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An algorithm to find vertical tori in small Seifert fiber spaces

Tao Li∗

Abstract. We give an algorithm to find vertical essential tori in small Seifert fiber spaces with
infinite fundamental group. This implies that there are algorithms to decide whether a 3-manifold
is a Seifert fiber space.
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1. Introduction

A fundamental problem in 3-manifold topology is to recognize a 3-manifold from a
given combinatorial structure, e.g., a triangulation or a handle decomposition. Much
progress has been made in the past few years. In the 1980s, Jaco and Oertel [8]
showed that there is an algorithm to decide whether an irreducible 3-manifold is
Haken. Later, Rubinstein and Thompson gave algorithms to recognize 3-spheres
[18], [25], indicating that there are also algorithms to decide whether a 3-manifold
is reducible. More recently, Manning showed that, given a procedure to solve the
word problem, there is an algorithm to determining whether a closed 3-manifold is
hyperbolic [14]. It has also been shown in [1] that there are algorithms to determine
whether a 3-manifold contains essential laminations or taut foliations.

Seifert fiber spaces are a major class of 3-manifolds and have important roles in
Thurston’s geometrization conjecture. In this paper, we will give an algorithm to
determine whether a 3-manifold is a Seifert fiber space.

Theorem 1. There is an algorithm to recognize Seifert fiber spaces.

LetM be a 3-manifold. Since there is an algorithm to decide whether a manifold
is Haken [8], and since there is an algorithm to recognize Haken Seifert fiber spaces
[10], we only need to consider small Seifert fiber spaces. Using strongly irreducible
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Heegaard splitting and almost normal surfaces, Rubinstein gave an algorithm to rec-
ognize lens spaces [18]. Moreover, Rubinstein’s techniques also implies an algorithm
to decide whether a 3-manifold is a small Seifert fiber space with finite fundamental
group [19]. So the key part of Theorem 1 is to find an algorithm to recognize small
Seifert fiber spaces with infinite fundamental group. Peter Scott has shown that each
small Seifert fiber space with infinite π1 contains a vertical essential torus with only
one or two double curves and having the 4-plane property [24]. The main goal of
this paper is to give an algorithm to find such a vertical torus. Once we find such a
torus, we immediately see the Seifert fiber structure by checking the complement of
this immersed vertical torus.

In this paper, we first show that the essential tori considered in [24] have the
7-color property, i.e., one can use 7 different colors to color their preimages in the
universal cover so that any two planes in the same color do not intersect each other.
Using this result, we are able to construct finitely many immersed branched surfaces,
one of which fully carries such an immersed torus. Then, we analyze these immersed
branched surfaces and get an upper bound W on the weight of some essential torus.
A straightforward argument can show that a function of W gives an upper bound on
the weight of a torus with the 4-plane and 1-line properties (In fact, a theorem in
[13] says that the absolutely least area torus has the 4-plane and 1-line properties).
Thus one can easily enumerate all the immersed normal tori with weight bounded
by this number. For any essential torus with the 4-plane and 1-line properties, one
can perform some simple homotopies to eliminate all triple points and get a vertical
torus. So we can algorithmically perform such homotopies on each of these tori. If
we cannot eliminate the triple points by such simple homotopies for any torus, we
can conclude that the 3-manifold is not a Seifert fiber space (with infinite π1); if we
get a torus without triple points, we only need to check whether its complement is a
union of solid tori.

A different algorithm has also been announced by Rubinstein [17], [20]. I thank
Dave Letscher for providing me a copy of [17]. The method used in [17] is an
analysis of a sequence of involutions on genus 2 Heegaard splittings. Ian Agol has
also announced an algorithm by studying the representations of the fundamental group
and using computational algebraic geometry. Although none of the three algorithms
are efficient, the algorithm in this paper is much easier to implement and I suspect
this algorithm is much faster as well.

The method in this paper could be used more generally to produce an algorithm to
find immersed essential surfaces which satisfy either the 3-plane and 1-line or 4-plane
and 1-line properties, so long as the bounded coloring in the universal cover can be
exhibited. Since many such surfaces are known, e.g., from non-positive cubings, it
is possible to find a bound on the coloring for those manifolds.

Acknowledgments. Part of this paper was written while I was visiting the American
Institute of Mathematics, and I would like to thank AIM for its hospitality. I would
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2. The n-color property

Definition 2.1. Let � be a collection of objects (usually lines or surfaces) in a mani-
fold. We say that � satisfies the n-color property if we can color all objects in � using
n different colors such that any two objects in the same color do not intersect each
other, i.e. � can be divided into n subsets �1, . . . , �n such that for any P,Q ∈ �i
(i = 1, . . . , n), P ∩Q = ∅.

Let M be a closed 3-manifold. We consider π1-injective surfaces in M . By
[22], [23], there exists a least area map in the homotopy class of each π1-injective
surface. Moreover, the preimage of any least area surface in the universal cover
consists of embedded planes [6]. The same is also true for least weight immersed
normal surfaces [9].

Definition 2.2. We say that the immersed surface f : S → M (or simply S) has the
n-color property if π−1(f (S)) is a set of planes in ˜M satisfying the n-color property,
where ˜M is the universal cover of M and π : ˜M → M is the covering map. An
immersed surface f : S → M has the n-plane property [7] if π−1(f (S)) is a set of
planes and there is a disjoint pair among any collection of n planes.

Remark 2.3. (1) If M has a Haken n-fold cover, then M contains a surface with the
n-color property.

(2) If a surface has the n-color property, then it has the (n+ 1)-plane property.
(3) Rubinstein informed me that he and Sageev have shown that every closed π1-

injective surface in a hyperbolic 3-manifold satisfies the k-color property for some k.
They proved the k-plane property in [21] earlier.

Notation. Throughout this paper, we denote the number of components ofX by |X|,
denote the interior of X by int(X). We denote a group generated by h1, . . . , hn by
〈h1, . . . , hn〉.

Let M be a small Seifert fiber space with infinite π1. Since we will refer to [24]
many times, we keep the same notation. The orbifold ofM is a 2-sphereQwith three
cone pointsX, Y andZ, with cone angles 2π/p, 2π/q, and 2π/r respectively, where
p, q, r are integers. The fundamental group of M has infinite cyclic center with
quotient a hyperbolic or Euclidean triangle group�(p, q, r). Let ˜Q be the universal
covering orbifold ofQ, then ˜Q has either Euclidean or hyperbolic structure depending
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on whether 1/p + 1/q + 1/r is equal to 1 or less than 1. One can connect X, Y and
Z by 3 geodesic arcs in the induced Euclidean or hyperbolic metric. The preimage
of the 3 geodesic arcs gives a tessellation of the plane ˜Q by geodesic triangles with
angles π/p, π/q and π/r . Let XYZ be a geodesic triangle in this tessellation of ˜Q,
where X, Y and Z are in the preimage of X, Y and Z respectively. Then the triangle
group �(p, q, r) is generated by x, y and z which are clockwise rotations about X,
Y , and Z respectively through angles of 2π/p, 2π/q and 2π/r (xyz = 1).

Let ψ : M → Q be the Seifert fibration. We say an immersed torus T is vertical
if ψ−1(ψ(T )) = T , i.e., T consists of circle fibers of M . Every loop l in the
orbifoldQ determines a vertical torus ψ−1(l), and ψ−1(l) is π1-injective if and only
if l represents an element with infinite order in�(p, q, r). In [24], Scott analyzes in
depth the loops in Q with one or two double points that represent xy−1 or xy−2, as
shown in Figure 2.1. He has shown:

Lemma 2.4 (Scott [24]). Suppose �(p, q, r) is a hyperbolic triangle group and x,
y, z are the rotations as above.

(1) If p, q, r ≥ 3, xy−1 has infinite order in �(p, q, r).

(2) For �(p, q, 2) (p, q ≥ 4), xy−1 has infinite order.

(3) For �(3, q, 2) (q ≥ 7), xy−2 has infinite order.

In fact, Scott’s lemma says the following.

Lemma 2.5 (Scott [24]). Let x and y be two elements in the group of orientation
preserving isometries of H

2 such that:

(1) x, y and xy are all of finite order,

(2) x and y generate a discrete infinite group.

