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A weak Kellogg property for quasiminimizers

Anders Björn

Abstract. The Kellogg property says that the set of irregular boundary points has capacity zero,
i.e. given a bounded open set � there is a set E ⊂ ∂� with capacity zero such that for all
p-harmonic functions u in � with continuous boundary values in Sobolev sense, u attains its
boundary values at all boundary points in ∂� \ E.

In this paper, we show a weak Kellogg property for quasiminimizers: a quasiminimizer with
continuous boundary values in Sobolev sense takes its boundary values at quasievery boundary
point. The exceptional set may however depend on the quasiminimizer. To obtain this result
we use the potential theory of quasisuperminimizers and prove a weak Kellogg property for
quasisuperminimizers.

This is done in complete doubling metric spaces supporting a Poincaré inequality.
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1. Introduction

Let � ⊂ Rn be a bounded open set, Q ≥ 1 and 1 < p < ∞, then a function u

in the Sobolev space W
1,p
loc (�) is a Q-quasiminimizer (of the p-Dirichlet integral∫ |∇u|p dx) in � if

∫
ϕ �=0

|∇u|p dx ≤ Q

∫
ϕ �=0

|∇(u + ϕ)|p dx

for all functions ϕ ∈ W 1,p(�) with supp ϕ � �. A 1-quasiminimizer, usually called
a minimizer, is a weak solution of the corresponding Euler equation

div(|∇u|p−2∇u) = 0.
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Quasiminimizers were introduced by Giaquinta–Giusti [13], [14]. Quasiminimizers
have a rigidity that weak solutions lack: if a variational kernel F(x,∇u) satisfies

a|h|p ≤ F(x, h) ≤ b|h|p for some 0 < a ≤ b < ∞,

then the quasiminimizers of
∫

F(x,∇u) dx coincide with those of
∫ |∇u|p dx (al-

though the constant Q may change).
Giaquinta–Giusti [14] proved several fundamental properties for quasiminimizers

including the interior regularity result that a quasiminimizer can be modified on a set
of zero measure so that it becomes Hölder continuous. These results were extended
to metric spaces by Kinnunen–Shanmugalingam [24].

For f ∈ C(∂�), the Perron method provides a unique solution u of the Dirichlet
problem (the boundary value problem), i.e. u is p-harmonic in � and takes the
boundary values f in Sobolev sense. A point x0 ∈ ∂� is said to be regular if
lim�	y→x0 u(y) = f (x0) for every f ∈ C(∂�). (A p-harmonic function is a
continuous minimizer and a quasiharmonic function is a continuous quasiminimizer.
For the relation between Sobolev and Perron solutions of the Dirichlet problem, see
Björn–Björn–Shanmugalingam [8] and Björn–Björn [6].)

The Kellogg property says that the set of irregular boundary points has zero ca-
pacity. For n = p = 2 the Kellogg property was proved by Kellogg [18] in 1928, and
for n ≥ 3 and p = 2 it was proved by Evans [12] in 1933. For 1 < p < ∞ the Kel-
logg property was obtained for weighted Euclidean spaces in Heinonen–Kilpeläinen–
Martio [15], Theorem 9.11. See [15], p. 192, for more on the history in the nonlinear
case.

More recently, the theory of p-harmonic functions has been extended to complete
metric spaces equipped with a doubling measure supporting a Poincaré inequality. In
this generality the Kellogg property was proved in Björn–Björn–Shanmugalingam [7],
Theorem 3.9.

Boundary regularity for quasiminimizers has been studied by Ziemer [28] in Rn

and J. Björn [10] in metric spaces, they both obtained sufficient conditions for a
boundary point to be regular for quasiharmonic functions. Recently, J. Björn [11]
showed that open sets can be approximated by sets that are regular for quasiharmonic
functions, see Theorem 5.3.

The main result of this paper is a weak Kellogg property for quasiharmonic func-
tions, Theorem 4.1. Here the exceptional set of irregular boundary points depends on
the quasiharmonic function, but has capacity zero. It should be observed that when
the Kellogg property is used in various applications often just one function is involved
and what is really needed is the weak Kellogg property.

There is no uniqueness in the Dirichlet problem for quasiminimizers, nor any com-
parison principle. Also, being a Q-quasiminimizer is not a local property. This leads
to difficulties not present in the theory of minimizers. In order to obtain the weak Kel-
logg property for quasiharmonic functions we use the potential theory of quasimin-
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imizers, which includes quasisuperminimizers and quasisuperharmonic functions,
recently developed by Kinnunen–Martio [23].

