Comment. Math. Helv. 81 (2006), 877-882

Non-existence of *n*-dimensional *T*-embedded discs in \mathbb{R}^{2n}

Gordana Stojanovic and Serge Tabachnikov*

Abstract. We prove non-existence of C^2 -smooth embeddings of *n*-dimensional discs to \mathbb{R}^{2n} such that the tangent spaces at distinct points are pairwise disjoint.

Mathematics Subject Classification (2000). 53A07, 57R40.

Keywords. Tangent bundle embeddings, T-embeddings.

A number of recent papers concerned various non-degeneracy conditions on embedding and immersions of smooth manifolds in affine and projective spaces defined in terms of mutual positions of the tangent spaces at distinct points, see [1], [2], [3], [4], [7], [8], [9], [10], [11]. Following Ghomi [1], a C^1 -embedded manifold $M^n \subset \mathbb{R}^N$ is called *T*-embedded if the tangent spaces to *M* at distinct points do not intersect. For example, the cubic curve (x, x^2, x^3) is a *T*-embedding of \mathbb{R} to \mathbb{R}^3 , and the direct product of such curves gives a *T*-embedding of \mathbb{R}^n to \mathbb{R}^{3n} .

A *T*-embedding $M^n \to \mathbb{R}^N$ induces a topological embedding of the tangent bundle $TM \to \mathbb{R}^N$, hence $N \ge 2n$. One of the results in [1] is that no closed manifold M^n admits *T*-embeddings to \mathbb{R}^{2n} . In this note we extend this result as follows (note that we assume more differentiability than Ghomi).

Theorem 1. There exist no C^2 -smooth T-embedded discs D^n in \mathbb{R}^{2n} .

Proof. Arguing by contradiction, assume that such a disc D^n exists. Choose the tangent space at the origin and its orthogonal complement as coordinate *n*-dimensional spaces. Making *D* smaller, if necessary, assume that the disc is the graph of a (germ of a) C^2 smooth map $f : \mathbb{R}^n \to \mathbb{R}^n$. Let $U \subset \mathbb{R}^n$ be the domain of f.

Let $z = (u, f(u)) \in D$ where $u \in U$. The tangent space $T_z D$ is given by a linear equation y = A(u)x - b(u) where A(u) is an $n \times n$ matrix and b(u) is a vector in \mathbb{R}^n , both depending on u. In terms of f, they have the following expressions. Let f_1, \ldots, f_n be the components of f.

^{*}Partially supported by NSF.

Lemma 1.1. One has

878

$$A_{ij} = \frac{\partial f_i}{\partial u_j}, \quad b_i = \sum_{k=1}^n \frac{\partial f_i}{\partial u_k} u_k - f_i$$

Proof. The first statement is obvious, and the second follows from the fact that the space y = A(u)x - b(u) passes through the point z = (u, f(u)).

One has the next characterization of T-discs.

Lemma 1.2. For all $u \neq v \in U$, the vector b(u) - b(v) does not belong to Im(A(u) - A(v)).

Proof. The spaces y = A(u)x - b(u) and y = A(v)x - b(v) intersect if and only if $b(u) - b(v) \in \text{Im}(A(u) - A(v))$.

Lemma 1.3. If $u \neq v$ then $b(u) \neq b(v)$ and A(u) - A(v) is degenerate.

Proof. The first claim follows from the fact that zero vector lies in any subspace, contradicting Lemma 1.2. If A(u) - A(v) is nondegenerate then it is surjective, again contradicting Lemma 1.2.

Now we compute the Jacobian of the map $b: U \to \mathbb{R}^n$. Denote by *E* the Euler vector field in \mathbb{R}^n :

$$E = \sum_{k=1}^{n} u_k \frac{\partial}{\partial u_k}.$$

Lemma 1.4. One has

$$\frac{\partial b_i}{\partial u_j} = \sum_k \frac{\partial^2 f_i}{\partial u_j \partial u_k} u_k = E(A_{ij})$$

Proof. This follows from Lemma 1.1.

Lemma 1.5. For all $u \in U$, the Jacobian Jb of the map b is degenerate.