Then, there is an element of infinite order that can be expressed by uv±1 or uv±2,
where u and v are among x, y, xy.

Proof. Since x, y and xy are all of finite order, x and y generate a hyperbolic triangle
group, and the lemma follows from Lemma 2.4. �

The vertical tori corresponding to the loops that represent xy−1 or xy−2 in
Lemma 2.4 have one or two double curves. Scott has shown that the preimage
of these loops (representing xy−1 or xy−2 as in Lemma 2.4 and Figure 2.1) in the
universal covering orbifold ˜Q is a union of lines such that the intersection of each
pair of lines consists of at most one point. The intersection patterns of the planes in
the preimage of corresponding vertical tori (in the universal cover of M) is the same

as the intersection patterns of the lines in ˜Q. In this section, we will show that the
preimages of these loops in ˜Q have the 7-color property, and hence the corresponding
vertical tori have the 7-color property.
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Figure 2.1

Lemma 2.6. If M is a small Seifert fiber space of Euclidean type, then M contains
a vertical torus with the 3-color property.

Proof. Since M is a small Seifert fiber space of Euclidean type, the triangle group
of corresponding orbifold is either �(2, 4, 4), or �(2, 3, 6) or �(3, 3, 3). If M is of
type�(2, 4, 4) (resp.�(2, 3, 6)), thenM is double (resp. triple) covered by a Haken
Seifert fiber space whose orbifold is a 2-sphere with 4 cone points. If M is of type
�(3, 3, 3), then M is a triple covered by a Haken Seifert fiber space whose orbifold
is a torus without cone point. Thus the lemma follows from Remark 2.3 (1). �

Theorem 2.7. LetM be a small Seifert fiber space with infinite π1, thenM contains
a vertical π1-injective torus with the 7-color property.

Proof. By Lemma 2.6, we only need to consider the case that M is a small Seifert
fiber space of hyperbolic type. Throughout the proof, we use C to denote the loop
representing xy−1 or xy−2 as in Lemma 2.4 and Figure 2.1, and use ˜C to denote the
preimage of C in ˜Q. Since xy−1 (or xy−2) has infinite order and ˜Q is a hyperbolic
plane, xy−1 (or xy−2) has an axis l in ˜Q. If l does not pass through any translates
of X, Y , or Z, then we can choose C to be π(l), where π : ˜Q → Q is the orbifold
covering. If l passes through some translates of X, Y , or Z, let m be a line of points
that have a fixed distance ε from l and on one side of l for some small ε, then C
can be chosen as π(m). In fact, by section 1 of [24] (see Figures 5–9 in [24]), l
passes through some translates of X, Y or Z if and only ifM is of type�(3, q, 2) or
�(4, q, 2). Let L be the collection of all the translates of l in the hyperbolic plane
˜Q. So L has the 7-color property if and only if ˜C has the 7-color property.
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We denote by L0 the union of intersection points of the geodesics in L. The
geodesics in L give rise to a tiling of the hyperbolic plane ˜Q with each tile the
closure of a component of ˜Q−L. By section 1 of [24], there are no 3 geodesics in L
passing through the same point in L0 in any case. So L0 is the set of vertices in this
tiling, and there are exact 4 tiles incident to each vertex. If the geodesics in L do not
pass through translates of X, Y or Z, then its projection to the orbifold Q is exactly
as in Figure 2.1, and one can easily draw the tiling according to Figure 2.1 and the
indices of the cone points.

We call an embedded disk P in ˜Q a polygon in this tiling if P is a polygon with
vertices in L0 and each edge a geodesic arc (in a geodesic of L). Note that the interior
of an edge of P may contain other points in L0 and we may assume the internal angle
of each vertex of P is not π . Thus a polygon P is convex if and only if the internal
angle of every vertex of P is less than π , and in particular, each tile in this tiling is a
convex polygon.

This tiling can be considered as a cellulation with L0 the 0-cells, L − L0 the
1-cells, and ˜Q − L the 2-cells. Let P be a convex polygon in this tiling and P ′′ be
the union of P and all the tiles incident to ∂P . Although we do not know whether P ′′
is a disk yet, we can construct a disk P ′ by gluing corresponding tiles along ∂P ,
and construct a cellular map f : P ′ → ˜Q such that f (P ′) = P ′′ and f is a local
embedding (in particular, f maps tiles to tiles). So we can consider P ′ as a polygon
(P ⊂ int(P ′)) with induced hyperbolic metric and induced tiling from ˜Q. The
intersection of each tile in P ′ − int(P ) with P is either a vertex or a single edge of
this tile. Next, we analyze the polygon P ′.

Let α1, . . . , αk be those edges (of tiles in P ′ − int(P )) with exactly one endpoint
in ∂P (clockwise around ∂P ). Let xi and yi be the two endpoints of αi with xi ∈ ∂P .
By our construction yi ∈ ∂P ′. Moreover, since our tiling comes from the intersection
of geodesics and since P is convex, yi lies in the interior of an edge of the polygon P ′
unless yi = yi±1, in which case αi , αi±1 and the arc in ∂P connecting xi and xi±1
bound a triangle tile inP ′−int(P ), as shown in Figure 2.2. Thus, if there is no triangle
tile in this tiling, the internal angle of each vertex of P ′ is less than π and hence P ′

P

xi xi+1

αi αi+1

Figure 2.2
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must also be a convex polygon. This implies that f : P ′ → ˜Q is an embedding, i.e.
P ′′ is also a convex polygon in the tiling. Furthermore, suppose there is no triangle
tile in this tiling and there is an edge γ of P ′ whose interior contains 2 points of L0.
Then, we can suppose yi ∈ int(γ ) and yi+1 ∈ int(γ ) for some i. Since P is convex,
αi , αi+1 must belong to a quadrilateral tile in P ′ − int(P ), and the other two edges of
this quadrilateral tile lie in two edges of P and P ′ respectively. Hence, if the interior
of an edge of P ′ contains 3 points of L0, then there must be two quadrilateral tiles
sharing an edge. Thus we obtain the following observation.

Observation 1. If there is no triangle tile in this tiling by L, then P ′ is a convex
polygon andf : P ′ → ˜Q is an embedding. If in addition there are no two quadrilateral
tiles sharing an edge in this tiling, then the interior of any edge of P ′ contains at most
two points of L0.

Case 1. M is not of type �(4, q, 2) (q > 4) or �(3, q, 2) (q > 6).

In this case, the geodesics in L do not pass through translates of X, Y or Z,
and the loop π(L) in the orbifold Q is a figure eight representing xy−1 as shown
in Figure 2.1 (a). Hence, the tiling from L consists of p-gons, q-gons and 2r-gons,
where M is of type �(p, q, r). The p-gons and q-gons only share edges with the
2r-gons.

The following two observations are easy to see from the indices of the cone points.

Observation 2. If M is not of type �(4, q, 2) (q > 4) or �(3, q, 2) (q > 6), there
are no two quadrilateral tiles (in the tiling from L) sharing an edge.

Observation 3. Suppose M is not of type �(4, q, 2) (q > 4) or �(3, q, 2) (q > 6).
If an n-gon tile shares an edge with a triangular tile, then 2r = n ≥ 6.

