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Reflections in abstract Coxeter groups

W. N. Franzsen, R. B. Howlett and B. Mühlherr

Abstract. Let W be a Coxeter group and r ∈ W a reflection. If the group of order 2 generated by
r is the intersection of all the maximal finite subgroups of W that contain it, then any isomorphism
from W to a Coxeter group W ′ must take r to a reflection in W ′. The aim of this paper is to show
how to determine, by inspection of the Coxeter graph, the intersection of the maximal finite
subgroups containing r . In particular we show that the condition above is satisfied whenever W

is infinite and irreducible, and has the property that all rank two parabolic subgroups are finite.
So in this case all isomorphisms map reflections to reflections.
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1. Introduction

The dihedral group of order 12 can be considered as Coxeter group of type I2(6) or
as Coxeter group of type A1 × I2(3). This example shows that, in general, the set of
reflections in a Coxeter system is not determined by the abstract group W alone, but
does indeed depend on the choice of the Coxeter generating set R. However there are
a lot of examples of Coxeter systems (W, R) where the abstract group does determine
the set of reflections or even the set R up to W -conjugacy. The main motivation for
the present paper is to show that the latter holds for infinite Coxeter groups having
a finite, irreducible and 2-spherical Coxeter generating set, which is our Theorem 1
below.

In view of the main result of [5] it suffices to show that these Coxeter groups
determine the set of reflections. In order to achieve this goal we provide a handy
criterion for an involution in an abstract Coxeter group W to be a reflection with
respect to any Coxeter generating set of W . Our principal observation is the following.
Let (W, R) be a Coxeter system and let w ∈ W be an involution. If w �∈ RW , then
the centralizer of w in W contains a finite normal subgroup properly containing 〈w〉.
This is an immediate consequence of Richardson’s result in [16]. Thus, if w ∈ W is
an involution having the property that 〈w〉 is a maximal finite normal subgroup of its
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centralizer in W , then w is a reflection with respect to any Coxeter generating set of
W .

It turns out that it is more convenient to work with the finite continuation of an
involution rather than to consider finite normal subgroups of its centralizer. The
finite continuation of a finite order element w in a Coxeter group is defined to be the
intersection of all maximal finite subgroups containing it; we write FC(w) for the
finite continuation of w. In this paper we restrict our attention to finitely generated
Coxeter groups. For these it is a consequence of a result of Tits that every element
of finite order is contained in some maximal finite subgroup; so FC(w) is a finite
subgroup of W (see Corollary 14 below). The main result of the present paper is
a complete description of the finite continuation of a simple reflection in a Coxeter
system of finite rank. Its proof constitutes the bulk of this paper.

Main Result. Let (W, R) be a Coxeter system of finite rank. Then the following
holds.

a) For each r ∈ R the finite continuation of r can be described.

b) Given an involution w ∈ W such that FC(w) = 〈w〉, then w ∈ RW .

Part a) of our main result is Theorem 7. Its precise statement requires some
preparation. Part b) is Corollary 24.

The main result of this paper is in fact the first of two steps to reduce the isomor-
phism problem for Coxeter groups to its ‘reflection-preserving’ version. The second
step is given in [12]. We refer to [15] for further information about the applications
to the general isomorphism problem.

A special instance of the isomorphism problem for Coxeter groups is the question
about their rigidity (see [3] for further information). In combination with the main
result of [5] a consequence of our main result is the following rigidity result.

Theorem 1. Let (W, R) be an irreducible, non-spherical Coxeter system such that
R is finite and such that rr ′ has finite order for all r, r ′ ∈ R. Then the following
assertions hold.

a) For each r ∈ R we have FC(r) = 〈r〉.
b) If S ⊆ W is such that (W, S) is a Coxeter system, then there exists w ∈ W such

that Sw = R.

c) All automorphisms of W are inner-by-graph.

In the language of [3], Part b) of the previous theorem means that an infinite, irre-
ducible, 2-spherical Coxeter system is strongly rigid. Part c), which is an immediate
consequence of Part b), improves the result of [13].
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To conclude this introduction we remark that characterization results for reflec-
tions in even Coxeter groups have been obtained in [1]. Some of the results there can
be deduced as corollaries of our main result as well.

Acknowledgements. The authors thank Frédéric Haglund for helpful discussions on
the subject, and the Australian Research Council for support. The third author thanks
the University of Sydney for hospitality when this research was undertaken.

2. Precise statement of the main result

Recall that a Coxeter group is a group with a presentation of the form

W = gp〈 {ra | a ∈ �} | (rarb)
mab = 1 for all a, b ∈ � 〉 (2.1)

where � is some indexing set, whose cardinality is called the rank of W (relative to
this presentation), and the mab satisfy the following conditions: mab = mba , each
mab lies in the set {m ∈ Z | m � 1} ∪ {∞}, and mab = 1 if and only if a = b. When
mab = ∞ the relation (rarb)

mab = 1 is interpreted as vacuous. We shall restrict
attention to Coxeter groups of finite rank.

A reduced expression for an element w ∈ W is a minimal length word expressing
w as a product of elements of the distinguished generating set {ra | a ∈ �}. We
define �(w) to be the length of a reduced expression for w.

As is well known (and as we shall describe in Section 3 below), every Coxeter
group W can be realized geometrically as a group generated by reflections. In this
realization of W the reflections in W are the conjugates of the generators ra .

The Coxeter graph associated with the presentation above is the graph with vertex
set � and edge set consisting of those pairs of vertices {a, b} for which mab � 3.
The edge {a, b} is given the label mab. The components of � are the connected
components of the graph, and we say that W is irreducible if the graph is connected.

For each I ⊆ � we define WI to be the subgroup of W generated by the set
{ra | a ∈ I }; we call these subgroups the visible subgroups of W . A parabolic
subgroup of W is any conjugate of a visible subgroup. We say that I ⊆ � is
spherical if WI is finite, and we say that � (or W ) is k-spherical if all k-element
subsets of � are spherical.

The definitions given so far are fairly standard. In order to facilitate the precise
statement of the main result, we introduce some nonstandard notation and terminology
(in Definitions 2, 3, 4, 5 and 6 below).

Definition 2. If w ∈ W has finite order, define the finite continuation of w, written
FC(w), to be the intersection of all maximal finite subgroups of W containing w.



668 W. N. Franzsen, R. B. Howlett and B. Mühlherr CMH

Definition 3. The odd graph of W is the graph �(�) obtained from the Coxeter graph
by deleting the edges whose labels are infinite or even. For each a ∈ � we define
Odd(a) to be the connected component of �(�) containing a. For each connected
component M of �(�) we define E(M) to be the union of M with the set of all b ∈ �

such that mcb is even for some c ∈ M . We also abbreviate E(Odd(a)) to EOdd(a).

In the discussions below, when we refer to the components of E(M) we regard
E(M) as the full subgraph of the Coxeter graph spanned by the vertices in E(M). In
other words, the edges with even and infinite labels, deleted when forming the odd
graph, are restored in E(M).

Note that if a ∈ L ⊆ � and WL is finite then mab < ∞ for all b ∈ L. Whether
mab is odd or even it follows that b ∈ EOdd(a). Thus L ⊆ EOdd(a).

Definition 4. Let M ⊆ � be a connected component of �(�). We call b ∈ � \ M

a C3-neighbour of M if mbc ∈ {2, 4} for all c ∈ E(M), the case mbc = 4 occurring
for at least one c, and for each c ∈ E(M) with mbc = 4 there is an a ∈ M such that
the following conditions are satisfied:

(1) mba = 2 and mca = 3, and mcd = ∞ for all d ∈ M \ {a, c};
(2) for all e ∈ � \ (M ∪ {b}), either mce = ∞ or mae = mce = mbe = 2.

Definition 5. Let M ⊆ � be a connected component of �(�), and let a ∈ M and
b ∈ � \ M . We call the pair (a, b) a focus of M in � if the following conditions all
hold.

(1) All the edge labels of M are 3, and M is a tree.

(2) For each c ∈ M , the set C[b..c] ⊆ � consisting of b and those elements of M

that form the path from a to c in M constitutes a system of type Ck (for some k

dependent on c).

(3) If c, d ∈ M ∪ {b} with c /∈ C[b..d] and d /∈ C[b..c] then mcd = ∞.

(4) If mce �= ∞ for some c ∈ M and e ∈ � \ (M ∪ {b}), then mce = 2 = mde for
all d ∈ C[b..c].

(5) The vertices of M ∪ {b} do not form a spherical component of E(M).

Definition 6. Let M ⊆ � be a connected component of �(�), and let a, b ∈ M . We
call the two-element set {a, b} a half focus of M in � if mab = 2 and the following
conditions all hold.

(1) We have mac = mbc ∈ {2, 3} for all c ∈ M \ {a, b}, and mac = mbc ∈ {2, ∞}
for all c ∈ � \ M .

(2) All the edge labels of M \ {b} are 3, and M \ {b} is a tree.
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(3) For each c ∈ M \ {a, b}, the set D[a, b..c] ⊆ � consisting of b and those
elements of M \ {b} that form the path from a to c constitutes a system of
type Dk (for some k dependent on c).

(4) If c, d ∈ M \ {a, b} with c /∈ D[a, b..d] and d /∈ D[a, b..c] then mcd = ∞.

(5) If mce �= ∞ for some c ∈ M \ {a, b} and e ∈ � \ M , then mce = 2 = mde for
all d ∈ D[a, b..c].

(6) The vertices of M do not form a spherical component of E(M).

We are now able to give a precise statement of Part a) of our main result.

Theorem 7. For each connected component M of �(�) there is at least one a ∈ M

such that FC(ra) is a visible subgroup of W . We have the following possibilities.

Case A: Suppose that the component of E(M) containing M is spherical, and let
a ∈ M be arbitrary. Then FC(ra) = WJ , where J is the union of the spherical
components of E(M).

Case B: Suppose that the component of E(M) containing M is not spherical, and M

does not have any focus or half-focus in �, and let J ′ be the union of the spherical
components of E(M) and the set of C3-neighbours of M . If a ∈ M is not adjacent in
� to any C3-neighbour of M then FC(ra) = WJ ′∪{a}, and if a ∈ M is adjacent in �

to a C3-neighbour of M then FC(ra) is not visible.

Case C: Suppose that (a, b) is a focus of M . Then FC(ra) = WJ where J is the union
of {a, b} and the spherical components of E(M), and FC(rc) is not visible for any
c ∈ M \ {a}.
Case D: Suppose that {a, b} is a half-focus of M . Then FC(ra) = FC(rb) = WJ ,
where J is the union of {a, b} and the spherical components of E(M), and FC(rc) is
not visible for any c ∈ M \ {a, b}.

3. Reflections and root systems

Let R be the real field, and V the vector space over R with basis �. Let B the bilinear
form on V such that for all a, b ∈ �,

B(a, b) = − cos(π/mab).

To make our notation more compact we define u · v = B(u, v) for all u, v ∈ V . Note
that a · a = 1 for all a ∈ �, since maa = 1.

For each a ∈ V such that a · a = 1, the reflection along a is the transformation
of V given by v 
→ v − 2(a · v)a. It is well known (see, for example, Corollary 5.4
of [14]) that W has a faithful representation on V such that, for all a ∈ �, the
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element ra acts as the reflection along a. We shall identify elements of W with their
images in this representation. We also use the notation ra for the reflection along a

whenever a ∈ V satisfies a ·a = 1. It is straightforward to show that each reflection ra
preserves the form B; hence all elements of W preserve B. Furthermore, the equation
grag

−1 = rga holds for all a ∈ V such that a · a = 1 and all transformations g that
preserve B.