In this paper we also obtain a weak Kellogg property for quasisuperharmonic
functions, Theorem 4.4, and give a list of characterizations of quasiminimizers and
quasisuperminimizers, some of which seem to be new.

For more on quasiminimizers and their importance see the introduction in Kin-
nunen–Martio [23]. An application of the weak Kellogg property for quasiharmonic
functions will be given in the forthcoming paper A. Björn [4]. For removable singu-
larities for quasiharmonic and quasisuperharmonic functions, see A. Björn [3].

For examples of complete metric spaces equipped with a doubling measure sup-
porting a Poincaré inequality, see, e.g., A. Björn [1], [2].

Acknowledement. The author was supported by the Swedish Research Council
and Gustaf Sigurd Magnuson’s fund of the Royal Swedish Academy of Sciences.
These results were partially obtained while the author was visiting the Department of
Mathematical Analysis at the Charles University in Prague during the autumn 2003.

2. Notation and preliminaries

We assume throughout the paper that X = (X, d, μ) is a complete metric space
endowed with a metric d and a doubling measure μ, i.e. there exists a constant C > 0
such that for all balls B = B(x0, r) := {x ∈ X : d(x, x0) < r} in X (we make the
convention that balls are nonempty and open),

0 < μ(2B) ≤ Cμ(B) < ∞,

where λB = B(x0, λr). We emphasize that the σ -algebra on which μ is defined is
obtained by the completion of the Borel σ -algebra. We also assume that 1 < p < ∞.
(At the end of this section we make some further assumptions assumed in the rest of
the paper.)

Note that some authors assume that X is proper rather than complete, but, since μ

is doubling, X is proper if and only if it is complete.

Definition 2.1. A nonnegative Borel function g on X is an upper gradient of an
extended real-valued function f on X if for all nonconstant rectifiable paths
γ : [0, lγ ] → X,

|f (γ (0)) − f (γ (lγ ))| ≤
∫

γ

g ds (2.1)

whenever both f (γ (0)) and f (γ (lγ )) are finite, and
∫
γ

g ds = ∞ otherwise. If g is
a nonnegative measurable function on X and if (2.1) holds for p-almost every path,
then g is a p-weak upper gradient of f .
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By saying that (2.1) holds for p-almost every path we mean that it fails only for a
path family with zero p-modulus, see Definition 2.1 in Shanmugalingam [26]. It is
implicitly assumed that

∫
γ

g ds is defined (with a value in [0, ∞]) for p-almost every
rectifiable path.

If g ∈ Lp(X) is a p-weak upper gradient of f , then one can find a sequence
{gj }∞j=1 of upper gradients of f such that gj → g in Lp(X), see Lemma 2.4 in
Koskela–MacManus [25].

If f has an upper gradient in Lp(X), then it has a minimal p-weak upper gradient
gf ∈ Lp(X) in the sense that gf ≤ g μ-a.e. for every p-weak upper gradient
g ∈ Lp(X) of f , see Corollary 3.7 in Shanmugalingam [27].

If f, h ∈ N1,p(X), then gf = gh μ-a.e. in {x ∈ X : f (x) = h(x)}, in particular
gmin{f,c} = gf χf �=c for c ∈ R. For these and other facts on p-weak upper gradients,
see, e.g., Björn–Björn [5], Section 3.

Definition 2.2. We say that X supports a weak (1, q)-Poincaré inequality if there
exist constants C > 0 and λ ≥ 1 such that for all balls B ⊂ X, all measurable
functions f on X and all upper gradients g of f ,∫

B

|f − fB | dμ ≤ C(diam B)

(∫
λB

gq dμ

)1/q

, (2.2)

where fB := ∫
B

f dμ := ∫
B

f dμ/μ(B).

In the definition of Poincaré inequality we can equivalently assume that g is a
q-weak upper gradient – see the comments above. It is also equivalent to require
that (2.2) holds for all f ∈ Lipc(X) and all upper gradients g ∈ Lipc(X) of f , see
Keith [16], Theorem 2. We say that a set E � A if E is a compact subset of A, and
let Lipc(A) = {f ∈ Lip(A) : supp f � A}.

Following Shanmugalingam [26], we define a version of Sobolev spaces on the
metric space X.