As before, if there is no triangle tile, then f : P ′ → ˜Q is an embedding and f (P ′)
is convex. Now, we consider the case that there are triangle tiles in this tiling. By
the arguments on P ′ before, P ′ is not convex if and only if there is a triangle tile
in P ′ − int(P ) with one edge in ∂P , as shown in Figure 2.2. Let t1, . . . , tm be the
collection of such triangle tiles (clockwise around ∂P ), and let Vi be the vertex of ti
lying in ∂P ′ for each i. So the internal angle (of P ′) at Vi is greater than π , i.e., there
are 3 tiles inP ′−int(P ) sharing the vertexVi for each i. We use si to denote the fourth
tile incident to f (Vi). Similar to the construction of P ′ from P , we can first glue a
copy of s1 to P ′ to get a polygon P ′

1 and extend the map f : P ′ → ˜Q to f : P ′
1 → ˜Q

such that f is a cellular map and a local embedding. Suppose we have inductively
constructed such a polygon P ′

i and extended the map f to f : P ′
i → ˜Q. If Vi+1 lies

in the interior of P ′
i (we will show later that this is impossible), we let P ′

i+1 = P ′
i and

si+1 = si . If Vi+1 ∈ ∂P ′
i , we can glue a copy of si+1 to P ′

i (according to the local
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picture of f (P ′
i ) at f (Vi+1)) to get a polygon P ′

i+1 and extend the map f to a cellular
map f : P ′

i+1 → ˜Q such that f is a local embedding, in particular, two adjacent edges
(of tiles) in ∂P ′

i+1 are not mapped to the same 1-cell in L. In fact, we can construct
P ′
i+1 as follows. We first identify an edge (of a tile) in ∂P ′

i containing Vi+1 to the
corresponding edge of (a copy of) the tile si+1 and get a polygon. Since f : P ′

i → ˜Q

is a local embedding (the induction hypothesis), we have a local embedding from the
interior of this polygon to ˜Q. Then, if two adjacent edges (of tiles) in the boundary of
this polygon are mapped to the same 1-cell in L, we identify these two adjacent edges
(of tiles) and get another polygon. By eliminating such adjacent edges, we eventually
get a polygon P ′

i+1 and a cellular map f : P ′
i+1 → ˜Q which is a local embedding.

We denote P ′
m by P+. Clearly, each Vi lies in the interior of P+, f : P+ → ˜Q is a

cellular map and a local embedding, and P+ has an induced hyperbolic metric and
tiling by geodesic arcs. Note that, by this construction, it is possible that f (si) and
f (sj ) are the same tile in ˜Q but si and sj are different tiles in P+ (we will show next
that this cannot happen).

We first claim that si and sj are different tiles in P+ (if i �= j ) and they do not
share an edge in P+. Note that the intersection of si with the triangle tile ti is a single
point Vi in P+ and ti �= tj by our assumption. For each i, we denote the edge of ti
that does not contain Vi by ηi . If either si = sj or si and sj share an edge in P+, there
is a geodesic arc α in ti ∪ tj ∪ si ∪ sj ⊂ P+ passing through both Vi and Vj with two
endpoints in ηi and ηj respectively. Since P is a convex polygon, there is another
geodesic arc in P connecting the two endpoints of α, which gives a contradiction.
Thus, for each i, si ∩ ∂P ′ is the union of the two edges of si that contain Vi , and
si ∩ ∂P+ is the union of the edges of si that do not contain Vi .

Next, we show thatP+ is convex. SinceP+ is a hyperbolic polygon with geodesic
edges, it suffices to show the internal angle at each vertex of P+ is less than π . As
above, V1, . . . , Vm are the only vertices where P ′ has internal angle greater than π ,
and the Vi’s lie in the interior of P+. Let e′i and e′′i be the two edges of si incident to
the Vi for each i, and let V ′

i = ∂e′i −Vi and V ′′
i = ∂e′′i −Vi be the other endpoints of

e′i and e′′i respectively. Since each tile is convex and ∂si∩int(P+) = e′i∪e′′i −V ′
i ∪V ′′

i

in the conclusion above, for any vertex V of P+ that is not among the V ′
i ’s or the

V ′′
i ’s, the internal angle of P+ at V is less than π . Thus, in order to prove P+ is

convex, we only need to show that the internal angles of P+ at V ′
i and V ′′

i (for each i)
are less than or equal to π . By the argument above, V ′

i and V ′′
i lie in both ∂P+ and

∂P ′. If V ′
i lies in the interior of an edge of P ′, as shown in Figure 2.3 (a), then there

is a tile ε in P ′ − int(P ) sharing the edge e′i with si and sharing an edge with ti . Since
V ′
i lies in the interior of an edge of P ′, the edge of ε containing V ′

i (other than e′i)
must have the other endpoint in P . Since both P and ε are convex, ε must be a
quadrilateral tile sharing an edge with the triangular tile ti , as shown in Figure 2.3 (a),
which contradicts Observation 3. So V ′

i must be a vertex of P ′. If V ′′
i = V ′

i+1 in
∂P ′, as shown in Figure 2.3 (b), then there is a tile σ in P ′ − int(P ) sharing edges
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with si , si+1, ti and ti+1 (σ ∩ si = e′′i and σ ∩ si+1 = e′i+1). Since both P and σ
are convex, σ must be a pentagon tile sharing an edge with the triangular tiles ti and
ti+1, as shown in Figure 2.3 (b), which contradicts Observation 3. Thus, for each i,
V ′
i (resp. V ′′

i ) must be a vertex of P ′ and there is only one tile from the si’s incident
to V ′

i (resp. V ′′
i ). Since this tiling comes from geodesics in L, V ′

i (resp. V ′′
i ) must

lie in the interior of an edge of P+ for each i. Therefore, P+ is convex, and hence
f : P+ → ˜Q is an embedding.

(a) (b)

PP

P ′

ViViV ′
i Vi+1

titi ti+1

e′i

e′′i e′i+1si

σ

Figure 2.3

So we can consider P+ as a convex polygon in ˜Q. Next, we will analyze the
points of L0 in the interior of an edge of P+. Since we are in the case that M is not
of type �(4, q, 2) or �(3, q, 2) and we have assumed there are triangular tiles, the
triangle group forM must be�(3, q, r)with q, r ≥ 3 (q and r cannot both be 3) and
the loop C in the orbifold Q represents xy−1 as shown in Figure 2.1 (a). Suppose
there is a tile τ in P+ with an edge η lying in the interior of an edge of P+. Let A
and B be the two endpoints of η, and ηA and ηB be the two edges of τ (other than
η) containing A and B respectively. Let A′ = ∂ηA − A and B ′ = ∂ηB − B be the
other endpoints of ηA and ηB respectively. By the argument before, either A′ ∈ ∂P
or A′ is one of the Vi’s above. We denote the edge of P+ that contains η by η+
(η ⊂ int(η+)). We will show next that A and B are the only points in L0 ∩ int(η+).

There are several possibilities. IfA′ �= B ′ and bothA′ andB ′ lie in ∂P , since P is
convex, τ must be a quadrilateral tile with one edge in ∂P as shown in Figure 2.4 (a).
If A′ �= B ′ and both A′ and B ′ are among the Vi’s, since P is convex, τ is either
a hexagon as shown in Figure 2.4 (c), or a pentagon as shown in Figure 2.4 (d). If
A′ ∈ ∂P and B ′ is one of the Vi’s, since P is convex, τ must be a pentagon as shown
in Figure 2.4 (e). However, Figure 2.4 (d) and (e) contain pentagon tiles sharing
edges with triangular tiles, which contradicts Observation 3. Furthermore, if there
is a hexagon tile sharing an edge with a triangular tile, since we assume the triangle
group of M is not Euclidean nor �(3, q, 2), the triangle group must be �(3, q, 3)
(q ≥ 4) and the loop C represents xy−1. The two q-gons in Figure 2.4 (c) must be
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(a) (b)

(c) (d)

(e) (f)
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A

A′

A′

A′

A′

B

B

B ′

B ′

B ′

B ′
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P

P

τ

τ

τ

τ
τ

η

ηη

η

ηA

ηA

ηA

ηAηA

ηB

ηB

ηB

ηBηB

l1

l2

l′

l′′

q-gonq-gon

Figure 2.4
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among the si’s above. Since q ≥ 4, and by our conclusion on si ∩∂P+ before,A and
B are the only points of L0 lying in the interior of η+ in the case of Figure 2.4 (c).
Hence, if there are at least 3 points of L0 lying in the interior of η+, τ is either a
quadrilateral tile in which case A′ �= B ′, as shown in Figure 2.4 (a), or a triangular
tile in which case A′ = B ′, as shown in Figure 2.4 (b). Suppose there are at least 3
points of L0 lying in the interior of η+. Then, there must be two tiles τ1 and τ2 in P+
with edges lying in int(η+), and τ1 and τ2 share an edge. By the argument above, τi
is either a triangular tile or a quadrilateral tile (i = 1, 2). As τ1 and τ2 share an edge,
by Observation 3, both τ1 and τ2 must be quadrilateral tiles, which is also impossible
by Observation 2. Therefore, in any case, we have the following:

Observation 4. The polygon P+ constructed above is convex, f : P+ → ˜Q is an
embedding, and there are at most 2 points of L0 lying in the interior of any edge of
P+, i.e., there are at most two lines in L intersecting the interior of any edge of P+.

