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Higher-order linking forms for knots

Constance Leidy

Abstract. We construct examples of knots that have isomorphic nth-order Alexander mod-
ules, but non-isomorphic nth-order linking forms, showing that the linking forms provide more
information than the modules alone. This generalizes work of Trotter [T], who found exam-
ples of knots that have isomorphic classical Alexander modules, but non-isomorphic classical
Blanchfield linking forms.
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1. Introduction

In 1973, Trotter [T] found examples of knots that have isomorphic classical Alexan-
der modules, but non-isomorphic classical Blanchfield linking forms. Recently,
T. Cochran [C] defined higher-order Alexander modules, An(K), of a knot, K , and
higher-order linking forms, B�n(K), which are linking forms defined on An(K).
When n = 0, these invariants are just the classical Alexander module and Blanchfield
linking form. The question was posed in [C] whether Trotter’s result generalized to
the higher-order invariants. We show that it does. The following is our main theorem.

Main Theorem. For each n ≥ 0, there exist knots K0 and K1 such that Ai (K0) ∼=
Ai (K1) for 0 ≤ i ≤ n and B�i(K0) ∼= B�i(K1) for 0 ≤ i < n, but B�n(K0) �
B�n(K1).

When n = 1, a particular example of the main theorem is the pair of knots depicted
below. The construction of them will be explained later in this paper.

We shall work with classical, oriented knots in the PL category. We now review
some notions of classical knot theory. We refer the reader to [G], [Li], and [Ro] as
knot theory resources. Recall that by Alexander duality, the p-th reduced homology
of the exterior of the knot is trivial except when p = 1, in which case it is Z,
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generated by the meridian. It follows that G
G′ ∼= Z, where G is the fundamental

group of the exterior. Hence, we can take the infinite cyclic cover of the exterior. The
classical Alexander module of a knot is defined to be the first homology of this infinite
cyclic cover of the exterior of the knot, considered as a Z[t, t−1]-module. Here the
module structure results from the action x ∗ t = μ−1xμ, where μ is the meridian
of the knot. Furthermore, since the fundamental group of the infinite cyclic cover
is the commutator subgroup, G′, it follows that the Alexander module is simply G′

G′′
considered as a right Z

[
G
G′

]
-module.

A Seifert surface for a knot, K , is a connected, bicollared, compact surface in S3

whose boundary isK . For a choice of Seifert surface,F , and bicollar, the Seifert form
on H1(F ) is defined to be the linking number of x with y+, for any x, y ∈ H1(F ),
where y+ denotes a pushoff of y in the positive direction of the bicollar of F . A
Seifert matrix V is the matrix representing the Seifert form with respect to a choice of
basis forH1(F ). For any Seifert matrixV , recall thatV −tV T presents theAlexander
module and det(V −V T ) = 1 �= 0. It follows that the Alexander module is a torsion
module. That is, for any element of the Alexander module, x, there is a non-zero
element, p(t), of Z[t, t−1] such that x ∗ p(t) = 0.

Since the Alexander module is a torsion module, it is possible to define a linking
form on the Alexander module, known classically as the Blanchfield linking form.
Let x and y be any two elements of the Alexander module. Then as above, there is
a non-zero element of Z[t, t−1], p(t), such that x ∗ p(t) = 0. Therefore there is a
2-chain, α, in the infinite cyclic cover of the exterior whose boundary is x ∗p(t). We
define the Blanchfield linking form of x and y to be

B�(x, y) =
∞∑

i=−∞

1

p(t−1)
λ(α, y ∗ t i)t−i (mod Z[t, t−1]),

where λ is the ordinary intersection form. Notice that the Blanchfield linking form
takes values in Q(t)/Z[t, t−1].

In order to motivate our main theorem, we recall some results about the Blanchfield
linking form. C. Kearton [K] and H. F. Trotter [T] each proved the following theorem.

Theorem 1.1. IfV is a Seifert matrix for a knotK , then (1−t)[V−tV T ]−1 represents
the Blanchfield linking form for K .
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Recall that S-equivalence of matrices is the equivalence relation generated by
integral congruence and column enlargements. Here V is integrally congruent to
PT V P , where P is an integral matrix with det P = ±1, and a column enlargement
of V is the following: ⎛

⎝V uT 0
v x 1
0 0 0

⎞
⎠ .

Here x is an integer and u and v are column vectors. Furthermore, two knots are
S-equivalent if they have S-equivalent Seifert matrices.

Proposition 1.2 ([T], p. 179; [K], p. 142). Two knots have isomorphic Blanchfield
linking forms if and only if they are S-equivalent.

The question arises: Do there exist knots with isomorphicAlexander modules, but
non-isomorphic Blanchfield forms? By Proposition 1.2, it suffices to find examples
of knots with isomorphic Alexander modules that are not S-equivalent. Furthermore,
since the ordinary signature of a knot is an S-equivalence invariant, we have reduced
the problem to finding two knots with isomorphic Alexander modules, but with dif-
ferent signatures.

Given any knot, K , let −K = rK denote the reverse of the mirror-image of K .
This is also the inverse of K in the knot concordance group.

Proposition 1.3. If K is a knot such that the ordinary signature of K is non-zero,
thenK and −K have isomorphic Alexander modules, but non-isomorphic Blanchfield
linking forms.

Proof. If V is a Seifert matrix for K , then −V T is a Seifert matrix for its mirror-
image,K , and V T is a Seifert matrix for its reverse, rK . Therefore the Seifert matrix
for −K is −V . Since V − tV T and −V + tV T present isomorphic modules, K and
−K have isomorphic Alexander modules. However, if the signature ofK is non-zero,
then the signature of −K is not equal to the signature ofK . Hence,K and −K are not
S-equivalent, and therefore have non-isomorphic Blanchfield linking forms. �

We note that the examples that Trotter provided in [T] were found using different
methods than those presented here.

2. Higher-order Alexander modules and linking forms

Let us recall some of the definitions and results from [C] and [COT1]. Given a
knot K , let E(K) denote the exterior of K , S3\ nbhd(K), and let G = π1(E(K)).
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Recall that the derived series of a group H is defined recursively by H(0) = H and
H(n+1) = [

H(n),H (n)
]
, for n ≥ 1. We will use �n to denote the quotient group

G

G(n+1) . Then we have the coefficient system defined by the homomorphismG → �n.

Definition 2.1. For n ≥ 0, the nth higher-order Alexander module of a knot K is

An(K) ≡ H1(E(K); Z�n).

Therefore the nth higher-order Alexander module is the first (integral) homology
group of the covering space of the knot exterior corresponding toG(n+1), considered

as a right Z�n-module. This is the same as G(n+1)

G(n+2) as a right Z�n-module. (Notice
that we are working with the right Z�n-module structure on the chain groups given
by α ∗ g = gαg−1.)

As in the classical case, the higher-order Alexander modules of a knot are torsion
modules ([C], Prop. 3.10). Therefore, it is possible to define symmetric linking
forms on the higher-order Alexander modules. Before giving the careful algebraic
definition, we describe the geometric idea of the linking forms. Given any element
x ∈ An(K), there is some γ ∈ Z�n such that x · γ = 0. Therefore x · γ can be
represented as the boundary of a 2-chain, α ∈ C2(X; Z�n). For any y ∈ An(K),
define B�n(x, y) ≡ γ−1 · λn(α, y), where λn denotes the equivariant intersection
pairing on E(K) with coefficients in Z�n. Here γ is the image of γ under the group
ring involution defined on the group ring Z�n by

( ∑
nigi

) = ∑
nig

−1
i (see [P, p. 5]).

Since we are working with the right module structure, the equivariant intersection
pairing is defined as

λn(α, y) =
∑
g∈�n

λ(α, (y ∗ g)) · g−1,

where λ denotes the ordinary intersection form.
In [COT1, Prop. 3.2], it is shown that Z�n is an Ore domain. Therefore it is

possible to define the right ring of fractions of Z�n (see [Co, Cor. 1.3.3]), which we
will denote by Kn. The short exact sequence 0 → Z�n → Kn → Kn/Z�n → 0
gives rise to the Bockstein sequence

H2(E(K); Kn) −−→ H2(E(K); Kn/Z�n)

B−−→ H1(E(K); Z�n) −−→ H1(E(K); Kn).

