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Topological model for a class of complex Hénon mappings

Sylvain Bonnot

Abstract. In order to describe the dynamics of the complex Hénon mapHa,c :
(
x
y

) �→ (
Pc(x)−ay

x

)
,

where Pc : z �→ z2+ c has an attractive fixed point, we build a global topological model (g, Y ).
In this model Y is the complement in R

4 of a cone over a solenoid lying in the unit 3-sphere,
and g : Y → Y is a map given in spherical coordinates by g(r, θ) = (r2, σ (θ)), where σ is a
solenoidal map of degree two. Then we prove the existence of a constant ε > 0 such that any
Hénon map Ha,c with 0 < |a| < ε is conjugate to our model (g, Y ).
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1. Introduction

Holomorphic dynamics in one complex variable has now reached a level of maturity,
mainly through the use of the quasi-conformal maps. Since these methods are not
available in the several variables setting, our understanding in this situation has not
the same depth. In particular there is a need for global models explaining the topology
of a given dynamical system. The main purpose of this paper is to provide such a
global model, conjectured by J. H. Hubbard in 1986, for complex Hénon mappings
given by

Ha,c : (x, y) �→ (x2 + c − ay, x),
where the jacobian a is small and c belongs to the main cardioid of the Mandelbrot set.
Before we can actually state the main theorem, we will recall some simple definitions
about complex Hénon mappings and then describe the topological model.

1.1. Complex Hénon mappings. When a, c belong to C, a complex Hénon map of
degree two is usually defined by

Fa,c : C2 −→ C
2(

x
y

) �−−→ (
x2+c−ay

x

)
.
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Note that Fa,c is a biholomorphism with constant jacobian equal to a. Since we
are essentially interested in the situations where a is small, we prefer to define our
Hénon maps as Fornæss and Sibony did in [10]:

Ha,c : C2 −→ C
2(

x
y

) �−−→ (
x2+c+ay

ax

)
.

It is easy to see that Ha,c is conjugate to F−a2,c by the linear map
(
x
y

) �→ (
x
ay

)
.

Following Hubbard we can introduce invariant subsets of C
2:

K+ = {(
x
y

) ∣∣ ∥∥H �na,c(xy)∥∥n∈N is bounded
}
,

and U+ = C
2 − K+, J+ = ∂K+. We can also define the corresponding sets K−,

U−, J− for backward iteration.

Small perturbations of polynomials. When a is small, we can view Ha,c as a
small perturbation of the quadratic polynomial Pc : z �→ z2 + c. In this article we
will restrict us to the polynomials Pc that have an attractive fixed point. This amounts
to pick a parameter c in the main cardioid C of the Mandelbrot set. Let us recall that
the Julia set Jc of the polynomial Pc is the boundary of the set of non-escaping points.
In the case where c is in the main cardioid C it is well known that Jc is a quasi-circle.

When a is small enough, the mapHa,c itself has an attractive fixed point p whose
basin of attraction is writtenWs(p). In [10] Fornæss and Sibony prove the existence
of a partition

C
2 = Ws(p) ∪ J+ ∪ U+.

In our setting, Ha,c is more convenient than Fa,c because when a = 0, then Fa,c
degenerates into a simpler one-dimensional map

(
x
y

) �→ (
Pc(x)

0

)
.

1.2. Topological model. Here we describe our topological model.

The space of the model. In R
4, with its polar coordinates (r, θ) in R

+ × S
3, we

know that the unit sphere S
3 is made of two solid tori T0 and T1 glued along their

boundaries. After a convenient rescaling, let us assume that T0 = S
1×D where S

1 is
the unit circle and D the closed unit disc in C. Then a map f : T0 → T0 is solenoidal
of degree m if it is conjugate to a map

σm,k : (ζ, z) �→
(
ζm, 1

2ζ + εzζ k−m+1
)
,

where ε is small enough, so that the map is injective.
In [15], it is proved that for a fixed degree m, σm,0 is the only map that can be

extended to a homeomorphism σ̃m,0 : S3 → S
3. Moreover, then σ̃−1

m,0 : T1 → T1 is
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also a solenoidal map of same degree. Let us write σ the extension to the 3-sphere
of the solenoidal map of degree two given by

σ2,0 : (ζ, z) �→
(
ζ 2, 1

2ζ + ε zζ
)
.

Then we can consider

�+ =
⋂
n�0

σn(T0) and �− =
⋂
n�0

σ−n(T1),

the two invariant solenoids obtained by forward and backward iterations. In addition
we define

cone(�−) = {(r, θ) | r � 1, θ ∈ �−}.
Then the space Y of our model is defined by Y = R

4 − cone(�−).

The map of the model. The map g in the model is given in polar coordinates by
g(r, θ) = (r2, σ (θ)). It is a well-defined map from Y to itself. We call (g, Y ) the
model of the Hénon map.

1.3. Conjugacy theorem. We are now in position to state our main theorem:

Theorem 1 (Main theorem). For any c in the main cardioid C of the Mandelbrot set,
there exists an ε > 0 such that: for any a ∈ C satisfying 0 < |a| < ε, there exists a
homeomorphism h : C2 → Y which conjugates Ha,c to g : Y → Y .

Remark 1.

• The same theorem is true when we replace Ha,c by the more common normal-

ization Fa,c :
(
x
y

) �→ (
x2+c−ay

x

)
.

• In the model the partition of C
2 corresponds to the subsets r ∈ [0, 1[, r = 1,

and r > 1.

Strategy of the proof. We will find good coordinates in U+, J+, and Ws(p). But
then we need to make sure that these different systems of coordinates can be glued
together in a consistent way and this is by far the most difficult part of the proof. Here
is the reason: in order to extend the coordinates found in J+ we have to build a tubular
neighbourhood of this set that overlaps both U+ and Ws(p). But note that J+ is an
extremely complicated three dimensional object with a fractal boundary. In particular
we cannot use any usual method of construction of tubular neighbourhoods. A whole
section will be devoted to the solution of this problem.
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2. Conjugacy in J+

The conjugacy in J+ has already been established by Hubbard and Oberste-Vorth in
[16]. Here is a useful picture that the reader should keep in mind: when the jacobian a
becomes zero, Ha,c degenerates into

(
x
y

) �→ (
Pc(x)

0

)
, and for this degenerate map if

we still define J+ = ∂K+ then we get J+ = Jc ×C. And now it becomes clear that
for any R > 0, J+R = J+ ∩ {|y| � R} is a solid torus. The main step of the proof
given by Hubbard and Oberste-Vorth is the following.

Theorem 2 (Conjugacy in J+R ). For any c ∈ C and any R > 0, there exists an ε > 0
such that if 0 < |a| < ε, there exists a homeomorphism

� : J+ ∩ {|y| � R} → T

which conjugates Ha,c to σ .