Let P0 be a tile in this tiling and L0 the union of lines that have nonempty inter-
section with P0. By Lemmas 1.7 and 1.9 of [24], each line in L0 intersects at most 4
other lines in L0. Thus, if we have 5 colors to choose, we can always color a certain
line in L0 no matter what colors other lines (in L0) have. So L0 has the 5-color
property. We will use P0 and L0 as the first step of an induction to prove that L has
the 7-color property.

Subcase 1.1. M is not of type �(3, q, r) (q > 3).

As before, since M is not of type �(3, q, 2) or �(4, q, 2), lines in L do not pass
through translates of X, Y or Z [24]. Hence, π(L) is a loop as shown in Figure 2.1.
By Lemma 1.7 in [24], there are triangular tiles in this tiling if and only if M is of
type �(3, q, r). Thus, in this subcase, there is no triangle tile and by Observation 2,
there are no two quadrilateral tiles sharing an edge.

The curve C in this case is a figure eight, and ifM is of type�(p, q, r), the tiling
consists of p-gons, q-gons and 2r-gons. We will start from P0 and L0 above. L0
has 5-color property. Suppose we have constructed a convex polygon Pn. Let Ln
be the union of lines in L that have nonempty intersection with Pn. Suppose Ln
has the 5-color property. Let Pn+1 be the union of Pn and all the tiles that have
nonempty intersection with Pn. Since there are no triangular tiles, by the discussion
before, Pn+1 is a convex polygon embedded in ˜Q. Moreover, since there are no two
quadrilateral tiles sharing an edge in this tiling, by Observation 1, each edge of Pn+1
contains at most two points of L0 in its interior.

Let Ln+1 be the union of lines in L that have nonempty intersection with Pn+1.
Suppose we have colored Ln using 5 different colors. Let l′ ∈ Ln+1 −Ln. Then l′ is
a line that contains an edge e of the polygon Pn+1. Since Pn+1 is convex, l′ −Pn+1 =
l′ − e has two components. Next, we show that l′ − e does not intersect any other
line in Ln+1. Let γ be a component of l′ − int(e), i.e., γ is a ray with endpoint E
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that is a vertex of Pn+1. Let l′′ be the other line in Ln+1 passing through E. If there
is a line in Ln+1 that intersects γ − E, then it must also intersect l′′ because Pn+1
is convex. Hence l′, l′′ and this line intersect each other forming a triangle. Since
the intersection of any two lines is either empty or a single point, there must exist a
triangular tile, which contradicts the hypotheses of this subcase. By Observation 1,
each edge of Pn+1 contains at most 2 points of L0 in its interior. Hence, l′ has
nonempty intersection with at most 4 other lines in Ln+1. Since we have 5 colors
to choose, we can always give l′ an appropriate color no matter what colors other
lines (in Ln+1) have. Therefore, Ln+1 has the 5-color property and hence L has the
5-color property.

Subcase 1.2. M is of type �(3, q, r), where q, r ≥ 3.

As before, M has a hyperbolic triangle group �(3, q, r) and C is a loop repre-
senting xy−1. By [24], the axis l of xy−1 does not pass through any translates of X,
Y or Z in this case. Thus L gives the same tiling as ˜C. It is easy to see from the
indices of the cone points that the tiling consists of triangular tiles, q-gon tiles and
2r-gon tiles.

As in Subcase 1.1, we start with P0 and L0, and inductively construct a sequence
of convex polygons. Suppose we have constructed a convex polygon Pn. Let Ln be
the union of lines in L that have nonempty intersection with Pn, and suppose Ln has
the 7-color property. Let P ′

n be the union of Pn and the tiles that intersect Pn. By the
discussion before, if P ′

n is not convex, the vertices with internal angles greater than π
come from triangular tiles. Then, we replace P and P ′ in the argument before by Pn
and P ′

n respectively, and construct a convex polygon Pn+1 = P+ by adding some
more tiles near these triangular tiles. By Observation 4, the interior of any edge of
Pn+1 = P+ contains at most 2 points of L0.

As in Subcase 1.1, let l′ ∈ Ln+1 −Ln. Then l′ is a line that contains an edge e of
the polygon Pn+1. Since Pn+1 is convex, l′ − Pn+1 = l′ − e has two components.
Let γ be a component of l− int(e). So γ is a ray with one endpoint E that is a vertex
of Pn+1. Let l′′ be the other line in Ln+1 passing through E. If there is a line l1 in
Ln+1 that intersects γ − E, then it must also intersect l′′ because Pn+1 is convex.
Hence γ , l′′ and l1 intersecting each other forming a triangle. If there is another
line l2 in Ln+1 that also intersects γ − E, then γ , l′′ and l2 also intersect each other.
Since the immersed torus has 4-plane property [24], l1 ∩ l2 = ∅. So γ , l′′, l1 and l2
must form two nested triangles as shown in Figure 2.4 (f). However, by Lemma 1.7
in [24], if three lines intersect each other, they must form a triangular tile, and hence
such an intersection pattern is impossible. Thus there is at most one line in Ln+1 that
intersects γ − E.

There are at most 2 lines in L intersecting the interior of the edge e and at most one
line in Ln+1 intersecting each component of l′ − e. Hence, there are at most 6 lines
(including the two lines passing through the endpoints of e) in Ln+1 that intersect l′.
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Since we have 7 colors to choose, similar to Subcase 1.1, Ln+1 and hence L has
7-color property.

Case 2. M is of type �(4, q, 2) (q ≥ 5).

For hyperbolic triangle group�(4, q, 2) (q ≥ 5), the axis l of xy−1 passes through
translates of X and Z. It was shown in the section 1 of [24] (see Figure 5 in [24])
that the tiling induced by L consists of only q-gons and the internal angle at the each
vertex of a q-gon tile is π/2, as shown in Figure 2.5 (a). In Figure 2.5 (a), the X’s,
Y ’s and Z’s are translates of X, Y and Z respectively. The translates of X are points
in L0, the translates of Y are centers of the q-gons, and the translates of Z lie in
L − L0.

In fact, one can draw the lines of ˜C (which is the preimage in ˜Q of the figure eight
loop in Figure 2.1 (a)) from the indices of the cone points. There are parallel lines
in ˜C, and the preimage of the cone points with indices 2 and 4 lie in the strips bounded
by the parallel lines. After collapsing every strip to a line, one gets Figure 2.5 (a).

So there are no triangular or quadrilateral tiles in this tiling induced by L. Hence,
by the same arguments as those in Subcase 1.1 of Case 1, L (and hence ˜C) has the
5-color property.

The referee suggested a quick algorithm to recognize a Seifert fiber space of
type �(4, q, 2) (q ≥ 5) which is similar to the argument in Step 1 of Section 5
(the Euclidean case). If M is of type �(4, q, 2), then M has a double cover of type
�(2, q, q). This manifold hasZq homology and hence a q-fold cover which is Haken
with embedded vertical tori which can be found by the algorithm of Jaco–Tollefson
[10]. So, for this case, one can proceeds by searching the double covers of M ,
calculating the homology and then listing all the q-fold covers.

X
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Case 3. M is of type �(3, q, 2) (q ≥ 7).

For the hyperbolic triangle group �(3, q, 2) (q ≥ 7), the axis l of xy−2 passes
through translates of Z, as shown in Figure 9 of [24]. The tiling induced by L in this
case consists of q-gon tiles and triangular tiles, as shown in Figure 2.5 (b), and each
edge of a tile is shared by a q-gon tile and a triangular tile. In this tiling, as shown in
Figure 2.5 (b), the translates of Z are points in L0, the translates of Y are centers of
the q-gon tiles, and the translates of X are centers of the triangular tiles.

Similar to Case 2, one can draw the lines of ˜C (which is the preimage in ˜Q of
the loop in Figure 2.1 (b)) from the indices of the cone points. There are parallel
lines in ˜C bounding some strips in ˜Q. After collapsing every strip to a line, one gets
Figure 2.5 (b). Thus, by the same arguments as those in Subcase 1.2 of Case 1, we
have that L (and hence ˜C) has the 7-color property.