We write Ref(W) for the set of all reflections in W . It is immediate from the
above comments that if � = {wa | w ∈ W, a ∈ �} then {rb | b ∈ �} ⊆ Ref(W).

The set � is called the root system of W , and elements of � are called roots.
Elements of the basis � are called simple roots, and the reflections ra for a ∈ � are
called simple reflections. A root is said to be positive if it has the form

∑
a∈� λaa

with λa � 0 for all a ∈ �, and negative otherwise. We write �+ for the set of all
positive roots and �− for the set of all negative roots.

Lemma 8. With the notation as above, the following statements hold.

(1) Every negative root has the form
∑

a∈� λaa with λa � 0 for all a ∈ �. Fur-
thermore, �− = {−b | b ∈ �+}.

(2) If w ∈ W and a ∈ � then

�(wra) =
{

�(w) + 1 if wa ∈ �+,

�(w) − 1 if wa ∈ �−.

(3) If t ∈ Ref(W) then t = rb for some b ∈ �.

(4) The group W is finite if and only if the bilinear form B is positive definite.

(5) The root system � is finite if and only if the group W is finite.

Proof. Proofs of (1) and (2) can be found in [14, Section 5.4], Theorem 4.1 in [7]
includes both (4) and (5), and (3) is [13, Lemma 2.2]. �

The following result is well known.

Lemma 9. Let a ∈ �. Then Odd(a) = � ∩ Wa.

For each w ∈ W we define N(w) = {b ∈ �+ | wb ∈ �−}. By Part (2) of
Lemma 8, if w �= 1 then N(w) ∩ � �= ∅. An easy induction shows that N(w) has
exactly �(w) elements. In particular, N(w) is a finite set. It is also easily shown that
if � is finite then there is a unique w ∈ W such that N(w) = �+. This element,
which we denote by w�, is also the unique element of maximal length in W (which
is a finite group). Furthermore, w�� = −�.
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For each � ⊆ � the subgroup W� generated by the set {ra | a ∈ �} is called
a reflection subgroup of W . The set �� = {a ∈ � | ra ∈ W�} is called the root
subsystem generated by �. Let �+

� = �� ∩ �+ and �−
� = �� ∩ �−, and define

�� = {a ∈ �+
� | N(ra) ∩ �� = {a}}.

The main theorem of Deodhar [8] and Theorem (3.3) of Dyer [9] yield the following
result.

Theorem 10. For each � ⊆ � the group W� is a Coxeter group on the generating
set {ra | a ∈ ��}. The set {a · b | a, b ∈ �� and a �= b} is a subset of C =
{− cos(π/m) | 2 � m ∈ Z} ∪ (−∞, −1]. Moreover, if 	 is any subset of �+ such
that {a ·b | a, b ∈ 	 and a �= b} ⊆ C then W	 is a Coxeter group on the generating
set {ra | a ∈ 	}.

Note that the notation W� introduced above is an extension of the notation for
visible subgroups introduced in Section 2. However, if � � � then W� need not be
visible.

It is clear that if I ⊆ � then WI preserves the subspace VI of V spanned by I ,
and acts on this subspace as a Coxeter group with I as its set of simple roots. In this
case �I = � ∩ VI and �I = I .

The following simple facts are well known.

Lemma 11. In the above situation, �I = � ∩ VI . Furthermore, w ∈ W normalizes
WI if and only if w�I = �I . In particular, for all a ∈ �, the reflection ra normalizes
WI if and only if a ∈ �I or a · b = 0 for all b ∈ I .

Suppose that I ⊆ � and a ∈ � \ I , and let L be the component of (the Coxeter
graph of) I ∪ {a} to which a belongs. If WL is finite we define v[a, I ] = wLwL\{a}.
It is easily seen that v[a, I ]I ⊆ I ∪ {a}, and that v[a, I ]b = b for all b ∈ I \ L. In
particular, v[a, I ]I ∈ I = {J ⊆ � | J = wI for some w ∈ W }. It was proved
in [11] (for finite Coxeter groups) and in [7] (in the general case) that every element
w ∈ W satisfying wI ⊆ � can be expressed as a product of elements of the form
v[a, I ′], with I ′ ∈ I and a ∈ � \ I ′. That is,

w = v[a1, I1]v[a2, I2] . . . v[an, In] (3.1)

for some Ii, ai such that (for each i) the component of Ii ∪ {ai} containing ai cor-
responds to a finite visible subgroup, v[ai, Ii]Ii = Ii−1 for 1 < i � n, and In = I .
Furthermore, the following result holds.

Proposition 12. Let I, J ⊆ �. Then {w ∈ W | wWIw
−1 = WJ } = N(J, I )WI ,

where N(J, I ) = {w ∈ W | wI = J }. Furthermore, for each w ∈ N(J, I ) and
each a ∈ � ∩ N(w) there is an expression for w of the form (3.1) above, with
(an, In) = (a, I ) and �(w) = ∑n

i=1 �(v[ai, Ii]).
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The following lemma, which appears in [2, Exercise 2d, p. 130], is fundamental
to all of our arguments.

Lemma 13 (Tits). If W is a Coxeter group and H � W is finite, then H is contained
in a finite parabolic subgroup of W .

One immediate consequence of Lemma 13 is that every maximal finite subgroup
of a Coxeter group is parabolic. Another consequence of the previous lemma is
that each finite subgroup of W is contained in a maximal finite parabolic subgroup.
(Remember that we always assume that W is finitely generated.) Thus the set of
maximal finite subgroups of W containing a given finite order element of W is not
empty, and hence we have the following fact.

Corollary 14. If w ∈ W has finite order, then FC(w) is a well-defined finite subgroup
of W .

Lemma 15 (Kilmoyer). Let I, J ⊆ �. Then every (WI , WJ ) double coset in W

contains a unique element of minimal length; moreover, if d is the minimal length
element of WIdWJ then WI ∩ dWJ d−1 = WK , where K = I ∩ dJ .

Proof. See [6, Theorem 2.7.4]. �

Corollary 16. The intersection of a finite number of parabolic subgroups is a para-
bolic subgroup.

The following consequence of Lemmas 13 and 15 is proved in [10, Lemma 11].

Lemma 17. If J is a maximal spherical subset of � then WJ is a maximal finite
subgroup of W . Furthermore, WJ is not conjugate to any other visible subgroup
of W .

Another important tool in our analysis of automorphisms is the classification of
involutions in Coxeter groups, due to Richardson [16].

Proposition 18. Suppose that w ∈ W is an involution. Then there is a t ∈ W and
a spherical I ⊆ � such that w = t−1wI t with �(w) = �(wI ) + 2�(t), and wI is
central in WI .

Proof. See [10, Proposition 5]. �

Definition 19. We say that I ⊆ � is of (−1)-type if WI is finite and wI is central
in WI .
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The reason for the terminology is that I is of (−1)-type if and only if there is an
element of WI that acts on VI as multiplication by −1.

We need the following lemma.

Lemma 20. Suppose that I, J ⊂ � with I of (−1)-type, and suppose that t ∈ W

has the property that twI t
−1 ∈ WJ . Then tWI t

−1 ⊆ WJ .

Proof. Let a ∈ I . Then wI (a) = −a, and so (twI t
−1)(ta) = −ta, whence it follows

that either ta or −ta is in the set N(twI t
−1). But N(twI t

−1) ⊆ �J ; so ta ∈ �J ,
and therefore trat

−1 = rta ∈ WJ . Since WI is generated by {ra | a ∈ I }, the result
follows. �

In particular, it follows from Lemma 20 that if I, J are both of (−1)-type and
twI t

−1 = wJ then tWI t
−1 = WJ . Conversely, suppose that tWI t

−1 = WJ , so that
in fact dWId

−1 = WJ for all d in WJ tWI (which equals tWI ). Taking d to be the
shortest element in tWI , Lemma 15 yields that dI = J , and hence x 
→ dxd−1

is a length-preserving isomorphism WI → WJ ; consequently dwId
−1 = wJ . If

wI , wJ are central in WI , WJ we deduce that twI t
−1 = wJ . So we have proved the

following result.

Lemma 21. Suppose that I, J are subsets of � that are both of (−1)-type. Then
{t ∈ W | twI t

−1 = wJ } = {t ∈ W | tWI t
−1 = WJ }.

Proposition 22. Let I ⊂ � be of (−1)-type. Then WI ⊆ FC(wI ).

Proof. Let F be a maximal finite subgroup of W such that wI ∈ F . By Lemma 13
there exist t ∈ W and J ⊆ � such that tF t−1 = WJ . By Lemma 20 and the fact that
wI ∈ F it follows that tWI t

−1 ⊆ WJ . Hence WI ⊆ t−1WJ t = F . �

Proposition 23. Let W, W ′ be Coxeter groups of finite rank and α : W → W ′ an
isomorphism. Let � be the set of simple roots corresponding to the distinguished
generating set of W , and let a ∈ �. If rα

a is not a reflection in W ′ then the intersection
of all maximal finite subgroups of W containing ra is a parabolic subgroup of order
greater than 2.

Proof. Write �′ for the set of simple roots of W ′. Observe that Lemma 13 and
Corollary 16 trivially imply that FC(ra) is a parabolic subgroup of W .

Since rα
a is not a reflection it follows from Proposition 18 that rα

a = twI t
−1 for

some t ∈ W ′ and I ⊆ �′ of (−1)-type and of rank at least 2. Clearly FC(ra)
α =

t FC(wI )t
−1, and by Proposition 22 we know that WI ⊆ FC(wI ). Therefore

(tWI t
−1)α

−1 ⊆ FC(ra), so that FC(ra) has order greater than 2, as required. �

Corollary 24. Let w ∈ W be an involution such that FC(w) = 〈w〉 and let S ⊆ W

be such that (W, S) is a Coxeter system. Then w ∈ SW .
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4. The finite continuation of a reflection

Let r be a reflection in W . Replacing r by wrw−1 replaces FC(r) by w FC(r)w−1,
and so choosing w suitably enables us to assume that FC(r) = WJ , a visible parabolic
subgroup. Furthermore, replacing r by trt−1 for suitable t ∈ WJ enables us to assume
that r = ra for some a ∈ J . (Note that these observations yield the first assertion of
Theorem 7.)

Proposition 25. Let a ∈ J ⊆ �, and suppose that WJ is the intersection of all
maximal finite subgroups of W containing ra . Then {w ∈ W | wraw

−1 ∈ WJ }
is a subset of the normalizer of WJ in W . Thus each W-conjugate of ra in WJ is
NW(WJ )-conjugate to ra , and CW(ra) ⊆ NW(WJ ). Moreover, if b ∈ � \ J is such
that WJ∪{b} is infinite then mbc = ∞ for all c ∈ J such that rc is conjugate to ra
in W .

