Part a) and
Corollary 24 that r, € SW for each @ € I, and hence {r, | a € T1} € SV. As I



696 W. N. Franzsen, R. B. Howlett and B. Miihlherr CMH

is assumed to be non-spherical, irreducible and 2-spherical, it follows now from the
main result of [5] that there is an element w € W such that {r, | a € I1} = S™. This
completes the proof of Part b) of Theorem 1. As Part c) is an immediate consequence
of Part b) we are done.
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