Since the higher-order Alexander modules of a knot are torsion modules, it follows
thatHi(E(K); Kn) = 0, for i = 1, 2 ([C], Cor. 3.12). Therefore the Bockstein map,
B : H2(E(K); Kn/Z�n) → H1(E(K); Z�n), is an isomorphism.

Let An(K)
# ≡ HomZ�n(An(K),Kn/Z�n), where given any left R-module

M, M represents the usual associated right R-module resulting from the involution
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of R. We now give the precise definition of the symmetric linking forms defined on
the higher-order Alexander modules.

Definition 2.2. The nth higher-order linking form, B�n : An(K) → An(K)
#, for a

knot K , is the composition of the following maps:

An(K)
B−1−−−→ H2(E(K); Kn/Z�n)

π−−−→ H2(E(K), ∂E(K); Kn/Z�n)

P.D.−−−→ H 1(E(K); Kn/Z�n)
κ−−−→ An(K)

#,

where P.D. is the Poincaré duality isomorphism and κ is the Kronecker evaluation
map. We will often denote [B�n(x)](y) by B�n(x, y).

The higher-order linking forms that we consider differ from those defined by
T. Cochran in [C] and T. Cochran, K. Orr, and P. Teichner in [COT1] because we
do not localize the coefficients and because the higher-order linking forms that we
consider are canonically associated toK , unlike those that were the focus of [COT1].
Furthermore, since Z�n is not a PID, our linking forms may be singular.

3. Genetic infection

In order to construct the desired examples, we use a satellite technique, that was
called genetic infection in [C]. LetK and J be fixed knots, and let η be an embedded
oriented circle in S3\K which is itself unknotted in S3. Since η is unknotted in S3,
it bounds a disc, D, in S3, which we can choose to intersect K transversely. We
construct a new knot by tying the strands ofK that pierceD into the knot J . That is,
we replace the strands of K that intersect a small neighborhood ofD with untwisted
parallels of a knotted arc with oriented knot type J . We call the resulting knot the
result of infecting K by J along η, denoted by K(η, J ). Alternatively, we can view
this construction from a surgery point of view. Beginning with the exterior of K ,
E(K), delete the interior of a tubular neighborhood of η, and replace it with the
exterior of J , E(J ), identifying the meridian of J with the longitude of η, and the
longitude of J with the inverse of the meridian of η. The result is the exterior of
K(η, J ). This surgery description is better suited for our purposes.

Since there is a degree one map (rel boundary) E(J ) → E(unknot), there is a
degree one map f : E(K(η, J )) → E(K), which is the identity outside of E(J ).

Proposition 3.1 ([C], Thm. 8.1). If η ∈ π1(E(K))
(n), then the map f induces an

isomorphism:

f∗ : π1(E(K(η, J )))

π1(E(K(η, J )))(n+1)
−−→ π1(E(K))

π1(E(K))(n+1)
.
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Therefore we will use �n to denote both groups. The following composition of
maps defines coefficient systems on E(J ), E(K(η, J )), and E(K):

π1(E(J ))
i∗−−→ π1(E(K(η, J )))

f∗−−→ π1(E(K))
φ� �n.

The following results demonstrate the relationship between genetic infection and
the higher-order Alexander modules. We include the proofs from [C] because some
of our results will be proved using similar techniques.

Corollary 3.2. If η ∈ π1(E(K))
(n), then f : E(K(η, J )) → E(K) induces isomor-

phisms between the i-th order Alexander modules ofK(η, J )andK , for 0 ≤ i ≤ n−1.

Proof. Let G = π1(E(K)) and Ĝ = π1(E(K(η, J ))). We have the following
commutative diagram with exact rows.

1 �� Ĝ
(i+1)

Ĝ(i+2)
��

f∗
��

Ĝ

Ĝ(i+2)
��

∼= f∗
��

Ĝ

Ĝ(i+1)
��

∼= f∗
��

1

1 �� G
(i+1)

G(i+2)
�� G

G(i+2)
�� G

G(i+1)
�� 1

For 0 ≤ i ≤ n − 1, the middle and right vertical maps are isomorphisms by

Proposition 3.1. Therefore f∗ : Ĝ(i+1)

Ĝ(i+2)
−−→ G(i+1)

G(i+2) is an isomorphism. That is,

Ai (K(η, J )) ∼= Ai (K). �

In the proof of the next theorem we will require the following lemma, which we
state without proof.

Lemma 3.3 ([C], Lemma 8.3). If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1), then the
inclusion ∂E(J ) → E(J ) induces an isomorphism on H0(−; Z�n) and the trivial
map on H1(−; Z�n).

Theorem 3.4 ([C], Thm. 8.2). If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1), then

H1(E(K(η, J )); Z�n) ∼= An(K)⊕H1(E(J ); Z�n).

Proof. Let E(η) denote the result of deleting the interior of a tubular neighborhood
of η from the exterior of K . Using the surgery description of genetic infection, we
have E(K(η, J )) ∼= E(J ) ∪∂E(J ) E(η). Since infecting with the unknot leaves the
knot unchanged, we can view the exterior of K as the union of the exterior of the
unknot, U , and E(η). That is, E(K(η, J )) ∼= E(U) ∪∂E(J ) E(η). Of course, E(U)
is just a solid torus.
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We consider the Mayer–Vietoris sequence with Z�n coefficients forE(K(η, J )) ∼=
E(J ) ∪∂E(J ) E(η):

H1(E(K(η, J )))
∂∗ �� H0(∂E(J ))

(ψ1,ψ2) �� H0(E(J ))⊕H0(E(η)).

By Lemma 3.3, ψ1 : H0(∂E(J )) → H0(E(J )) is an isomorphism. Therefore

∂∗ : H1(E(K(η, J ))) −−→ H0(∂E(J ))

is the trivial map. Similarly, since E(K) ∼= E(U) ∪∂E(J ) E(η),
∂∗ : H1(E(K)) −−→ H0(∂E(J ))

is the trivial map. Thus we have the following diagram.

H1(∂E(J ))

f∗
��

(ψ1,ψ2) �� H1(E(J ))⊕H1(E(η))
i∗+j∗ ��

f∗
��

H1(E(K(η, J )))
∂∗ ��

f∗
��

0

H1(∂E(J ))
(ψ ′

1,ψ2) �� H1(E(U))⊕H1(E(η))
i′∗+j∗ �� H1(E(K))

∂∗ �� 0

Lemma 3.3 states that ψ1 : H1(∂E(J )) → H1(E(J )) is the trivial map. There-
fore im(ψ1, ψ2) = 0 ⊕ ψ2(H1(∂E(J ))). Hence H1(E(K(η, J ))) ∼= H1(E(J )) ⊕

H1(E(η))
ψ2(H1(∂E(J )))

. Similarly, H1(E(K)) ∼= H1(E(U)) ⊕ H1(E(η))
ψ2(H1(∂E(J )))

. Notice that

since f is the identity on ∂E(J ) and E(η), f∗ � ψ2 = ψ2 � f∗. However, since
η /∈ π1(E(K))

(n+1), μJ , which is the generator of π1(E(U); Z), gets unwound
in the �n-cover. Hence H1(E(U)) = 0. Therefore H1(E(K(η, J )); Z�n) ∼=
H1(E(J ); Z�n)⊕H1(E(K); Z�n). �

Corollary 3.5. If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1), then

0 → H1(E(J ); Z�n)
i∗−−→ H1(E(K(η, J )); Z�n)

f∗−−→ H1(E(K); Z�n) → 0

is a split short exact sequence.

Since π1(E(J )) is normally generated by the meridian of J , it follows that if η ∈
π1(E(K))

(n), then the image of π1(E(J )) is contained in π1(E(K))
(n). Therefore,

π1(E(J ))
′ is in π1(E(K))

(n+1), and thus in the kernel of the composition:

π1(E(J ))
i∗−−→ π1(E(K(η, J )))

f∗−−→ π1(E(K))
φ� �n.