Proof. Let S be the set of all maximal finite subgroups of W containing ra , so that
WJ = FC(ra) = ⋂

F∈S F . Suppose that w ∈ W satisfies wraw
−1 ∈ WJ , and

let F ∈ S . Then wraw
−1 ∈ WJ ⊆ F , and so ra ∈ w−1Fw. Thus w−1Fw is a

maximal finite subgroup of W containing ra , whence w−1Fw ∈ S . So⋂
F∈S

F ⊆
⋂

F∈S

w−1Fw

and so WJ ⊆ w−1WJ w. Since WJ is finite it follows that w ∈ NW(WJ ).
Suppose that c ∈ J with rc = wraw

−1 for some w ∈ W . Clearly F 
→ wFw−1

is a bijection from the set of maximal finite subgroups of W containing ra to the set
of maximal finite subgroups of W containing rc, and so FC(rc) = w FC(ra)w

−1. But
w FC(ra)w

−1 = wWJ w−1 = WJ by the first part of the proof, and so FC(rc) = WJ .
Now suppose that b ∈ � \ J with mcb < ∞. Then W{c,b} is finite, and so contained
in a maximal finite subgroup F . Since rc ∈ F we must have FC(rc) ⊆ F . It follows
that the finite group F contains both WJ and rb, and therefore WJ∪{b} is finite. �

Assume, as in Proposition 25, that a ∈ J ⊆ � and WJ = FC(ra), and suppose
now that J �= {a}. Suppose that L ⊆ � is such that J ⊆ L and WL is finite. Then WL

is a finite Coxeter group possessing a visible parabolic subgroup WJ of rank greater
than 1 that is normalized by the centralizer of some simple reflection ra ∈ WJ .
Indeed, WJ is normalized by all w ∈ WL such that wraw

−1 ∈ WJ . Equivalently, by
Lemma 8 (3), {w ∈ WL | wa ∈ �J } ⊆ NW(WJ ). This is a very restrictive condition,
which we now proceed to examine with a case-by-case investigation of the different
types of finite Coxeter groups. For the course of this investigation, we can (and shall)
assume that L = �.

So we assume for now that W is a finite Coxeter group of rank n, and our aim is to
find all examples of the following phenomenon: there exist {a} � J ⊆ � such that
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the set Q = {w ∈ W | wa ∈ �J } is a subset of NW(WJ ). We assume that J �= �,
since the condition is trivially satisfied otherwise.

If K ⊆ � is a component of the Coxeter graph such that J ∩ K = ∅ then WK is
a direct factor of NW(WJ ); moreover, Q = (Q ∩ W�\K)WK . So removing K from
the graph will have no bearing on whether or not the condition Q ⊆ NW(WJ ) holds.
So we assume that there are no such components of �. Exactly the same comments
apply for a component K of � such that K ⊆ J . So we also assume that there are
none of these.

Assume that {a} � J � � and Q ⊆ NW(WJ ). Suppose that K ⊆ � is a
component of the Coxeter graph such that a /∈ K . Then rba = a for all b ∈ K; so
rb ∈ Q ⊆ NW(WJ ), and it follows that rbc ∈ �J whenever c ∈ J . If b · c �= 0 then
b is in the support of rbc, and so rbc ∈ �J implies b ∈ J . Since K is connected it
follows that if K contains any element of J then K ⊆ J . So either K ∩ J = ∅ or
K ⊆ J . But we have assumed that there are no such components. So the component
of � that contains a is the only component; that is, � is irreducible.

Observe that the group Stab(a) = {w ∈ W | wa = a} is a subset of Q and
hence of NW(WJ ). Note also that NW(WJ ) = {w ∈ W | w�J = �J }, which is
also the stabilizer of the subspace VJ (since VJ is the subspace spanned by �J and
�J = VJ ∩ �). Now Stab(a) is a parabolic subgroup of W whose root system is
� ∩ a⊥, and the following table gives the type of this root system in all cases.

W Stab(a)

An An−2
Cn Cn−2 + A1
Cn Cn−1
Dn Dn−2 + A1
F4 C3
E6 A5

W Stab(a)

E7 D6
E8 E7
H3 A1 + A1
H4 H3

I2(2k) A1
I2(2k + 1) ∅

(For Cn there are two W orbits of roots, giving two possibilities for Stab(a). For
F4 and I2(2k) there are also two W -orbits of roots, but Stab(a) has the same type
of root system whichever orbit a belongs to.) Since each irreducible constituent of
its root system spans an irreducible Stab(a)-submodule of V , the table shows that
as a Stab(a)-module, V has composition length two or three or (in one case only)
four: a itself spans a trivial Stab(a)-submodule of dimension 1, and a⊥ is either
irreducible of dimension n − 1 (for types F4, E6, E7, E8, H4, I2(2k) and one of
the Cn possibilities), or the direct sum of irreducibles of dimensions 1 and n − 2
(for types An, Cn, Dn when n > 4, H3 and I2(2k + 1)), or the direct sum of three
irreducibles of dimension 1 (for type D4). Furthermore, the summands of a⊥ are
pairwise nonisomorphic as Stab(a)-modules, since even if they are of the same type
their centralizers in Stab(a) are different.
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Since {a} � J � � andVJ is Stab(a)-invariant, we see thata⊥ = (VJ ∩a⊥)⊕V ⊥
J ,

with both summands nonzero Stab(a)-modules. So � is of type An, Cn, Dn or H3.
Furthermore, except in type D4, the two direct summands of a⊥ are irreducible and
not isomorphic, and are therefore the only proper Stab(a)-submodules of a⊥. We
conclude that VJ is spanned by a and one of the summands of a⊥, while V ⊥

J is the
other summand. In type D4 we similarly deduce that VJ is spanned by a and one
or two of the three 1-dimensional summands of a⊥, and, correspondingly, V ⊥

J is of
either of type A1 + A1 or of type A1.

If � is of type An then one of the summands of a⊥ is of type An−2 while the
other is a trivial 1-dimensional Stab(a)-module. If V ⊥

J is of type An−2 then VJ must
be of type A1, since the orthogonal complement of a subsystem of type An−2 in An

contains only a rank 1 root system. This contradicts the assumption that {a} � J . So
J is of type A1 + An−2. Since WJ is visible, we deduce that a is an end node of the
An diagram, and the node adjacent to a is the unique simple root not in J . However,
if n > 3 then the maximal length element of W is in Q but not in the normalizer
of WJ . So n = 3 and J = {a, c}, where c is the other end node. It is readily checked
that Q has 8 elements and coincides with NW(WJ ) (which is generated by WJ and
an element that interchanges a and c).

If � is of type Cn then one summand of a⊥ is of type Cn−2 and the other of
type A1. The roots in the A1 summand are in the same W -orbit as a. If V ⊥

J is the
A1 component of a⊥ then VJ = (V ⊥

J )⊥ is of type Cn−2 + A1. This determines J

uniquely, since WJ is visible. If n � 4 and w is the longest element of the visible
parabolic subgroup of type An−1, then −wa ∈ � \ {b} = J , but w /∈ NW(WJ ). This
contradicts the fact that Q ⊆ NW(WJ ). So n = 3, and the elements of J are the
end nodes a, c of the C3 diagram, the middle node b being in the same W -orbit as a.
Since �J = {±a, ±c} and c is not in the same W -orbit as a and b we deduce that
Q = {w ∈ W | wa = ±a}. Furthermore, of the 6 roots in the W -orbit of c, only c

and −c are orthogonal to a. So if wa = ±a then wc = ±c. Thus if w ∈ Q then
w�J = �J , as required.

Continuing the discussion of Cn, suppose now that V ⊥
J is the Cn−2 component

of a⊥. Then VJ = (V ⊥
J )⊥ is of type C2. Writing J = {a, b}, the fact that Stab(a)

is of type A1 + Cn−2 means that it is b rather than a that is the end node of the Cn

diagram. If we put c = rba then {±c} is the component of � ∩ a⊥ of type A1. It
follows that {±a} = {±rbc} is the A1-component of � ∩ (rba)⊥ = � ∩ c⊥. We see
that Stab(a) = 〈rc〉 × W ′ and Stab(c) = 〈ra〉 × W ′, where W ′ is a parabolic (not
visible) subgroup of W of type Cn−2. Indeed, the root system of W ′ is � ∩ V ⊥

J . The
roots in �J that are in the same W -orbit as a are ±a and ±c, and so

Q = {1, ra, rb, rbra} Stab(a) = {1, ra, rb, rbra}{1, rc}W ′ = WJ W ′.

Hence our requirement that Q stabilizes �J = {±a, ±b} is indeed satisfied.
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If � is of type Dn with n > 4 then one summand of a⊥ is of type Dn−2 and
the other of type A1. The roots orthogonal to a Dn−2 subsystem form a system of
type A1+A1. There are in fact two W -orbits of parabolic A1+A1 subsystems, and the
orthogonal complement of a Dn−2 is perhaps better thought of as type D2, since the
visible parabolic in this orbit corresponds to the two nodes of the diagram that form
the fork. So if V ⊥

J is the Dn−2 summand of a⊥ then J = {a, b} consists of the two
nodes of valency 1 that are adjacent to c, the node of valency 3. A similar statement
applies for D4 in the case that V ⊥

J is of type A1 + A1. In both cases the element
w = rcrarbrc ∈ W satisfies wa = b and wb = a, and since �J = {±a, ±b} we see
that Q = {1, ra, w, wra} Stab(a). But Stab(a) = 〈rb〉×W ′ and Stab(b) = 〈ra〉×W ′,
where W ′ is the parabolic subgroup corresponding to the subspace V ⊥

J , and it follows
readily that Q stabilizes �J = {±a, ±b}, as required.

Continuing the discussion of Dn, where n � 4, suppose now that V ⊥
J is an A1

component of a⊥. Then VJ = (V ⊥
J )⊥ is of type A1 +Dn−2. But the maximal length

element of a visible An−1 subsystem containing a takes a to an element of �J but
does not normalize WJ . So our requirement that Q ⊆ NW(WJ ) is not met.

Finally, suppose that � is of type H3, so that Stab(a) is of type A1 +A1. Then V ⊥
J

is of type A1, and hence J is of type A1 + A1. Let J = {a, c}, and note that c = wa

for some w ∈ W . Since NW(WJ ) is generated by WJ and the central involution
of W , we see that c is not in the NW(WJ )-orbit of a. Hence the element w above is
in Q but not in NW(WJ ), and so our requirements are not met.

We have thus established the following result.

Proposition 26. Let � be the set of simple roots for the finite irreducible Coxeter
group W , and suppose that a ∈ J ⊆ �. Then {w ∈ W | wa ∈ �J } is a subset of
NW(WJ ) if and only if one of the following situations occurs:

(1) J = {a};
(2) J = �;

(3) � = {a, b, c} is of type C3, with mac = 3 and mcb = 4, and J = {a, b} of type
A1 + A1;

(4) � is of type Cn and J = {a, b} is of type C2, with b an end node of �;

(5) � is of type Dn or A3, and J = {a, b}, where a and b are end nodes that are
both adjacent to some c ∈ �.

We return now to investigation of an arbitrary finite rank Coxeter group W . The
next proposition is an immediate consequence of Proposition 26 and the discussion
preceding it.

Proposition 27. Let a ∈ J ⊆ L ⊆ �, and suppose that the group WL is finite and
that WJ = FC(ra). Let J0 be the component of J containing a and L0 the component
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of L containing J0. Then every component of J that is not contained in L0 is a
component of L. Furthermore, if {a} �= J ∩ L0 �= L0 then J ∩ L0 = {a, b} for
some b, and one of the following alternatives occurs:

(1) L0 = {a, c, b} is of type C3, with mac = 3 and mcb = 4;

(2) L0 is of type Cn for some n � 3, with b an end node and J0 = {a, b} of type C2;

(3) L0 is of type A3 or type Dn for some n � 4, the nodes a and b having valency 1
and sharing a common neighbour.

One of the ingredients of alternative (2) of Proposition 27 is that the component
of FC(ra) containing a is of type C2. We shall see that when this situation arises,
Odd(a) has a focus in �.

Proposition 28. Suppose that a ∈ J ⊆ � with WJ = FC(ra), and let J0 be the
component of J containing a. Suppose that J0 = {a, b} is of type C2. Then either
Odd(a) ∪ {b} is a spherical component of EOdd(a), or else (a, b) is a focus of
Odd(a) in �.