2.1. Proof of the theorem. This is proved in [16] for the map Fa,c instead of Ha,c.
In order to prove it we need first:

Proposition 1. For any c ∈ C and any R > 0, there exists an ε > 0 such that if
0 < |a| < ε, we have:

(1) there exists α > 0, R′ > 0 such that Jc ⊂ DR′ and that the map

fPc,α,R′ : Jc × DR′ −→ Jc × C

(ζ, z) �−−→ (
ζ 2 + c, ζ + α z

2ζ

)
,

is open, injective and maps (Jc × DR′) into itself;

(2) there exists a homeomorphism


 : J+ ∩ {|y| � R} → Jc × DR′

conjugating Ha,c to fPc,α,R′ .

Proof. (1) This is exactly lemma 1.2 of [16]. There, the two authors show that
fPc,α1,R1 and fPc,α2,R2 are conjugate as soon as α1, α2 are small enough and R1, R2
are big enough. Therefore we are allowed to write fPc only.

(2) In [16] we also have:
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Lemma 1. For a fixed c ∈ C, there exists an annulus A(c) around Jc, a real R > 0

and a neighbourhood Nδ of the parabola x �→ (
x2+c
ax

)
defined by

Nδ =
{(
x
y

) ∈ C
2 | |Pc(y/a)− x| < δ

}
satisfying:

• if V ′ = Ha,c(A(c) × DR) ∩ pr−1
1 (A(c)) and W = V ′ ∩ H �−1

a,c (V
′) then Y =

J+ ∩W is homeomorphic to a solid torus;

• Ha,c maps this solid torus into itself and is conjugate to fPc .

Proof of the lemma. This is proposition 6.4 of [16], with the little change induced by
the normalization we use for our Hénon map. �

A(c)× DR

N

H(A(c)× DR)

J+

Figure 1. Conjugacy in J+R .

The construction made in [16] has the property thatW ∩ J+ = Ha,c(J+R ), where

J+R = J+ ∩ {|y| < R}.

But now fPc is conjugate to σ0 because in [15], Theorem 3.11 it is proved that the
conjugacy class of any map from the solid torus into itself that exhibits appropriate
conditions of expansion and contraction depends only on its homotopy class.

So now we know the existence of homeomorphisms h, h′ such that the following
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diagram commutes:

J+R
Ha,c

��

Ha,c �� W ∩ J+
Ha,c

��

h �� Jc × DR′

fPc

��

h′ �� T

σ0

��
J+R W ∩ J+

H �−1
a,c�� Jc × DR′

h−1
�� T .

h′−1
��

This ends the proof of the proposition and of the theorem. �

Remark 2. Since Hubbard and Oberste-Vorth useFa,c instead, it is the parabola x �→(
x2+c
x

)
that is fixed by the degenerate mapping F0,c. This explains the intervention

of the neighbourhood Nδ of the parabola. Whereas in the case of Ha,c it is the line
{y = 0} that is invariant.

2.2. Topology of J+. We recall some results from [16].

Inductive limits. Let X be a space with a map f : X → X, then the inductive
limit X̌f = lim−→(X, f ) is given by lim−→(X, f ) = X × N/ ∼, where ∼ is defined by

(x, n) ∼ (f (x), n+ 1). This limit comes with a natural map: f̌ : X̌f → X̌f induced
by

f̌ : (x, n) �→ (f (x), n) ∼ (x, n− 1).

This applies to Jc × DR′ together with fPc,α,R′ for small enough α and big
enough R′. Let us write then

ČPc = lim−→(Jc × DR′, fPc,α,R′).

Proposition 7.5 of [16] explains the topology of J+:

Proposition 2. Let p be a polynomial with an attractive fixed point attracting all the
critical points of p, then Čp is a 3-sphere with a solenoid removed and p̌ is conjugate
to σd,0 : (ζ, z) �→ (ζ d, ζ + εzζ 1−d).

This applies because Pc has a single critical point and that it is in the basin of
attraction of the attractive fixed point.

Going back to the model. The part in the model corresponding to J+ is the unit
3-sphere with �− removed. In order to extend this conjugacy, we will now build a
tubular neighbourhood of J+R . As announced previously, this is the most difficult part
of the theorem.
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3. Tubular neighbourhood of J+
R

Let us precise the definition of a tubular neighbourhood of J+R :

Definition 1 (Tubular neighbourhood). We call tubular neighbourhood of J+R , the
data (W, h) satisfying:
• W is a compact set such that W ∩ J+ = J+R ,
• h is a homeomorphism of W into a set V in C

2 such that

V ∩ S
1 × C = h(J+R ).

Our main purpose in this section is this theorem:

Theorem 3 (Conjugacy in W ). For any c ∈ C and any R > 0, there exists ε > 0
such that, for any a satisfying 0 < |a| < ε, there exists a tubular neighbourhood
(W,�) of J+R such that
• �(W) = [1/2, 2] × T ⊂ R

4;
• � conjugates Ha,c to the map g of the model.

3.1. Thickening of J+
R . Remember that J+R looks like Jc × DR when |a| is small,

so a tubular neighbourhood should look like the product of an annulus around Jc with
a vertical disk.

Proposition 3 (Tubular neighbourhood, without dynamics). For any R > 0, any
c ∈ C there exists ε > 0 and an annulus A(c) around Jc bounded by two curves γ0,
γ1 such that:

(1) the bounded component of C− (γ0) is a topological disk D(c) such that, for any
a with 0 � |a| < ε, the bidisk B = D(c)× DR is inside the basin of attraction
of the attractive fixed point;

(2) the points 0 and c are not in A(c);

(3) there exists a map � : Dε × DR × A(c)→ C
2 such that:

• for any a ∈ Dε, the restriction of � to {a} × DR × A(c) is injective,
• if (x′, y′) = �(a, y, x), then y = y′,
• for all a ∈ Dε, �({a} × DR × Jc) = J+R (a, c) (“� straightens J+”),
• for fixed x, � is holomorphic with respect to the other variables.

3.2. Proof of the proposition about the thickening. The first point is nothing else
than lemma 3.10 of [10]. For the second one the idea is to fill in a neighbourhood
of J+R by solid tori made of almost vertical analytic disks. Since it is easier to do this
in U+ we will split the proof.
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3.2.1. First half: W ∩ K+. We choose the curve γ0 so that it bounds a topological
disk enclosing the critical point 0 and the critical value c of Pc. In addition, we take
another curve γ1 aroundKc: let us take for example a level set of the Green function
of Kc.

These two curves bound an annulusA(c) and let us define U := A(c)×{|y| < R}.
The dynamics of Pc in the annulus A(c) is described by this lemma (see theorem 5.1
of [5] for a proof):

Lemma 2 (Conjugacy with z �→ z2 in an annulus). There exists a homeomorphism
f satisfying:
• f maps A(c) onto the annulus A = { 1

2 < |z| < 2
}
,

• f maps Jc on S
1,

• f conjugates Pc to z �→ z2.

At this point two constructions are possible:

(1) We can pull back successively the annulus A(c) by Pc. By the previous lemma
we obtain a decreasing sequence of nested annuli converging to Jc and bounded
by the curves γ (0)n and γ (1)n . Let us write X = Jc ∪⋃

n γ
(0)
n ∪⋃

n γ
(1)
n .