Hence, we have a ring homomorphism

Z

[
π1(E(J ))

π1(E(J ))′

]
∼= Z[t, t−1] ψ−−→ Z�n.

If η /∈ π1(E(K))
(n+1), this is a monomorphism.
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Corollary 3.6. If η ∈ π1(E(K))
(n), then

An(K(η, J )) ∼= An(K)⊕ (A0(J )⊗Z[t,t−1] Z�n)

where Z�n is a left Z[t, t−1]-module by the homomorphism sending t to φ(η).

Proof. If η ∈ π1(E(K))
(n+1), then An(K(η, J )) ∼= An(K) by Corollary 3.2. Also in

this case, φ(η) = 1. Therefore, A0(J )⊗Z[t,t−1] Z�n = 0, since A0(J ) is presented
by V − tV t and det(V − V t) = 1, where V is a Seifert matrix for J .

If η /∈ π1(E(K))
(n+1), then H1(E(K(η, J )); Z�n) ∼= An(K)⊕H1(E(J ); Z�n)

by Theorem 3.4. Furthermore, if Ẽ(J ) is the universal cover of E(J ),

H1(E(J ); Z�n) = H1(C∗(Ẽ(J ))⊗Zπ1(E(J )) Z�n)

∼= H1(C∗(Ẽ(J ))⊗Zπ1(E(J )) Z[t, t−1] ⊗Z[t,t−1] Z�n)

(cf. [HS, p. 109]).

Since η /∈ π1(E(K))
n+1, it follows that Z[t, t−1] ψ→ Z�n is a monomorphism. It

follows from [P, Lemma 1.3] that Z�n is a free, and therefore flat Z[t, t−1]-module.
Hence,

H1(E(J ); Z�n) ∼= H1(C∗(Ẽ(J ))⊗Zπ1(E(J )) Z[t, t−1])⊗Z[t,t−1] Z�n

∼= H1(E(J ); Z[t, t−1])⊗Z[t,t−1] Z�n

∼= A0(J )⊗Z[t,t−1] Z�n. �

4. The effect of genetic infection on the higher-order linking forms

The idea behind the construction of our examples is to infect the same knot K along
the same element η ∈ π1(E(K))

(n), η /∈ π1(E(K))
(n+1) by two different knots J1,

J2 that have isomorphic classical Alexander modules. Corollary 3.6 implies that the
results of these infections will have isomorphic i-th order Alexander modules for
0 ≤ i ≤ n. We need to choose the knots so that the higher-order linking forms of
the results of the infections are not isomorphic. In this section, we will determine
the effect of genetic infection on the higher-order linking forms in order to determine
what the desired conditions are on the infecting knots.

Theorem 4.1. If η ∈ π1(E(K))
(n), then f : E(K(η, J )) → E(K) induces isomor-

phisms between the i-th order linking forms of K(η, J ) and K , for 0 ≤ i ≤ n− 1.
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Proof. We have the following diagram.

H1(E(K(η, J )); Z�i)

B−1

��

f∗

∼= �� H1(E(K); Z�i)

B−1

��
H2(E(K(η, J )); Ki/Z�i)

f∗
��

π

��

H2(E(K); Ki/Z�i)

π

��
H2(E(K(η, J )), ∂E(K(η, J )); Ki/Z�i)

P.D.
��

f∗
�� H2(E(K), ∂E(K); Ki/Z�i)

P.D.
��

H 1(E(K(η, J )); Ki/Z�i)

κ

��

H 1(E(K); Ki/Z�i)

κ

��

f ∗
��

H1(E(K(η, J )); Z�i)# H1(E(K); Z�i)#
f ∗
∼=��

By the naturality of the Bockstein isomorphism, π , the Poincaré duality isomorphism,
and the Kronecker map, B�i(K(η, J )) = f ∗ �B�i(K)�f∗. Since, by Corollary 3.2,
f induces isomorphisms between the i-th order Alexander modules of K(η, J ) and
K , for 0 ≤ i < n, it follows that f induces isomorphisms between B�i(K(η, J ))
and B�i(K). �

From now on, we will regard n as fixed and restrict our attention to the case where
η ∈ π1(E(K))

(n) and η /∈ π1(E(K))
(n+1). As a result, we will suppress n from our

notation for the higher-order linking forms. Therefore, let

B�K(η,J ) : H1(E(K(η, J )); Z�n) −−→ H1(E(K(η, J )); Z�n)
#

and

B�K : H1(E(K); Z�n) −−→ H1(E(K); Z�n)
#

denote the higher-order linking forms for K(η, J ) and K , respectively.
Recall that the following composition of maps defines a coefficient system on

E(J ):

π1(E(J ))
i∗−−→ π1(E(K(η, J )))

f∗−−→ π1(E(K))
φ� �n.

This coefficient system is non-trivial if η /∈ π1(E(K))
(n+1).

Proposition 4.2. If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1), thenH1(E(J ); Z�n)
is a Z�n-torsion module.
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Proof. Since η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1) we have a ring monomor-
phism Z[t, t−1] → Z�n. Therefore we have Z[t, t−1]-module homomorphisms
Q(t) ↪→ Kn. Furthermore, from the proof of Corollary 3.6, H1(E(J ); Z�n) ∼=
A0(J ) ⊗Z[t,t−1] Z�n where Z�n is a left Z[t, t−1]-module by the homomorphism
sending t to φ(η). Hence, we have the following:

A0(J )⊗Z[t,t−1] Z�n ⊗Z�n Kn
∼= A0(J )⊗Z[t,t−1] Kn

∼= A0(J )⊗Z[t,t−1] Q(t)⊗Q(t) Kn

∼= 0

since A0(J ) is a Z[t, t−1]-torsion module. �

Again, the short exact sequence 0 → Z�n → Kn → Kn/Z�n → 0 gives rise to
a Bockstein sequence.

H2(E(J ); Kn)−−→H2(E(J ); Kn/Z�n)
B−−→ H1(E(J ); Z�n)−−→H1(E(J ); Kn)

Corollary 4.3. If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1), then for i = 1, 2,

Hi(E(J ); Kn) = 0.

Proof. Since Kn is a flat Z�n-module (see [Ste, Prop. II.3.5]), H1(E(K); Kn) ∼=
H1(E(K); Z�n) ⊗Z�n Kn = 0 since An(K) is a torsion module. Similarly, it
follows from Prop. 3.7 of [C] that H0(∂E(K); Kn) = 0. Therefore by the long
exact sequence of a pair, H1(E(K), ∂E(K); Kn) = 0. By Poincaré duality and
the Universal Coefficient Theorem for modules over the (noncommutative) principal
ideal domain Kn [DK, pp. 44,102], we have

H2(E(K); Kn) ∼= HomKn(H1(E(K), ∂E(K); Kn),Kn) = 0. �

Corollary 4.4. If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1), then the Bockstein map,
B : H2(E(J ); Kn/Z�n) → H1(E(J ); Z�n), is an isomorphism.

Definition 4.5. If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1), define B�⊗K(η,J ) :
H1(E(J ); Z�n) → H1(E(J ); Z�n)#, to be the composition of the following maps:

H1(E(J ); Z�n)
B−1−−−→ H2(E(J ); Kn/Z�n)

π−−−→ H2(E(J ), ∂E(J ); Kn/Z�n)

P.D.−−−→ H 1(E(J ); Kn/Z�n)
κ−−−→ H1(E(J ); Z�n)

#,

where P.D. is the Poincaré duality isomorphism and κ is the Kronecker evaluation
map. We remark that the coefficient system that we are using is defined usingK(η, J ),
and therefore B�⊗K(η,J ) does indeed depend on K and η, as well as J .
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Let g be a splitting for the exact sequence in Corollary 3.5. That is, f∗ � g = id.

Theorem 4.6. If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1), then B�K(η,J ) ∼=
B�⊗K(η,J ) ⊕B�K . That is,

B�⊗K(η,J )(x1, y1)+ B�K(x2, y2) = B�K(η,J )(i∗(x1)+ g(x2), i∗(y1)+ g(y2)).