Proof. We use induction on k to prove that for all k � 2, ifb = c1, a = c2, c3, . . . , ck

are simple roots satisfying

(1) 2 < mcici+1 < ∞ for all i ∈ {1, 2, . . . , k − 1}, and

(2) c1, c2, . . . , ck are distinct from each other,

then {c1, c2, . . . , ck} forms a system of type Ck . The case k = 2 is immediately true.
Suppose that k > 2. The inductive hypothesis tells us that {c1, c2, . . . , ck−1}

is of type Ck−1. The element w = v[ck−1, {ck−2}] . . . v[c4, {c3}]v[c3, {c2}] has the
property that wa = wc2 = ck−1, and so if we write d = wb then

rd = wrbw
−1 ∈ w FC(ra)w

−1 = FC(ck−1),

since it is given that b ∈ FC(ra). But W{ck−1,ck} is finite, and so it follows that
{rd, rck−1, rck

} generates a finite group. Now d · ck−1 = b · a = − cos(π/4) and
ck−1 · ck = − cos(π/m) for some m > 2. If m � 4 then

ck · d = ck ·
(
b + √

2
k−1∑
i=2

ci

)
� −√

2(ck · ck−1) � −1,

whence the reflection subgroup W{rd ,rck } is infinite (by Theorem 10), a contradiction.
So m = 3. If mcick

> 2 for any i ∈ {1, 2, . . . , k − 2} then

ck · d �
√

2(ck · ck−1) + ck · ci < −1,
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again giving a contradiction. So mckci
= 2 for all i ∈ {1, 2, . . . , k−2} and mckck−1 =

3, and since {c1, c2, . . . , ck−1} is a system of type Ck−1 it follows that {c1, c2, . . . , ck}
is a system of type Ck , as claimed.

If there were c, d ∈ Odd(a) with 3 < mcd < ∞ then b together with a minimal
length odd-labelled path from a to {c, d} would yield c1, c2, . . . , ck ∈ � satisfying
(1) and (2) above and not forming a system of type Ck , contradicting the result proved
above. The same argument yields a contradiction if c ∈ Odd(a) and d ∈ � \ Odd(a)

with 3 < mcd < ∞, unless {c, d} = {a, b}. So all edge labels in Odd(a) are 3, if
c, d ∈ Odd(a) are not adjacent in Odd(a) then mcd ∈ {2, ∞}, and if c ∈ Odd(a)

and d ∈ � \ Odd(a) then mcd ∈ {2, ∞} unless {c, d} = {a, b}. Furthermore, any
circuit in Odd(a) would similarly yield a contradiction (by combining the circuit with
a minimal finite-labelled path connecting it to b). So Odd(a) is tree.

For each c ∈ Odd(a) let C[b..c] ⊆ � consist of b and the unique path from a to c in
Odd(a). The discussion above shows that C[b..c] is always of type C. Now suppose
that c ∈ Odd(a) and e ∈ �\C[b..c] with mce = 2. Write C[b..c] = {c1, c2, . . . , ck},
with c1 = b and ck = c, and let d = b + √

2
∑k

i=2 ci . An argument similar to one
used above shows that rd ∈ FC(c), and hence W{d,c,e} is finite. So d · e > −1.
If ci · e �= 0 then ci · e � −1/2; so it follows that there is at most one i with
ci · e �= 0. Suppose, for a contradiction, that there is exactly one such i. If i > 1 then
d · e = √

2(ci · e), and so ci · e > −1/
√

2. Hence mcie = 3, and d · e = −1/
√

2. But
this means that the edges {c, d} and {d, e} of the Coxeter graph of {d, c, e} are both
labelled 4, contradicting the fact that W{d,c,e} is finite. So we must have i = 1, and
finiteness of W{c,d,e} forces b · e = d · e = −1/2. But now if we put L = {e} ∪ J

then, in the notation of Proposition 27, we have that L0 = {e, b, a} is of type C3
with J ∩ L0 = {b, a} of type C2, and Proposition 27 shows that this is not possible.
We conclude that if e ∈ � has the property that mce = 2 for some c ∈ Odd(a) then
mde = 2 for all d ∈ C[b..c]. In particular, if e ∈ �\(Odd(a)∪{b}) and mce �= ∞ for
some c ∈ Odd(a) then mce = 2, as shown above, and so mde = 2 for all d ∈ C[b..c].

All that remains to prove now is that if c, d ∈ Odd(a) with c /∈ C[b..d] and
d /∈ C[b..c], then mcd = ∞. Since c and d are not adjacent in Odd(a) the only
alternative is that mcd = 2; so suppose, for a contradiction, that this holds. Choose
the vertex e ∈ Odd(a) on the (unique) path from c to d such that the distance from
e to a is minimal. Let c′, d ′ be the neighbours of e in the path from c to d, with c′
between e and c and d ′ between e and d. Then c′ ∈ C[b..c], and since mcd = 2
it follows that mc′d = 2. Now since d ′ ∈ C[b..d] and mc′d = 2 it follows that
mc′d ′ = 2. Thus the set L ⊆ � consisting of c′ and d ′ and the vertices on the path
from a to e form a system of type D (or A3 if e = a). So L is spherical, and since
b ∈ FC(ra) it follows that L ∪ {b} is spherical also. But this is impossible since
L ∪ {b} is connected, has an edge labelled 4 (namely, {b, a}), and has a vertex of
valency 3 (namely e). �



680 W. N. Franzsen, R. B. Howlett and B. Mühlherr CMH

The situation of alternative (3) of Proposition 27 is very similar to that of alterna-
tive (2), and in this case it turns out that Odd(a) has a half-focus in �.

Proposition 29. Suppose that a ∈ J ⊆ � with WJ = FC(ra) and {a} a component
of J , and suppose that J ∩ Odd(a) �= {a}. Then either Odd(a) is a spherical
component of EOdd(a), or else there exists an element b ∈ Odd(a) such that {a, b}
is a half focus of Odd(a) in �.

Proof. Let b ∈ (J ∩Odd(a))\{a}, and let w ∈ W with wa = b. Then w ∈ NW(WJ ),
by Proposition 25, and so

FC(rb) = FC(wraw
−1) = w FC(ra)w

−1 = wWJ w−1 = WJ .

Moreover, w�J = �J , and since a · c = 0 for all c ∈ �J \ {a}, it follows that
wa · d = 0 for all d ∈ �J \ {wa}. So {b} is a component of J . Note that mab = 2,
since a and b are in different components of J .

Let c ∈ � \ {a, b}, and suppose first of all that 2 < mbc < ∞. Since {b, c} is
spherical and WJ = FC(rb) it follows that J ∪ {c} is spherical. Let L = J ∪ {c} and
let L0 be the component of L containing a. By Proposition 27, every component of
J that is not contained in L0 is a component of L. But b is adjacent to c in L; so
{b} is not a component of L, and it follows that b ∈ L0. Now {a} �= J ∩ L0, since
b ∈ J ∩L0, and J ∩L0 �= L0, since c ∈ L0 and c /∈ J (since {b} is a component of J ).
Furthermore, the conditions of alternative (2) of Proposition 27 are not satisfied, since
a and b are not adjacent in J . So either alternative (1) or alternative (3) must hold,
and since c is the only element of L not in J it follows that L0 = {a, c, b}, with
mac = 3. But a symmetrical argument, with the roles of a and b reversed, shows that
every d ∈ � with 2 < mad < ∞ has the property that mbd = 3. So mac = mbc = 3,
and {a, c, b} is of type A3.

Now suppose that mbc = 2. Again since {b, c} is spherical it follows that J ∪ {c}
is spherical, and so mac < ∞. If mac > 2 then, as we have just observed, it follows
that mbc = 3, contrary to our assumption that mbc = 2. So mac = mbc = 2, and
we have now shown that whenever mbc < ∞ we have mac = mbc ∈ {2, 3}. Since a
symmetrical argument gives the same conclusion whenever mac < ∞, we conclude
also that mac = ∞ if and only if mbc = ∞.

We now use induction on k to prove that for all k � 3, if b = c1, a =
c2, c3, . . . , ck are simple roots satisfying

(1) 2 < mcici+1 < ∞ for all i ∈ {2, 3, . . . , k − 1}, and

(2) c1, c2, . . . , ck are distinct from each other,

then {c1, c2, . . . , ck} forms a system of type Dk or A3. The case k = 3 follows from
what we have proved above.
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Suppose that k > 3. The inductive hypothesis tells us that {c1, c2, . . . , ck−1} is of
typeDk−1 (orA3 if k = 4). The elementw = v[ck−1, {ck−2}] . . . v[c4, {c3}]v[c3, {c2}]
has the property that wa = wc2 = ck−1, and so if we write d = wb then

rd = wrc1w
−1 ∈ w FC(ra)w

−1 = FC(ck−1),

since it is given that b ∈ FC(ra). But W{ck−1,ck} is finite, and so it follows that
{rd, rck−1, rck

} generates a finite group. Now d · ck−1 = b · a = 0 and ck−1 · ck =
− cos(π/m) for some m > 2. If ck · ci �= 0 for some i ∈ {1, 2, . . . , k − 2} then

ck · d = ck ·
(
c1 + c2 + ck−1 + 2

k−2∑
i=3

ci

)
� −( 1

2 + cos π
m

)
� −1,

whence the reflection subgroup W{rd ,rck } is infinite (by Theorem 10), a contradiction.
So ck · d = ck−1 · ck = − cos π

m
. Since the reflection subgroup generated by

{rd, rck−1, rck
} is finite it follows that m = 3. So we have shown that mckck−1 = 3

and mckci
= 2 for i < k − 1, and since {c1, c2, . . . , ck−1} is a system of type Dk−1 it

follows that {c1, c2, . . . , ck} is a system of type Dk , as claimed.
Note that Odd(a) \ {b} and Odd(b) \ {a} are both connected, since each element

c ∈ Odd(a) that is adjacent to a is also adjacent to b, and vice versa. If there were
c, d ∈ Odd(a) \ {b} with 3 < mcd < ∞ then b together with a minimal length
odd-labelled path from a to {c, d} would yield c1, c2, . . . , ck ∈ � satisfying (1)
and (2) above and not forming a system of type Dk , contradicting the result proved
above. The same argument yields a contradiction whenever c ∈ Odd(a) \ {a, b}
and d ∈ � \ Odd(a) with 3 < mcd < ∞. So all edge labels in Odd(a) are 3, if
c, d ∈ Odd(a) are not adjacent in Odd(a) then mcd ∈ {2, ∞}, and if c ∈ Odd(a)

and d ∈ � \ Odd(a) then mcd ∈ {2, ∞}. Furthermore, any circuit in Odd(a) \ {b}
would similarly yield a contradiction (by combining the circuit with a minimal finite-
labelled path connecting it to b). So Odd(a) \ {b} is tree. Of course, Odd(b) \ {a} is
also a tree, by the same argument.