Definition 2.3. Whenever u ∈ Lp(X), let

‖u‖N1,p(X) =
(∫

X

|u|p dμ + inf
g

∫
X

gp dμ

)1/p

,

where the infimum is taken over all upper gradients of u. The Newtonian space on X

is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) < ∞}/∼,

where u ∼ v if and only if ‖u − v‖N1,p(X) = 0.
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The space N1,p(X) is a Banach space and a lattice, see Shanmugalingam [26].

Definition 2.4. The capacity of a set E ⊂ X is the number

Cp(E) = inf ‖u‖p

N1,p(X)
,

where the infimum is taken over all u ∈ N1,p(X) such that u = 1 on E.

The capacity is countably subadditive. For this and other properties as well as
equivalent definitions of the capacity we refer to Kilpeläinen–Kinnunen–Martio [19]
and Kinnunen–Martio [20], [21].

We say that a property regarding points in X holds quasieverywhere (q.e.) if the set
of points for which the property does not hold has capacity zero. The capacity is the
correct gauge for distinguishing between two Newtonian functions. If u ∈ N1,p(X),
then u ∼ v if and only if u = v q.e. Moreover, Corollary 3.3 in Shanmugalingam [26]
shows that if u, v ∈ N1,p(X) and u = v μ-a.e., then u ∼ v.

Further, if X supports a weak (1, p)-Poincaré inequality and μ is doubling, then
Lipschitz functions are dense in N1,p(X) and the functions in N1,p(X) are quasi-
continuous, see [26] and Björn–Björn–Shanmugalingam [9]. This means that in
the Euclidean setting, N1,p(Rn) is the refined Sobolev space as defined on p. 96
of Heinonen–Kilpeläinen–Martio [15]. It also follows that if X supports a weak
(1, p)-Poincaré inequality and � ⊂ X is open, then the functions in N1,p(�) are all
quasicontinuous, see, e.g., [9].

To be able to compare the boundary values of Newtonian functions we need a
Newtonian space with zero boundary values. Let � be an arbitrary nonempty open
subset of X, and let

N
1,p
0 (�) = {f |� : f ∈ N1,p(X) and f = 0 on X \ �}.

One can replace the assumption “f = 0 on X \ �” with “f = 0 q.e. on X \ �”
without changing the obtained space N

1,p
0 (�). Note that if Cp(X \ �) = 0, then

N
1,p
0 (�) = N1,p(�). Note also that

N
1,p
0 (�) = {f |� : f ∈ N1,p(�) and f = 0 on ∂�}.

Here we have used the nonstandard Sobolev space N1,p(�) on a closed subset.
Of course, � is a complete metric space although μ|

�
may not be doubling. Defining

the Newtonian space is however not depending on this assumption. For a reader
mainly just interested in Rn the space N1,p(�) appearing in several of the theorems
in this paper may be puzzling. However it is trivial that N1,p(X) ⊂ N1,p(�) and
not much is lost if the reader replaces N1,p(�) by N1,p(X) in those theorems. The
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reason to use the space N1,p(�) is that the results become slightly more general at
no extra cost.

We also say that f ∈ N
1,p
loc (�) if f ∈ N1,p(�′) for every open �′ � �.

By a continuous function we always mean a real-valued continuous function,
whereas a semicontinuous function is allowed to be extended real-valued, i.e. to
take values in the extended real line R := [−∞, ∞]. We let f+ = max{f, 0} and
f− = max{−f, 0}.

In addition to the assumptions made in the beginning of this section, from now on
we assume that X supports a weak (1, p)-Poincaré inequality. By Keith–Zhong [17]
it follows that X supports a weak (1, q)-Poincaré inequality for some q ∈ [1, p),
which was earlier a standard assumption. Throughout the paper we also let Q ≥ 1
be a real number.

3. Quasi(super)harmonic functions

Throughout this section we assume that � is a nonempty open subset of X.
We follow Kinnunen–Martio [23], Section 3, making the following definition.

Definition 3.1. A function u ∈ N
1,p
loc (�) is a Q-quasiminimizer in � if for all open

�′ � � and all ϕ ∈ N
1,p
0 (�′) we have∫

�′
g

p
u dμ ≤ Q

∫
�′

g
p
u+ϕ dμ. (3.1)

A function u ∈ N
1,p
loc (�) is a Q-quasisuperminimizer in � if (3.1) holds for all non-

negative ϕ ∈ N
1,p
0 (�′), and a Q-quasisubminimizer in � if (3.1) holds for all non-

positive ϕ ∈ N
1,p
0 (�′).