Proof. We have the following diagram.

H1(E(J ); Z�n)
i∗ ��

B�⊗
K(η,J )

��

H1(E(K(η, J )); Z�n)

B�K(η,J )

��

H1(E(K); Z�n)
g��

B�K

��
H1(E(J ); Z�n)# H1(E(K(η, J )); Z�n)#

i∗�� g#
�� H1(E(K); Z�n)#

where g# is the dual of g. Notice that since f∗ � g = id, it follows that g# � f ∗ =
id. The isomorphism in the theorem will be given by i∗ ⊕ g : H1(E(K); Z�n) ⊕
H1(E(J ); Z�n) → H1(E(K(η, J )); Z�n). Hence the theorem will follow from the
following four claims.

(1) g# � B�K(η,J ) � g = B�K which establishes B�K(η,J )(g(x2), g(y2)) =
B�K(x2, y2);

(2) i∗ � B�K(η,J ) � i∗ = B�⊗K(η,J ) which establishes B�K(η,J )(i∗(x1), i∗(y1)) =
B�⊗K(η,J )(x1, y1);

(3) g# � B�K(η,J ) � i∗ = 0 which establishes B�K(η,J )(i∗(x1), g(y2)) = 0;

(4) i∗ � B�K(η,J ) � g = 0 which establishes B�K(η,J )(g(x2), i∗(y1)) = 0.

We have the following diagram.

H1(E(K(η, J )); Z�n)

B−1

��

f∗ ��
H1(E(K); Z�n)

B−1

��

g
��

H2(E(K(η, J )); Kn/Z�n)

π

��

f∗
�� H2(E(K); Kn/Z�n)

π

��
H2(E(K(η, J )), ∂E(K(η, J )); Kn/Z�n)

P.D.
��

f∗
�� H2(E(K), ∂E(K); Kn/Z�n)

P.D.
��

H 1(E(K(η, J )); Kn/Z�n)

κ

��

H 1(E(K); Kn/Z�n)

κ

��

f ∗
��

H1(E(K(η, J )); Z�n)#
g#

��
H1(E(K); Z�n)#

f ∗
��
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By the naturality of the Bockstein isomorphism, π , the Poincaré duality isomorphism,
and the Kronecker map, f ∗ � B�K � f∗ = B�K(η,J ). So g# � f ∗ � B�K � f∗ � g =
g#�B�K(η,J )�g. Sincef∗�g = id and g#�f ∗ = id, it follows that g#�B�K(η,J )�g =
B�K . Hence the first claim is proved.

Consider the following diagram.

H1(E(J ); Z�n)
i∗ ��

B−1

��

H1(E(K(η, J )); Z�n)

B−1

��
H2(E(J ); Kn/Z�n)

i∗ ��

π

��

H2(E(K(η, J )); Kn/Z�n)

π

��
H2(E(J ), ∂E(J ); Kn/Z�n)

P.D.
��

H2(E(K(η, J )), ∂E(K(η, J )); Kn/Z�n)

P.D.
��

H 1(E(J ); Kn/Z�n)

κ

��

H 1(E(K(η, J )); Kn/Z�n)

κ

��
H1(E(J ); Z�n)# H1(E(K(η, J )); Z�n)#

i∗��

By the naturality of the Bockstein homomorphism,B−1� i∗ = i∗�B−1. Consider the
intersection pairing (see, for example, [D]) IE(K(η,J )) : H2(E(K(η, J )); Kn/Z�n) →
H1(E(K(η, J )); Z�n)# on E(K(η, J )) given by IE(K(η,J )) = κ � P.D. �π . Simi-
larly, we have the intersection form IE(J ) = κ � P.D. � π : H2(E(J ); Kn/Z�n) →
H1(E(J ); Z�n)# on E(J ). Since i : E(J ) → E(K(η, J )) is an embedding,
IE(J )(x, y) = IE(K(η,J ))(i∗(x), i∗(y)). Therefore, κ�P.D. �π = i∗�(κ�P.D. �π)�i∗.
Thus,

B�⊗K(η,J ) = (κ � P.D. � π) � B−1

= i∗ � (κ � P.D. � π) � i∗ � B−1

= i∗ � (κ � P.D. � π) � B−1 � i∗
= i∗ � B�K(η,J ) � i∗.

Therefore the second claim is proved.
Finally consider the following diagram.

H1(E(J ); Z�n)

B�⊗
K(η,J )

��

i∗ �� H1(E(K(η, J )); Z�n)

B�K(η,J )

��

f∗ ��
H1(E(K); Z�n)

B�K

��

g
��

H1(E(J ); Z�n)# H1(E(K(η, J )); Z�n)#
g#

��i∗�� H1(E(K); Z�n)#
f ∗

��
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Since f ∗ � B�K � f∗ = B�K(η,J ), it follows that g# � B�K(η,J ) � i∗ = g# � f ∗ �
B�K � f∗ � i∗. But by Corollary 3.5, f∗ � i∗ = 0. Therefore g# � B�K(η,J ) � i∗ = 0.
And since f∗ � i∗ = 0, we also have that i∗ � f ∗ = 0. Therefore, i∗ � B�K(η,J ) � g =
i∗ � f ∗ � B�K � f∗ � g = 0. �

Recall that if η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1) we have a ring monomor-
phism ψ : Z[t, t−1] → Z�n. Therefore we have Z[t, t−1]-module homomorphisms:

Q(t) ↪−−→ Kn, Q(t)/Z[t, t−1] ψ
↪−−→ Kn/Z�n,

H∗(E(J ); Z[t, t−1]) ψ∗−−→ H∗(E(J ); Z�n).

We will state the following theorem without proof since the proof is quite technical
and it will not be needed for our main result. It shows that B�⊗K(η,J ) is determined
by the classical Blanchfield form for J .

Theorem 4.7. If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1),

B�⊗K(η,J )(ψ∗(x1), ψ∗(x2)) = ψ(B�J (x1, x2)),

where B�J is the classical Blanchfield linking form for J .

5. Reducing from B�K(η,J ) to B�⊗
K(η,J )

Recall that our strategy is to find knots J1 and J2 such that A0(J1) ∼= A0(J2) but
B�K(η,J1) � B�K(η,J2). From Theorems 4.6 and 4.7, we know that if the classical
Blanchfield linking forms of J1 and J2 are isomorphic, then B�⊗K(η,J1)

∼= B�⊗K(η,J2)

and, therefore, B�K(η,J1)
∼= B�K(η,J2). However, the converses of these implications

may not follow. That is, it may not be sufficient to choose J1 and J2 with non-
isomorphic classical Blanchfield linking forms. In this section, we find conditions
on K that ensure that B�K(η,J1)

∼= B�K(η,J2) if and only if B�⊗K(η,J1)
∼= B�⊗K(η,J2)

.

Proposition 5.1. If η ∈ π1(E(K))
(n), η /∈ π1(E(K))

(n+1), and n ≥ 1, then
H1(E(J ); Z�n) is a right Z�′

n-torsion module, where �′
n = [�n, �n]. That is, for

any α ∈ H1(E(J ); Z�n), there is a non-zero γ ′
α ∈ Z�′

n such that αγ ′
α = 0.

Proof. Recall from the proof of Corollary 3.6 thatH1(E(J ); Z�n) ∼= A0(J )⊗Z[t,t−1]
Z�n. Hence, it suffices to considerβ⊗γ whereβ ∈ A0(J ) and γ ∈ Z�n are nonzero.
Let �J be the classical Alexander polynomial of J . Since η ∈ π1(E(K))

(n) ⊂
π1(E(K))

′ and η /∈ π1(E(K))
(n+1), it follows that ψ(�J ) ∈ Z�′

n is not zero. Since
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Z�′
n is a right Z�n − {0} Ore set [Co, p. 16], there exist γ̂ ∈ Z�n and γ ′ ∈ Z�′

n such
that γ · γ ′ = ψ(�J ) · γ̂ and γ̂ �= 0, γ �= 0. Thus

(β ⊗ γ ) · γ ′ = β ⊗ (γ · γ ′) = β ⊗ (ψ(�J ) · γ̂ ) = (β ·�J )⊗ γ̂

since Z�n is a left Z[t, t−1]-module via the ring monomorphism ψ . However, since
β ∈ A0(J ) and �J annihilates the Alexander module, β ·�J = 0. �

Lemma 5.2. Z�n ∼= Zπ1(E(K))⊗Zπ1(E(K))′ Z�′
n as right Z�′

n-modules.

