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Existence of quasi-periodic solutions for elliptic equations on a
cylindrical domain

Claudia Valls∗

Abstract. The elliptic equation ∂ttu = −∂xxu − αu − g(u), α > 0 is ill-posed and “most”
initial conditions lead to no solutions. Nevertheless, we show that for almost every α there
exist smooth solutions which are quasi-periodic. These solutions are anti-symmetric in space,
and hence they are not traveling waves. Our approach uses the existence of an invariant center
manifold, and the solutions are obtained from a KAM-type theorem for the restriction of the
equation to that manifold.
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1. Introduction

Elliptic problems in cylindrical domains occur in many situations, such as in the study
of the deformation of beams or of inviscid channel flows. These problems lead to
elliptic equations in which the axial variable formally takes the role of time. This
often allows one to use ideas and techniques from the theory of dynamical systems,
and in turn to reduce the study of these systems to that of certain (perhaps multi-
valued) evolution operators associated to the equation. Although elliptic problems
in cylindrical domains may be ill-posed, they may still possesses plenty smooth
solutions. Here we consider a particular relevant case of such a system and use ideas
and techniques from the theory of dynamical systems to establish the existence of
quasi-periodic solutions (which are not periodic). These solutions will be obtained
inside a certain invariant center manifold for the dynamics.

We note that it is natural to look for recurrent dynamics inside an invariant sub-
manifold which is not stable nor unstable (since the central behavior does not forbid
a priori a recurrence of more local nature). The recurrence corresponds here to quasi-
periodic behavior on tori, although of course recurrent behavior may also occur in
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other situations, such as for example in the presence of homoclinic behavior with
transverse intersections of stable and unstable manifolds. We note that the study of
the existence of quasi-periodic solutions for nonlinear partial differential equations
was started somewhat recently by Kuksin [7] and Wayne [12].

In the present context, the approach of reducing the dynamics to a center man-
ifold can be traced back to the work of Kirchgässner [6], where he constructed an
invariant center manifold for a semilinear elliptic equation on a strip. The method is
now sometimes called Kirchgässner reduction, although of course the applicability
of this approach strongly depends on the desired results and appropriate additional
techniques may need to be developed in each particular case, particularly due to the
infinite-dimensional nature of the problems. For later developments and applications
in the context of elliptic problems on cylindrical domains we refer the reader to the
works [1], [3], [4], [5], [8], [9], [10] and to the references therein.

More concretely, we work with the equation

∂2

∂t2 u(t, x) = − ∂2

∂x2 u(t, x) − αu(t, x) + g(u(t, x)), α > 0, (1)

where g is any odd real-analytic function of the form

g(u) = bu3 + O(u5), b �= 0.

The equation (1) is an ill-posed modification of the sine-Gordon equation, in the sense
that “most” initial conditions do not lead to a solution. Our goal is to show that there
exist smooth quasi-periodic solutions (in time) of equation (1) for almost every α.
Furthermore, we shall see that these solutions are never traveling waves (since they
are anti-symmetric in space).

We consider the system (1) on the finite x-interval [0, 1], with the periodic bound-
ary condition u(t, 0) = u(t, 1) and (∂u/∂t)(t, 0) = (∂u/∂t)(t, 1) for 0 ≤ t < ∞
and zero mean, i.e.,

∫ 1
0 u(t, x) dx = 0 and

∫ 1
0 (∂u/∂t)(t, x) dx = 0. Furthermore,

we rewrite it as a Hamiltonian system. Introducing the variables w = (q, p), with
q(t, x) = u(t, x) and p(t, x) = (∂u/∂t)(t, x), and the Hamiltonian

H(w) = 1

2

∫ 1

0
(p2 + αq2 − (∂q/∂x)2) dx −

∫ 1

0
g(q) dx, (2)

the equation (1) can be written in the form

∂

∂t
w = J∇wH(w) with J =

(
0 1

−1 0

)
.

We first briefly consider the linear variational equation of (1), that is,

∂2

∂t2 u(t, x) = − ∂2

∂x2 u(t, x) + αu(t, x). (3)
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The functions φk(x) = cos(2πkx) are the basic modes of (3) and the numbers

μk(α) = ±
√

4π2k2 − α (4)

are the corresponding frequencies. Each solution of (3) is a superposition of the basic
modes

u(t, x) =
∑
k≥0

φk(x)
{
ake

μk(α)t + bke
−μk(α)t

}
,

in which ak and bk are determined by the initial data u0(x) and u1(x). We denote by
[ · ] the integer part of a real number and set

wk(α) = |α − 4π2k2|1/2, k(α) :=
[√

α

2π

]
, �(α) := {k : 1 ≤ k ≤ k(α)}. (5)

We define the full Lebesgue measure set

M = {α > 0 : √
α/(2π) is not an integer}. (6)

We shall only work with values of α in M (so that wk(α) �= 0 in order to be able to
invert a certain operator later on).