(2) We can also consider the successive images of U = A(c)× {|y| < R} by H−1
a,c

and intersect with {|y| < R}; we will write

Un = {(x, y) ∈ U;H �na,c(x, y) ∈ U}.
Next we set

Y = J+R (a, c) ∪
⋃
n�0

(∂Un ∩ {|y| < R}).

Our purpose here is to give a precise meaning to the following idea: for small non-
zero a, Y is a small perturbation of X × DR .

The next three lemmas proved by Fornæss and Sibony ([10], lemma 3.14, 3.15
and 3.16 ) precise how the Un look like.

Lemma 3 (Boundary of Un). The boundary in {|y| < R} of each Un is R-analytic,
∂Un is almost vertical, and Un is foliated by almost vertical analytic disks given by
x = φ(y), |y| < R, and such that H �n1 (φ(y), y) is constant for |y| < R.

Lemma 4 (Horizontal slices of Un). For fixed y0, |y0| < R we set

Un,y0 = {x; (x, y0) ∈ Un}.
Then Un,y0 is a connected domain with an R-analytic boundary. The number of holes
in Un,y0 does not depend on y0 and is equal to one. If γ n is the exterior curve and γ−n
the interior one then the sequence of annuli bounded by these curves is decreasing.
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Lemma 5 (The Un accumulate on J+R ). For fixed y0 such that |y0| < R,⋂
n�0

Un,y0 = J+y0

is a connected set with empty interior.

According to the first of the three lemmas, ∂Un(a, c) is foliated by graphs x =
φn(y, a, c, s), where s belongs to ∂Un(a, c) ∩ {y = 0}, and every φn is an analytic
function of (y, a, c). Using Hurwitz’s lemma, Fornæss and Sibony obtained the next
result:

Lemma 6 (Foliation of J+R ). Through each point of J+R =
⋂
n�0 Un, there is a

unique leaf in J+ given by x = φ(y), |y| < R, where φ is holomorphic. Moreover,
|φ′(y)| is arbitrarily small when a tends to zero.

Foliation of U0 − U1. When we take the union of the almost vertical analytic
disks foliating Y and we slice by the complex line (y = y0)we obtain a holomorphic
motion of Y ∩ {y = 0} parametrized by (a, y0). We can then apply Bers–Royden’s
extension theorem (see the appendix) to extend the motion to the ring bounded by γ (0)

and P−1
c (γ (0)) = γ (0)1 . Then we can pull-back the foliation of U −U1 by Ha,c in

order to obtain a foliation preserved by the dynamics.

Lemma 7. When a tends to zero, the analytic disks foliating U−U1 become more
and more vertical.

Proof. This is a direct application of our variant of Bers–Royden’s theorem that we
prove in the appendix. �

Foliation of Un−Un+1. Since we know that the (Un)n�1 cut every horizontal slice
{y = y0} into a decreasing sequence of annuli, we can write U = J+R ∪

⋃
n�0(Un−

Un+1). So we just have to fill in the next “shells” Un −Un+1 by almost vertical
analytic disks. In order to do this we use a graph-transform method. The following
lemma tells us that DH−1 maps an almost vertical vector in TW on an almost vertical
vector.

Lemma 8 (Invariant cones). For any K > 1 there exists ε > 0 such that for any a,
0 < |a| < ε, the following holds: if we set

CK
(
x
y

) = {(
u
v

) ∈ T(x,y)C2 | |u| � 1
K
|v|},

then for any
(
x
y

) ∈ W such that Ha,c
(
x
y

) ∈ W , we have(
DHa,c

(
x
y

))−1(
CK

(
Ha,c

(
x
y

))) ⊂ CK(
x
y

)
.
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Proof. For fixed c, we know thatA(c) does not contain the origin and that there exists
r > 0 independent of c such that for all

(
x
y

) ∈ W , we have |x| � r .
Now (

DHa,c
(
x
y

))−1(u
v

) = ( 0 1/a
1/a −2x

a2

) (
u
v

) = (
v
a

u
a
− 2xv

a2

)
.

But we know that |u| � 1
K
|v| and then

∣∣u
a
− 2xv

a2

∣∣ �
(

2r
|a| − 1

K

)
.
∣∣ v
a

∣∣. Thus if we

choose |a| � ε = 2r
K+ 1

K

, then
(

2r
|a| − 1

K

)
.
∣∣ v
a

∣∣ � K
∣∣ v
a

∣∣. �

The next proposition amounts to say that an almost vertical analytic disk in W is
mapped into a thin parabola byH−1 that intersectsW in two almost vertical analytic
disks.

Proposition 4 (Graph transform). For any c ∈ C, there existsK > 1 and ε > 0 such
that for any a, 0 < |a| < ε, we have: for any analytic disk D ⊂ W verifying

(1) D = {(
φ(y)
y

)
, y ∈ DR

}
where φ is analytic,

(2) TwD ⊂ CK(w) for any w ∈ D,

then H−1
a,c (D) ∩W is the union of two disks with the same properties.

Proof. We leave this result to the reader, who can use the implicit function theorem
and then Rouché’s theorem. �

Lemma 9. When a tends to zero, the almost vertical analytic disks of the foliation
become vertical.

Proof. For n � 0 we set H �na,c
(
x
y

) = (
hn1(a,x,y)

hn2(a,x,y)

)
. Let

(
ψ(a,y)
y

)
be a graph mapped by

H �na,c into the graph
(
φ(a,y)
y

) ⊂ U0 −U1. Then hn1(ψ(a, y), y) = φ(a, hn2(a, x, y)).
When a = 0, φ(0, . ) = const., and hn1(0, x, y) = P �nc (x). Thus when a = 0,
P �nc (ψ(0, y)) = const.We take then the derivative and we obtain

(P �nc )′(ψ(0, y)) · ∂∂yψ(0, y) = 0.

But the first n iterates ofψ(0, y) stay in U0, which does not contain the critical point 0
of Pc. Hence ∂

∂y
ψ(0, y) = 0. �

At this point with the help of holomorphic motions, we know that K+a,c ∩ W is
homeomorphic to (Kc ∩ A(c))× DR .
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3.2.2. Second half: W ∩ U+. It is easier to work in U+ because of the existence
of the function G+ measuring the rate of escape to infinity.

Proposition 5 (Hubbard, Oberste-Vorth). The limit

G+ = lim
n→∞

1
2n log+

∥∥H �na,c(xy)∥∥
exists, is continuous on C

2, pluri-harmonic on U+, and satisfies the functional equa-
tion G+

(
Ha,c

(
x
y

)) = 2G+
(
x
y

)
. Moreover, U+ is given by U+ = {(

x
y

) | G+(
x
y

)
> 0

}
.

With this function we can straighten U+R = U+ ∩ {|y| < R}:
Lemma 10 (Coordinates on U+R ). For any (a, c) as in the main theorem, the open
set U+R is biholomorphic to the domain (|x| > 1, |y| < R).