A function is a Q-quasiminimizer in � if and only if it is both a Q-quasisub-
minimizer and a Q-quasisuperminimizer in �.

Proposition 3.2. Let u ∈ N
1,p
loc (�). Then the following are equivalent:

(a) The function u is a Q-quasisuperminimizer in �.

(b) For all open �′ � � and all nonnegative ϕ ∈ N
1,p
0 (�′) we have∫

�
′ g

p
u dμ ≤ Q

∫
�

′ g
p
u+ϕ dμ.
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(c) For all nonnegative ϕ ∈ N1,p(�) with supp ϕ � � we have∫
ϕ �=0

g
p
u dμ ≤ Q

∫
ϕ �=0

g
p
u+ϕ dμ.

(d) For all nonnegative ϕ ∈ Lipc(�) we have∫
ϕ �=0

g
p
u dμ ≤ Q

∫
ϕ �=0

g
p
u+ϕ dμ.

(e) For all nonnegative ϕ ∈ Lipc(�) we have∫
supp ϕ

g
p
u dμ ≤ Q

∫
supp ϕ

g
p
u+ϕ dμ.

(f) For all nonnegative ϕ ∈ N
1,p
0 (�) we have∫

ϕ �=0
g

p
u dμ ≤ Q

∫
ϕ �=0

g
p
u+ϕ dμ.

Remark 3.3. (1) Different authors have used different definitions of quasimini-
mizers. Kinnunen–Martio [23], Lemmas 3.2, 3.4 and 6.2, gave characterizations
of Q-quasi(super)minimizers (including (a)–(c)). On the other hand, Ziemer [28],
Definition 2.1, defined quasi(super)minimizers (in unweighted Rn) using condi-
tion (f). The characterizations (d) and (e) may be new.

(2) Any of these statements can of course be used to define quasisuperminimizers.
The seemingly weakest requirements are made in (e), although (d) may be preferable
as a definition. On the other hand, it is sometimes useful to know that (f) holds,
in which the strongest requirements are made, this is, e.g., used in the proofs of
Lemmas 3.5 and 4.6.

(3) If we omit “super” from (a) and “nonnegative” from (b)–(f) we have a corre-
sponding characterization for Q-quasiminimizers. The proof of these equivalences
is the same as the proof below.

(4) In (b)–(f) as well as in Definition 3.1 we can replace “nonnegative” with “non-
negative μ-a.e.” This follows since any function in N1,p(�) which is nonnegative
μ-a.e. is actually nonnegative q.e., and then we can replace such a function by a
nonnegative representative in the same equivalence class without changing any of the
integrals involved.

(5) Note that some of the integrals occurring in (f) may be infinite. In fact when
this happens both sides are always simultaneously ∞.
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Proof. (d) ⇒ (e) Since gu = gu+ϕ μ-a.e. on A := {x ∈ supp ϕ : ϕ(x) = 0}, we get∫
supp ϕ

g
p
u dμ =

∫
A

g
p
u dμ +

∫
ϕ �=0

g
p
u dμ

≤
∫

A

g
p
u+ϕ dμ + Q

∫
ϕ �=0

g
p
u+ϕ dμ ≤ Q

∫
supp ϕ

g
p
u+ϕ dμ.

(e) ⇒ (a) Let �′ � � be open and ϕ ∈ N
1,p
0 (�′) be nonnegative. Let ε > 0.

By Theorem 4.8 in Shanmugalingam [27], there is f ∈ Lipc(�
′) such that ‖f −

ϕ‖N1,p(X) < ε. We get

(∫
�′

g
p
u dμ

)1/p

≤ Q1/p

(∫
�′

g
p
u+f dμ

)1/p

≤ Q1/p

(∫
�′

g
p
u+ϕ dμ

)1/p

+ Q1/p

(∫
�′

g
p
f −ϕ dμ

)1/p

≤ Q1/p

(∫
�′

g
p
u+ϕ dμ

)1/p

+ Q1/pε,

where the first inequality is proved as in the proof of (d) ⇒ (e). Letting ε → 0
completes the proof of this implication.

(a) ⇒ (c) This is Lemma 3.4 in Kinnunen–Martio [23] (after the observation in
Remark 3.3 (4) above).

(c) ⇒ (f) Let ϕ ∈ N
1,p
0 (�) and let ε > 0. By Lemma 4.10 in Shanmu-

galingam [27] we can find f ∈ N1,p(�) with supp f � �, ‖f − ϕ‖N1,p(X) < ε and
{x ∈ � : f (x) �= 0} ⊂ {x ∈ � : ϕ(x) �= 0}. As in (e) ⇒ (a) we get

(∫
ϕ �=0

g
p
u dμ

)1/p

≤ Q1/p

(∫
ϕ �=0

g
p
u+ϕ dμ

)1/p

+ Q1/pε.