One of the most remarkable characteristics of the linear equation (3) is that there
is a finite number of coefficients for which μk(α) is purely imaginary: the values
of k such that k ∈ �(α) and on those values μk(α) = ±iwk(α). These corre-
spond to elliptic behavior on a torus of dimension k(α). The tori come in Cantor
families forming finite-dimensional Cantor manifolds through the stationary solution
u ≡ 0. The invariant manifolds may not persist in the nonlinear system (1) due to
the resonances among the nodes and to the strong effect of the nonlinear perturbation
for large amplitudes. However, using KAM-type arguments it is possible to establish
the persistence, in a sufficiently small neighborhood of the origin, of a Cantor sub-
manifold of tori and that it is only slightly deformed. We point out that this Cantor
submanifold covers a measure close to full.

Now we apply the center manifold theory to construct a finite-dimensional man-
ifold invariant under (1). Namely, using work of Mielke in [9, Chapter 2], we can
prove for each r ≥ 1 the existence of a Cr center manifold around the origin, Wc, for
the equation (1). For a precise statement of our center manifold theorem and a ver-
ification of the conditions which allow us to apply Mielke’s results see Appendix B.
We list here some important properties of the center manifold:

(1) The space T0Wc is the span of the eigenvectors φk(α)k≤k(α), with k(α) finite
(see (5)). Thus, the restriction of the dynamics to the center manifold is finite-
dimensional. We note that the center manifold is precisely where one can ex-
pect to have invariant tori persisting. Since in our case the dynamics restricted
to the center manifold is finite-dimensional this will allow us to use (finite-
dimensional) KAM techniques to establish the persistence.
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(2) The dynamics on the center manifold is Hamiltonian with a Hamiltonian that
coincides with the restriction of the original one in (2) to the center manifold
(see [9] for details).

We now consider a certain modification of the action-angle variables (Îj , θ̂j ) for
equation (3) (see (14) for the definition) and let τ > 1. For each real number m > 0
we define the set

Dm = {Îj > 0 : m ≤ Îj ≤ 2m, j ∈ �(α)} × T
k(α).

We also consider the Diophantine condition

|〈w(α), k〉| ≥ γ ‖k‖−τ for all k ∈ Z
k(α)\{0}, (7)

where w(α) = (w2
1(α), . . . , w2

k(α)(α)).
We now state our main theorem.

Theorem 1. Given τ > 1 and γ > 0, for almost every α such that w(α) satisfies
(7), and every m = m(α) > 0 sufficiently small, all invariant tori with frequencies
w(α) persist in the perturbed Hamiltonian (2) restricted to the center manifold, in
the sense that there is a map φ : T

k(α) → Dm of class Cκ with κ < l − 2τ − 1,
l ≥ 4τ + 10, such that the flow on Dm is the image by φ of the linear flow defined
by w(α) on T

k(α).

Incidentally, we note that by a well-known theorem in the book by Siegel and
Moser [11, section 16], since μk/μk0 �∈ Z for 1 ≤ k �= k0 ≤ k(α) (see (4)) for every
α ∈ M with the exception of a countable set, there exists a one-parameter analytic
family of periodic orbits in (1) (and thus uncountably many) for almost every α > 0.

To prove Theorem 1 we shall proceed as follows. First, we obtain a Hamiltonian
in infinitely many coordinates {xk, yk}k≥1, which is real analytic near the origin. The
linear equation gives rise to the quadratic Hamiltonian H2. The first term in the
nonlinearity, bu3(t, x), gives rise to terms of order four, H4, while O(u5(t, x)) gives
rise to terms of order greater or equal to six. Thus,

H = H2 + H4 + O(‖(x, y)‖6), H4 = O(‖(x, y)‖4),

corresponding to an elliptic fixed point in infinitely many degrees of freedom. Since
we are going to use KAM techniques which always require some nondegeneracy
conditions, we need to compute the Birkhoff normal form up to order four for (2).
The upshot is that, for almost every α > 0, there exists a change of coordinates so
that

H = H2 + H4 + O(‖(x, y)‖6), with H4 =
∑

(k,l)∈�(α)×�(α)

H4,k,lxkykxlyl.
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Thus, the Hamiltonian is integrable up to order 4. Now, KAM theory comes into play.
It is straightforward to verify the nondegeneracy conditions for the KAM theory for
almost every α > 0, without any further assumption (see Appendix A). Then we shall
show that, given the nondegeneracy conditions, we can reduce the Hamiltonian in the
center manifold to a Birkhoff normal form up to terms of sufficiently high order. By
taking m sufficiently small in the definition of the domain Dm, the Hamiltonian will
be a small perturbation of the Birkhoff normal form. This will allow us to reduce
Theorem 1 to a suitable quantitative KAM theorem of Zehnder in [13].