Proof. This is lemma 3.26 of [10]. In this article Fornæss and Sibony prove the
following results.

• For any y ∈ DR the function x �→ G+(x, y, a, c) has an harmonic conjugate
x �→ H(x, y, a, c) defined only modulo 2π .

• The map F(x, y, a, c) = exp(G+(x, y, a, c)+ iH(x, y, a, c)) is well defined.
• The map�(x, y, a, c) = (F (x, y, a, c), y), is the biholomorphism we are look-

ing for. In addition it depends analytically on the parameters. �

The next lemma is almost straightforward. Let us write TR the solid torus S
1×DR .

Lemma 11. For any (a, c) as in the main theorem, if we set

� = (0 < G+(x, y) < ln 2) ∩ (|y| < R)

and �′ = J+R ∪�, then there exists a homeomorphism

�U+ : �′ −→ {1 � |ζ | < 2} × TR

(x, y) �−−→ (r, (s, z))

satisfying: if (x′, y′), (x, y) ∈ �′ are such that (x′, y′) = Ha,c(x, y) then r ′ = r2.

Proof. This is simply a matter of rewriting the map F(x, y, a, c) in polar coordinates
(r, θ). One has

(F (x, y, a, c), y) = (r, (θ, y)) ∈ {1 < |ζ | < 2} × TR.

Thus the r-coordinate is just exp(G+). But remember we can use the functional
equation G+

(
Ha,c

(
x
y

)) = 2G+
(
x
y

)
. This proves the lemma at least in �. Now

Fornæss and Sibony make the following remark.
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Remark 3 (Fornæss-Sibony). If we set

�−1(ζ, y, a, c) = (�(ζ, y, a, c), y),
then for fixed ζ , we get a leaf of the foliation of �. But the λ-lemma of Mane–
Sad–Sullivan (see the appendix) allows us to extend this foliation to a foliation of
�. Hurwitz’s lemma implies that this foliation of J+R coincides with the previous
one. �

Thus we can extend the homeomorphism to �′ = J+R ∪ �. In the whole solid
torus J+R one has r = exp(0) = 1 and of course the fact that Ha,c(J

+
R ) ⊂ J+R is

related to the equation 12 = 1!
This completes the proof of the lemma. �

Remark 4. There is also a more dynamical way of obtaining the foliation by disks.
Indeed, near the infinity in U+ there exists a holomorphic function φ+ satisfying the
functional equation φ+ � Ha,c = (φ+)2. In our case, we just said that this function
can be analytically continued in the whole domain U+ ∩ {|y| � R}.

The naturality of our construction is supported by the fact that the following very
useful theorem comes immediately as an easy consequence.

Theorem 4 (Semi-conjugacy with Pc). There exists a continuous map

π : W → A(c)

such that if we set A′(c) = P−1
c (A(c)) and W ′ = W ∩ H−1(W) then the following

diagram commutes:

W ′

π

��

Ha,c �� W

π

��
A′(c) Pc �� A(c) .

We call radial cylinder of W each set π−1(I ), where I is a radial segment of A(c).

Proof. The projection is given by the following recipe: for any point in W , take
the almost vertical disk x = φ(a, y) through it, make a = 0 and project this disk
vertically in A(c), or if one prefers, set π(x, y) = φ(0, y).

Let (x′, y′), (x, y) be two points in W such that:

• (x′, y′) = Ha,c(x, y);
• x′ = φ(a, y′) and x = φ(a, y).
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Then necessarily φ′(a, y′) = φ2(a, y) + c − ay. So if we make a = 0 we obtain
φ′(0, y′) = Pc(φ(0, y)). �

Remark 5.

(1) Since Pc is conjugate to z �→ z2 in the annulus A(c), we also have a semi-
conjugacy to z �→ z2. We knew that already inW ∩U+ because of the existence
of φ+.

(2) There is a similar semi-conjugacy in the proposition 5.3 of [16] but since the
authors do not use holomorphic motions they need to prove that the fibers are
almost vertical by difficult ways involving some differential equations.

3.2.3. End of the proof of the thickening proposition. This is simply a matter
of putting back together one half with the other, each one being foliated by disks
parametrized by y ∈ DR .

3.3. Adapted coordinates on W . In W we constructed the analog of the level sets
(r = const.) from the model. It remains to construct in W the analog of the radial
segments (θ = const.)

3.3.1. Angular part. We want to show

Proposition 6. There exists a homeomorphism h′ : [1/2, 2] × T→ W satisfying: If
(x′, y′) = h′(r ′, θ ′), and (x, y) = h′(r, θ) are such that

(x′, y′) = Ha,c(x, y).
then necessarily r ′ = r2.

Proof. We already know one half of this proposition: the one concerning (J+∪U+)∩
{|y| < R}. For the other one, K+R − B, we already have a foliation by solid tori,
each one cutting {y = 0} along a circle obtained by a holomorphic motion of a circle
in the annulus A(c). The whole annulus A(c) can be straightened into the annulus
A = { 1

2 < |z| < 2
}
, so that we can now parametrize the tori by t ∈ [1/2, 1]. Since

the Hénon map sends a torus in W into another one, we have defined a monotone
map s from [1/2, 1] to itself. It is easy to conjugate it to t �→ t2 by the following
recipe: send the segment [1/2, s (1/2)] on [1/2, 1/

√
2] by a linear map L and then

send each point t ′ = s�n(t) on (L(t))
1

2n . �
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3.3.2. Radial part

Outline of the proof. We will divide our proof into several steps:

(1) foliate W −Ha,c(W) by radial segments;

(2) extend the foliation by forward iteration to W −⋂
n�1H

�n
a,c(W);

(3) use a continuity argument, in order to extend it to the whole W .

First step: foliation of W − Ha,c(W). The topology ofW −Ha,c(W) is given by
this lemma:

Lemma 12. The space W − int(Ha,c(W)) is a locally trivial fiber bundle with base
the annulus A(c) and with fiber the Riemann sphere with three open disjoint disks
removed.

Proof. This can be seen with the help of the semi-conjugacy π : W → A(c) between
Ha,c and Pc: indeed we know that Ha,c maps the two disks π−1(x) and π−1(−x)
into the bigger disk π−1(Pc(x)). �

A similar statement concerning the larger setsW −H �na,c(W) is immediate. Since
there is always a section of such a fiber bundle over a radial segment of the annulus
A(c), we also have

Corollary 1. For any radial cylinder C, and for any n � 1 the intersection
C ∩H �na,c(W) is made of 2n disjoint cylinders.

Note that the horizontal boundary of W is foliated by the horizontal annuli W ∩
{y = Reiθ }. Each such annulus is mapped by Ha,c into an almost horizontal double
cover of the annulus and these images foliate the boundary of Ha,c(W). Thus there
exists a natural foliation of the horizontal boundary ∂hor(W − Ha,c(W)) by one-
dimensional complex manifolds.