Proof. Define ϕ : Z�n → Zπ1(E(K))⊗Zπ1(E(K))′ Z�′
n by

∑
i

ni[gi] �→
( ∑

i

nigi

)
⊗ 1,

where [g] represents the coset of g ∈ π1(E(K)) in �n = π1(E(K))/π1(E(K))
(n+1).

First we must show that this is well-defined. If hi ∈ π1(E(K))
(n+1) for all i, then

ϕ
( ∑

i

ni[gihi]
)

=
( ∑

i

nigihi

)
⊗ 1 =

∑
i

ni(gi ⊗ hi) =
∑
i

ni(gi ⊗ 1).

For any g ∈ �n and g′ ∈ �′
n, gg′ ⊗ 1 = g⊗ g′. Hence ϕ([gg′]) = ϕ([g])g′. It is

easy to see that ϕ preserves addition. Finally, we define an inverse ψ by∑
i

nigi ⊗
∑
j

mjg
′
j �−→

∑
i,j

nimj [gig′
j ].

Note that ψ � ϕ = id and ϕ � ψ = id, since∑
i

nigi ⊗
∑
j

mjg
′
j =

∑
i,j

nimjgig
′
j ⊗ 1.

Therefore ϕ is a right Z�′
n-module isomorphism. �

Proposition 5.3 ([C], Prop. 9.3). If K is a fibered knot, then An(K) has no Z�′
n-

torsion. That is, for any β ∈ An(K) and γ ′ ∈ Z�′
n, if βγ ′ = 0, then β = 0 or

γ ′ = 0.

Proof. Let E(K)∞ be the infinite cyclic cover, and Ẽ(K) be the universal cover of
E(K). Since K is a fibered knot, E(K)∞ is homotopy equivalent to a wedge of
circles,X. SinceX is a 1-complex,H1(X; Z�′

n) ⊂ C1(X; Z�′
n) which is a free right

Z�′
n-module. Therefore H1(E(K)∞; Z�′

n) has no Z�′
n-torsion. Furthermore, the

following are isomorphic right Z�′
n-modules:
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H1(E(K)∞; Z�′
n) = H1(C∗(Ẽ(K))⊗Zπ1(E(K))′ Z�′

n)

∼= H1(C∗(Ẽ(K))⊗Zπ1(E(K)) Zπ1(E(K))⊗Zπ1(E(K))′ Z�′
n)

([HS, p. 109])

∼= H1(C∗(Ẽ(K))⊗Zπ1(E(K)) Z�n) by Lemma 5.2

= H1(E(K); Z�n).

Therefore An(K) has no Z�′
n-torsion. �

Theorem 5.4. LetK be a fibered knot. Supposeη ∈ π1(E(K))
(n), η /∈ π1(E(K))

(n+1),
andn ≥ 1. If B�K(η,J1) and B�K(η,J2) are isomorphic, then B�⊗K(η,J1)

and B�⊗K(η,J2)

are isomorphic.

Remark 5.5. Before proving the theorem, we remark that for any fibered knot K ,
that is not the unknot, and any n ≥ 1, there exists an η such that η ∈ π1(E(K))

(n)

and η /∈ π1(E(K))
(n+1). This is because K being fibered implies that π1(E(K))

(1)

is isomorphic to a free group Fk on k generators (k > 1, since K is not the unknot).
Therefore,

π1(E(K))
(n)

π1(E(K))(n+1)
∼= F

(n−1)
k

F
(n)
k

,

which is well-known to be non-trivial.

Proof of Theorem 5.4. Suppose B�K(η,J1) and B�K(η,J2) are isomorphic forms. That
is, there is a right Z�n-module isomorphism ψ : An(K(η, J1)) → An(K(η, J2))

such that for any x, y ∈ An(K(η, J1)),

B�K(η,J1)(x, y) = B�K(η,J2)(ψ(x), ψ(y)).

Using Theorem 3.4, we have a right Z�n-module isomorphismψ : H1(E(K); Z�n)⊕
H1(E(J1); Z�n) → H1(E(K); Z�n) ⊕ H1(E(J2); Z�n). Since H1(E(K); Z�n)
has no Z�′

n-torsion by Proposition 5.3 andH1(E(Ji); Z�n) is a Z�′
n-torsion module,

for i = 1, 2, by Proposition 5.1, it follows that ψ restricted to H1(E(J1); Z�n) is
a right Z�n-module isomorphism between H1(E(J1); Z�n) and H1(E(J2); Z�n).
Hence if x1, y1 ∈ H1(E(J1); Z�n), thenψ � i1(x1) = i2(x2) andψ � i1(y1) = i2(y2),
for some x2, y2 ∈ H1(E(J2); Z�n). Finally, we have the following.:

B�⊗K(η,J1)
(x1, y1) = B�K(η,J1)(i1(x1), i1(y1)) (by Theorem 4.6)

= B�K(η,J2)(ψ(i1(x1)), ψ(i1(y1)))

= B�K(η,J2)(i2(x2), i2(y2))

= B�⊗K(η,J2)
(x2, y2).

Therefore B�⊗K(η,J1)
and B�⊗K(η,J2)

are isomorphic forms. �
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6. Relating B�⊗
K(η,J )

to the equivariant intersection form λJ

Our main result is that there exist knots with isomorphic nth higher-order Alexander
modules, but non-isomorphic nth higher-order linking forms. The idea behind the
construction of our examples is to infect the same knotK along the same element η ∈
π1(E(K))

(n), η /∈ π1(E(K))
(n+1) by different knots J1 and J2 such that A0(J1) ∼=

A0(J2). Corollary 3.6 implies that the results of these infections will have isomorphic
i-th order Alexander modules for 0 ≤ i ≤ n. From Theorem 5.4, we know that if
we choose K to be a fibered knot, it suffices to find examples of knots J1 and J2
such that A0(J1) ∼= A0(J2), but B�⊗K(η,J1)

� B�⊗K(η,J2)
. In this section, we will

relate to B�⊗K(η,J ) a new linking form B̂�K(η,J ) defined on the 0-framed surgery

on S3 along J , which we will then relate to the equivariant intersection form, λJ , on
a particular 4-manifold, WJ , associated to J .

Let MJ denote the closed 3-manifold resulting from 0-framed surgery on S3

along J . The kernel of π1(E(J )) → π1(MJ ) is normally generated by the longitude
of J , which is in the kernel of π1(E(J )) → �n. Hence π1(E(J )) → �n factors
through π1(MJ ), inducing a �n coefficient system on MJ .

Proposition 6.1. If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1), then

H1(E(J ); Z�n) ∼= H1(MJ ; Z�n).

Proof. We consider the Mayer–Vietoris sequence with Z�n coefficients for MJ
∼=

E(J ) ∪∂E(J ) (D2 × S1),

H1(MJ )
∂∗−−−−−→ H0(∂E(J ))

(ψ1,ψ2)−−−−−→ H0(E(J ))⊕H0(D
2 × S1).

By Lemma 3.3 we have that ψ1 : H0(∂E(J )) → H0(E(J )) is an isomorphism.
Therefore ∂∗ : H1(MJ ) → H0(∂E(J )) is the trivial map. Thus we have the following:

H1(∂E(J ))
(ψ1,ψ2)−−−−−→ H1(E(J ))⊕H1(D

2 × S1)
j∗+k∗−−−−−→ H1(MJ ) −−→ 0.