For each c ∈ Odd(a) \ {a, b} let D[a, b..c] ⊆ � consist of b and the unique
path from a to c in Odd(a) \ {b}. The discussion above shows that D[a, b..c] is
of type D. Now suppose that c ∈ Odd(a) \ {a, b} and e ∈ � \ D[a, b..c] with
mce = 2. Write D[a, b..c] = {c1, c2, . . . , ck}, with c1 = b, c2 = a and ck = c, and
let d = c1 + c2 + ck + 2

∑k−1
i=3 ci . An argument similar to one used above shows

that rd ∈ FC(c), and hence W{d,c,e} is finite. So d · e > −1. If ci · e �= 0 then
ci · e � −1/2; so it follows that {i | ci · e �= 0} is a subset of {1, 2, k} with at most
one element. But ck · e = 0 since mce = 2, and c1 · e = c2 · e since maf = mbf for
all f ∈ �. So ci · e = 0 for all i ∈ {1, 2, . . . , k}. In particular, if e ∈ � \ Odd(a)

and mce �= ∞ for some c ∈ Odd(a) then mce = 2, as shown above, and so mde = 2
for all d ∈ D[a, b..c].
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All that remains to prove now is that if c, d ∈ Odd(a)\{a, b} with c /∈ D[a, b..d]
and d /∈ D[a, b..c], then mcd = ∞. Since c and d are not adjacent in Odd(a) the
only alternative is that mcd = 2; so suppose, for a contradiction, that this holds.
Choose the vertex e ∈ Odd(a) \ {b} on the (unique) path from c to d such that the
distance from e to a is minimal. Let c′, d ′ be the neighbours of e in the path from
c to d, with c′ between e and c and d ′ between e and d. Then c′ ∈ C[b..c], and
since mcd = 2 it follows that mc′d = 2. Now since d ′ ∈ C[b..d] and mc′d = 2 it
follows that mc′d ′ = 2. Thus the set L ⊆ � consisting of c′ and d ′ and the vertices
on the path from a to e form a system of type Dk , or A3 if e = a. So L is spherical,
and since b ∈ FC(ra) it follows that L ∪ {b} is spherical also. If L = A3 then
mac′ = mad ′ = 3, and since mbc′ = mac′ and mbd ′ = mad ′ we see that L ∪ {b} is of
type Ã3, contradicting the fact that L ∪ {b} is spherical. Similarly if L is of type Dk

then L ∪ {b} is of type D̃k , again giving a contradiction. �

We also need to obtain further information about the situation of alternative (1)
of Proposition 27. So for the next three lemmas we assume that a ∈ J ⊆ L ⊆ �

with L spherical and WJ = FC(ra), and there exist b ∈ J and c ∈ L \ J such that
L0 = {a, c, b} is a component of L of type C3, with mac = 3 and mcb = 4.

Lemma 30. For all e ∈ � \ {a, c, b}, either mce = mae = mbe = 2 or mce = ∞.
Moreover, J ∩ Odd(a) = {a}.

Proof. If J ∩ Odd(a) �= {a} then, since {a} is a component of J , Proposition 29
applies, and it follows in particular that no vertex in Odd(a) lies on an edge with
finite label different from 3. This contradicts mbc = 4. So J ∩ Odd(a) = {a}.

Suppose that e ∈ � \ {a, c, b} with mce < ∞. The group rcraW{c,e}rarc is finite
and contains rcraW{c}rarc = W{a}; so there exists a maximal finite subgroup G of W

containing ra and the reflection along (rcra)e. Since rb ∈ FC(ra) ⊆ G it follows that
W{b,(rcra)e} is finite, and hence so is W{(rarc)b,e} = rarcW{b,(rcra)e}rcra . Hence

(b + √
2c + √

2a) · e = (rarc)b · e > −1. (4.1)

Assume, for a contradiction, that mce �= 2. Then c · e � −1/2 < −1/2
√

2, and so
(b + √

2a) · e > −1/2, giving a contradiction if either mbe �= 2 or mae �= 2. So
b · e = a · e = 0, and the inequality 4.1 above gives c · e > −1/

√
2. So mce = 3.

But now W{a,c,e} is of type A3, hence finite, and hence contained in a maximal finite
subgroup that also contains FC(ra) = WJ . Since b ∈ J it follows that {a, c, e, b} is
spherical, which is false since it is of type B̃3. So mce = 2, and it remains to show
that mae = mbe = 2.

Since c · e = 0 we deduce from 4.1 that (b + √
2a) · e > −1, and in particular it

follows that mae is 2 or 3. In either case {e, a, c} is spherical (of type A3 or A1 +A2),
and so {e, a, c, b} is also spherical (since rb ∈ FC(ra)). If either mae �= 2 or mbe �= 2
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then applying Proposition 27 with L′′ = J ∪{e, c} in place of L yields a contradiction,
since if L′′

0 is the component of L′′ containing a then {a, b} ⊆ L′′
0 ∩ J �= L′′

0 (since
c /∈ J ), but L′′

0 is not of type C3 or Dn since it contains {a, c, b, e}. So mae = mbe = 2,
as required. �

Lemma 31. Let J ′ = J \ {a} and let d ∈ Odd(a). Then mcd �= 2. If mdb′ �= 2
for some b′ ∈ J ′ then mdb′ = 4, and there is a unique a′ adjacent to d in Odd(a);
moreover, {a′, d, b′} is of type C3, and FC(ra′) = WJ ′∪{a′}. On the other hand, if
mdb′ = 2 for all b′ ∈ J ′ then FC(rd) = WJ ′∪{d}.

Proof. We use induction on the distance from d to a in Odd(a). Observe that if
d = a then mdb′ = 2 for all b′ ∈ J ′, since {a} is a component of J , and we have
FC(rd) = WJ = WJ ′∪{d} and mcd = 3 �= 2, as required.

Suppose now that d �= a, and let a = d1, d2, . . . , dk = d be a minimal length
path from a to d in Odd(a). If 2 � i � k − 1 then di does not have valency 1 in
Odd(a), and so mdib

′ = 2 for all b′ ∈ J ′, by the inductive hypothesis. The same is
true for i = 1, since {a} is a component of J .

We prove first that mcd �= 2. Assuming, for a contradiction, that mcd = 2, then
clearly d /∈ {a, c, b}, and Lemma 30 tells us that mad = 2 and mbd = 2. It follows
that mbf = 2 for all f in the set M = {d1, d2, . . . , dk}, since {di} is a component of
J ′ ∪ {di} when 1 � i � k − 1. So wb = b for all w ∈ WM . Furthermore, since
d and a lie in the same connected component of �(�), we can choose w ∈ WM

such that wd = a. Now since wc · a = c · d = 0 we see that the reflection rwc

centralizes ra , and hence normalizes FC(ra) = WJ . By Lemma 11 it follows that
either wc ∈ �J or wc · e = 0 for all e ∈ J . But wc · b = c · w−1b = c · b �= 0; so
we must have wc ∈ �J , and hence c ∈ w−1�J ⊆ �J∪M . So c ∈ M , contradicting
mbf = 2 for all f ∈ M . So mcd �= 2.

Write a′ = dk−1 and J̃ = J ′ ∪ {a′}. Note that {a′} is a component of J̃ , and
FC(ra′) = WJ̃ (by the inductive hypothesis). Now since {d, a′} is spherical, L̃ =
J̃ ∪ {d} is spherical also. Let L̃0 be the component of L̃ containing a′.

Consider first the case that mdb′ = 2 for all b′ ∈ J ′. Since also ma′b′ = 2 for all
b′ ∈ J ′, it follows that rd and ra′ both fix all elements of J ′. Since v = v[d, {a′}] ∈
W{a′,d} satisfies va′ = d, we conclude that

FC(rd) = v FC(ra′)v−1 = vWJ ′∪{a′}v−1 = WvJ ′∪{va′} = WJ ′∪{d},
as required.

Now suppose that mdb′ �= 2 for some b′ ∈ J ′. Then b′ ∈ J̃ ∩ L̃0, and so {a′} �=
J̃ ∩ L̃0 �= L̃0. Applying Proposition 27, we see that the situation of alternative (1)
must hold: alternative (2) is ruled out since a′ is a component of J̃ , and alternative (3)
is ruled out since J ′ ∩ Odd(a) = ∅. Hence L̃0 = {a′, d, b′} is of type C3, with
mdb′ = 4 and mda′ = 3. Furthermore, Lemma 30 tells us that mde ∈ {2, ∞} for
all e ∈ �\{a′, d, b′}; so a′ is the unique neighbour of d in Odd(a), as required. �
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Lemma 32. Let e ∈ EOdd(a) \ Odd(a) with e �= b. Then mbe = 2.

Proof. If e ∈ J then it is clear that mbe = 2, since b is a component of J . So we
may assume that e /∈ J .

As above, write J ′ = J \ {a}. Since e ∈ EOdd(a) there exists a d ∈ Odd(a)

with mde even. If d is adjacent to some b′ ∈ J ′ then, by Lemma 31, there is
a unique a′ ∈ Odd(a) adjacent to d; furthermore, {a′, d, b′} is of type C3, and
FC(ra′) = WJ ′∪{a′}. By Lemma 30, since mde �= ∞ it follows that ma′e = mde = 2.
On the other hand, if d is not adjacent to any element of J ′ then Lemma 31 tells us
that FC(rd) = WJ ′∪{d}. So in either case there is an a′ ∈ Odd(a) with ma′e even and
FC(ra′) = WJ ′∪{a′}.

Choose such an a′. Since ma′e is even, v[e, {a′}]a′ = a′; moreover v[e, {a′}] is
the reflection along some root f = λe + μa′. Note that f · a′ = 0, and hence λ �= 0.
Since e /∈ J it follows that f /∈ �J . But rf centralizes ra′ , and hence normalizes
FC(ra′) = WJ ′∪{a′}. By Lemma 11 it follows that f · b = 0. But also a′ · b = 0,
since {a′} and {b} are distinct components of J ′ ∪ {a′}; so it follows that e · b = 0.
Thus mbe = 2, as required. �

Lemmas 30, 31 and 32 combine to yield the following result.

Proposition 33. Suppose that a ∈ J ⊆ L ⊆ �, with L spherical and FC(ra) = WJ ,
and let L0 be the component of L containing a. Suppose that L0 = {a, c, b} is of
type C3, with mac = 3 and mbc = 4, and J ∩L0 = {a, b}. Then b is a C3-neighbour
of Odd(a). Furthermore, J ∩ Odd(a) = {a}, and if a′ ∈ Odd(a) is not adjacent to
any C3-neighbour of Odd(a) then FC(ra′) = WJ ′∪{a′}, where J ′ = J \ {a}.

Proof. If mbd �= 2 for some d ∈ Odd(a), then mdb = 4, by Lemma 31. There is
at least one d ∈ Odd(a) such that mbd = 4, namely d = c. Lemma 31 tells us that
for each d ∈ Odd(a) with mbd = 4 there is an a′ ∈ Odd(a) such that {a′, d, b} is a
system of type C3. Moreover, by Lemma 30, if e ∈ � \ (Odd(a) ∪ {b}) then either
mde = ∞ or mae = mbe = mde = 2, while if e ∈ Odd(a) \ {a, c} then mde = ∞,
since mde �= 2 by Lemma 31. And if e ∈ EOdd(a) \ (Odd(a) ∪ {b}) then mbe = 2,
by Lemma 32. So b satisfies all the requirements of a C3-neighbour of M = Odd(a),
as specified in Definition 4.

It now follows from Lemma 31 that if a′ ∈ Odd(a) is adjacent to some b′ ∈ J ′
then b′ is a C3-neighbour of Odd(a), and if a′ is not adjacent to any such b′ then
FC(ra′) = WJ ′∪{a′}. Finally, J ∩ Odd(a) = {a}, by Lemma 30. �

Let a, a′ ∈ �, and suppose that w ∈ W has the property that wa = a′. By
Proposition 12 there exist ai ∈ Odd(a) and ci ∈ � such that

(i) a1 = a and ak+1 = a′,
(ii) mciai

�= ∞ and v[ci, {ai}]ai = ai+1, for all i ∈ {1, 2, . . . , k},
(iii) w = v[ck, {ak}] . . . v[c2, {a2}]v[c1, {a1}].
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Now let b be a C3-neighbour of Odd(a). For each c ∈ Odd(a) that is adjacent to b,
define X(c) = b + √

2c + √
2ã, where ã is the unique neighbour of c in Odd(a),

and for each c ∈ Odd(a) that is not adjacent to b, define X(c) = b. We show that
v[ci, {ai}]X(ai) = X(ai+1) for all i ∈ {1, 2, . . . k}.