Proposition 7 (Extension of the natural foliation). There exists a homeomorphism

ϒ : (Jc × D− fp(Jc × D))× [1/2, 2]→ W −Ha,c(W)
satisfying

(1) ϒ maps (Jc × D− fp(Jc × D))× {1} on J+R −Ha,c(J+R );
(2) the foliation by the segmentsϒ({z}×[1/2, 2])where z ∈ ∂(Jc×D−fp(Jc×D))

coincides with the natural foliation on the horizontal boundary ofW−Ha,c(W).
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Proof. We break the proof into two lemmas: first we remove a radial cylinder and
we find a foliation, and then we adjust the construction along the removed cylinder.

Lemma 13 (Foliation above A(c) with a slit). In W − int(Ha,c(W)) with a radial
cylinder C removed, there exists a foliation by radial segments that agrees with the
natural foliation on the horizontal boundary of W − int(Ha,c(W)).

Proof. Let us represent the annulus A(c) as the image by the exponential map
of [1/2, 2] × [0, 2π [. Then we can consider a topological disk � = [1/2, 2]×
] − ε, 2π + ε[ whose image by the exponential covers A(c). Let us call Ã(c) the
annulus A(c) with a slit that corresponds to the segment [1/2, 2]× {0}.

Pick a basepoint z0 in � and call X the fiber of z0, which is a closed disk with
two smaller open disks removed. Through any point of ∂X there is a unique leaf of
the natural foliation. By moving the point z ∈ � and following each point of ∂X as
it slides along its own leaf, we define a holomorphic motion of X parametrized by
the disk �. Therefore Słodkowski’s theorem (see the appendix) can be applied and
gives a holomorphic motion of the whole setX (indeed of the whole complex plane),
parametrized by the same disk �. By doing this we can fill in the space between
W and Ha,c(W) by a family of graphs of holomorphic functions on Ã(c). Any such
disk is almost horizontal: indeed the holomorphic motion of a point inside X cannot
cross the exterior circle for injectivity reasons, so the derivative of the function is
controlled through the Cauchy formulas. Therefore every such disk is transverse to
any almost vertical diskπ−1(x). By intersecting with a radial cylinder, one can obtain
the desired radial segments. �

Lemma 14 (Adjusting the monodromy). Let C be the radial cylinder removed from
W − int(Ha,c(W)), and let

u : [0, 2π ] × ([1/2, 2]×X)→ W − (H(W) ∪ C)
be the trivialization obtained by the holomorphic motion. Then there exists a home-
omorphism s from [0, 2π ] × [1/2, 2] × X to itself such that the restrictions of u � s
on {0} × [1/2, 2] ×X and {2π} × [1/2, 2] ×X agree.

Proof. Since we used a motion on a topological disk covering A(c), we have
two different sets of radial segments on the cylinder C, depending on which side
we approach the removed cylinder. These foliations coincide on the boundary of
C−Ha,c(W), but not inside a priori. The trivialization u induces a monodromy map

μ : (u|{2π}×([1/2,2]×X))−1 � u|{0}×([1/2,2]×X)
that needs to be adjusted. Let us take w ∈ C such that w = u(0, 1/2, z) =
u(2π, 1/2, z′). A priori we have two segments:

u
({0} × [1/2, 2]× {z}) and u

({2π} × [1/2, 2]× {z′}).
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The fact that they do not coincide (except at w) gives us a family hr , r ∈ [1/2, 2] of
homeomorphisms of

X = D0 − (
�
D1 ∪

�
D2)

that are the identity on the boundary. Moreover, by construction, we know that
h1/2 = Id. In order to sew back along the cylinder we just have to reparametrize this
family by [0, 2π ] and to replace u by v = u � s, where s is defined by

s : [0, 2π ] × [1/2, 2] ×X −→ [0, 2π ] × [1/2, 2] ×X
(θ, r, z) �−−→ (θ, r, hθ (z)). �

This finishes the proof of the proposition. �

parameter x0

C(z)

Figure 2. Using Slodkowski’s theorem.

Second step: forward iteration. Let us work in a single radial cylinder. We extend
the foliation by the dynamics: in order to fill in C(ζ )−H �2a,c(W)we look for the four
preimages of ζ by P 2

c , then we fill in the corresponding cylinders and we map them
back in C(ζ ). In this setting the notion of projective limit arises naturally.

Projective limit. For a complex polynomial p, we set Ĉp = lim←−(C, p).
This gives a point and its history under the iteration by p:

Ĉp = {(. . . , z−2, z−1, z0) | p(z−i−1) = z−i for all i = 0, 1, 2, . . . }.
There is an induced bijective map p̂ : Ĉp → Ĉp given by the shift

p̂(. . . , z−2, z−1, z0) = (. . . , p(z−2), p(z−1), p(z0)) = (. . . , z−1, z0, p(z0)).
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We can restrict this construction to (Jc, Pc) instead of (C, p). Let us write Ĵc this
new projective limit.

Lemma 15. Let us recall that Un = {(x, y) ∈ W ;H �na,c(x, y) ∈ W } and set Vn =
H �na,c(Un). Then

Vn+1 ∩W ⊂ Vn, and
⋂
n

Vn = K− ∩W.

Proof. This is proposition 4.10 of [16] and also lemma 3.22 of [10]. �

V1

U2

V2

U1

Figure 3. Vi .

We can restrict this result to a given radial cylinder:

Lemma 16. For any cylinder C(ζ ), if we write

Ĵc(ζ ) = {(. . . , ζ−1, ζ0) ∈ Ĵc | ζ0 = ζ },
then

K−a,c ∩ C(ζ ) =
⋃

ζ̂∈Ĵc(ζ )

⋂
n�0

H �na,c(C(ζ−n)).

Thus we still have to extend the foliation to W ∩K−.

Third step: extending to W

Lemma 17. For any (. . . , ζ−1, ζ0) ∈ Ĵc, the family
⋂N
n=0H

�n
a,c(C(ζ−n)) consists of

a decreasing sequence of nested cylinders, whose intersection reduces to a segment
parametrized by the radial segment I (ζ0).



844 S. Bonnot CMH

Proof. It is enough to take an almost vertical disk D in the cylinderC and to show that
the D ∩ H �na,c(C(ζ−n)) form a decreasing sequence of nested disks whose diameters
tend to 0. �

But this convergence of the diameters to zero is a consequence of lemma 3.23
of [10]:

Lemma 18. For any n � 0 if we set, Vn = H �na,c(Wn), and for any x0 ∈ A(c),
Vn,x0 = Vn ∩ {x = x0}, then there exists a constant C such that

diam(Vn,x0) � C|a|n.

End of the proof. At this point we know how to fill in any radial cylinder by radial
segments that are preserved by Ha,c and that are transverse to J+R . This ends the
proof of the conjugacy theorem in W .