Therefore, the torus T has the 7-color property, where T is the vertical torus
corresponding to the loops in Figure 2.1. If M is of type �(3, q, 2), T has two
double curves, otherwise, T has only one double curve. �

Let f : S → M be an immersed normal surface. The weight of f (S) is defined
as |f−1(T (1))|, where T (1) is the one skeleton of the triangulation T . We say an
immersed surface has the least weight if the weight of f (S) is minimal among all
immersed surfaces in the homotopy class of f : S → M . In any homotopy class
of an essential surface, there is always a least weight normal surface [9]. Weight
(of a surface) is a combinatorial analogue of area. Least area surfaces have many
remarkable properties [6], and the results in [6] for least area surfaces are also true
for least weight surfaces [9]. In particular, if there is an essential surface (in a certain
homotopy class) having the k-plane and 1-line properties, then there is a least weight
normal surface (in this homotopy class) that also has the k-plane and 1-line properties
[9]. Moreover, the intersection relation (between the planes in the universal cover) for
two homotopic surfaces with the 1-line property are the same, and it follows from [6],
[9] that if an essential surface (in a certain homotopy class) has the k-color property,
then there is a least weight normal surface (in this homotopy class) that also has the
k-color property. Thus we can assume our immersed surfaces are least weight normal
surfaces, and there is a least weight normal torus in the homotopy class of T having
the 7-color property.

3. Immersed branched surfaces

Branched surfaces have been proved fruitful in the study of incompressible surfaces
and essential laminations, e.g., [5], [11]. For the definitions and notation related
to branched surfaces, see [5], [15]. In [2], [12], immersed branched surfaces were
introduced to study immersed surfaces with small complexity.
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Definition 3.1. Let B be a branched surface properly embedded in some compact 3-
manifold, i.e. the local picture of B in this manifold is as in Figure 3.1 (a). LetN(B)
be a regular neighborhood of B, as shown in Figure 3.1 (b). N(B) can be considered
as an I -bundle over B. The boundary ofN(B) consists of vertical boundary ∂vN(B)
and horizontal boundary ∂hN(B), as shown in Figure 3.1 (see [5], [15], [11] for more
details about branched surfaces). Let T be a surface embedded in N(B). We say
that T is carried by N(B) if T intersects the I -fibers transversely. We say T is fully
carried by N(B) if T transversely intersects every I -fiber of N(B).

(a) (b)

∂hN(B)∂vN(B)

Figure 3.1

Let f : B → M (resp. f : N(B) → M) be a map from B (resp. N(B)) to a
3-manifoldM . We call f : B → M (or simply f (B)) an immersed branched surface
in M if f : B → M and f : N(B) → M are local embeddings. Note that B and
N(B) are properly embedded in some compact 3-manifold, in particular, Figure 3.2
cannot be a local picture of f (B). An immersed surface j : S → M (or simply S) is
said to be carried by f : B → M if, after some homotopy in M , j = f � i, where
i : S → N(B) is an embedded surface that transversely intersects the interval fibers
of N(B). We say j : S → M (or simply S) is fully carried by f : B → M if i(S) as
above transversely intersects every I -fiber of N(B).

We assumeM has a certain triangulation. Then every π1-injective surface can be
homotoped into normal form, see [9] for some properties of normal surfaces. In [5],
Floyd and Oertel studied embedded normal essential surfaces. One of the results
in [5] is that embedded normal surfaces are fully carried by finitely many embedded
branched surfaces. The proof of this result is straightforward. Since there are 7
different types of normal disks in a tetrahedron, by identifying the normal disks (in
the normal surfaces) of the same type to a branch sector, one can easily construct
finitely many embedded branched surfaces carrying all embedded normal surfaces.
However, this simple result is not true for immersed surfaces under our definitions of
immersed branched surface and carrying above, although every immersed essential
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Figure 3.2

surface can also be homotoped into normal form. An analogue of the theorem of
Floyd and Oertel for surfaces with the 4-plane property can be found in [12]. Next,
we show that this finiteness theorem can be generalized to immersed surfaces with
the n-color property. The proof is similar to the case of embedded surfaces in [5]. We
can identify normal disks of the same type and in the same color to a branch sector,
and get only finitely many possible immersed branched surfaces.

Lemma 3.2. There are a finite collection of immersed branched surfaces, such that
any immersed π1-injective surfaces in M with the n-color property is fully carried
by an immersed branched surface in this collection.

Proof. Let T be a triangulation ofM , T a tetrahedron in T , and T ′ a tetrahedron in ˜T
such that π(T ′) = T , where ˜T is the induced triangulation of the universal cover ˜M

and π : ˜M → M is the covering map. Let f : S → M be a π1-injective surface with
the n-color property. After homotopy, we can assume f is a normal surface and has
least weight (or combinatorial area as in [9]). Each tetrahedron has 7 normal disk
types. Let d be a normal disk type in T ′ and γd the collection of normal disks in
π−1(f (S)) ∩ T ′ of type d. Suppose we have colored all the planes in π−1(f (S))

using n different colors. Then, we give every normal disk in π(γd) a color induced
from γd . We still call the corresponding normal disk type in T the disk type d, and
we use d × I to denote the product of an interval I and a normal disk of type d. As
in [5], [12], we put k (k ≤ n is the number of different colors in γd ) such products
d × I ’s in T such that any two disks in the same color are in the same d × I and are
transverse to the I -fibers. We can do such construction for every normal disk type in
every tetrahedron in T .

Since our coloring in ˜M is not equivariant, we must be careful when we glue
these d × I ’s together along the 2-skeleton (to form a fibered neighborhood of an
immersed branched surface). LetNk be a small neighborhood of the k-skeleton andN
a small neighborhood of a 2-simplex in M − N1. There are finitely many d × I ’s
intersectingN . We say that two disks in f (S)∩N are of the same type if they connect
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the same two products (i.e. the same two d × I ’s) in the two tetrahedra sharing this
2-simplex. Thus we can put finitely many product regionsE2 ×I ’s inN such that any
two disks in f (S)∩N of the same type are in the same product region. We can do such
construction for every 2-simplex. Similarly, we can put some product regions in N1
connecting those product regions in M −N2 and N2 −N1. Note that the number of
different product regions for a 1-simplex depends on n and the number of tetrahedra
incident to this 1-simplex. As in [5], [12], by identify every I -fiber of every product
region above to a point, we can construct a singular branched surface and the union
of those product regions can be consider as a fibered neighborhood of this singular
branched surface. By our construction above, two normal disks in the immersed
surface are identified to the same branch sector only if they have the same induced
color, and hence the two corresponding planes in the universal cover have the same
color and do not intersect. Thus there is no local picture of Figure 3.2 in this singular
branched surface. By [3], this singular branched surface can be embedded in some
3-manifold, i.e., one can construct a 3-manifold M ′ in which B is embedded, and
there is a local embedding h : B → M such that h(B) is the singular branched surface
we constructed. Moreover, since the number of those product regions is bounded,
there are only finitely many ways to construct such immersed branched surfaces, and
the lemma follows. �

In the proof of Lemma 3.2, the number of possible immersed branched surfaces
depends on n and the triangulation.

Let g : S → M be a least weight π1-injective surface and f : N(B) → M (a
fibered neighborhood of) the immersed branched surfaces fully carrying S that we
constructed in the proof of Lemma 3.2. By our definition of carrying, we can view S

as an embedded surface in N(B) and f |S = g. Let D × I , where D is a disk, be a
product region inN(B)with each I -fiber a subarc of an I -fiber ofN(B),D×∂I ⊂ S

and S ∩ (D × int(I )) = ∅. Note that by our construction, f (D × int(I )) ∩ f (S)
may not be empty. Nevertheless, the next two properties follow trivially from our
construction in the proof of Lemma 3.2.

Property 1. Letf ,N(B), andD×I be as above, and supposef |D×I is an embedding.
Let f̃ : D× I → ˜M be a lift of f |D×I , and we denote the two planes containing the
two components of f̃ (D × ∂I) by S1 and S2. Then, by our construction, we may
assume S1 and S2 have the same color, and hence either S1 = S2 or S1 ∩ S2 = ∅.