Letting ε → 0 completes the proof of this implication.
(f) ⇒ (d) This is trivial.
(a) ⇒ (b) This is similar to the proof of (d) ⇒ (e).
(b) ⇒ (e) This follows directly after letting �′ being the open set {x : ϕ(x) �= 0}

for ϕ ∈ Lipc(�). �

By Proposition 3.8 and Corollary 5.5 in Kinnunen–Shanmugalingam [24], a Q-
quasiminimizer can be modified on a set of capacity zero so that it becomes locally
Hölder continuous in �. A Q-quasiharmonic function is a continuous Q-quasi-
minimizer.

Kinnunen–Martio [23], Theorem 5.3, showed that if u is a Q-quasisuperminimizer
in �, then its lower semicontinuous regularization u∗(x) = ess lim infy→x u(y) is
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also a Q-quasisuperminimizer in � in the same equivalence class as u in N
1,p
loc (�).

Furthermore, u∗ is Q-quasisuperharmonic in �. For our purposes we make the
following definition.

Definition 3.4. A function u : � → (−∞, ∞] is Q-quasisuperharmonic in � if u is
not identically ∞ in any component of �, u is lower semicontinuously regularized,
and min{u, k} is a Q-quasisuperminimizer in � for every k ∈ R.

This definition is equivalent to Definition 7.1 in Kinnunen–Martio [23], see The-
orem 7.10 in [23]. (Note that there is a misprint in Definition 7.1 in [23] – the
functions vi are assumed to be Q-quasisuperminimizers – and that Theorem 7.10
in [23] is incorrectly stated.)

If uj is a Qj -quasisuperminimizer in �, j = 1, 2, then, by Corollary 3.8 in [23],
min{u1, u2} is a min{Q1 + Q2, Q1Q2}-quasisuperminimizer in �; there is also a
corresponding result for quasisuperharmonic functions, see Theorem 7.6 in [23]. We
will use these facts with u2 constant.

By Lemma 5.2 in [23], a quasisuperharmonic function u in � obeys the minimum
principle: If u(x) = inf� u for some x ∈ �, then u is constant in the component
of � containing x.

We also have a boundary minimum principle of the following type.

Lemma 3.5. Assume that Cp(X \ �) > 0 and let f ∈ C(∂�) ∩ N1,p(�). Let u be

a quasisuperharmonic function in � satisfying u − f ∈ N
1,p
0 (�). Then inf� u ≥

inf∂� f .

Note that when Cp(X \�) = 0 the boundary condition u−f ∈ N
1,p
0 (�) reduces

to saying that u − f ∈ N1,p(�), and in this case the lemma is false.

Proof. Let m = inf∂� f , k = min{f, m} and v = min{u, m}. Then v is Q-
quasisuperharmonic in � (for some Q ≥ 1) and v − k ∈ N

1,p
0 (�), by Lemma 3.6

below. Since k = m on ∂�, k − m ∈ N
1,p
0 (�), and thus v − m ∈ N

1,p
0 (�). Hence,

using characterization (f) of Proposition 3.2,
∫
�

gv dμ ≤ Q
∫
�

gm dμ = 0. Let

w =
{

v − m, in �,

0, in X \ �
∈ N1,p(X).

It follows that gw = 0 in X, and by the Poincaré inequality w is constant q.e., hence
everywhere since w is lower semicontinuously regularized. Thus v ≡ m in �. �

To make this proof complete we need to prove the following lemma, which we
make a little more general for later use in this paper.
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Lemma 3.6. Let f, h ∈ N1,p(�) and assume that u − f, v − h ∈ N
1,p
0 (�). Let

further w = min{u, v} and k = min{f, h}. Then w − k ∈ N
1,p
0 (�).

If f, h ∈ N1,p(�), then this is obvious since we then can assume that u = f and
v = h on ∂�. However, if f and h only belong to N1,p(�) we need to be a bit more
careful. That some care is indeed needed is best illustrated by the fact that if f and h

merely belong to N
1,p
loc (�), then the lemma is false: Let f ≡ 0, u(x) = dist(x, X\�),

h ∈ N
1,p
loc (�) \ N1,p(�) be such that f ≤ h ≤ u (such an h is easy to find by adding

a lot of small oscillations) and v ≡ h. Then w − k = v /∈ N1,p(�) ⊃ N
1,p
0 (�).