By Lemma 3.3, we also have that ψ1 : H0(∂E(J )) → H0(E(J )) is the trivial map.
Since η /∈ π1(E(K))

(n+1) the generator of π1(D
2 × S1; Z), μJ , gets unwound in the

�n-cover. Hence H1(D
2 × S1) = 0. Therefore, j∗ : H1(E(J )) → H1(MJ ) is an

isomorphism. �

Notice that since H1(E(J ); Z�n) is a Z�n-torsion module by Proposition 4.2, it
follows thatH1(MJ ; Z�n) is as well. So the Bockstein map,B :H2(MJ ; Kn/Z�n) →
H1(MJ ; Z�n), is an isomorphism by the same argument as in Section 4.
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Definition 6.2. If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1), define B̂�K(η,J ) :
H1(MJ ; Z�n) → H1(MJ ; Z�n)# to be the composition of the following maps:

H1(MJ ; Z�n)
B−1−−−→ H2(MJ ; Kn/Z�n)

P.D.−−−→ H 1(MJ ; Kn/Z�n)
κ−−−→ H1(MJ ; Z�n)

#,

where P.D. is the Poincaré duality isomorphism and κ is the Kronecker evaluation
map.

Theorem 6.3. If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1), then B�⊗K(η,J ) ∼=
B̂�K(η,J ). That is,

B�⊗K(η,J )(x1, y1) = B̂�K(η,J )(j∗(x1), j∗(y1)).

Proof. Since j is an inclusion map, the proof is the same as that of the second claim
in the proof of Theorem 4.6. Note however, that since ∂MJ = ∅, the map π which
appears in that proof is unnecessary. �

Therefore, we have reduced our problem to finding examples of knots J1 and J2
such that A0(J1) ∼= A0(J2), but B̂�K(η,J1) � B̂�K(η,J2). To accomplish this, we will
relate B̂�K(η,J ) to the equivariant intersection form, λJ , on a particular 4-manifold,
WJ , associated to J .

Since the bordism group �3(S
1) = 0, we can choose a 4-manifold WJ which

boundsMJ and such that π1(WJ ) ∼= Z, generated by the meridian of J . Furthermore,
by adding copies of ±CP2, we can choose WJ so that the signature of it is zero.
(See [COT2].) Since the kernel of π1(E(J )) → π1(WJ ) is π1(E(J ))

′, which is
in the kernel of π1(E(J )) → �n, it follows that π1(E(J )) → �n factors through
π1(WJ ), defining an induced�n coefficient system onWJ . Let λJ : H2(WJ ; Z�n) →
HomZ�n(H2(WJ ; Z�n),Z�n) be the equivariant intersection form on WJ with Z�n
coefficients. That is, λJ is the composition of the following maps:

H2(WJ ; Z�n)
π−−−→ H2(WJ ,MJ ; Z�n)

P.D.−−−→ H 2(WJ ; Z�n)
κ−−−→ HomZ�n(H2(WJ ; Z�n),Z�n).

We recall the following definitions from [R].

Definition 6.4 ([R], pp. 60–61, 145, 181, 242). Let S be a right denominator set
for a ring with involution, R, and let M be an R-module. A symmetric form
over R, α : M → HomR(M, R), is S-non-singular if α ⊗ id : M ⊗R RS

−1 →
HomR(M, R)⊗R RS

−1 is an RS−1-module isomorphism.
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Definition 6.5 ([R], p. 243). The boundary of an S-non-singular symmetric form over
R, α : M → HomR(M, R) ≡ M∗, is the non-singular (even) symmetric linking form
over (R, S) defined by

∂α : coker α −→ HomR(M∗, RS−1/R)

x �−→ (y �−→ x(z) · s−1)

for any x, y ∈ HomR(M, R) ≡ M∗, where z ∈ M, s ∈ S are chosen so that
ys = α(z).

If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1), we will show in Proposition 6.6 that
the equivariant intersection form λJ , as above, is a (Z�n − {0})-non-singular
symmetric form over Z�n. Furthermore, we will show in Theorem 6.9 that
∂λJ ∼= B̂�K(η,J ). In Section 7, this will allow us to fit λJ and B̂�K(η,J ) into an
exact sequence of Witt groups. The result will be that we can distinguish B̂�K(η,J1)

from B̂�K(η,J2) by using an invariant of λJ1 and λJ2 .

Proposition 6.6. If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1), the equivariant inter-
section form λJ , as above, is a (Z�n − {0})-non-singular symmetric form over Z�n.

Proof. In order to prove the proposition, we require Lemmas 6.7 and 6.8.

Lemma 6.7. Hp(MJ ; Z�n)∼=Hp(MJ ; Z[t, t−1])⊗Z[t,t−1]Z�n andHp(WJ ; Z�n) ∼=
Hp(WJ ; Z[t, t−1])⊗Z[t,t−1] Z�n as right Z�n-modules.

Proof. If M̃J is the universal cover of MJ , we have the following:

Hp(MJ ; Z�n) = Hp(C∗(M̃J )⊗Zπ1(MJ ) Z�n)

∼= Hp(C∗(M̃J )⊗Zπ1(MJ ) Z[t, t−1] ⊗Z[t,t−1] Z�n) ([HS, p. 109])

∼= Hp(C∗(M̃J )⊗Zπ1(MJ ) Z[t, t−1])⊗Z[t,t−1] Z�n

since Z�n is a free, hence flat, Z[t, t−1] module [P, Lemma 1.3]

∼= Hp(MJ ; Z[t, t−1])⊗Z[t,t−1] Z�n.

A similar argument holds for WJ . �

Lemma 6.8. κ : H 2(WJ ; Z�n) → HomZ�n(H2(WJ ; Z�n),Z�n) is a Z�n-module
isomorphism.

Proof. As π1(WJ ) is generated by the meridian of J , which is identified to the longi-
tude of η in E(K(η, J )), and η gets unwound in the Z�n-cover, H1(WJ ; Z�n) = 0.
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By analyzing the Universal Coefficient Spectral Sequence [Le, Thm. 2.3] we have
the following exact sequence:

Ext2
Z�n(H0(WJ ; Z�n),Z�n) −−→ H 2(WJ ; Z�n)

κ−−→ HomZ�n(H2(WJ ; Z�n),Z�n) −−→ Ext3
Z�n(H0(WJ ; Z�n),Z�n).

By Lemma 6.7, H0(WJ ; Z�n) ∼= H0(WJ ; Z[t, t−1]) ⊗Z[t,t−1] Z�n. Since the ho-
mological dimension of H0(WJ ; Z[t, t−1]) is 1, and since Z�n is a free, and there-
fore flat, Z[t, t−1]-module, H0(WJ ; Z[t, t−1]) ⊗Z[t,t−1] Z�n also has homological
dimension 1. Therefore ExtpZ�n(H0(WJ ; Z�n),Z�n) = 0 for p = 2, 3. Hence

κ : H 2(WJ ; Z�n) → HomZ�n(H2(WJ ; Z�n),Z�n) is a Z�n-module isomorphism.
�

Having proven these lemmas, we continue our proof of Proposition 6.6. Since
λJ ∼= κ � P.D. � π , it remains to be shown that π ⊗ id, P.D. ⊗ id, and κ ⊗ id are
Kn-module isomorphisms.

Since Kn is a flat Z�n-module, the following is an exact sequence of Kn-modules:

H2(MJ ; Z�n)⊗Z�n Kn −−→ H2(WJ ; Z�n)⊗Z�n Kn

π⊗id−−−→ H2(WJ ,MJ ; Z�n)⊗Z�n Kn −−→ H1(MJ ; Z�n)⊗Z�n Kn.

By Propositions 4.2 and 6.1, H1(MJ ; Z�n)⊗Z�n Kn = 0. Again by the flatness of
Kn, H2(MJ ; Z�n)⊗Z�n Kn

∼= H2(MJ ; Kn). By Poincaré Duality and the Univer-
sal Coefficient Theorem, H2(MJ ; Kn) ∼= HomZ�n(H1(MJ ; Z�n),Kn). But since
H1(MJ ; Z�n) is a torsion-module, HomZ�n(H1(MJ ; Z�n),Kn) = 0. Hence π ⊗ id
is a Kn-module isomorphism.