Suppose first that neither ci nor ai is adjacent to b. Then X(ai) = b, and since
ai+1 ∈ {ai, ci} we have that X(ai+1) = b also. Since rai

and rci
both fix b, and

v[ci, {ai}] ∈ W{ai ,ci}, it follows that

v[ci, {ai}]X(ai) = v[ci, {ai}]b = b = X(ai+1),

as required.
Next, suppose that ci is adjacent to b, but ai is not adjacent to b. Since mciai

�= ∞
and a ∈ Odd(a) it follows that ci ∈ EOdd(a). Since b is a C3-neighbour of Odd(a), it
is not adjacent to any element of EOdd(a) \ Odd(a); so ci ∈ Odd(a), and, moreover,
mcie = ∞ for all e ∈ Odd(a) \ {ci} apart from the unique neighbour of ci in Odd(a).
So ai is this unique neighbour, mciai

= 3, and ai+1 = v[ci, {ai}]ai = ci . Moreover,
mcib = 4 and maib = 2. So

v[ci, {ai}]X(ai) = rai
rci

b = b + √
2ci + √

2ai = X(ci) = X(ai+1)

as required.
Now suppose that ai is adjacent to b, and let ã be the unique neighbour of ai

in Odd(a). Since maie = ∞ for all e ∈ Odd(a) \ {ai, ã}, if ci ∈ Odd(a) then ci = ã.
In this case we see that

v[ci, {ai}]X(ai) = rai
rci

(b + √
2ci + √

2ai) = b = X(ci) = X(ai+1),

since ai+1 = v[ci, {ai}]ai = ci . If ci = b then v[ci, {ai}] = rbrai
rb, which fixes

both ai and X(ai) = b + √
2ai + √

2ã. So v[ci, {ai}]X(ai) = X(ai+1) in this case
too. Finally, suppose that ci /∈ Odd(a) ∪ {b}. Since mciai

�= ∞ we must have
mciã = mciai

= mcib = 2, (by the definition of a C3-neighbour). So

v[ci, {ai}]X(ai) = rci
(b + √

2ci + √
2ã) = b + √

2ci + √
2ã = X(ai+1)

since ai+1 = rci
ai = ai .

We have now covered all cases, and shown that v[ci, {ai}]X(ai) = X(ai+1) for
all i ∈ {1, 2, . . . k}. By a trivial induction it follows that X(ak+1) = wX(a1).

Thus we have established the following result.

Lemma 34. Let a ∈ � and w ∈ W such that wa ∈ �. Suppose that b is a
C3-neighbour of Odd(a) that is not adjacent to a. Then

wb =
{

b if wa is not adjacent to b,

b + √
2wa + √

2ã if wa is adjacent to b,

where ã is adjacent to wa in Odd(a).
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We are now able to give a detailed description of the components of J whenever
WJ is the finite continuation of a simple reflection.

Proposition 35. Suppose that a ∈ J ⊆ � with WJ = FC(ra), and suppose that K

is a component of J . Then one of the following alternatives holds.

(a) K = {a} = J ∩ Odd(a).

(b) K = {a, b} is of type C2, and J ∩ Odd(a) = {a}.
(c) K = {a} or K = {b}, where {a, b} = J ∩ Odd(a) is of type A1 + A1.

(d) K = {b} � Odd(a), and b is a C3-neighbour of Odd(a).

(e) Odd(a) ⊆ K , and K is a component of EOdd(a).

(f) K ∩ Odd(a) = ∅, and K is a component of EOdd(a).

Proof. We consider first the case that K ∩ Odd(a) �= ∅, and start by supposing that
there exists a spherical L ⊆ � with J ⊆ L and K not a component of L.

Choose such an L, and let L0 be the component of L containing a. By Proposi-
tion 27, since K is not a component of L we must have K ⊆ L0. So either K = {a},
in which case (a) above holds, or else {a} � {a} ∪ K ⊆ J ∩ L0. Furthermore,
J ∩ L0 �= L0, since K �= L0. So if (a) does not hold then {a} �= J ∩ L0 �= L0, and
so one of the alternatives (1), (2) or (3) of Proposition 27 must hold.

Suppose that alternative (2) holds, so that K = {a, b} = J ∩ L0 for some b,
and {a, b} is of type C2. By Proposition 28 we see that each c ∈ Odd(a) \ {a} lies
in a type C spherical subset L′ of � containing {a, b}. Since J ∩ L′ = {a, b} (by
Proposition 27) it follows that c /∈ J . So J ∩Odd(a) = {a}, and (b) above is satisfied.

Suppose that alternative (3) of Proposition 27 holds, so that J ∩ L0 = {a, b} is of
type A1+A1, and b ∈ Odd(a). Proposition 29 immediately yields that J ∩Odd(a) =
{a, b}, and so (c) above is satisfied.

Suppose that alternative (1) of Proposition 27 holds, so that L0 = {a, c, b} with
mac = 3 and mcb = 4, and J ∩L0 = {a, b}. By Lemma 30 we know that b /∈ Odd(a),
and since we have assumed that K ∩ Odd(a) �= ∅, it follows that K = {a} =
J ∩ Odd(a). So (a) holds.

We have now dealt with all cases that arise if there is a spherical L ⊆ � with
J ⊆ L and K not a component of L. So assume that K is a component of every
spherical L containing J . We show that in this case Odd(a) ⊆ K , and K is a
component of EOdd(a); that is, (e) above holds.

To show that Odd(a) ⊆ K it is clearly sufficient to show that if a′ ∈ K ∩ Odd(a)

and b is adjacent to a′ in Odd(a) then b ∈ K . Note that since a′ ∈ Odd(a) there exists
w ∈ W with a′ = wa, and since Proposition 25 yields that w ∈ NW(WJ ) it follows
that FC(ra′) = WJ . Now the assumption that b and a′ are adjacent in Odd(a) implies
that {a′, b} is spherical, and therefore J ∪ {b} is spherical. But K is a component of
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every spherical subset of � containing J ; so it is a component of J ∪{b}. But a′ ∈ K

and b is adjacent to a′; so b ∈ K , as required.
Since K ⊆ J ⊆ EOdd(a) and K is connected, saying that K is a component of

EOdd(a) is equivalent to saying that mbc = 2 whenever b ∈ K and c ∈ EOdd(a)\K .
So suppose that c ∈ EOdd(a) \ K . Then there exists an a′ ∈ Odd(a) such that ma′c
is even. Thus {a′, c} is spherical, and as above it follows that J ∪ {c} is spherical. So
K must be a component of J ∪ {c}, and since c /∈ K it follows that mbc = 2 for all
b ∈ K , as required.

It remains to consider the case that K ∩Odd(a) = ∅; we must show that either (f)
or (d) holds. We start by supposing that there exists a spherical L ⊆ � and a w ∈ W

with wJ ⊆ L and wK not a component of L.
Choose such L and w, and let L0 be the component of L containing wa. By

Proposition 27, since wK is not a component of L we must have wK ⊆ L0. Now
wJ ∩ L0 �= L0 since wK �= L0, and {wa} �= wJ ∩ L0 since wa /∈ wK . So one
of the alternatives (1), (2) or (3) of Proposition 27 must hold. Alternative (3) can
be ruled out, since in that case wJ ∩ L0 ⊆ Odd(wa), which is impossible since
K ∩ Odd(a) = ∅. If alternative (2) holds then wK = wJ ∩L0 contains wa and is of
type C2, whence K contains a and is of type C2, and (b) is satisfied. If alternative (1)
holds then since wK �= {wa} it follows from Proposition 32 that wK = {b}, with b

a C3-neighbour of Odd(a). Since wa is not adjacent to b, it follows from Lemma 34
that w−1b = b, unless a is adjacent to b, in which case w−1b = b + √

2a + √
2ã

for some ã in Odd(a). But this latter case cannot occur, since w−1b ∈ K ⊆ �. So
K = wK = {b}, with b a C3-neighbour of Odd(a), and (d) holds.

Finally, suppose that wK is a component of every spherical L ⊆ � such that
wJ ⊆ L for some w ∈ W . For each c ∈ EOdd(a) \ K there is then a sequence
a = a0, a1, . . . , ak = c in � such that mai−1ai

finite for all i ∈ {1, 2, . . . , k} and
odd for all i ∈ {1, 2, . . . , k − 1}. We shall show that, for every such sequence,
mbai

= 2 for all b ∈ K and i ∈ {0, 1, . . . , k}; in particular, this will show that
mbc = 2 whenever b ∈ K and c ∈ EOdd(a) \ K , enabling us to conclude that K is a
component of EOdd(a).

The case k = 0 is clear, since a ∈ J \K and K is a component of J . Proceeding by
induction, we may assume that k > 0 and mbai

= 2 for all i ∈ {1, 2, . . . , k−1} and all
b ∈ K . We see that the element u = v[ak−1, {ak−2}]v[ak−2, {ak−3}] . . . v[a1, {a0}]
centralizes WK and has the property that ua = ak−1, since the labels in the path from a

to ak−1 are all odd. The group u−1W{ak−1,ak}u is finite and contains u−1rak−1u = ra ,
and so there is a maximal finite subgroup G of W containing this group and also
containing WJ .

Note that WJ ∪ {u−1rcu} ⊆ G = w−1WLw, for some w ∈ W and spherical
L ⊆ �, the element u being in the centralizer of WK . We may choose w to be the
minimal length element of WLw = WLwWJ , and it then follows from Lemma 15 that
wJ ⊆ L. Hence wK is a component of L. Furthermore, since wu−1rcuw−1 ∈ WL
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we see that the root wu−1c is in �L and not in �wK = wu−1�K (since c /∈ �K ).
So wu−1c · wu−1b = 0 for all b ∈ K . So c · b = 0, or (equivalently) mbc = 2 for all
b ∈ K , as required. �

To complement the results we have obtained so far, our next task is to find condi-
tions that ensure that a visible subgroup WK is contained in FC(ra).

Lemma 36. Let a ∈ � and K a component of EOdd(a) such that WK is finite. Then
WK ⊆ FC(ra).

Proof. Let F be a maximal finite subgroup of W with ra ∈ F , and choose w ∈ W such
that wFw−1 = WL for some L ⊆ �. We may replace w by the minimal length ele-
ment in the double coset WLwW{a}, since this does not affect the condition wFw−1 =
WL. So we have that w−1L ⊆ �+, and, moreover, ra ∈ w−1Lw∩W{a} = Ww−1L∩{a}
by Lemma 15. So wa ∈ L ⊆ �, and by Lemma 12 we see that w is a product of fac-
tors of the form v[d, {c}], with c, d ∈ EOdd(a). Since K is a component of EOdd(a)

it follows that each v[d, {c}] normalizes WK , and therefore w normalizes WK . More-
over, since wa ∈ L and L is spherical, it follows that L ⊆ EOdd(wa) = EOdd(a).
So WL normalizes WK . But WK is finite, by hypothesis, and WL is a maximal finite
subgroup of W . So WK ⊆ WL, and WK = w−1WKw ⊆ w−1WLw = F . Thus WK

is contained in all maximal finite subgroups of W containing ra , as required. �

Lemma 37. Let a ∈ � and let b be a C3-neighbour of Odd(a). If a and b are not
adjacent in � then rb ∈ FC(ra).