In fact the lemma is true under the milder assumption f −h ∈ N1,p(�). To prove
this one just use the additional fact that in this case f , h, k, u, v and w all belong to
the same coset modulo N1,p(�).

To prove this lemma we need yet another lemma.

Lemma 3.7 (Lemma 5.3 in Björn–Björn [6]). Let u ∈ N1,p(�) and v, w ∈ N
1,p
0 (�)

be such that v ≤ u ≤ w q.e. in �. Then u ∈ N
1,p
0 (�).

A standing assumption in [6] was that � is a nonempty bounded open set with
Cp(X \ �) > 0. However, the proof of this lemma in [6] does not use the bounded-
ness nor the assumption Cp(X \ �) > 0 (the lemma is trivial in the case when
Cp(X \ �) = 0) and thus the lemma holds as stated here.

Proof of Lemma 3.6. Thatu, v ∈ N1,p(�) follows directly, and thusw, k ∈ N1,p(�).
Now

w − k = min{u − min{f, h}, v − min{f, h}} ≥ min{u − f, v − h} ∈ N
1,p
0 (�).

Moreover,

w − k = min{u − f + (f − min{f, h}), v − h + (h − min{f, h})}
≤ (u − f )+ + (v − h)+ + min{f − min{f, h}, h − min{f, h}}
= (u − f )+ + (v − h)+ ∈ N

1,p
0 (�).

It thus follows from Lemma 3.7, that w − k ∈ N
1,p
0 (�). �

If Q = 1, “quasi” is omitted from the notation and, e.g., a superminimizer is a
1-quasisuperminimizer.

4. Weak Kellogg properties

From now on we assume that � is a nonempty bounded open set with Cp(X\�) > 0.
The main result in this paper is the following theorem.



Vol. 81 (2006) A weak Kellogg property for quasiminimizers 819

Theorem 4.1 (The weak Kellogg property for quasiharmonic functions). Let f ∈
C(∂�)∩N1,p(�) and let u be a quasiharmonic function in � with u−f ∈ N

1,p
0 (�).

Then
lim

�	y→x
u(y) = f (x) q.e. on ∂�. (4.1)

In the case when X = Rn, without much loss, one can just consider quasicontin-
uous functions f ∈ W 1,p(Rn) ∩ C(∂�), see the discussion on the space N1,p(�) in
Section 2.

We call this the weak Kellogg property since for a given quasiharmonic function u

it says that there is a set Iu with Cp(Iu) = 0 such that u has the right boundary
values on ∂� \ Iu. The (strong) Kellogg property says that the set Iu can be chosen
independently of u.

Open problem 4.2. Does the (strong) Kellogg property hold for quasiharmonic
functions.

Open problem 4.3. Give an example of a boundary point which is regular for p-
harmonic functions but not for quasiharmonic functions, or prove that no such point
exists.

Theorem 4.1 is an immediate consequence of the following result (when applied
to both u and −u).

Theorem 4.4 (The weak Kellogg property for quasisuperharmonic functions). Let
f ∈ C(∂�)∩N1,p(�) and let u be a quasisuperharmonic function in � with u−f ∈
N

1,p
0 (�). Then

lim inf
�	y→x

u(y) ≥ f (x) q.e. on ∂�. (4.2)

The following example shows that it is not possible to replace (4.2) by (4.1) in
Theorem 4.4, not even for Q = 1.

Example 4.5. Let 1 < p < n, X = Rn (with the Lebesgue measure and Euclidean
metric) and � = B(0, 1). (Note that � is regular for quasiharmonic functions, by,
e.g., Remark 2.15 (i) in J. Björn [10], see Definition 5.1.)

Let {x1, x2, . . . } ⊂ � be a countable set such that its set of limit points is ex-
actly ∂�. We can find Kj such that hj (x) = max{0, 1 − Kjd(x, xj )} ∈ N

1,p
0 (�),

‖hj‖N1,p(�) < 2−j and supp hj ∩ supp hk = ∅, k �= j . Let h = ∑∞
j=1 hj . Then

h ∈ C(�) ∩ N
1,p
0 (�).