It is important to note that the size of the perturbations to which the KAM theorem
is applied corresponds to the size of the difference between the Hamiltonian and its
Birkhoff normal form. Hence, it is possible to choose the neighborhood in the center
manifold, or in Dm, to be so close to the origin so that all necessary smallness
conditions are verified. On the other hand, since the reduction to the Birkhoff normal
form involves a change to polar coordinates, which are degenerate near the origin,
it is necessary to obtain a quantitative KAM theorem (see Theorem 4 below), which
will be used to overcome some problems arising from the polar coordinates.

The paper is organized as follows. In Section 2 the Hamiltonian of (1) is written
in infinitely many coordinates. In Section 3, the restriction of the Hamiltonian to
the center manifold is transformed into its Birkhoff normal form of order four. In
Section 4, we consider the existence of invariant Cantor manifolds for Hamiltonians
in this normal form. This finally allows us to prove Theorem 1. The details in the
verification of the nondegeneracy conditions are given in Appendix A and a sketch
of proof of the theorem concerning the existence of the center manifold is given in
Appendix B.

2. The Hamiltonian

In this section we verify that equation (1) can be rewritten in Hamiltonian form in
terms of the Fourier modes. We shall work with (1) taking only into account the first
term of the nonlinearity g(u(t, x)), that is, bu3(t, x). The point is that the higher
order terms do not contribute to the fourth order Birkhoff normal form. Furthermore,
all the computations in this paper concerning the normal form can be done in a formal
way because:

(1) the derivatives of the transformed Hamiltonian of certain degree, only depend
on the derivatives of the Hamiltonian of lower degrees;

(2) to compute a term in the expansion of the center manifold, we only need to work
with a finite number of Fourier modes and thus, it is an algebraic expression of
the coefficients of the Hamiltonian.
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These two observations together with the existence of a center manifold, Wc, guar-
antee that we can proceed formally ignoring questions of domains of operators and
convergence of series.

Let us consider the Hamiltonian for equation (1). We shall work with the variables

q(t, x) = u(t, x) and p(t, x) = ∂

∂t
u(t, x)

decomposed in Fourier series with respect to the x-variable. We recall that we are
interested in solutions which are not traveling waves. In order to force that our
solutions (the existence of which is claimed in Theorem 1) are not traveling waves
we require that q(t, x) is odd in x. This leads to restrict our attention to variables of
the form

q(t, x) =
∑
k≥1

λk(t) sin 2πkx, p(t, x) =
∑
k≥1

βk(t) sin 2πkx,

where βk(t) = λ′
k(t). The variables q(t, x) and p(t, x) correspond to an invariant

subspace of (formal) solutions. We note that the fact that we restrict our attention to
this subspace also guarantees that the Birkhoff normal form considered below is not
resonant.

By Parseval’s identity, the Hamiltonian takes the form:

H = 1

2

∫ 1

0

(
p2 + αq2 −

(
∂q

∂x

)2

− g(q)

)
dx

= 1

2

∑
(k,l)∈N2

(βkβl + αλkλl)

∫ 1

0
sin(2πkx) sin(2πlx) dx

− 2π2
∑

(k,l)∈N2

klλkλl

∫ 1

0
cos(2πkx) cos(2πlx) dx

− b

4

∑
(k,l,n,m)∈N4

λkλlλnλm

∫ 1

0
sin(2πkx) sin(2πlx) sin(2πnx) sin(2πmx) dx

−
∫ 1

0

(
g(q) − b

4
q4

)
dx = H2 + H4 + R1,

where

H2 = 1

4

∑
k≥1

(
β2

k − (4π2k2 − α)λ2
k

)
, R1 = −

∫ 1

0

(
g(q) − b

4
q4

)
dx,

that is, R1 comprises the terms of order greater or equal 5 and, introducing the notation

kl,n
σ,ρ = k + (−1)σ l + (−1)ρn, σ, ρ ∈ {0, 1}, (8)
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we obtain

H4 = b

32

∑
(σ,ρ)∈{0,1}2,

(k,l,n)∈N3

(−1)ρ+σ λkλlλnλk
l,n
σ,ρ

,

where we have used that the Fourier series is real for any n ≥ 1, and the relation
λ−n = −λn.

Note that the quadratic part H2 is positive definite for all k ∈ �(α) (see (5)) and
negative definite for all other k. Moreover, the real Jordan form J , in the coordinates
{λk, βk}k≥1, is

J =

⎛
⎜⎜⎜⎜⎜⎜⎝

J1
J2

. . .

Jk

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, Jk =
(

0 1
−1 0

)
, k ≥ 1,

and the symplectic two-form is � = ∑
k≥1 dλk ∧ dβk .