By Poincaré Duality and Lemma 6.8, it follows that P.D. ⊗ id and κ ⊗ id are
Kn-module isomorphisms. Therefore,

λJ ⊗ id : H2(W ; Z�n)⊗Z�n Kn −−→ HomZ�n(H2(W ; Z�n),Z�n)⊗Z�n Kn

is a Kn-module isomorphism. Thus, λJ is a (Z�n − {0})-non-singular symmetric
form over Z�n. �

Theorem 6.9. If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1), it follows that ∂λJ ∼=
B̂�K(η,J ) : H1(MJ ; Z�n) → H1(MJ ; Z�n)#.

Proof. By definition, ∂λJ is defined as follows:

∂λJ : coker λJ −→ (HomZ�n(H2(WJ ; Z�n),Z�n))
#

x �−→ (y �−→ x(z) · γ−1)
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for any x, y ∈ HomZ�n(H2(WJ ; Z�n),Z�n), where z ∈ H2(WJ ; Z�n) and γ ∈
Z�n − {0} are chosen so that yγ = λJ (z).

Consider the following commutative diagram.

H2(WJ ; Z�n)
π ��

λJ

���������������������������� H2(WJ ,MJ ; Z�n)

P.D.

��

H 2(WJ ; Z�n)

κ

��
HomZ�n(H2(WJ ; Z�n),Z�n)

Recall from Lemma 6.8 that P.D. and κ are Z�n-module isomorphisms. Since λJ =
κ � P.D. � π , it follows that coker λJ = (κ � P.D.)(coker π).

We define ψ to be the following:

ψ : coker π −→ H2(WJ ,MJ ; Z�n)
#

a �−→ (b �−→ [(κ � P.D.)(a)](z) · γ−1)

for any a, b ∈ H2(WJ ,MJ ; Z�n), where z ∈ H2(WJ ; Z�n), γ ∈ Z�n are chosen so
that π(z) = bγ .

Lemma 6.10. ∂λJ is isomorphic to ψ under κ � P.D.. That is, ψ = (κ � P.D.)# �
∂λJ � (κ � P.D.).

Proof. In order to show this, we must show that the following diagram commutes.

coker λJ

∂λJ

��

coker π
κ�P.D.��

ψ

��
(HomZ�n(H2(WJ ; Z�n),Z�n))#

(κ�P.D.)# �� H2(WJ ,MJ ; Z�n)#

Suppose a, b ∈ H2(WJ ,MJ ; Z�n) and z ∈ H2(WJ ; Z�n), γ ∈ Z�n are chosen
so that π(z) = bγ . Let x = (κ � P.D.)(a) and y = (κ � P.D.)(b). Then λJ (z) =
(κ � P.D. � π)(z) = (κ � P.D.)(bγ ) = yγ . By definition, [(∂λJ )(x)](y) = x(z)γ−1.
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Therefore,

[[(κ � P.D.)# � ∂λJ � (κ � P.D.)](a)](b) = [(∂λJ � κ � P.D.)(a)]((κ � P.D.)(b))

= [∂λJ (x)](y)
= x(z)γ−1

= [(κ � P.D.)(a)](z)γ−1

= [ψ(a)](b).
Hence ∂λJ is isomorphic to ψ . �

In order to relate ψ to B̂�K(η,J ), it will be easier to work with a more algebraic
definition of ψ . We begin by proving the following lemma.

Lemma 6.11. The mapping

π# : HomZ�n(H2(WJ ,MJ ; Z�n),Kn) −−→ HomZ�n(H2(WJ ; Z�n),Kn)

is an isomorphism.

Proof. In the proof of Proposition 6.6, we showed that π ⊗ id : H2(WJ ; Z�n)⊗Z�n
Kn → H2(WJ ,MJ ; Z�n) ⊗Z�n Kn is a Kn-module isomorphism. Since Kn is a
flat Z�n-module, by Poincaré Duality and the Universal Coefficient Theorem,

π# : HomZ�n(H2(WJ ,MJ ; Z�n),Kn) −−→ HomZ�n(H2(WJ ; Z�n),Kn)

is an isomorphism. �

By definition, [ψ(a)](b) = [(κ � P.D.)(a)](z) · γ−1 where π(z) = bγ . So
[π#(ψ(a))](z) = [ψ(a)](π(z)) = [ψ(a)](bγ ) = [(κ � P.D.)(a)](z). Hence we have
that ψ is the composition of the following maps:

H2(WJ ,MJ ; Z�n)
P.D.−−−→ H 2(WJ ; Z�n)
κ−−−→ HomZ�n(H2(WJ ; Z�n),Z�n)

−−−→ HomZ�n(H2(WJ ; Z�n),Kn)

(π#)−1

−−−→ HomZ�n(H2(WJ ,MJ ; Z�n),Kn)

−−−→ H2(WJ ,MJ ; Z�n)
#.

Recall that since π1(WJ ) is generated by the meridian of J , which is identified to
the longitude of η in E(K(η, J )), and η gets unwound in the Z�n-cover, it follows
that H1(WJ ; Z�n) = 0. Therefore, the following is an exact sequence:

H2(WJ ; Z�n)
π−−→ H2(WJ ,MJ ; Z�n)

∂∗−−→ H1(MJ ; Z�n) −−→ 0.
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Hence coker π ≡ H2(WJ ,MJ ;Z�n)
im π

= H2(WJ ,MJ ;Z�n)
ker ∂∗

∼= H1(MJ ; Z�n). The following
lemma will complete the proof of the theorem.

Lemma 6.12. ψ is isomorphic to B̂�K(η,J ). That is, ψ = ∂#∗ � B̂�K(η,J ) � ∂∗.

Proof. Recall that B̂�K(η,J ) = B−1 � P.D. � κ , where B : H2(MJ ; Kn/Z�n) →
H1(MJ ; Z�n). Alternatively, we have B̂�K(η,J ) = P.D. �C−1� κ since the following
is a commutative diagram of Z�n-module isomorphisms.

H2(MJ ; Kn/Z�n)
B ��

P.D.
��

H1(MJ ; Z�n)

P.D.
��

H 1(MJ ; Kn/Z�n)
C �� H 2(MJ ; Z�n)

We must show that the following diagram commutes.

H2(WJ ,MJ ; Z�n)
∂∗ ��

P.D.
��

H1(MJ ; Z�n)

P.D.
��

H 2(WJ ; Z�n)
��

κ

��

H 2(MJ ; Z�n)

C−1

��

HomZ�n(H2(WJ ; Z�n),Z�n)

��
HomZ�n(H2(WJ ; Z�n),Kn)

(π#)−1

��

H 1(MJ ; Kn/Z�n)

κ

��

HomZ�n(H2(WJ ,MJ ; Z�n),Kn)

��
H2(WJ ,MJ ; Z�n)# H1(MJ ; Z�n)#

(∂∗)#��

The top box commutes by the naturality of Poincaré Duality.
The short exact sequence of Z�n chain groups

0 −−→ C∗(MJ ) −−→ C∗(WJ ) −−→ C∗(WJ ,MJ ) −−→ 0
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gives rise to the following exact sequences:

0 −−→ C∗(WJ ,MJ )
∗ −−→ C∗(WJ )

∗ −−→ C∗(MJ )
∗

0 −−→ C∗(WJ ,MJ )
� −−→ C∗(WJ )

� −−→ C∗(MJ )
�

0 −−→ C∗(WJ ,MJ )
# −−→ C∗(WJ )

# −−→ C∗(MJ )
#.

Here

M∗ ≡ HomZ�n(M,Z�n),

M� ≡ HomZ�n(M,Kn),

and

M# ≡ HomZ�n(M,Kn/Z�n).

Also the short exact sequence 0 → Z�n → Kn → Kn/Z�n → 0 gives rise to
the following exact sequences:

0 −−→ C∗(MJ )
∗ −−→ C∗(MJ )

� −−→ C∗(MJ )
#

0 −−→ C∗(WJ )
∗ −−→ C∗(WJ )

� −−→ C∗(WJ )
#

0 −−→ C∗(WJ ,MJ )
∗ −−→ C∗(WJ ,MJ )

� −−→ C∗(WJ ,MJ )
#.