Let u be the continuous solution of the Kh,h(�)-obstacle problem, see Kinnunen–
Martio [22], Theorem 5.5. The function u is a continuous superminimizer and thus
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superharmonic in �. Let further f ≡ 0. Then u − f ∈ N
1,p
0 (�) but

lim sup
�	y→x

u(y) ≥ lim sup
�	y→x

h(y) ≥ 1 > 0 = f (x) for x ∈ ∂�.

In order to prove Theorem 4.4 we need the following lemma.

Lemma 4.6. Let x ∈ ∂� and B = B(x, r). Let f ∈ C(∂�) ∩ N1,p(�) be such that
0 ≤ f ≤ 1 and f = 1 on B ∩ ∂�. Let further u ≤ 1 be a Q-quasisuperminimizer in
� with u−f ∈ N

1,p
0 (�) and let u ≡ 1 in B \�. Then u is a Q-quasisuperminimizer

in B.

Proof. By Lemma 3.5, 0 ≤ u ≤ 1. It is easy to see that u ∈ N1,p(B). Let
ϕ ∈ N

1,p
0 (B) be nonnegative. We shall prove the inequality∫

ϕ �=0
g

p
u dμ ≤ Q

∫
ϕ �=0

g
p
u+ϕ dμ.

Let ϕ′ := min{ϕ, 1 − u} ∈ N
1,p
0 (B). Then ϕ′ = 0 in B \ � and hence

ϕ′ ∈ N
1,p
0 (B ∩ �). As u is a Q-quasisuperminimizer in B ∩ �, we have, using

characterization (f) of Proposition 3.2,∫
ϕ′ �=0

g
p
u dμ ≤ Q

∫
ϕ′ �=0

g
p

u+ϕ′ dμ.

As u + ϕ′ = min{u + ϕ, 1} we have gu+ϕ′ ≤ gu+ϕ . Note that ϕ′ = 0 if ϕ = 0. Thus∫
ϕ �=0

g
p
u dμ =

∫
ϕ′ �=0

g
p
u dμ +

∫
ϕ �=0=ϕ′

g
p
u dμ

≤ Q

∫
ϕ′ �=0

g
p

u+ϕ′ dμ +
∫

ϕ �=0=ϕ′
g

p

u+ϕ′ dμ ≤ Q

∫
ϕ �=0

g
p
u+ϕ dμ. �

Proof of Theorem 4.4. By Lemma 3.5, u is bounded below in �. Let uq = min{u, q}
and fq = min{f, q}, q ∈ Q. Then uq is a quasisuperharmonic function with

uq − fq ∈ N
1,p
0 (�), by Lemma 3.6. Let also uq ≡ q on X \ �, and u∗

q(x) =
ess lim infy→x uq(y) be the lower semicontinuous regularization of uq . Since uq

already is lower semicontinuously regularized in �, we see that uq = u∗
q in X \ ∂�.

Let Gq = {x ∈ ∂� : f (x) > q}, an open set in the relative topology on ∂�, and
Eq = {x ∈ Gq : lim inf�	y→x uq(y) < q}. We want to show that Cp(Eq) = 0.
This is immediate if Gq = ∅. Otherwise, since X is separable (which follows
from the doubling property), we can write Gq as a countable union of balls, Gq =⋃∞

j=1(Bq,j ∩ ∂�).
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By Lemma 4.6, uq is a quasisuperminimizer in Bq,j , and thus u∗
q = uq q.e. in

Bq,j . Since u∗
q is lower semicontinuous we see that

lim inf
�	y→x

uq(y) = lim inf
�	y→x

u∗
q(y) ≥ u∗

q(x) = uq(x) = q for q.e. x ∈ Bq,j ∩ ∂�.

It follows that Cp(Eq) = 0.
Now

Iu : = {
x ∈ ∂� : lim inf

�	y→x
u(y) < f (x)

}
=

⋃
q∈Q

{
x ∈ ∂� : lim inf

�	y→x
u(y) < q < f (x)

} =
⋃
q∈Q

Eq.

Thus Cp(Iu) = 0. �

5. Boundary regularity

Recall that we assume � to be a nonempty bounded open set with Cp(X \ �) > 0.

Definition 5.1. A point x0 ∈ ∂� is regular for quasiharmonic functions if for all
f ∈ C(∂�)∩N1,p(�) and all quasiharmonic functions u in � with u−f ∈ N

1,p
0 (�),

lim
�	y→x0

u(y) = f (x0).

The set � is regular for quasiharmonic functions if all x ∈ ∂� are regular for
quasiharmonic functions.