We are going to make a symplectic change of variables to put the Hamiltonian H2
in diagonal form. To this end we introduce, for k ≥ 1, the notation

τk(α) = i
νk
2 |α − 4π2k2|1/4, νk =

{
0, if k ∈ �(α),

1, otherwise,

in which �(α) is the set of values introduced in (5). Then it is immediate to see that
the change of variables �̂ = (�k){k≥1} with, for any k ≥ 1,

�k(λk, βk) = (xk, yk) = 1√
2

(
βk

τk(α)
− iτk(α)λk, τk(α)λk − i

βk

τk(α)

)
is a symplectic change of variables with new symplectic two-form

�1 =
∑
k≥1

dyk ∧ dxk. (9)

Then, in the (xk, yk)k≥1-variables,

H2 = 1

2

∑
k≥1

iτ 2
k (α)xkyk (10)

and

H4 = b

128

∑
(σ,ρ)∈{0,1}2
(k,l,n)∈N3

(−1)ρ+σ
ix

k
l,n
σ,ρ

+ y
k
l,n
σ,ρ

τk(α)τl(α)τn(α)τ
k
l,n
σ,ρ

(α)
[−ixkxlxn + iykylxn

− xkylxn − ykxlxn − xkxlyn + ykylyn + ixkylyn + iykxlyn],
(11)
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in which we use the notation introduced in (8).
As it will be clear in Section 3, it is very useful to rewrite H4 in another way, differ-

ent from (11). To this end we set m = (m1, m2, m3, m4) and p = (p1, p2, p3, p4),
and define the set

A4 = {
m ∈ {0, 1}4, p ∈ {0, 1}4 : ∑4

i=1{mi + pi} = 4
}
.

Then we can write H4 in the form

H4 =
∑

(σ,ρ)∈{0,1}2
(k,l,n)∈N3, j=k

l,n
σ,ρ

m,p∈A4

h
m,p,σ,ρ
k,l,n,j x

mk

k x
ml

l xmn
n x

mj

j y
pk

k y
pl

l y
pn
n y

pj

j (12)

with

h
m,p,σ,ρ
k,l,n,j = b(−1)σ+ρ

128τk(α)τl(α)τn(α)τj (α)
ĥ

m,p
k,l,n,j , (13)

in which ĥ
m,p
k,l,n,j is equal to either of the following possibilities:

• 1, if mk = ml = mn = mj = 1 or pk = pl = pn = pj = 1.

• −1, if pk = pl = mn = mj = 1 or mk = pl = pn = mj = 1 or pk = ml =
pn = mj = 1 or mk = pl = mn = pj = 1 or pk = ml = mn = pj = 1 or
mk = ml = pn = pj = 1.

• −i, if mk = pl = mn = mj = 1 or pk = ml = mn = mj = 1 or mk = ml =
pn = mj = 1 or mk = ml = mn = pj = 1.

• i, if pk = pl = pn = mj = 1 or pk = pl = mn = pj = 1 or mk = pl = pn =
pj = 1 or pk = ml = pn = pj = 1.

3. Normal form

In this section we compute the normal form up to fourth order of the reduction to the
center manifold for the Hamiltonian H = H2 + H4 + R1 (introduced in (10) and
(11)). Since R1 comprises the terms with degree greater or equal to five, only the part
of the Hamiltonian given by H̃ = H2 + H4 will be put in normal form.

Let us introduce, for α ∈ M (see (6)),

δk,l =
{

1, if k = l,

0, otherwise,
�2(α) = �(α)×�(α),

xk = τk(α)

√
Îke

ikθ̂k ,

yk = −iτk(α)

√
Îke

−ikθ̂k ,

(14)

and denote by �Wc( · ) the projection onto the center manifold.



Vol. 81 (2006) Quasi-periodic solutions 791

Lemma 2. For almost every α > 0, there exists a symplectic change of coordinates
� that takes the reduction of H to the center manifold into its normal form up to the
fourth order. That is

�Wc(H) = H2 + H4 + R,

where R contains the terms of degree at least five and

H2 = 1

2

∑
k∈�(α)

|α − 4π2k2|Îk, H4 = −3b

64

∑
(k,l)∈�2(α)

(4 − δk,l)Îk Îl .

Proof. The proof of Lemma 2 will be done by removing H4. According to the remarks
in the beginning of Section 2, the corresponding change of variables will be done in
a formal way.

Let �1 = Xt
G4

|t=1 be the time 1-map of the flow of the Hamiltonian vector field
XG4 given by the Hamiltonian G4 defined as:

G4 =
∑

(σ,ρ)∈{0,1}2
(k,l,n)∈N3, j=k

l,n
σ,ρ

m,p∈A4

g
m,p,σ,ρ
k,l,n,j x

mk

k x
ml

l xmn
n x

mj

j y
pk

k y
pl

l y
pn
n y

pj

j

in which, with the notation,

Dk,l,n,j (α) =
4∑

j=1

τ 2
ξj

(α)(mξj − pξj ), (ξ1, ξ2, ξ3, ξ4) = (k, l, n, j), (15)

we have

g
m,p,σ,ρ
k,l,n,j =

⎧⎪⎪⎨
⎪⎪⎩

0, if Dk,l,n,j (α) = 0,

2ih
m,p,σ,ρ
k,l,n,j

Dk,l,n,j (α)
, otherwise.