4. Conjugacy in the basin of attraction

Notations. The curve γ0 is the inside boundary of the annulus A(c) and at the
same time it bounds a topological disk D(c) containing 0 and c. The bidisk B =
D(c) × DR is inside the basin of attraction of the attractive fixed point. If we set
K+R = K+ ∩ {|y| < R} then we can consider a larger bidisk B = K+R − H−1

a,c (W)

whose vertical boundary is the set {p ∈ W | Ha,c(p) ∈ (γ0)× DR}.
Here is the goal of this section:

Theorem 5 (Conjugacy in int(K+)). There exists a homeomorphism


 : B − int(Ha,c(B))→ [1/2, 1/
√

2] × S
3,

such that:

(1) 
 maps ∂B on
{ 1√

2

}× S
3 and ∂(Ha,c(B)) on

{ 1
2

}× S
3;

(2) 
 conjugatesHa,c with g as a map from the outer boundary to the inner bound-
ary;

(3) for any p ∈ W such that Ha,c(p) ∈ B − int(Ha,c(B)) we have


 �Ha,c(p) = g ��(p) “consistency with the conjugacy on W”.
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W

H(W)

B

H(B)

B

J+

Figure 4. Filling in the basin of attraction.

4.1. First step. Let us write the 3-sphere S
3 as the union of two solid tori T0,T1.

In the following proposition we fill in the space between B and its image Ha,c(B)
by a one-parameter family of 3-spheres.

Proposition 8 (Family of 3-spheres). There exists a homeomorphism

λ : S3 × [0, 1] → B − int(Ha,c(B)),

such that:

(1) λ(S3 × {0}) = ∂B;

(2) λ(S3 × {1}) = ∂Ha,c(B);
(3) λ maps T0 × [0, 1] on (Ha,c(U1)) ∩B and satisfies the following conditions:

• the solid tori λ(T0×{t}) coincide with the solid tori arising in the foliation
of U1;

• the foliation by the segments λ({θ}× [0, 1]), where θ ∈ T0 coincides with
the foliation obtained in W.

4.2. Proof of the Proposition 8

Outline of the proof. Let us give an intuitive description of one 3-sphere belonging
to our foliation. First imagine the horizontal boundary of a standard bidisk: it is a
solid torus made of horizontal disks. Its boundary is a torus T over the circle S. Now
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the other solid torus that we will glue to T is made of “vertical disks” that look like
a truncated mountain with two peaks. Now when we follow the circle S, the fiber
turns, so that after one complete circle the two peaks are exchanged.

Now one can imagine that the time parametrizes our one-parameter family of
spheres and acts by “eroding the mountains”.

Our first lemma describes how H(B) can be seen as a thick horizontal parabola
in C

2. When we intersect it with a vertical disk we get two disks, or a lemniscate or
a single disk.

Lemma 19. The topology of H(B) is described as follows:

(1) Ha,c(B)∩{x = x0} = {(x0, y)/y
2 = a2(x0−c−a ·reiθ ), 0 � r � R, θ ∈ R}.

(2) There exists a vertical cylinder {0 � |x0 − c| � r ′} × C outside of which
Ha,c(B)∩{x = x0} is the union of two topological disks whose boundaries can
be parametrized by arg(x − x1) and arg(x − x2), where

{x1, x2} = {x = x0} ∩
{(
x2+c
ax

)
, x ∈ C

}
.

Moreover, for a fixed parameter, the point we obtain depends continuously on
x0.

(3) If |x0 − c| > r ′, then for any α ∈ R, Ha,c(B) ∩ {x = eiαx0} is the image of
Ha,c(B) ∩ {x = x0} by the rotation of center O and of angle α

2 .

(4) There exists a real r ′′ > 0 such that if |x0 − c| < r ′′, then {x = x0} ∩H(B) is
a topological disk.

Proof. We leave it to the reader. It is simply a matter of intersecting the parabola
H−1
a,c {x = x0} with the locus {|y| < R}. �

Radial cylinders in B

(1) in B − B the radial cylinders are defined as before: they are the intersections
of the C(ζ ) with B − B;

(2) by conformal representation the annulus (B ∩ {y = 0})−D(c, r ′) is foliated by
radial segments: above each such segment we consider a straight radial cylinder
made of genuine vertical disks;

(3) above each radial segment of the remaining disk D(c, r ′) we consider similarly
the radial cylinder made of vertical disks.

Lemma 20. Ha,c(B) ∩ D(c, r ′′) is homeomorphic to a bidisk.

Proof. We leave it to the reader. �
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Lemma 21 (Enlarging the topological bidisk). The space

(D(c, r ′′)× DR/3)− (Ha,c(B) ∩ (D(c, r ′′)× C))

is homeomorphic to D(c, r ′′)× {1 < |y| < 2}.

Proof. This is just a matter of reparametrizing the annuli by a parameter of relative
distance measured on half lines going through the origin. �

Lemma 22 (Pants in R
3). Let C be a radial cylinder in B andC′ =C∩{|x0−c| � r ′′}.

Then ∂(Ha,c(B) ∩ C′) is homeomorphic to a pair of pants � (that is, a Riemann
sphere with three disjoint disks removed).

Proof. Left to the reader. �

Section of a solid torus

B

Pair of pants

Figure 5. Family of pants.

Second step. “Taking off the pair of pants”. Let us work now in a fixed radial
cylinder. We need to give some notations.

(1) The bidisk B = D(c) × DR is sitting inside the bidisk B whose horizontal
boundary is given by |y| = R, and whose vertical boundary is the solid torus
W ∩H−1

a,c (∂vertB).

(2) B ∩ {y = 0} is the disk D(c), and B ∩ {y = 0} is a topological disk D ⊃ D(c).

(3) The radial cylinder is written C and its intersection with {y = 0} is a radial
segment L(t) ⊂ D where t ∈ [1, 3], and C(t) is the disk above the point L(t).
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(4) For any t ∈ [1, 2], C(t) = {L(t)} ×DR (vertical disk), but for t ′ ∈ [2, 3], C(t ′)
is the almost vertical disk of the foliation of W .

(5) We assume that L(1) is the closest to c and sits on the circle |x0 − c| = r ′′.
(6) We call C′(t), t ∈ [1, 3] the slightly deformed cylinder above the segment L(t)

whose width is an increasing linear function of t so that C′(1) has radius R/3
and C′(3) has radius R.

(7) We set C([1, 2]) = C ∩ B and C′([1, 2]) = C′ ∩ B, and also C([2, 3]) =
C ∩B − �

B and C′([2, 3]) = C′ ∩B − �
B.

The following lemma describes the well-known action of “taking off a pair of
pants”.

Lemma 23. Let� = D0− (
�
D1 ∪

�
D2) a pair of pants, then there exists a homeomor-

phism
χ : �× [1, 2] → C′([1, 2])− int(H(B)),

such that

(1) χ(�× {2}) = C′(2)− int(H(B));

(2) χ(�× {1}) = C′([1, 2]) ∩ ∂(H(B));
(3) for any t ∈ [0, 2] and any z ∈ ∂D1 ∪ ∂D2, we have χ(z, t) = χ(z, 2);

(4) χ(∂D0 × [1, 2]) is the horizontal boundary of C′([1, 2]).