Proof. Let F be a maximal finite subgroup of W with ra ∈ F . As in the proof of
Lemma 36 there exist a w ∈ W and a maximal spherical L ⊆ � with wa = a′ ∈ L

and F = w−1WLw. Since L is spherical, L ⊆ EOdd(a).
Suppose first that a′ is not adjacent to b. Then mca′ = ∞ for every c ∈ Odd(a)

that is adjacent to b, and since a′ ∈ L it follows that no such c is in L. Thus mbe = 2
for all e ∈ L∩Odd(a). But since also mbe = 2 for all e ∈ EOdd(a)\ (Odd(a)∪{b}),
it follows that mbe = 2 for all e ∈ L \ {b}. Thus {b} is a component of L ∪ {b}, and
since L is spherical it follows that L ∪ {b} is spherical. Maximality of L tells us that
b ∈ L. Moreover, Lemma 34 gives wb = b, and so rb = w−1rbw ∈ w−1WLw = F .

On the other hand, suppose that a′ is adjacent to b. In this case Lemma 34
gives wb = b + √

2a′ + √
2ã, where ã is the unique neighbour of a′ in Odd(a).

Furthermore, since ma′e ∈ {2, ∞} for all e ∈ �\{ã, a′, b}, we see that ma′e = 2 for all
e ∈ L\{ã, a′, b} (since L is spherical). But the definition of a C3-vertex also requires
that mãe = mbe = 2 whenever ma′e = 2; so it follows that {ã, a′, b} is a component
of L∪{ã, a′, b}, which is therefore spherical since L and {ã, a′, b} are both spherical.
Maximality of L tells us that {ã, a′, b} ⊆ L; so wb = b + √

2a′ + √
2ã ∈ �L, and

rb = w−1rwbw ∈ w−1WLw = F .
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So rb ∈ F in all cases, and so rb is contained in all maximal finite subgroups of
W containing ra , as required. �

We now prove the converse to Proposition 28.

Proposition 38. Let a ∈ � and b ∈ � \ Odd(a), and suppose that (a, b) is a focus
of Odd(a) in �. Then FC(ra) = WJ , where J is the union of {a, b} and the spherical
components of EOdd(a). Moreover, FC(ra′) is not visible for any a′ ∈ Odd(a) \ {a}.

Proof. For each c ∈ Odd(a) letX(c) = b+√
2

∑m
i=1 ci andY (c) = b+√

2
∑m−1

i=1 ci ,
where c1 = a, c2, . . . , cm = c is the unique path from a to c in Odd(a), noting that
X(c) and Y (c) are roots in �C[b..c]. We remark, for later use, that X(c) and Y (c) are
fixed by the reflections rb, rc1, . . . , rcm−2 .

Let F = w−1WLw be a maximal finite subgroup of W containing ra , with L ⊆ �

and w of minimal length in WLwWa . Then wa = a′ ∈ L, by Lemma 15. Put
L0 = L ∩ Odd(a).

Choose c ∈ L0 with C[b..c] of maximal cardinality. If d ∈ L0 then mcd �= ∞
(since L0 is spherical), whence d ∈ C[b..c] by condition (3) of Definition 5. So
L0 ⊆ C[b..c]. Now if e ∈ L\L0 is arbitrary then e /∈ Odd(a) (since e /∈ L∩Odd(a))
and mce < ∞ (since c, e ∈ L and L is spherical). By condition (4) of Definition 5
it follows that mde = 2 for all d ∈ C[b..c]. Since this holds for all e ∈ L \ L0, and
C[b..c] and L \ L0 are both spherical, it follows that C[b..c] ∪ (L \ L0) is spherical.
But this set contains L (since L0 ⊆ C[b..c]) and since L is a maximal spherical subset
of � we conclude that L = C[b..c] ∪ (L \ L0).

By Proposition 12 and Lemma 9 there exist simple roots e1, e2, . . . , ek and
d1 = a, d2, . . . , dk+1 = a′ ∈ Odd(a)withw = v[ek, {dk}] . . . v[e2, {d2}]v[e1, {d1}]
and v[ei, {di}]di = di+1 for all i ∈ {1, 2, . . . , k}. Moreover, meidi

< ∞ for all i. Let
w0 = 1 and wi = v[ei, {di}]wi−1; we will show that

{wib, −wib, wi(b + √
2a), −wi(b + √

2a)}
= {X(di+1), −X(di+1), Y (di+1), −Y (di+1)}

for all i ∈ {0, 1, . . . , k}. The case i = 0 is trivial.
Proceeding inductively, suppose that i > 1 and

{±wi−1b, ±wi−1(b + √
2a)} = {±X(di), ±Y (di)}.

It will be sufficient to show that v[ei, {di}]X(di) and v[ei, {di}]Y (di) both lie in the
set {±X(di+1), ±Y (di+1)}.

Suppose first that di = a. Then X(di) = b + √
2a and Y (di) = b. If ei /∈

Odd(a) then meidi
is even, and di+1 = di = a. Furthermore, by condition (4) of

Definition 5 we have either {ei, di} = {b, a} or meib = meia = 2. In the former case
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v[ei, {di}] = v[b, {a}] = rbrarb, giving v[ei, {di}]b = −b − √
2a = −X(a) and

v[ei, {di}](b + √
2a) = −b = −Y (a); in the latter case v[ei, {di}] = v[ei{a}] = rei

,
giving v[ei, {di}]b = b = Y (a) and v[ei, {di}](b+√

2a) = b+√
2a = X(a). If ei ∈

Odd(a) then a ∈ C[b..ei], and by condition (2) of Definition 5 we have meib = 2 and
either meia = 2 or meia = 3. If meia = 2 then di+1 = di = a, while if meia = 3 then
di+1 = ei . Furthermore, in former case we find that v[ei, {di}]b = rei

b = b = Y (a)

and v[ei, {di}](b + √
2a) = b + √

2a = X(a), while in the latter case we find that
v[ei, {di}]b = rare1b = b+√

2a = Y (ei) and v[ei, {di}](b+√
2a+√

2ei) = X(ei).

Now suppose that di �= a. If ei /∈ Odd(a) ∪ {b} then meidi
= 2 and di+1 = di .

Moreover, meid = 2 for all d ∈ C[b..di], and so v[ei, {di}] = rei
fixes all the roots in

�C[b..di ], including X(di) = X(di+1) and Y (di) = Y (di+1). If ei ∈ Odd(a)∪{b} and
{ei, di} is not an edge of Odd(a) then we again have di+1 = di and v[ei, {di}] = rei

.
By condition (3) of Definition 5 we either have di ∈ C[b..ei] or ei ∈ C[b..di]. In
the former case we have meid = 2 for all d ∈ C[b..di], and as above we see that rei

fixes X(di) and Y (di). In the latter case the remark made at the start of the proof
implies that it is still true that rei

fixes X(di) and Y (di). So we have shown that
when meidi

= 2 it is true that v[ei, {di}]X(di) and v[ei, {di}]Y (di) both lie in the set
{±X(di+1), ±Y (di+1)}, and it remains only to consider the case that ei and di are
adjacent in Odd(a). Note that in this case di+1 = ei .

Let C[b..di] = {b, c1, . . . , cm} with c1 = a and cm = di , and suppose that
ei = cm−1 is the vertex adjacent to di in C[b..di]. Then

v[ei, {di}]X(di) = rcmrcm−1

(
b + √

2
m∑

j=1

cj

)

= rcm

(
b + √

2
m∑

j=1

cj

)
= b + √

2
m−1∑
j=1

cj = X(ei),

and similarly

v[ei, {di}]Y (di) = rcmrcm−1

(
b + √

2
m−1∑
j=1

cj

)

= rcm

(
b + √

2
m−2∑
j=1

cj

)
= b + √

2
m−2∑
j=1

cj = Y (ei).

The alternative possibility is that di is adjacent to ei in C[b..ei]. Exactly the same
calculations show that v[ei, {di}]X(di) = X(ei) and v[ei, {di}]Y (di) = Y (ei) in this
case also.
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The induction is now complete, and it follows in particular that wb = wkb is one
of ±X(a′) or ±Y (a′). Hence

wb ∈ �C[b..a′] ⊆ �C[b..c] ⊆ �L.

Thus wrbw
−1 ∈ WL, and so rb ∈ w−1WLw = F . Since F was an arbitrary maximal

finite subgroup of W containing ra , this shows that rb ∈ FC(ra).
Let M̃ be the component of EOdd(a) containing Odd(a), and suppose, for a

contradiction, that M̃ is spherical. Clearly b ∈ M̃ , as mba = 4, but M̃ = Odd(a)∪{b}
is not permitted, in view of condition (5) of Definition 5. So M̃ \ (Odd(a)∪{b}) �= ∅.
But for e ∈ M̃ \ (Odd(a) ∪ {b}) and c ∈ Odd(a) we have mce �= ∞, since M̃ is
spherical, and by condition (4) of Definition 5 it follows that mbe = mce = 2 for all
c ∈ Odd(a). This contradicts the fact that M̃ is connected.

Now suppose that a′ ∈ Odd(a) is such that FC(ra′) = WJ for some J ⊆ �,
and let J0 be the component of J containing a′. Since J0 �= M̃ it follows from
Proposition 35 that J0 has rank at most 2. Now since there exists w ∈ WC[b..a′]
such that wa = −a′ and wb = X(a′), and since rb ∈ FC(ra), it follows that
rwb = wrbw

−1 ∈ FC(wraw
−1) = FC(ra′). Thus X(a′) ∈ �J , and so C[b..a′] ⊆ J .

Since J0 has rank at most 2, this means that a′ = a and J0 = {a, b}.
It remains to prove that J is the union of J0 and the spherical components

of EOdd(a). By Lemma 36 we know that all these components are contained in J .
But if K is any other component of J such that K ∩ Odd(a) = ∅, then by Propo-
sition 35 we see that K = {b′}, with b′ a C3-neighbour of Odd(a). Since b is the
only element of � such that mbc ∈ {2, 4} for all c ∈ Odd(a), we must have b′ = b,
contradicting the fact that the component of J containing b is J0 = {a, b}. �

Next, we have the converse to Proposition 29.

Proposition 39. Let a ∈ � and suppose that there exists a b ∈ Odd(a) such that
{a, b} is a half-focus of Odd(a) in �. Suppose also that the vertices Odd(a) do not
comprise a spherical subset of �. Then FC(ra) = WJ , where J is the union of {a, b}
and the spherical components of EOdd(a). Moreover, FC(ra′) is not visible for any
a′ ∈ Odd(a) \ {a, b}.
Proof. For each c ∈ Odd(a) \ {a, b}, define

X(c) = b + a + c + 2
m−1∑
i=2

ci

where c1 = a, c2, . . . , cm = c is the unique path from a to c in Odd(a) \ {b}. Then
X(c) is a root in �D[a,b..c] and is fixed by the reflections rb, rc1, . . . , rcm−2 and rcm .
Define also X(a) = b and X(b) = a.
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Let F = w−1WLw be a maximal finite subgroup of W containing ra , with L ⊆ �

and w of minimal length in WLwWa . Then wa = a′ ∈ L, by Lemma 15. Put
L0 = L ∩ Odd(a).