(16)

At this point, in order to explicitly obtain G4, we need to compute in which cases
Dk,l,n,j (α) = 0. We can distinguish between the following two situations:

(1) If mξj = pξj , for all j = 1, 2, 3, 4 with (ξ1, ξ2, ξ3, ξ4) = (k, l, n, j). In that
case, Dk,l,n,j (α) = 0 for all α > 0 and g

m,p,σ,ρ
k,l,n,j is taken to be equal to zero (see

(16)). Moreover, we shall denote by R the set of values of (σ, ρ, k, l, n, j) ∈
{0, 1}2 × N

4 such that, j = kl,n
σ,ρ and mk = pk , ml = pl , mn = pn, mj = pj in

equation (12).

(2) If Dk,l,n,j (α) = 0 and condition (1) does not hold. Then we define, for α ≥ 4π2

(that is, k(α) ≥ 1), the quantity

ω(α) = (τ 2
1 (α), . . . , τ 2

k(α)(α)).
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Notice that ω(α) is an analytic curve not a straight line in R
k(α) and given

k ∈ Z
k(α), equation (15) vanishes only at locally finite set of points. Let us

denote by Ŝ the complement of this finite set of points. Then Ŝ has full Lebesgue
measure and therefore, in that case, for almost every α > 0, Dk,l,n,j (α) �= 0.

From now on, we shall work only with the full Lebesgue measure set of values
of α > 0 for which Dk,l,n,j (α) �= 0 in case (2) and, thus, g

m,p,σ,ρ
k,l,n,j = 0 if and only if

case (1) is satisfied.
It is well known that the transformed Hamiltonian, H , by the time 1-map of the

flow of the Hamiltonian vector field XG4 is given by

H = H � Xt
G4|t=1 = H2 + H4 + {H2, G4} + R1 + {H4 + R1, G4}

+
∫ 1

0
(1 − t){{H, G4}, G4} � Xt

G4
dt,

(17)

in which {H, G4} denotes the Poisson bracket of H = H2 + H4 + R1 and G4. Due
to the form of �1 introduced in (9), the Poisson bracket of H and G4 is given by

{H, G4} =
∑
k≥1

[
∂H

∂yk

∂G4

∂xk

− ∂H

∂xk

∂G4

∂yk

]
.

It is clear that the last line in (17) comprises terms of degree greater or equal five, and
thus the higher order terms. Therefore,

R = �Wc

(
R1 + {H4 + R1, G4} +

∫ 1

0
(1 − t){{H, G4}, G4} � Xt

G4
dt

)
. (18)

Furthermore, by (16),

�Wc(H2 + H4 + {H2, G4}) = H2 + �Wc(Ĥ4),

where

H2 = �Wc(H2) = 1

2

∑
k∈�(α)

iτk(α)2xkyk, (19)

and Ĥ4 is equal to∑
(σ,ρ)∈{0,1}2

(k,l,n)∈N3, j=k
l,n
σ,ρ

m,p∈A4

h
m,p,σ,ρ
k,l,n,j x

mk

k x
ml

l xmn
n x

mj

j y
pk

k y
pl

l y
pn
n y

pj

j

+
∑

(σ,ρ,k,l,n,j)�∈R

iDk,l,n,j (α)g
m,p,σ,ρ
k,l,n,j

2
x

mk

k x
ml

l xmn
n x

mj

j y
pk

k y
pl

l y
pn
n y

pj

j

=
∑

(σ,ρ,k,l,n,j)∈R

h
m,p,σ,ρ
k,l,n,j x

mk

k x
ml

l xmn
n x

mj

j y
pk

k y
pl

l y
pn
n y

pj

j .

(20)



Vol. 81 (2006) Quasi-periodic solutions 793

In order to be able to compute (20), we need to obtain the set R. A necessary
(not sufficient) condition is that

∑4
j=1 mj = ∑4

j=1 pj . This condition together with

equation (13) imply that Ĥ4 at least reduces to

Ĥ4 = − b

128

∑
(σ,ρ)∈{0,1}2

(k,l,n)∈N3, j=k
l,n
σ,ρ

(−1)σ+ρ

τk(α)τl(α)τn(α)τj (α)
[ykylxnxj + xkylynxj

+ ykxlynxj + xkylxnyj + ykxlxnyj + xkxlynyj ].
(21)

Furthermore, not all the values of (σ, ρ) ∈ {0, 1}2, (k, l, n) ∈ N
3 and j = kl,n

σ,ρ in (21)
belong to R. To specify more the domain R, we shall proceed as follows:

(1) If σ = 0 and ρ = 0. This case does not provide any term in R.