Proof. First we enlarge continuously the waist of the initial pair of pants so that it
becomes a graph above a vertical disk. Its shape is that of a mountain with two flat
peaks. Now we have a radial cylinder whose base is our graph and whose ceiling is
the disk C′(2). It is easy to fill in the space between by a family of topological disks,
each one having a straight circle as boundary. �

Lemma 24. There exists a homeomorphism

ω : (D0 − (
�
D1 ∪

�
D2)

)× [2, 3] → (
C′([2, 3])− int(Ha,c(W))

)
such that

(1) ω maps ∂D0 × [2, 3] in the horizontal boundary of C′([2, 3]);
(2) for any z ∈ (∂D1∪∂D2), the segmentω({z}×[2, 3]) coincides with the segment

belonging to the foliation of W.

Proof. It is enough to realize that in both cases we have a trivial fiber bundle with
fiber a pair of pants. �
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Then we put together these two lemmas. By doing the construction in all the radial
cylinders, we obtain a one-parameter family of solid tori. The boundary of each one
is a torus made of vertical circles. Now we can glue on each such torus a solid torus
made of horizontal disks, in the same way the boundary of a complex bidisk is made
of two solid tori glued along a torus. This ends the proof of the proposition. �

4.3. End of the proof of the theorem. Let us summarize the situation. We proved

that B − �
B is a spherical shell homeomorphic to S

3 × [0, 1]. The conjugacy has
been defined on the “exterior sphere” S

3 × {1} and also on Ha,c(W) which inter-
sects the shell on a set homeomorphic to T × [0, 1]. It remains to define the conju-
gacy on the complement, which is also homeomorphic to T × [0, 1]. On the torus
T × {0} two different sets of coordinates coexist: a priori the coordinates given by
the homeomorphism with S

3 × [0, 1] do not respect the conjugacy. The next lemma
shows how one can deform continuously one system of coordinates into the other
one.

Ball B

Ball H(B)

J+

W

H(W)

Figure 6. Filling in the spherical shell.

If we put coordinates (z, t) ∈ T × [0, 1] on B − ( �B ∪
�︷ ︸︸ ︷

Ha,c(U1)) we are led to
the following situation:

Lemma 25. Let
X = T× [0, 1] and A ⊂ T× {0}

be such that there exists two homeomorphisms F1, F2 of A on T× {1} defined by

F1(x, 0) = (f1(x), 1) and F2(x, 0) = (f2(x), 1).

Then there exists a homeomorphism � : X→ X satisfying:

(1) � is the identity on ∂T× [0, 1] and on T× {0};
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(2) � conjugates F1 and F2 on A.

This lemma is an immediate consequence of the following result, that will be
proved in the next section:

Lemma 26. The space Homeo(T rel ∂) of all homeomorphisms from the solid torus
to itself that are the identity on the boundary has the homotopy type of a point.

Proof of Lemma 25. Indeed, with Lemma 26 we have in Homeo(T rel ∂) a continuous
path gt , t ∈ [0, 1] joining the identity to f2 � f−1

1 . Then we set

�(z, t) = (gt (z), t).
This � is the identity on ∂T× [0, 1] and T× {0}, and satisfies for any (x, 0) ∈ A:

� � F1(x, 0) = �(f1(x), 1)

= (g1 � f1(x), 1)

= F2(x, 0)

= F2 ��(x, 0). �

This lemma ends the proof of the theorem. �

A topological lemma

Lemma 27 (Homeo(T rel ∂) � ∗). The space of homeomorphisms from T to itself
that are the identity on the boundary has the homotopy type of a point.

Proof. This lemma is a consequence of two theorems. The first one is Smale’s
conjecture Diff(S3) � O(4), proved by Allen Hatcher in [12]:

Theorem 6 (Smale’s conjecture). The inclusion of the orthogonal group O(4) in
Diff(S3) is a homotopy equivalence. Moreover Smale’s conjecture is equivalent to:

(1) Diff(S1 × D
2 rel ∂) � ∗,

(2) Diff(D3 rel ∂D
3) � ∗.

The second theorem is due to J. Cerf in [6]:

Theorem 7. For any 3-dimensional manifold M3,

Diff(D3 rel ∂D
3) � ∗ �⇒ Diff(M3 rel ∂M3) � TOP(M3 rel ∂M3).

In this theorem one can also replace the category TOP by the piecewise-linear
category PL. �



Vol. 81 (2006) Topological model for a class of complex Hénon mappings 851

Remark 6. We might as well construct a path of diffeomorphisms by hand, without
using the full strength of Hatcher’s theorem, as pointed out by Ryan Budney. We also
thank Professor Laudenbach for his help on 3-dimensional topology.

5. Conjugacy in the escaping set

Let us define
V +([r,+∞[) = {(

x
y

) ∈ V + | G+(
x
y

)
� log r

}
.

Then our goal in this section is this theorem:

Theorem 8 (Conjugacy in V +). Let us assume that the vertical boundary of W is
determined inU+ by the level set {G+ = 2 log s}. Then there exists a homeomorphism

� : T× [s2,+∞[→ V +([s2,∞[)
satisfying

(1) � conjugates Ha,c with g;

(2) for any r ′ � s2 and any z ∈ T, G+(�(z, r ′)) = log r ′;
(3) let p be in U+ ∩ W such that �−1(p) = (r, θ) and let N be in N such that

H �Na,c (p) ∈ V +([s2,∞[), then g�N(r, θ) = � �H �Na,c (p) (compatibility with the
trivialization of W).

Remark 7. In the construction of W , the choice of the vertical boundary was free:
the only condition needed was that Ha,c(W) should intersect W only in its vertical
boundary (“transversality condition”).

From now on we define W ∩ U+ as follows: for fixed R > 0, U+ ∩ ∂vert(W)

is the solid torus {|y| � R} ∩ {|φ+| = R/|a|}. We let the reader verify that such a
choice satisfies the transversality condition.

5.1. Using φ+ as a coordinate. Here is a lemma describing the behaviour of φ+:

Lemma 28. When
∥∥(
x
y

)∥∥ tends to +∞ within V +

φ+(a, x, y) = x + a
2
y
x
+O( 1

|x|
)
,

where O
( 1
|x|

)
stands for a function g(a, x, y) that satisfies: there exists M > 0

and r > 0 such that for any a ∈ D
∗
ε and any

(
x
y

) ∈ V +([r,+∞[) we have
|x.g(a, x, y)| � M .
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G+ = 2 log s

W ∩ U+

J+ H(W ∩ U+)

Slice 1

Slice 2

O+

H(O+)

Figure 7. Coordinates in O+.

Proof. When
∥∥(
x
y

)∥∥ tends to+∞ inV +, then x2+c+ay
x2 tends to 1 uniformly in a ∈ Dε.

We can then set as in [24]

x2 + c + ay = x2eβ(a,x,y)

where the function β is bounded. Thus for z = (a, x, y) the series

γ (a, x, y) = 1
2β(z)+ 1

22β(Ha,c(z))+ · · ·
converges uniformly, therefore one can write φ+(a, x, y) = xeγ (z). In γ (z) only the
first term is leading, so one has γ (z) = a

2
y

x2 +O
( 1
|x2|

)
, whereO must be understood

as: uniformly with respect to a ∈ Dε. �

The next lemma introduces the set corresponding to T× [s2,+∞[ in the model:
it is the result of a small modification of V +, that is required if one wants to use φ+
as a coordinate.