Property 2. Let Si (i = 1, 2) and f̃ be as in Property 1. So we may assume S1 and
S2 have the same color. If there is a plane S3 that intersects f̃ (D × int(I )), then by
our assumption above, we may assume S3 is not in the same color as S1 (since we
assumed S ∩D × int(I ) = ∅ in N(B) before) and in particular, S3 �= S1.
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Floyd and Oertel also showed [5] that the branched surface fully carrying a
least weight embedded incompressible surface can be split to be an incompress-
ible branched surface. In particular, it contains no monogon. This result can be
generalized to immersed surfaces as well.

Definition 3.3. An immersed branched surface f : B → M (and f : N(B) → M)
is said to be incompressible if it satisfies the following conditions.

(1) f |∂hN(B) is π1-injective.

(2) f (B) has no immersed monogon, i.e. for any closed curve c = α ∪ β, where α
is a vertical arc in ∂vN(B) and β ⊂ ∂hN(B), f |c is homotopically nontrivial.

Note that, if f |∂hN(B) is π1-injective, then B does not contain any disk of contact
(a disk of contact [5] is a disk D embedded in N(B), transverse to the I -fibers of
N(B), and ∂D ⊂ ∂vN(B)). A disk of contact can be eliminated by splitting B [5].
The following lemma is not essential in our algorithm, but it is interesting in its own
right. The proof is similar to an argument in [5].

Lemma 3.4. SupposeM is a closed orientable 3-manifold with trivial π2(M). Let S
be a closed orientable π1-injective least weight normal surface. Suppose S is fully
carried by an immersed normal branched surface f : B → M . Then, after eliminat-
ing disks of contact in B and taking a sub branched surface if necessary, f : B → M

is incompressible.

Proof. Since S is fully carried by f : B → M , we can assume S lies in N(B).
After some isotopy and taking multiple copies of S if necessary, we can also assume
∂hN(B) ⊂ S. Since S is π1-injective, after getting rid of disks of contact (by
splitting B) and taking a sub branched surface if necessary, f |∂hN(B) is π1-injective.
So it suffices to show that there is no immersed monogon. Suppose that there is a
monogon, i.e., a closed curve c = α∪β such that f |c is homotopically trivial, whereα
is a vertical arc in ∂vN(B) and β ⊂ ∂hN(B) ⊂ S. LetA be the component of ∂vN(B)
that contains α (A is an annulus), and let SA be the horizontal boundary component
that contains β and ∂A. Let R be a small rectangular neighborhood of α in A, where
∂R consists of two arcs in ∂A and two vertical arcs α1 and α2 of the annulus A.
Let βi be an arc in SA that is parallel and close to β such that ∂βi = ∂αi (i = 1, 2).
So γ = β1 ∪ (∂A−R)∪β2 is a closed curve in S. Since f |c is homotopically trivial,
f |γ is homotopically trivial. Since f |SA is π1-injective, γ must be a trivial curve
in SA. Since there is no disk of contact and f |∂hN(B) is π1-injective, SA must be an
annulus. Moreover, f (SA) can be homotoped into f (A) fixing f (∂A), since π2(M)

is trivial. After this homotopy, the total weight of f (S) is reduced, which contradicts
the assumption that S has least weight. �
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Note that all disks of contact can be found algorithmically by solving a system
of branch equations (see [1], [5], [15] for the definition of branch equation and
[1], [8] for more details). In fact, one can formulate a system of nonhomogeneous
linear equations for surfaces (carried by the branched surface) with boundary in the
branch locus and having Euler characteristic 1. By solving such linear systems and
finding solutions corresponding to disks of contact with least weight [1], [8], one can
successively find all circles in the branch locus that bound disks of contact. After
successively splitting along these disks of contact, we get a branched surface without
disk of contact and still carrying the surface S. After taking a sub branched surface
if necessary, we get a branched surface fully carrying S.

Therefore, we can algorithmically construct finitely many immersed incompress-
ible branched surfaces such that each least weight π1-injective normal surface with
the 7-color property is fully carried by one of them.

4. Essential tori

Suppose B is an embedded branched surface in a 3-manifold N , and let f : B → M

(f : N(B) → M) be an immersed branched surface. Suppose there is a least weight
normal essential torus T fully carried by f : B → M . In other words, T ⊂ N(B) ⊂
N is a torus embedded in N(B) and transversely intersecting every I -fiber of N(B),
and f |T is an immersed essential normal torus that has least weight in its homotopy
class.

As f (T ) is a normal surface, f−1(T (2)) gives a cell decomposition of N(B) and
the weight of f (T ) is equal to the number of intersection points of T ∩ f−1(T (1)).
We denote the weight of f (T ) by weight(T ). We call an immersed essential torus T
in M an absolutely least weight essential torus if the weight of any essential torus
in M is greater than or equal to weight(T ).

Lemma 4.1. Let M be an orientable small Seifert fiber space of hyperbolic type.
Suppose f : B → M is an immersed branched surface (constructed in Section 3)
fully carrying a least weight normal essential torus with the n-color property. Then,
there is a number W that depends only on f : B → M and can be algorithmically
calculated, such that M contains some essential torus with weight less than W , i.e.,
W is an upper bound on the weight of an absolutely least weight torus.

Proof. Let T be the least weight normal essential torus with the n-color property
and suppose f : B → M is constructed in Section 3 using T . By Lemma 3.4, we
can assume that f : B → M is incompressible. Suppose N(B) is embedded in a
closed 3-manifold N , and T is embedded in N(B) transverse to every I -fiber of
N(B). Since f |∂hN(B) is π1-injective, similar to embedded branched surfaces, we
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can assume every 2-sphere component of ∂N(B) bounds a 3-ball (in N ) which is in
the form D2 × I , where D2 × ∂I consists of two disk components of ∂hN(B) and
∂D2 ×I is a component of ∂vN(B). SinceM is irreducible, we can extend the map f
through these D2 × I regions.

Case 1. Every boundary component of N(B) is a 2-sphere.

As above, we can assume that N is the union of N(B) and the D2 × I regions.
Since T is two-sided in M , T is two-sided in N . The I -fibers of N(B) and the
I -fibers of these D2 × I regions are connected together forming a one-dimensional
foliation of N . Moreover, since N(B) fully carries T , N − T (i.e. the closure of
N − T under the path matric) is an I -bundle over a closed (possibly not connected)
surface. Since T is two-sided, if T is nonseparating in N , then N − T is of the form
T × I , and if T is separating, N − T consists of two twisted I -bundles over Klein
bottles.

We first consider the case that T is nonseparating inN , i.e.,N − T = T ×I . Since
N − N(B) is a union of 3-balls and M is irreducible, the map f : N(B) → M can
be extended to a map f : N → M . Next, we show that f : N → M is π1-injective.
Otherwise, there is a closed essential curve γ in N such that f (γ ) is homotopically
trivial. After some homotopy, we can assumeγ is a union of 2k arcsα1, β1, . . . , αk, βk
such that each αi lies in T and each βi is an I -fiber ofN − T = T × I . Moreover, by
fixing a direction for γ and a normal direction for T , we can assume (after homotopy)
that the induced direction (from the fixed direction of γ ) for each βi agrees with the
normal direction of T . We call these βi’s β-arcs. As f |T is π1-injective, there is at
least one β-arc in γ . Since T is fully carried by N(B), i.e. T is embedded in N(B)
and transversely intersects every I -fiber of N(B), each I -fiber of N − T = T × I is
a union of subarcs of I -fibers inN(B) and at most one I -fiber of someD2 × I region
in N − int(N(B)). Since each I -fiber in aD2 × I region can be isotoped to a subarc
of an I -fiber ofN(B), after some homotopy, we can assume each βi is a subarc of an
I -fiber of N(B).

Let γ ′ be a lift of f (γ ) in the universal cover of M . Since f : N(B) → M

is a local embedding and f (γ ) is homotopically trivial, γ ′ is a union of 2k arcs
α′

1, β
′
1, . . . , α

′
k, β

′
k , where the α′

i’s and β ′
i’s are corresponding lifts of the αi’s and βi’s.