(2) If σ = 0 and ρ = 1. In this case we can rewrite (21) in the following way:

Ĥ4 = b

128

∑
(k,l,n)∈N3

1

τk(α)τl(α)τn(α)

{
ykylxn

(
xk+l−n

τk+l−n(α)
+ xn+l−k

τn+l−k(α)

+ xk+n−l

τk+n−l(α)

)
+ xkynxl

(
yk+n−l

τk+n−l(α)
+ yn+l−k

τn+l−k(α)
+ yk+l−n

τk+l−n(α)

)}
.

Therefore, in this case, the terms that belong to R are (k, l, n) ∈ N
3 in which

n = k and n = l �= k. Thus, recalling that δk,l was introduced in (14), we have

Ĥ4 = b

64

∑
(k,l)∈N2

4 − δk,l

τ 2
k (α)τ 2

l (α)
xkykxlyl. (22)

(3) If σ = 1 and ρ = 0 or σ = 1 and ρ = 1, proceeding in the same way as in case
(2), we obtain that, in both cases,

Ĥ4 = b

64

∑
(k,l)∈N2

4 − δk,l

τ 2
k (α)τ 2

l (α)
xkykxlyl. (23)

Thus, in the variables introduced in (14) and since τk(α) = |α − 4π2k2|1/2 for
k ∈ �(α), the Hamiltonian H2 given in (19) becomes

H2 = 1

2

∑
k∈�(α)

|α − 4π2k2|Îk,

R given in (18) becomes R(Ik, θk), k = 1, . . . , k(α), and, from (22), (23), taking the
notation H4 = �Wc(Ĥ4), we have

H4 = −3b

64

∑
(k,l)∈�2(α)

(4 − δk,l)Îk Îl .

This completes the proof of the lemma. �
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4. KAM theorem

In this section we establish the existence of quasi-periodic space-symmetric solutions
for the restriction to the center manifold of the Hamiltonian H given in Section 2.
Set I = (

Î1, . . . , Îk(α)

)
, θ = (

θ̂1, . . . , θ̂k(α)

)
where (Îk, θ̂k) were introduced in (14).

Proposition 3. For almost every α > 0, there exists a canonical change of variables
C defined in a neighborhood of the origin such that

H � C = H2(I ) + H4(I ) + · · · + H2N(I) + R(I, θ)

where H2N(I) are polynomials in the I -variables of degree N vanishing at the origin
and R(I, θ) are divisible by

√
IN .

The proof of the Proposition 3 is straightforward if one restricts the values of the
parameter α to a full Lebesgue measure set.

From Proposition 3 and Lemma 2,

H2(I ) = 〈ω̃, I 〉, H4(I ) = 〈AI, I 〉,
with ω̃ = (

w2
1(α), . . . , w2

k(α)

)
and

A = (Ak,j )1≤k,j≤k(α) in which Ak,j = −3b

64
(4 − δk,j ).

To establish the nondegeneracy conditions of KAM theory, we need to prove that
det(A) �= 0. This is an immediate consequence of Corollary 6 in Appendix A, taking
d = −9b/64 and x = −12b/64.

Once the Hamiltonian is transformed into the Birkhoff normal form up to order 2N

with the nondegeneracy property, we now need to prove the existence of invariant
Cantor manifolds for Hamiltonians in such normal forms. This is deduced from the
technical KAM theorem of Zehnder [13]. To state the quantitative version of the KAM
theorem by Zehnder (see below), we recall that we say that the functions F1, F2, . . . ,
Fn are in involution if {Fi, Fj } = 0 for i �= j . Moreover, they are independent if
the one-forms dF1, . . . , dFn are linearly independent over a full Lebesgue measure
subset of the common definition domain of Fj for j = 1, . . . , n. A Hamiltonian
system with n degrees of freedom having n independent functions which are constant
over the trajectories of the system and are in involution is called integrable.

Theorem 4. Let F 0(Ĩ ) be a real analytic, integrable and nondegenerate (that is,

det
(

∂2F 0

∂(Ĩ )2 (Ĩ )
) �= 0)Hamiltonian. Moreover, let the perturbed HamiltonianF(Ĩ, θ̃ ) =

F 0(Ĩ ) + F1(Ĩ, θ̃ ) be of class Cl , l ≥ 4τ + 10, on

Ĩ ∈ Am = {Ij > 0 : m ≤ Ij ≤ 2m, 1 ≤ j ≤ N}, θ̃ ∈ T
N.
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Then there exists K depending on τ , γ such that, if |F1|Cl(Am×TN) ≤ K, then all the

invariant tori for the frequencies w = ∂
Ĩ
F 0(Ĩ ) satisfying

|〈w, k〉| ≥ γ ‖k‖−τ for all k ∈ Z
N\{0} (24)

persist in the perturbed Hamiltonian F(Ĩ, θ̃ ) in the following sense: there is a map
φ : T

N → Am × T
N , where φ ∈ Cm(Am × T

N) with m = l − 2τ − 1, and the flow
on the invariant tori is the image by φ of the linear flow given by ω.