The lemma now follows from the commutativity of the following diagram.

C1(WJ ,MJ )
∗ ��

��

����
��

��
��

� C1(WJ ,MJ )
� ��

����
��

��
��

�

��

C1(WJ ,MJ )
#

����������

��

C2(WJ ,MJ )
∗ ��

��

C2(WJ ,MJ )
� ��

��

C2(WJ ,MJ )
#

��

C1(WJ )
∗ ��

��

����
��

��
��

� C1(WJ )
� ��

����
��

��
��

�

��

C1(WJ )
#

����������

��

C2(WJ )
∗ ��

��

C2(WJ )
� ��

��

C2(WJ )
#

��

C1(MJ )
∗ ��

����
��

��
��

� C1(MJ )
� ��

����
��

��
��

� C1(MJ )
#

����������

C2(MJ )
∗ �� C2(MJ )

� �� C2(MJ )
#

�
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7. L-theory and the L2-signature

If R is a ring with involution and S is a right denominator set for R, then from
[R, pp. 172, 274] we have the following exact sequence of Witt groups:

L(R) −−→ LS(RS
−1)

∂−−→ L(R, S).

Here L(R) is the Witt group of nonsingular symmetric forms over R; LS(RS−1) is
the Witt group of S-nonsingular symmetric forms over R; and L(R, S) is the Witt
group of non-singular symmetric linking forms over (R, S).

Recall that we have reduced our problem to finding examples of knots J1 and
J2 such that A0(J1) ∼= A0(J2), but B̂�K(η,J1) � B̂�K(η,J2). If η ∈ π1(E(K))

(n)

and η /∈ π1(E(K))
(n+1), we showed in Proposition 6.6, that λJ ∈ L(Z�n−{0})(Kn),

and in Theorem 6.9, that ∂λJ ∼= B̂�K(η,J ). Hence we need an invariant defined on
L(Z�n−{0})(Kn) that is trivial on the image of L(Z�n). In this section, we will find
that the desired invariant is the reduced L2-signature. Furthermore, we will observe
that in our case, the reduced L 2-signature of λJ is dependent only on the Levine–
Tristram signatures of J . We refer the reader to Section 5 of [COT1] and Sections 2
and 5 of [COT2] for more details about the L2-signature.

Proposition 7.1 ([COT1], Cor. 5.7, Prop. 5.12). The L2-signature σ (2)� is a real
valued homomorphism on the Witt group of nonsingular symmetric forms over Kn,
L(Kn). Furthermore, the L2-signature equals the ordinary signature σ0 on the image
of L(Z�n).

Therefore σ (2)� −σ0 satisfies the desired conditions for our invariant. So we have
the following definition.

Definition 7.2. The reduced L2-signature of (WJ , �n), is defined to be

σ
(2)
� (λ(WJ ))− σ0(λ(WJ )),

where λ(WJ ) : H2(WJ ; Z�n) → HomZ�n(H2(WJ ; Z�n),Z�n) is the equivariant
intersection form on WJ with Z�n coefficients.

By Proposition 7.1, the reduced L2-signature is a well-defined real valued homo-
morphism on L(Kn). Furthermore, the reduced L2-signature is zero on the image of
L(Z�n). Therefore, it suffices to choose knots J1 and J2 such that A0(J1) ∼= A0(J2),
but with reduced L2-signatures of (WJ1, �n) and (WJ2, �n) that are not equal.

Proposition 7.3 ([COT1], Prop. 5.13). If φ : π1(W) → � factors through a sub-

group �, then σ (2)� (λ(W)) = σ
(2)
� (λ(W)).
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Corollary 7.4. If η ∈ π1(E(K))
(n) and η /∈ π1(E(K))

(n+1), the reduced L2-signa-
tures of (WJ , �n) and (WJ ,Z) are equal.

Proof. Recall that our coefficient system on W is defined by ϕ in the following
commutative diagram.

π1(E(J ))

��

i∗ �� π1(E(K(η, J )))
f∗ �� π1(E(K))

φ �� �n

π1(WJ )

ϕ

�������������������������������������������

Recall also that π1(WJ ) ∼= Z generated by a meridian of J , which is iden-
tified in E(K(η, J )) to η. Since we are assuming that η ∈ π1(E(K))

(n) and
η /∈ π1(E(K))

(n+1), ϕ is a monomorphism. Therefore, ϕ : π1(WJ ) → �n fac-
tors through Z. It follows from Proposition 7.3 that σ (2)�n (λ(WJ )) = σ

(2)
Z (λ(WJ )).

Hence the reduced L 2-signatures of (WJ , �n) and (WJ ,Z) are equal. �

Proposition 7.5 ([COT1], Prop 5.1, Lemma 5.9(4)). If η ∈ π1(E(K))
(n) and η /∈

π1(E(K))
(n+1), the reduced L2-signature of (WJ ,Z) is equal to the integral of the

Levine–Tristram signatures of J , integrated over the circle of unit length.

Thus we have our main theorem:

Theorem 7.6. Given any n ≥ 1, suppose K is a fibered knot, that is not the unknot,
and choose η such that η ∈ π1(E(K))

(n) and η /∈ π1(E(K))
(n+1). Let J be a knot

such that the integral of the Levine–Tristram signatures of J , integrated over the
circle of unit length, is non-zero. Then Ai (K(η, J )) ∼= Ai (K(η,−J )) for 0 ≤
i ≤ n and B�i(K(η, J )) ∼= B�i(K(η,−J )) for 0 ≤ i < n, but B�n(K(η, J )) �
B�n(K(η,−J )).
Proof. By Corollary 3.2, for 0 ≤ i ≤ n−1, Ai (K(η, J )) ∼= Ai (K)∼= Ai (K(η,−J )).
Furthermore, by Corollary 3.6, since the classical Alexander modules of J and −J
are isomorphic, An(K(η, J )) ∼= An(K) ⊕ (A0(J ) ⊗Z[t,t−1] Z�n) ∼= An(K) ⊕
(A0(−J )⊗Z[t,t−1] Z�n) ∼= An(K(η,−J )).

By Theorem 4.1, for 0 ≤ i ≤ n−1, B�i(K(η, J ))∼= B�i(K)∼= B�i(K(η,−J )).
Now suppose B�n(K(η, J )) and B�n(K(η,−J )) are isomorphic. SinceK is a non-
trivial fibered knot, it follows from Theorem 5.4, that B�⊗K(η,J ) and B�⊗K(η,−J ) are

isomorphic, and therefore B̂�K(η,J ) ∼= B̂�K(η,−J ) by Theorem 6.3. Hence, Proposi-
tion 7.1 implies that the reduced L2-signature of (WJ , �n) and (W−J , �n) are equal.
It follows from Proposition 7.5 that

∫
ω∈S1 σω(J )dω = ∫

ω∈S1 σω(−J )dω. However,
for all ω ∈ C, σω(−J ) = −σω(J ). By assumption

∫
ω∈S1 σω(J )dω �= 0. Therefore

we have reached a contradiction. Hence B�n(K(η, J )) � B�n(K(η,−J )). �
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8. Example

Since the trefoil is a fibered knot ([Ro], p. 327), we can use the left-handed trefoil
for K . Furthermore, since the integral of the Levine–Tristram signatures of the
left-handed trefoil, integrated over the circle of unit length, is 4

3 , we can also use
the left-handed trefoil for J . Finally, since the trefoil is equivalent to its reverse, it
follows that −J is the mirror-image of J . That is, −J is the right-handed trefoil.
Finally, we must choose η so that η ∈ π1(E(K))

(n) but η /∈ π1(E(K))
(n+1). For the

case when n = 1, it suffices to choose η to be a curve which clasps a band of the
standard Seifert surface. Therefore, we have the following construction.

η

K

J −J

K(η, J ) K(η,−J )
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