Thus each α′
i lies in a plane in the preimage of f (T ) and each β ′

i is an I -fiber of the
preimage of f (N(B)). Moreover, each plane in the preimage of f (T ) has a normal
direction induced from that of T , and the induced direction for each β ′

i is compatible
with the induced normal directions of these planes.

For each β ′
i , we use T +

i and T −
i to denote the two planes in π−1(f (T )) containing

the two endpoints of β ′
i respectively with T +

i = T −
i+1 for each i (T ±

k+1 = T ±
1 ).

Note that T +
i and T −

i cannot be the same plane, otherwise the directions will be
incompatible. Moreover, by Property 2 in the last section, T ±

i ∩ int(β ′
i ) = ∅. By

Property 1, T +
i ∩T −

i = ∅. Since each plane inπ−1(f (T )) is embedded and separating
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in ˜M , these T ±
i ’s must be mutually disjoint planes that cut ˜M into k+2 pieces. Since

the induced direction of γ ′ is compatible with the induced normal direction of these
k+ 1 planes, and since T ±

i ∩ int(β ′
i ) = ∅, these β ′

i’s must lie in different pieces, and
this is impossible as γ ′ is a closed curve in ˜M

Therefore, in the case that T is nonseparating, f : N → M is π1-injective and
in particular f |H is π1-injective for any torus H carried by N(B). By solving the
system of branched equations (see [1], [8] for more details), one can always find a
solution corresponding to a torus fully carried by N(B), and its weight is an upper
bound on the weight of an absolutely least weight torus. Note that, by solving the
system of branch equations, one can always find a certain torus fully carried by a
branched surface, but one may not be able to find the essential torus T that we used
to construct the immersed branched surface in Section 3.

Now, we suppose T is separating, i.e., N − T consists of two twisted I -bundles
over Klein bottles. In this case, N has a double cover N̂ where T lifts to a nonsepa-
rating torus. Let T̂ and N(B̂) be the preimage of T and N(B) in this double cover,
and g : N̂ → M be the composition of the map f and this double covering. Then,
similar to the argument above, g induces an injection on π1. As above, one can solve
the system of branch equations and find a torus H carried by N(B̂). The map g
restricted to H is π1-injective, and the weight of H is an upper bound on the weight
of an absolutely least weight torus.

Case 2. Some boundary component of N(B) is not a 2-sphere.

Since f |∂hN(B) is π1-injective, there must be a component A of ∂hN(B) that is
not a disk. Let X be an arbitrary torus fully carried by N(B). Note that we can find
such a torus X by solving the system of branch equations. After some isotopy on X,
we can assume A ⊂ X. Since N(B) has no disk of contact, ∂A must consist of
essential curves inX. Hence, Amust be an annulus and every nondisk component of
∂hN(B) is an annulus. Let X′ be a disjoint union of some parallel copies of X. We
can choose X′ so that each nondisk component of ∂hN(B) lies in some component
of X′ and each component of X′ contains some nondisk component of ∂hN(B).
Let NB be the union of N(B) and all the D2 × I regions of N − int(N(B)). By our
assumptions onX′, X′ − ∂NB consists of annuli. We can cut NB open alongX′, and
by the discussion above, we get a union of I -bundles over some compact surfaces
with Euler characteristic zero. Let Y be another torus fully carried by N(B). After
some isotopy in NB , we can assume that the number of intersection curves of Y
and X′ is minimal. Since both X and Y are π1-injective in N(B), X ∩ Y must
consist of essential curves in both Y and X′. Moreover, since NB is cut by X′ into a
union of I -bundles (over some compact surfaces with Euler characteristic zero), the
intersection of Y with each I -bundle must consist of annuli that can be homotoped
either intoX′ or to a vertical annulus in this I -bundle. AsX′ −∂NB consists of annuli
and Y ∩ X′ ⊂ X′ − ∂NB , we can choose some disjoint vertical annuli in NB −X′
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so that Y can be homotoped to a possibly singular torus lying in the union of these
vertical annuli and X′. The union of X′ and these disjoint vertical annuli form a
2-complex CY . Since these vertical annuli are disjoint and Y ∩X′ ⊂ X′ − ∂NB , the
1-skeleton (i.e. the boundary of these vertical annuli) of this 2-complex CY consists
of disjoint circles in X′ − ∂NB . In fact, by choosing enough such disjoint vertical
annuli in NB −X′, we can construct a 2-complex C in N(B), which is a union ofX′
and some disjoint vertical annuli in NB −X′, such that every torus fully carried by
N(B) can be homotoped to a possibly singular torus in this 2-complex C. Note that
the 1-skeleton (i.e. the boundary of these vertical annuli) of C consists of disjoint
circles in X′ − ∂NB . Clearly, C can be found algorithmically.

LetA be an annular component of ∂hN(B). SinceX′ − ∂NB is a union of annuli,
the boundaries of those vertical annuli in the construction ofC above consist of circles
(inX′) parallel to ∂A. By mapping circles parallel to ∂A to points, we can projectX′
to a union of circles and project those vertical annuli in C to arcs connecting these
circles. So we get a graphG. After taking a double cover if necessary, we may assume
C = G× S1. By the discussion above, for each torus Y fully carried by N(B), there
is a closed curve γY in G such that γY × S1 ⊂ G × S1 ⊂ N(B) is homotopic to Y
in NB . As G × S1 ⊂ N(B), we have an induced map f : G × S1 → M . By our
hypotheses, there is a torus T fully carried by N(B) and f |T is π1-injective. Hence,
we know that there is a closed curve η inG such that f : η×S1 → M is π1-injective.

We can express each element in π1(M) in the form of alk , where a ∈ �(p, q, r)
and l is a generator of the cyclic center of π1(M). Let (x, y) (x ∈ G, y ∈ S1)
be a base point in G × S1. Suppose f ({x} × S1) represents an element alk and
f (η × {y}) represents blm, where a, b ∈ �(p, q, r). Thus alk and blm commute in
π1(M), which implies that a and b must commute in the hyperbolic triangle group
�(p, q, r), and hence a and b must generate a cyclic subgroup in �(p, q, r).

Subcase 2.1. a �= 1.

In this subcase, since 〈a, b〉 is a cyclic subgroup in �(p, q, r) and since f : η ×
S1 → M is π1-injective, a must have infinite order in �(p, q, r).

SinceG is a graph, π1(G) is a free group generated by g1, . . . , gn. Let γ1, . . . , γn
be closed curves in G representing g1, . . . , gn respectively. Suppose f (γi × {y})
represents the element ci lsi in π1(M) (i = 1, . . . , n), where ci ∈ �(p, q, r). By our
construction, each ci lsi commutes with alk , and hence each ci commute with a in the
hyperbolic triangle group�(p, q, r). Thus 〈ci, a〉 is a cyclic subgroup of�(p, q, r)
for each i. Since a has infinite order in �(p, q, r), 〈c1, . . . , cn, a〉 must also be an
infinite cyclic subgroup in �(p, q, r). If f |γi×S1 is not π1-injective for each i, then
〈ci lsi , alk〉 is infinite cyclic in π1(M) for each i, and 〈c1l

s1, . . . , cnl
sn, alk〉 must be a

cyclic subgroup of π1(M), i.e., f∗(π1(G×S1)) is cyclic in π1(M), which contradicts
the hypotheses that there is a curve η ⊂ G such that f |η×S1 isπ1-injective. Therefore,
for some 1 ≤ j ≤ n, f |γj×S1 is π1-injective. So the maximal weight of the tori
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f (γ1 × S1), . . . , f (γn × S1) is an upper bound on the weight of an absolutely least
weight π1-injective torus. Since the γi’s can be found easily from the graph G, this
bound can be calculated algorithmically.

Subcase 2.2. a = 1.

In this subcase, f ({x}×S1) represents lk and k �= 0. As f |η×S1 isπ1-injective and
f (η × {y}) represents blm, b must have infinite order in �(p, q, r). Let γ1, . . . , γn
and c1, . . . , cn be as in Subcase 2.1 above. If cj has infinite order for some j , then
f |γj×S1 is π1-injective and we get a bound as in Subcase 1.1 above. So we assume
each ci has finite order in �(p, q, r).