That a boundary point is regular (i.e. for p-harmonic functions) can be defined as
in the introduction, or equivalently in a manner similar to Definition 5.1, see Björn–
Björn [6], Theorem 6.1, where several characterizations of regular boundary points
can be found. It is immediate that being regular for quasiharmonic functions is a
stronger requirement. (We have refrained from using the shorter name quasiregular,
which would be tempting but misleading.)

Let us also discuss regularity for quasisuperharmonic functions. Recall that Ex-
ample 4.5 shows that only one-sided regularity can be obtained in this case.

Definition 5.2. A point x0 ∈ ∂� is regular for quasisuperharmonic functions if
for all f ∈ C(∂�) ∩ N1,p(�) and all quasisuperharmonic functions u in � with
u − f ∈ N

1,p
0 (�),

lim inf
�	y→x0

u(y) ≥ f (x0).
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Regularity for superharmonic functions (i.e. 1-quasisuperharmonic functions) is
equivalent to regularity for p-harmonic functions, see Björn–Björn [6], Theorem 6.1.
We do not know if regularity for quasiharmonic functions is equivalent to regularity
for quasisuperharmonic functions, but it is clear that the latter implies the former.

Boundary regularity for quasiminimizers has been studied by Ziemer [28] in Rn

and J. Björn [10] in metric spaces, they both obtained sufficient conditions for a
boundary point to be regular for quasisuperharmonic functions. (J. Björn states her
results for quasiminimizers, but the proof of Theorem 2.13 shows that the integral
condition therein is sufficient for regularity for quasisuperharmonic functions. The
same is true for Theorem 5.3 below.)

J. Björn [11] has recently shown the following result.

Theorem 5.3. Let G ⊂ X be nonempty and open, and assume that either X is
unbounded or G �= X. Then there exist sets �1 � �2 � · · · , which are regular for
quasisuperharmonic functions and are such that G = ⋃∞

j=1 �j .

Proposition 5.4. Let x0 ∈ ∂� and h(x) = −d(x, x0). Then x0 is regular for
quasisuperharmonic functions if and only if

lim inf
�	y→x0

u(y) ≥ 0

for all quasisuperharmonic functions u in � with u − h ∈ N
1,p
0 (�).

It is possible to replace h by any function k ∈ C(∂�) ∩ N1,p(�) with k(x0) = 0
and k(x) < 0 for x ∈ ∂� \ {x0}. (The proof remains the same.)

Proof. The necessity is trivial. As for the sufficiency, assume that x0 is irregular
(i.e. not regular) for quasisuperharmonic functions. Then there exist f ∈ C(∂�) ∩
N1,p(�), δ ∈ R, and a quasisuperharmonic function v in � with v − f ∈ N

1,p
0 (�)

and
lim inf
�	y→x0

v(y) < δ < f (x0).

Assume without loss of generality that δ = 0. We can find M > 0 so that Mh ≤ f

on ∂�. Let w be the unique p-harmonic function in � with w − h ∈ N
1,p
0 (�), see

Kinnunen–Martio [22], Theorem 3.2, or Shanmugalingam [27], Theorem 5.6. Then
the quasisuperharmonic function u := min{v/M, w} satisfies u − h ∈ N

1,p
0 (�), by

Lemma 3.6. Since

lim inf
�	y→x0

u(y) ≤ 1

M
lim inf
�	y→x0

v(y) < 0

we are done. �
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Open problem 5.5. Is it true that if f ∈ C(∂�)∩N1,p(�) and v is a quasisuperhar-
monic function in � with v − f ∈ N

1,p
0 (�), then there is a quasiharmonic function

u ≤ v in � with u − f ∈ N
1,p
0 (�)?

This is true for Q = 1, i.e. if v is a superharmonic function in � with v − f ∈
N

1,p
0 (�), then the unique p-harmonic function u in � with u−f ∈ N

1,p
0 (�) satisfies

u ≤ v, see, e.g., Lemma 3.4 in Kinnunen–Martio [22]. The proof there however uses
the uniqueness in an essential way.

If the answer to Problem 5.5 were yes, then a straightforward consequence would
be the equivalence of the following statements for x0 ∈ ∂�:

(a) x0 is regular for quasisuperharmonic functions;

(b) x0 is regular for quasiharmonic functions;

(c) for all quasiharmonic functions u in � with u − h ∈ N
1,p
0 (�), where h(x) =

−d(x, x0), it is true that
lim

�	y→x0
u(y) = 0.

(At present we know that (a) ⇒ (b) ⇒ (c).)
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