Proof. Lemma 1.4 implies that

$$Jb = \lim_{\varepsilon \to 0} \frac{A(u + \varepsilon u) - A(u)}{\varepsilon}.$$

By Lemma 1.3 with $v = u + \varepsilon u$, the numerator is a degenerate matrix for all ε , and so is its quotient by ε . Thus *Jb* is a limit of degenerate matrices. Since determinant is a continuous function, the limit also has zero determinant and therefore is degenerate.

Finally, we arrive at a contradiction. By Lemma 1.3, the map b is one-to-one, and by the invariance of domain theorem, its image has positive measure. By Lemma 1.5, every value of b is singular, and by Sard's Lemma its image has zero measure. This completes the proof of Theorem 1.

According to Lemma 1.3, the *n*-parameter family of $n \times n$ matrices A(u), $u \in D^n$ enjoys the property that A(u) - A(v) is degenerate for all $u \neq v$. If n = 2, such families can be explicitly described. Assume that not all matrices A(u) are zero.

Theorem 2. The family A(u) consists either of the matrices with a fixed 1-dimensional image or with a fixed 1-dimensional kernel.

Proof. Let M_2 be the space of linear maps $\mathbb{R}^2 \to \mathbb{R}^2$. One has a non-degenerate quadratic form in M_2 given by the determinant of a matrix; this form has signature (2, 2). Consider the respective dot product.

Let $V \subset M_2$ be the linear span of the family A(u).

Lemma 2.1. The subspace V is isotropic.

Proof. It suffices to prove that $A(u) \cdot A(v) = 0$ for all u, v. If u = v, this means precisely that A(u) is degenerate. For $u \neq v$, the matrix A(u) - A(v) is degenerate, hence $(A(u) - A(v)) \cdot (A(u) - A(v)) = 0$. Using bilinearity of the dot product, it follows that $A(u) \cdot A(v) = 0$.

Since the dot product is non-degenerate, an isotropic subspace is at most 2-dimensional.

Lemma 2.2. A 2-dimensional isotropic subspace in M_2 consists either of the matrices with a fixed 1-dimensional image or with a fixed 1-dimensional kernel.

Proof. Let $A \in V$ be a non-zero matrix. Choose a basis in the target space \mathbb{R}^2 in such a way that Im A is orthogonal to the column vector (0, 1). Then

$$A = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$$

with $a^2 + b^2 \neq 0$. Let $B \in V$ be another matrix, not proportional to A. Then $A \cdot B = 0$, and hence

$$B = \begin{pmatrix} c & d \\ at & bt \end{pmatrix}$$

for some real c, d, t. If t = 0 then (c, d) is not proportional to (a, b), and the space V consists of matrices with zero second row. This is the first case of the lemma: the matrices have a fixed image spanned by the column vector (1, 0).

Otherwise, $t \neq 0$. Since B is degenerate, one has: (c, d) = s(a, b) for some real s. Then

$$\frac{B-sA}{t} = \begin{pmatrix} 0 & 0\\ a & b \end{pmatrix}$$

and the space V consists of matrices with a fixed kernel spanned by the column vector (-b, a).

Lemma 2.2 obviously implies Theorem 2.

For n = 2, Theorem 2 implies the claim of Theorem 1. Indeed, assume that the Jacobi matrix Jf has a fixed 1-dimensional kernel, say, spanned by vector ξ . Then the map f has zero directional derivative along ξ , and the tangent planes to the graph of f are the same along this direction. Hence this graph is not T-embedded. Likewise, if Jf has a fixed 1-dimensional image then the transpose matrix has a fixed kernel, say, η . This implies that the function $f(u) \cdot \eta$ has zero differential, and hence the image of f is 1-dimensional. It follows that the graph of f belongs to a 3-dimensional space and therefore is not T-embedded.

Let us conclude with two examples motivated by the following erroneous attempt to prove Theorem 1: if there exists a *T*-embedded disc $D^n \subset \mathbb{R}^{2n}$ then its tangent spaces provide a foliation \mathcal{F} of a domain in \mathbb{R}^{2n} by *n*-dimensional affine subspaces. Then D^n is everywhere tangent to the leaves of this *n*-dimensional foliation and therefore must lie within a leaf. The mistake in this argument is that, no matter how smooth the embedding is, the foliation \mathcal{F} may be not differentiable. This phenomenon is illustrated in the following example.