If ci and cj generate a cyclic group in�(p, q, r) for each pair i, j , then 〈c1, . . . , cn〉
is a finite cyclic subgroup of�(p, q, r), which contradicts the assumption that f |η×S1

is π1-injective. Thus there must be a pair ci , cj (1 ≤ i < j ≤ n) such that ci and cj
both have finite order but 〈ci, cj 〉 is an infinite group. Then, by Lemma 2.5, there
is an infinite-order element w in 〈ci, cj 〉 that is of the form of u, or uv±1, or uv±2,
where u and v are among ci , cj and cicj . Let γw be a loop in G representing w.
Hence, f |γw×S1 is π1-injective. One can enumerate all possible loops for γw using
the ci’s above and get an upper bound on the weight of f (γw × S1), which is also an
upper bound on the weight of an absolutely least weight essential torus. �

5. An algorithm

In this section, we summarize our algorithm to recognize Seifert fiber spaces. Since
there are algorithms to decide whether a 3-manifold is reducible or Haken and whether
a Haken manifold is a Seifert fiber space [10], we can assume our manifold M is
irreducible and non-Haken. There are algorithms [18], [25] to decide whether a 3-
manifold is a 3-sphere. Rubinstein has also given an algorithm to recognize lens
spaces [18].

By Rubinstein’s algorithm, one can decide whether a 3–manifold has Heegaard
genus 2. If the Heegaard genus of M is not 2, then M is not a small Seifert fiber
space. IfM has genus 2, thenM is a double branched cover of S3, and by the orbifold
theorem [4], M is geometric. Note that if M is an orientable Seifert fiber space with
finite fundamental group, then there is a k-fold (k ≤ 60) cover of M that is a lens
space [16]. If M has genus 2, since M is geometric, M is a Seifert fiber space with
finite fundamental group if and only if one of the covering spaces above is a lens
space. So one only needs to enumerate all possible 60-fold covers of M and check
each one of them to see if it is a lens space using the algorithm in [18].

Therefore, it remains to find an algorithm to recognize non-Haken small Seifert
fiber spaces with infinite fundamental group.

In the following algorithm to recognize small Seifert fiber spaces with infinite
fundamental group, we use immersed branched surfaces discussed previously. Since
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one can describe a branched surface by a system of branched equations as in [1],
[5], [15], many geometric operations in the algorithm can be described by linear
equations, and this algorithm can be considerably simplified during implementation.

Step 1. Check whether M is a small Seifert fiber space of Euclidean type.

If M is a small Seifert fiber space of Euclidean type, then the triangle group of
the corresponding orbifold is either�(2, 4, 4), or�(2, 3, 6) or�(3, 3, 3). IfM is of
type�(2, 4, 4) (resp.�(2, 3, 6)), thenM is double (resp. triple) covered by a Haken
Seifert fiber space whose orbifold is a 2-sphere with 4 cone points. If M is of type
�(3, 3, 3), then M is triple covered by a Haken Seifert fiber space whose orbifold is
a torus without cone point. We can enumerate all possible double and triple covers
of M . Then, using the algorithm in [10], we check these covers to see whether one
of them is a Haken Seifert fiber space, and we will know immediately whether M is
a Seifert fiber space. In fact, one can find a least weight embedded incompressible
vertical torus in each of such covers using [10]. The projection of this embedded
torus to M is a π1-injective torus with the 4-plane and 1-line properties [24], [6].
Using the 4-plane and 1-line properties, as in [24], [7] (and Step 4 below), one can
algorithmically perform some simple homotopies to remove all triple points of this
immersed essential torus. By checking the complement of this tori without triple
points, one can easily see the Seifert fiber structure on M .

Step 2. Construct finitely many immersed branched surfaces so that any least weight
essential surface with the 7-color property is fully carried by one of them.

For each normal disk type δ, we put k (k ≤ 7) normal disks of type δ. Then, as in
the proof of Lemma 3.2, we can split each normal disk near the 2-skeleton and glue
them together to form an immersed branched surface. Since the number of normal
disks are bounded, we can enumerate all possible immersed branched surfaces.

Step 3. Calculate a number W such that, if M is a small Seifert fiber space of
hyperbolic type, then M contains an essential torus with weight less than W .

By Theorem 2.7, M contains an essential torus with the 7-color property if M
is a small Seifert fiber space of hyperbolic type. So one of the immersed branched
surfaces in Step 2 fully carries a least weight normal essential torus. By solving
systems of branch equations, we can find all disks of contact in these branched
surfaces. After splitting along the disks of contact and taking a sub-branched surface
if necessary, by Lemma 3.4, we can assume one of the immersed branched surfaces
is an incompressible immersed branched surface fully carrying a least weight normal
essential torus. Therefore, for each immersed branched surface in Step 2, we can
algorithmically calculate a number (as in the proof of Lemma 4.1) that is an upper
bound on the weight of some essential torus, if this immersed branched surface fully
carries an essential torus. By taking the maximum, we obtain a number W , which
is an upper bound on the weight of an absolutely least weight essential torus if the
3-manifold is a small Seifert fiber space of hyperbolic type.
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Step 4. Determine whether M is a small Seifert fiber space of hyperbolic type.

Let W be the number calculated in Step 3. Then, by a theorem in [13] (i.e.,
Theorem 5.1 as follows), in a Seifert fiber space of hyperbolic type, there is always
a torus T with the 4-plane and 1-line properties and weight(T ) ≤ W . Note that
Theorem 5.1 is not essential to our algorithm, see Remark 5.2.

Theorem 5.1 ([13]). In a non-Haken small Seifert fiber space with infinite π1, an
absolutely least area (or least weight) essential torus must have the least number of
double curves among all the essential tori. In particular, an absolutely least area (or
least weight) torus has only one or two double curves and has the 4-plane and 1-line
properties as described in [24].

Since there are only finitely many normal surfaces (up to normal homotopy) with
weight no more thanW , we can enumerate all the normal tori with weights bounded
by W . By Theorem 5.1, if M is a Seifert fiber space of hyperbolic type, one of
these normal tori has the 4-plane and 1-line properties. If T is a torus with the 4-
plane and 1-line properties, then as in [24], [7], one can eliminate all triple points by
performing some simple homotopies. In fact, for any essential torus g : T → M with
the 4-plane and 1-line properties as described in [24], if there are triple points, then by
the argument in Lemma 4.4 of [24], the closure of at least one component ofM−g(T )
must be an embedded 3-side “football region”, i.e., an embedded 3-ball B3 whose
boundary consists of 3 bigons and int(B3) ∩ g(T ) = ∅ (a bigon is a disk in g(T )
whose two vertices are triple points and whose two edges are in the double curves of
g(T )). By moving one bigon across the other two bigons in a small neighborhood
of the “football region”, we can cancel a pair of triple points, and eventually such
homotopy can eliminate all triple points.

So we perform these homotopies on each of the normal tori with weight less
thanW . If we cannot find such a “football region” or get a torus without triple points
by such homotopies, M is not a Seifert fiber space of hyperbolic type. If we find a
torus without triple points, by checking whether the complement of this immersed
torus is a union of solid tori, we can determine whether M is a Seifert fiber space.

Remark 5.2. (1) The key reason for the existence of such a nice “football region” is
the 4-plane and 1-line properties. For immersed least area surface in general, there
may not exist such an embedded “football region”. Also, if there are pieces of the
immersed surface in the interior of a “football region”, such a homotopy may increase
the number of the triple points. In fact, there are examples of immersed surface that
one cannot reduce the number of the triple points without increasing the number of
the triple points first.

(2) Although Theorem 5.1 makes the algorithm faster, this theorem is not essential
to our algorithm. The following much weaker version of Theorem 5.1 is fairly easy to
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prove (by cutting and pasting on multiple parallel copies of f (T )) and is sufficient to
make the algorithm work. Given an essential least weight immersed torus f : T →
M , whereM is a non-Haken small Seifert fiber space of hyperbolic type, the weight of
Scott’s tori (those with one or two double curves and the 4-plane and 1-line properties)
are less than h(w, d), where h is an explicit linear function,w = weight(f (T )) and d
is the number of the double curves of f (T ).
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