Choose c ∈ L0 with D[a, b..c] of maximal cardinality. If d ∈ L0 then mcd �= ∞
(since L0 is spherical), whence d ∈ D[a, b..c] by condition (4) of Definition 6.
So L0 ⊆ D[a, b..c]. Now if e ∈ L \ L0 is arbitrary then e /∈ Odd(a) (since
e /∈ L∩ Odd(a)) and mce < ∞ (since c, e ∈ L and L is spherical). By condition (5)
of Definition 6 it follows that mde = 2 for all d ∈ D[a, b..c]. Since this holds
for all e ∈ L \ L0, and D[a, b..c] and L \ L0 are both spherical, it follows that
D[a, b..c]∪(L\L0) is spherical. But this set contains L (since L0 ⊆ D[a, b..c]) and
since L is a maximal spherical subset of � we conclude that L = D[a, b..c]∪(L\L0).

By Proposition 12 and Lemma 9 there exist simple roots e1, e2, . . . , ek and d1 =
a, d2, . . . , dk+1 = a′ ∈ Odd(a) with w = v[ek, {dk}] . . . v[e2, {d2}]v[e1, {d1}] and
v[ei, {di}]di = di+1 for all i ∈ {1, 2, . . . , k}. Furthermore, we have meidi

< ∞ for
all i. Let w0 = 1, and wi = v[ei, {di}]wi−1 for i � 1. We will show that

{wib, −wib} = {X(di+1), −X(di+1)}
for all i ∈ {0, 1, . . . , k}.

The case i = 0 is trivial. Proceeding inductively, suppose that i > 1 and wi−1b =
±X(di). It will be sufficient to show that v[ei, {di}]X(di) = ±X(di+1).

Suppose first that di = a, so that X(di) = b. If ei �= b then meib = meia ∈ {2, 3},
since meia = meidi

�= ∞. We also have meia = 2 if ei = b. In the case meia = 3 we
have v[ei, {di}] = rarei

, and di+1 = rarei
a = ei . Furthermore,

v[ei, {di}]X(di) = rarei
b = a + b + ei = X(ei) = X(di+1),

as required. In the case meia = 2 we have v[ei, {di}] = rei
, giving di+1 = rei

a = a,
and

v[ei, {di}]X(di) = rei
b = ±b = ±X(di+1),

since either ei = b or meib = 2.
The case di = b is the same as the case di = a with a and b interchanged; so

suppose that di /∈ {a, b}. If ei /∈ Odd(a) then meidi
= 2 and di+1 = di . Moreover,

meid = 2 for all d ∈ D[a, b..di], and so v[ei, {di}] = rei
fixes all the roots in

�D[a,b..di ], including X(di) = X(di+1). If ei ∈ Odd(a) and {ei, di} is not an edge
of Odd(a) then we again have di+1 = di and v[ei, {di}] = rei

. By condition (4) of
Definition 6 we either have di ∈ D[a, b..ei] or ei ∈ D[a, b..di]. In the former case
we have meid = 2 for all d ∈ C[b..di], and as above we see that rei

fixes X(di). In
the latter case it is still true that rei

fixes X(di), since the only simple reflection of
D[a, b..di] that does not fix X(di) is the one corresponding to the vertex adjacent
to di . So we have shown that when meidi

= 2 it is true that v[ei, {di}]X(di) and
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v[ei, {di}]Y (di) both lie in the set {±X(di+1), ±Y (di+1)}, and it remains to consider
the case that ei and di are adjacent in Odd(a). Note that in this case di+1 = ei .

Let D[a, b..di] = {b, c1, . . . , cm} with c1 = a and cm = di . Suppose first that
m > 2, and suppose that ei = cm−1 is the vertex adjacent to di in D[a, b..di]. Then

v[ei, {di}]X(di) = rcmrcm−1

(
b + a + cm + 2

m−1∑
j=2

cj

)

= rcm

(
b + a + cm + cm−1 + 2

m−2∑
j=1

cj

)

= b + a + cm−1 + 2
m−2∑
j=1

cj = X(ei).

If m = 2 and ei = b then

v[ei, {di}]X(di) = rbrdi
(a + b + di) = a = X(b) = X(ei),

and if ei = a then similarly

v[ei, {di}]X(di) = rardi
(a + b + di) = b = X(a) = X(ei).

The alternative possibility is that di = cm−1 is the vertex adjacent to ei = cm in
D[a, b..ei] = {b, c1, . . . , cm}. We calculate that

v[ei, {di}]X(di) = rcm−1rcm

(
b + a + cm−1 + 2

m−2∑
j=2

cj

)

= rcm−1

(
b + a + cm + cm−1 + 2

m−2∑
j=1

cj

)

= b + a + cm + 2
m−1∑
j=1

cj = X(ei),

as required.
The induction is now complete, and it follows that wb = wkb = ±X(a′). Hence

wb ∈ �D[a,b..a′] ⊆ �D[a,b..c] ⊆ �L.

Thus wrbw
−1 ∈ WL, and so rb ∈ w−1WLw = F . Since F was an arbitrary maximal

finite subgroup of W containing ra , this shows that rb ∈ FC(ra).
Note that since W has a graph automorphism that swaps ra and rb and fixes all

the other simple reflections, it must also be true that ra ∈ FC(rb).
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Let M̃ be the component of EOdd(a) containing Odd(a), and suppose, for a
contradiction, that M̃ is spherical. Note that M̃ �= Odd(a), in view of condition (5)
of Definition 5. So M̃ \Odd(a) �= ∅. But for all e ∈ M̃ \Odd(a) and c ∈ Odd(a) we
have mce �= ∞, since M̃ is spherical, and by conditions (1) and (5) of Definition 5
it follows that mce = 2 for all c ∈ Odd(a). This contradicts the fact that M̃ is
connected.

Suppose that a′ ∈ Odd(a) is such that FC(ra′) = WJ for some J ⊆ �, and let J0
be the component of J containing a′. Since J0 �= M̃ it follows from Proposition 35
that J ∩Odd(a) has rank at most 2. Now suppose, for a contradiction, that a′ /∈ {a, b}.
Since there exists an element w ∈ WD[a,b..a′] such that wa = a′ and wb = X(a′),
it follows that rwb = wrbw

−1 ∈ FC(wraw
−1) = FC(ra′). Thus X(a′) ∈ �J ,

and so D[a, b..a′] ⊆ J , contradicting the fact that the rank of J ∩ Odd(a) is at
most 2. So we deduce that a′ = b or a′ = a. Moreover, in either case we know
that {a, b} ⊆ J ∩ Odd(a), and since J ∩ Odd(a) has rank at most 2 it follows that
J ∩ Odd(a) = {a, b}.

By Lemma 36 we know that all spherical components of EOdd(a) are components
of J , and by Proposition 35 all other components of J that intersect Odd(a) trivially
correspond to C3-neighbours of Odd(a). But clearly the conditions of Definition 6
imply that Odd(a) has no C3-neighbours. So we conclude that J is the union of {a, b}
and the spherical components of EOdd(a), as required. �

Proof of Theorem 7. Let M be a connected component of �(�), and write M̃ for
the component of E(M) containing M .

Suppose first that M̃ is spherical, so that the conditions of Case A of Theorem 7
are satisfied, and let a ∈ M be arbitrary. Observe that all C3-neighbours of M are
contained in M̃ . Choose a′ ∈ M such that FC(ra′) is visible, and let FC(ra′) =
WJ . By Lemma 36 we know that M̃ is contained in J , and hence a ∈ J . So by
Proposition 25 it follows that FC(ra) = WJ also. By Proposition 35 the only possible
components of J apart from J0 are the other spherical components of E(M), and by
Lemma 36 all of these are indeed components of J . So J consists of the spherical
components of E(M), as required.

Now suppose that M̃ is not spherical. If there exists a b ∈ � \ M such that (a, b)

is a focus of M then it follows from Proposition 38 that FC(ra) = WJ , where J is
composed of {a, b} and the spherical components of E(M), and FC(ra′) is not visible
for any a′ ∈ Odd(a) \ {a}. Similarly, if there exists a b ∈ M such that {a, b} is a
half-focus of M , then it follows from Proposition 39 that FC(ra) = FC(rb) = WJ ,
where J is composed of {a, b} and the spherical components of E(M), and FC(ra′)
is not visible for any a′ ∈ Odd(a) \ {a, b}.

Finally, suppose that M̃ is not spherical and M does not have a focus or a half
focus. Suppose that a ∈ M is such that FC(ra) = WJ for some J ⊆ �, and let K be
the component of J containing a.
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Suppose first that alternative (b) of Proposition 35 holds, so that K = {a, b} is of
type C2, and J ∩ M = {a}. Since M does not have any focus in �, it follows from
Proposition 28 that M ∪ {b} is a spherical component of E(M). But the component
of E(M) containing M is M̃ , which, by our assumptions, is not spherical. So this
case does not arise.

Alternative (c) of Proposition 35 is similarly impossible, by Proposition 29, and
alternative (e) is also incompatible with the assumption that M̃ is not spherical. So we
conclude that alternative (a) holds: K = {a} = J ∩ Odd(a). Note that all spherical
components of E(M) are components of J , and by Proposition 35 the only other
possible components are the sets {b} such that b is a C3-neighbour of M .

Suppose that b is a C3-neighbour of M that is adjacent to a. Let ã be the unique
neighbour of a in M . By Lemma 37 we know that rb ∈ FC(rã), and so it follows that
FC(ra) = rãra FC(rã)rarã contains the reflection along the root rãrab = b + √

2a +√
2ã. Since FC(ra) = WJ , it follows that both b and ã are in J . But this contradicts

the fact that the component of J containing a is just {a}.
This reasoning has shown that if a ∈ M is adjacent in � to a C3-neighbour of M

then FC(ra) is not visible. On the other hand, we know that there is at least one a ∈ M

such that FC(ra) is visible. So we may choose an a ∈ M such that FC(ra) = WJ

for some J ⊆ �. Since a is not adjacent to any C3-neighbour of M it follows by
Lemma 37 that all C3-neighbours of M are in J . So we conclude that J = J ′ ∪ {a},
where J ′ is the union of the spherical components of E(M) and the C3-neighbours
of M .

It remains to prove that if a′ is any other element of M that is not adjacent to
any C3-neighbour of M then FC(ra′) = WJ ′∪{a′}. Given such an a′, since a′ lies in
M = Odd(a), we may choose w ∈ W such that wa = a′. By Proposition 12 we
see that w ∈ WM̃ , and so w fixes all other components of E(M). And w fixes all
C3-neighbours of M , by Lemma 34. So w fixes J ′, and it follows that

FC(ra′) = w FC(ra)w
−1 = wWJ ′∪{a}w−1 = WwJ ′∪{wa} = WJ ′∪{a′},

as required. This completes the proof of Theorem 7.

Proof of Theorem 1. Let a ∈ � and M = Odd(a). As � is 2-spherical it follows
that � = E(M), and, as � is non-spherical, it follows that Case A of Theorem 7
does not hold for M . As there are no ∞-labels in the Coxeter graph of �, Cases C
and D do not hold either. Hence we are in Case B. Since there are no ∞-labels in the
Coxeter graph of �, there are no C3 neighbors of M . As E(M) = � is irreducible,
there are no spherical components of E(M). It follows now from Theorem 7 that
there is an a′ ∈ Odd(a) such that FC(ra′) = 〈ra′ 〉. As ra and ra′ are W -conjugate we
have FC(ra) = 〈ra〉 as well, and this completes the proof of Part a) of Theorem 1.

Let S ⊆ W be such that (W, S) is a Coxeter system. It follows from Part a) and
Corollary 24 that ra ∈ SW for each a ∈ �, and hence {ra | a ∈ �} ⊆ SW . As �
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is assumed to be non-spherical, irreducible and 2-spherical, it follows now from the
main result of [5] that there is an element w ∈ W such that {ra | a ∈ �} = Sw. This
completes the proof of Part b) of Theorem 1. As Part c) is an immediate consequence
of Part b) we are done.
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