Lemma 29. There exists β > 0 small enough such that

O+ = {(
x
y

) ∈ V + | |φ+| > R
|a|(1−β) and |y|

|φ+| < |a|(1− β)
}

satisfies

(1) ∂O+ ⊂
�
V +;

(2)
⋃
n�0H

�−n
a,c (O

+) = U+;

(3) the mapping � = (φ+, y/φ+) : O+ → C
2 is a biholomorphism from O+ to{|ζ | > R

|a|(1−β)
}× D|a|(1−β).
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Proof. This is essentially a consequence of the fact that φ+ ∼ x near the infinity, and
that near the infinity

(
φ+(a, x, y), y

x

)
is injective. This last fact is nothing else than

lemma 6.3 of [15]. �

5.2. Filling in the slices of O+

First slice ofO+. From now on we set s2 = R
|a|(1−β) . We recall that the trivialization

of W is given by � : [1/2, 2]× T→ W . We change it a bit into a homeomorphism
from [1/2, s2] × T into W that we still call �.

Proposition 9. There exists a homeomorphism

T : T× [s2, s4] → O+ ∩ {s2 � |φ+| � s4}
satisfying

(1) � and T coincide on T× {s2};
(2) for any z ∈ ∂T, the segments T ({z}× [s2, s4]) coincide with the segments of the

natural foliation of the boundary defined by the level sets
( y

φ+ = const.
)
;

(3) for any z′ ∈ Ha,c(∂(W ∩ {|φ+| = s})) the segments T ({z′} × [s2, s4]) coincide
with the images by Ha,c of the segments belonging to the natural foliation of
∂hW defined by the level sets (y = Reiθ0).

Proof. Again we use holomorphic motions, in a simpler setting because we can useφ+
as a coordinate.

In the coordinates (φ+, y/φ+), let Dζ be a vertical disk {φ+ = ζ }, with ζ ∈
[s2, s4]. Then the image by Ha,c of the slice W ∩ {s � |φ+| � s2} cuts two disks
in Dζ . Indeed we have the functional equation φ+ �Ha,c = (φ+)2. Thus ,

Dζ ∩Ha,c(W ∩ {s � |φ+| � s2}) = Dζ ∩ (H(Dζ ′) ∪H(D−ζ ′)),

where ζ ′2 = ζ . Let us call X = D0 − (
�
D1 ∪

�
D2) this disk with two smaller disks

removed. The image by Ha,c of each annulus (y = Reiθ0) in the slice W ∩ {s �
|φ+| � s2} is a double cover above the annulus {s2 � |φ+| � s4}. By following an
intersection of such a cover with a disk Dζ when ζ moves in the annulus with a slit
parametrized by {ζ = reiθ , θ ∈ [0, 2π [, r ∈ [s2, s4]}, we construct a holomorphic
motion of ∂X that we can extend to C by using Słodkowski’s theorem. As for the
case of W , we have to adjust the monodromy map in order to finish the proof. �

Filling in the other slices. After the slice O+N = O+([s2N , s2N+1]), we can apply
the method above to the space O+N+1 − int(Ha,c(O

+
N)).
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We do not have to worry about the interior ofHa,c(O
+
N) because it has the foliation

induced by the foliation of O+N . By iterating this construction we can fill in all the
slices, and this ends the proof of Theorem 8. �

6. Conclusion

The proof of our main theorem is now finished: we just have to put everything
together, the spherical shell in the basin of attraction, the tubular neighbourhood W ,
the open set O+ ⊂ U+. The different trivializations agree, and by iterating forward
and backward we can extend the conjugacy to C

2.

Remark 8.

(1) Our proof should extend to the case where the Hénon map is of higher degree
without too many difficulties.

(2) An interesting question would be to estimate the size of ε in the main theorem.

7. Appendix: Holomorphic motions

We recall the basic notions about holomorphic motions.

Definition. If X ⊂ C, and � is a connected C-analytic manifold with a base-point
λ0, then a holomorphic motion ofX parametrized by� is a map h : X×�→ C×�
such that:

(1) h( . , λ0) : X→ C is the canonical injection;

(2) h is injective;

(3) h(x, . ) : �→ C is C-analytic for all x ∈ X.

Theorem 9 (�-lemma, Mañe–Sad–Sullivan). Let h : X×�→ C×� be a holomor-
phic motion of a subsetX of C. Then h is continuous and has a continuous extension
ĥ : X ×�→ C×� which is a holomorphic motion of the closure X of X.

Theorem 10 (Słodkowski). Let D be the unit disk in C, with O the basepoint, and X
a subset of C. Any holomorphic motion of X parametrized by D can be extended to
a holomorphic motion of C parametrized by D.

For a proof, the reader can read [9] and also a new proof given by Chirka.
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Theorem 11 (Bers–Royden). Let � be the open unit ball of a Banach space E
over C. For any holomorphic motion h of X ⊂ C parametrized by �, there exists
a holomorphic motion of C parametrized by the ball of radius 1/3 and coinciding
with h on X.

The proof of Bers–Royden’s theorem given in [22] can be modified as follows.

Theorem 12 (Variant of Bers–Royden’s theorem). Let h be a holomorphic motion
of X ⊂ C, parametrized by the bidisk � = Ds × Dr . Let us assume that h satisfies
on X the additional condition

h(0, y, . ) = Id for all y ∈ Dr .

Then there exists a motion h̃ of C parametrized by the bidisk Ds/3 × Dr/3 which
coincides with h on X and also satisfies:

h̃(0, y, . ) = Id for all y ∈ Dr .

on the whole C.

Proof. Let us assume for the beginning that X ⊂ C is a finite fixed set. There exists
a natural map � from the space M(P1 − X) of the Beltrami forms over P

1 − X on
the Teichmüller space T (P1 −X), defined by integrating the Beltrami form:

� : μ→ (Id : X→ Xμ).

There exists a section 
 of this map, that is defined on the ball of radius 1/3.
Now the holomorphic motion ofX defines a holomorphic path Yλ = P

1− hλ(X)
in T (P1 −X).

M(P1 −X)

� ��

���������������
T (P1 −X) ⊂ B1/2

��

By Schwarz’s lemma we know that the ball of radius 1/3 is mapped into the
ball of radius 1/2. We can then compose by the section 
 in order to obtain a
holomorphic family of Beltrami forms, thus giving us the desired holomorphic motion
after integration of these forms. But now in the extended holomorphic motion, we
have factored through the map Y : �→ T (P1−X). Therefore if Y is constant along
the disk λ ∩ (a = 0), then the same thing is true for the extension.

For a general set X, we exhaust X by an increasing family of finite subsets (Xn)
such that X∞ =⋃

Xn is dense in X. �
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