We can finally show how Theorem 4 implies Theorem 1.

Proof of Theorem 1. First of all, notice that from Proposition 3, the Hamiltonian

H2(I ) + H4(I ) + · · · + H2N(I) (25)

is a real polynomial of degree N in the I -variables and, thus, it is real analytic as
a function of I . Furthermore it is integrable. From the hypothesis of Theorem 1,
w(α) = ∂IH2(I ) satisfies (7), i.e.,

|〈w(α), k〉| ≥ γ ‖k‖−τ for all k ∈ Z
k(α)\{0}.

Thus, taking m sufficiently small,

w = ∂I

(
H2(I ) + · · · + H2N(I)

)
also satisfies (24). Moreover, as pointed out before, H2(I ) + H4(I ) is nondegen-
erate. Therefore, taking m sufficiently small, the Hamiltonian given in (25) is also
nondegenerate.

By Proposition 3, we have that R(I, θ) is divisible by
√

IN , and, thus,

‖R‖Cl(Am×Tk(α)) ≤ C
(‖R‖CN(Am×Tk(α))

)
m

N
2 −l .

Therefore, for a given l ≥ 4τ +10, taking N > 2l in Proposition 3, and also taking m

small enough, we can achieve

‖R‖Cl(Am×Tk(α)) ≤ K

for any positive K > 0. Therefore, taking K sufficiently small, Theorem 4 implies
that the Hamiltonian H has Cl−2τ−2-invariant tori on which the flow is linear. �

We want to mention that in [2], working with an analytic perturbed Hamiltonian
H(I, θ), the authors prove that, in a neighborhood of given radius m, the measure of
the complement of the KAM tori with frequencies satisfying a Diophantine condition
with exponent γ is exponentially small in (1/m)1/(γ+1).
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Appendix A

This appendix is devoted to the proof of a technical lemma that will be used to prove
the nondegeneracy conditions necessary to apply KAM theory. Before stating it, let
us introduce the set

Mn×n =
{
A = (Ai,j )1≤i,j≤n ∈ Mn×n : Ai,j =

{
d, if i = j , i ≥ 1

x, otherwise

}
.

Lemma 5. For any n ≥ 1 and A ∈ Mn×n,

det(A) = (d − x)n−1(d + (n − 1)x).

Corollary 6. For any n ≥ 1 and A ∈ Mn×n, we have det(A) = 0 if and only if x = d

or x = −d/(n − 1).

Proof of Lemma 5. In order to prove Lemma 5, we need to define an auxiliary matrix
B = (Bi,j )1≤i,j≤n ∈ Mn×n as

Bi,j =
{

d, if i = j , i ≥ 2,

x, otherwise.

Then we claim that
det(B) = x(d − x)n−1. (26)

The proof of Lemma 5 will be done by proving also equation (26) simultaneously
by induction over the dimension n.

For n = 1, 2, Lemma 5 and (26) hold trivially. Let us proceed by induction
assuming that the case n = m − 1 is proved and we shall prove it for n = m.
We denote by G(m−1) and G(m) the determinant of A for n = m − 1 and n = m,
respectively; and by P (m−1) and P (m) the determinant of B at n = m−1 and n = m,
respectively. Then we have

G(m) = dG(m−1) − x(m − 1)P (m−1), P (m) = xG(m−1) − x(m − 1)P (m−1).

We start by proving the first identity. To this end we take the expansion (in the first
row) on minors of the determinant, and we have,

G(m) = dG(m−1) − x

m∑
k=2

(−1)kdet(�(k)),

where �(k) = (�
(k)
i,j )1≤i,j≤m−1 with

�
(k)
i,j =

⎧⎪⎨
⎪⎩

d, j = i + 1, i = 1, . . . , k − 2 for any k ≥ 3,

d, j = i, i = k, . . . , m − 1,

x, otherwise.
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We manipulate �(k) as follows: we consider �̂(k) = (�̂
(k)

î,j
)1≤î,j≤m−1 with

�̂
(k)
1,j = �

(k)
k−1,j for j = 1, . . . , m − 1,

�̂
(k)

î,j
= �

(k)
i−1,j for î = 2, . . . , k − 1, j = 1, . . . , m − 1,

�̂
(k)

î,j
= �

(k)
i,j for î = k, . . . , m − 1, j = 1, . . . , m − 1.