Example 1. Let γ be a smooth plane curve with positive curvature and free from vertices (extrema of curvature). Then, by the classical Kneser theorem (1912), the osculating circles to γ are pairwise disjoint and nested as illustrated in Figure 1; see, e.g., [6]. These osculating circles foliate the annulus *A* between the largest and smallest of them. Denote this foliation by \mathcal{F} . Then \mathcal{F} is not C^1 , namely, one has the following result.

Proposition. Let $f: A \to \mathbb{R}$ be a differentiable function, constant on the leaves of \mathcal{F} . Then f is constant in A.

Proof. Since f is constant on the leaves of \mathcal{F} , the differential df vanishes on any vector tangent to any leaf. Since γ is everywhere tangent to the leaves, df is zero on the tangent vectors to γ . Hence f is constant on γ . But A is the union of the leaves of \mathcal{F} through the points of γ , hence f is constant in A.

One also wonders whether \mathbb{R}^{2n} can be foliated by non-parallel affine *n*-dimensional subspaces (clearly impossible for n = 1).

880

 \square

Figure 1. Osculating circles of a spiral.

Example 2. The following construction gives a foliation of \mathbb{R}^4 by pairwise nonparallel 2-dimensional affine subspaces. Start with partitioning 3-dimensional space into the vertical *z*-axis and the hyperboloids of 1 sheet

$$x^2 + y^2 = t(z^2 + 1), \quad t > 0$$

(when t = 0, one has the *z*-axis). Each hyperboloid is foliated by lines, and thus \mathbb{R}^3 gets foliated by lines; these lines are pairwise skew. Multiply this foliation by \mathbb{R}^1 to obtain the desired example.

This example, of course, is the Hopf fibration of 3-dimensional sphere by great circles, "in disguise": the radial projection of the sphere on \mathbb{R}^3 yields a foliation of space by pairwise skew lines. For classification of foliations of S^3 by great circles see [5].

Acknowledgment. We are grateful to M. Ghomi and B. Solomon for stimulating discussions.

References

- M. Ghomi. Tangent bundle embeddings of manifolds in Euclidean space. *Comment. Math. Helv.* 81 (2006), 259–270. MR 2208806
- [2] M. Ghomi. Nonexistence of skew loops on ellipsoids. Proc. Amer. Math. Soc. 133 (2005), 3687–3690. Zbl 1081.53002 MR 2163608
- [3] M. Ghomi, B. Solomon. Skew loops and quadratic surfaces. *Comment. Math. Helv.* 77 (2002), 767–782. Zbl 1029.53002 MR 1949113
- [4] M. Ghomi, S. Tabachnikov. Totally skew embeddings of manifolds. Preprint.

CMH

- [6] H. Guggenheimer. Differential geometry. McGraw-Hill, New York 1963. Zbl 0116.13402 MR 0156266
- [7] J.-P. Sha, B. Solomon. No skew branes on non-degenerate hyperquadrics. Preprint.
- [8] G. Stojanovic. Embeddings with multiple regularity. Geom. Dedicata, to appear.
- [9] S. Tabachnikov. On skew loops, skew branes and quadratic hypersurfaces. *Moscow Math. J.* 3 (2003), 681–690 Zbl 1050.53010 MR 2025279
- [10] S. Tabachnikov, Yu. Tyurina. Existence and non-existence of skew branes. Preprint.
- [11] Y.-Q. Wu. Knots and links without parallel tangents. *Bull. London Math. Soc.* 34 (2002), 681–690. Zbl 1030.57013 MR 1924195

Received February 8, 2005

Gordana Stojanovic, Department of Mathematics, Brown University, Providence, RI 02912, U.S.A.

E-mail: stojanov@math.psu.edu

Serge Tabachnikov, Department of Mathematics, Penn State University, University Park, PA 16802, U.S.A.

E-mail: tabachni@math.psu.edu