Then

�̂(k) =
{

d, j = î, î ≥ 2,

x, otherwise,

which clearly coincides with B = (Bi,j )1≤i,j≤n−1. Moreover,

det(�(k)) = (−1)k−2 det(�̂(k)) = (−1)k−2P (m−1)

and, thus,

G(m) = dG(m−1) − x

m∑
k=2

(−1)2k−2P (m−1) = dG(m−1) − x(m − 1)P (m−1),

which implies the desired relation. The second identity is obtained in the same way.
Therefore, from the inductive hypothesis and (26), G(m) is given by

d(d − x)m−2(d + (m − 2)x) − x2(m − 1)(d − x)m−2 = (d − x)m−1(d + (m − 1)x)

and

P (m) = x(d − x)m−2(d + (m − 2)x) − x2(m − 1)(d − x)m−2 = x(d − x)m−1. �

Appendix B

For the convenience of the reader, we have included this appendix where we make
precise the statement of the center manifold theorem and we present a sketch of the
proof. We recall that Hm

0 ([0, 1]) denotes the Sobolev space of functions on [0, 1]
with periodic boundary conditions and zero mean.

Theorem 7. For each r ≥ 1, there is a Cr finite-dimensional manifold, Wc ⊂
Hm−1

0 ([0, 1]) × Hm−2
0 ([0, 1]), for m ≥ 2, containing 0, which is locally invariant

under (1) in some neighborhood of the origin, and such that T0Wc is obtained from
the spanning of the linear part of (1) with purely imaginary eigenvalues, i.e., the
eigenvalues {μk(α)}k<k(α) (see (4) and (5)).
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Proof. This theorem is a straightforward application of Theorem 2.1 in Mielke [9].

Theorem 8 ([9, Chapter 2]). Let X be a Hilbert space. We consider the system

dx

dt
= Kx + f (t, λ, x), (27)

where K : D(K) → X is a closed linear operator, f (t, λ0, x) = O(‖x‖2), and
λ ∈ R

n is a parameter. We assume the following hypotheses:

(1) The space X splits into two closed subspaces X1 ⊕ X2 which are K-invariant:

Kj = K|Xj
: D(K) ∩ Xj → Xj for j = 1, 2.

(2) The spectrum of the linear operator K1 is contained in the imaginary axis, and
K1 is the generator of a strongly continuous group (eK1t )t∈R satisfying

‖eK1t‖ ≤ C(1 + |t |)m for some C, m > 0.

(3) The imaginary axis lies in the resolvent set of K2 and for some C > 0,

‖(K2 − iξ)−1‖ ≤ C

1 + |ξ | , ξ ∈ R.

(4) There exist k ∈ N and a neighborhood U ⊂ D(K) of 0 and a neighborhood
λ ⊂ R

n of λ0 such that f = f (t, λ, x) ∈ Ck+1
b,unif(R×�×U, X), f (t, λ0, 0) = 0,

and Dxf (t, λ0, 0) = 0 for all t ∈ R.

Then there exist neighborhoods Ũ1 ⊂ U ∩ X1, Ũ2 ⊂ U ∩ X2 of 0 and �̃ ⊂ � of λ0,
and a function

h = h(t, λ, x1) ∈ Ck
b,unif(R × �̃ × Ũ1, Ũ2)

with h(t, λ0, 0) = 0 and Dx1h(t, λ0, 0) = 0 such that the graph of h,

{(t, x1 + h(t, λ, x1)) ∈ R × X : (t, x1) ∈ R × Ũ1},
is a locally invariant center manifold for (27).

We just need to verify the conditions in this result. The eigenvalues {μk(α)}k≥1
of the linearized part

K : Hm
0 ([0, 1]) × Hm−1

0 ([0, 1]) → Hm−1
0 ([0, 1]) × Hm−2

0 ([0, 1]),
with

K(u, v) =
(

v

−(∂2/∂x2)u − αu

)
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are given in (4). Therefore, only finitely many lie on the imaginary axis, and there
are no zero eigenvalues (since we have the zero mean condition). Furthermore, K

can be written as K = K1 + K2 in which K1 corresponds to the projection in the
imaginary space and so etK1 generates a strongly continuous group that satisfies
‖eK1t‖ ≤ C(1 + |t |)m for some C, m > 0 and K2 satisfies the resolvent estimate

‖(K2 − iξ)−1‖ ≤ C

1 + ‖ξ‖ , ξ ∈ R,

for some C > 0. Furthermore, the nonlinearity (0, g(u)) is Cr+1 from

Hm
0 ([0, 1]) × Hm−1

0 ([0, 1]) → Hm−1
0 ([0, 1]) × Hm−2

0 ([0, 1]).
We have thus verified all the conditions which allow us to apply Theorem 8. Our
statement is simply a reformulation of this theorem. �
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