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Non-existence of n-dimensional 7-embedded discs in R?"

Gordana Stojanovic and Serge Tabachnikov*

Abstract. We prove non-existence of C2-smooth embeddings of n-dimensional discs to R"
such that the tangent spaces at distinct points are pairwise disjoint.
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A number of recent papers concerned various non-degeneracy conditions on embed-
ding and immersions of smooth manifolds in affine and projective spaces defined in
terms of mutual positions of the tangent spaces at distinct points, see [1], [2], [3], [4],
[7], [8], [9], [10], [11]. Following Ghomi [1], a C!-embedded manifold M" ¢ RN
is called T-embedded if the tangent spaces to M at distinct points do not intersect.
For example, the cubic curve (x, x2, x3) is a T-embedding of R to R3, and the direct
product of such curves gives a T-embedding of R” to R".

A T-embedding M" — R induces a topological embedding of the tangent
bundle TM — RYM, hence N > 2n. One of the results in [1] is that no closed
manifold M” admits T-embeddings to R?*. In this note we extends this result as
follows (note that we assume more differentiability than Ghomi).

Theorem 1. There exist no C2-smooth T -embedded discs D" in R*".

Proof. Arguing by contradiction, assume that such a disc D" exists. Choose the
tangent space at the origin and its orthogonal complement as coordinate n-dimensional
spaces. Making D smaller, if necessary, assume that the disc is the graph of a (germ
of a) C? smooth map f: R” — R". Let U C R” be the domain of f.

Letz = (u, f(u)) € D where u € U. The tangent space T, D is given by a linear
equation y = A(u)x — b(u) where A(u) is an n X n matrix and b(u) is a vector in
R", both depending on u. In terms of f, they have the following expressions. Let
f1, ..., fn be the components of f.

*Partially supported by NSF.
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Lemma 1.1. One has

ofi of;
Aij=i’ bizzilkuk—f,-.

ou;
Proof. The first statement is obvious, and the second follows from the fact that the
space y = A(u)x — b(u) passes through the point z = (u, f(u)). O

One has the next characterization of 7 -discs.

Lemma 1.2. Forallu # v € U, the vector b(u) —b(v) does not belong to Im(A (u) —
A(v)).

Proof. The spaces y = A(u)x — b(u) and y = A(v)x — b(v) intersect if and only if
b(u) — b(v) € Im(A(u) — A(v)). O

Lemma 1.3. [fu # v then b(u) # b(v) and A(u) — A(v) is degenerate.

Proof. The first claim follows from the fact that zero vector lies in any subspace,
contradicting Lemma 1.2. If A(u) — A(v) is nondegenerate then it is surjective, again
contradicting Lemma 1.2. O

Now we compute the Jacobian of the map b: U — R”". Denote by E the Euler

vector field in R”: .

Lemma 1.4. One has

ab; 92 f;
_t — E(A;::).
ou;j ; au,auk”" (Aij)

Proof. This follows from Lemma 1.1. O
Lemma 1.5. Forall u € U, the Jacobian Jb of the map b is degenerate.

Proof. Lemma 1.4 implies that

A _A
Jb = lim AT ew) =AW
e—0 &

By Lemma 1.3 with v = u + u, the numerator is a degenerate matrix for all &, and so
is its quotient by €. Thus Jb is a limit of degenerate matrices. Since determinant is a
continuous function, the limit also has zero determinant and therefore is degenerate.

O
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Finally, we arrive at a contradiction. By Lemma 1.3, the map b is one-to-one, and
by the invariance of domain theorem, its image has positive measure. By Lemma 1.5,
every value of b is singular, and by Sard’s Lemma its image has zero measure. This
completes the proof of Theorem 1. O

According to Lemma 1.3, the n-parameter family of n x n matrices A(u), u € D"
enjoys the property that A(u) — A(v) is degenerate for all u # v. If n = 2, such
families can be explicitly described. Assume that not all matrices A(u) are zero.

Theorem 2. The family A (u) consists either of the matrices with a fixed 1-dimensional
image or with a fixed 1-dimensional kernel.

Proof. Let M be the space of linear maps R> — R2. One has a non-degenerate
quadratic form in M, given by the determinant of a matrix; this form has signature
(2, 2). Consider the respective dot product.

Let V C M, be the linear span of the family A (u).

Lemma 2.1. The subspace V is isotropic.

Proof. Tt suffices to prove that A(u) - A(v) = 0 for all u, v. If u = v, this means
precisely that A(u) is degenerate. For u # v, the matrix A(u) — A(v) is degenerate,
hence (A(u) — A(v)) - (A(u) — A(v)) = 0. Using bilinearity of the dot product, it
follows that A(u) - A(v) = 0. O

Since the dot product is non-degenerate, an isotropic subspace is at most 2-dimen-
sional.

Lemma 2.2. A 2-dimensional isotropic subspace in M3 consists either of the matrices
with a fixed 1-dimensional image or with a fixed 1-dimensional kernel.

Proof. Let A € V be a non-zero matrix. Choose a basis in the target space R? in
such a way that Im A is orthogonal to the column vector (0, 1). Then

a b
=06 1)
with a> + b*> # 0. Let B € V be another matrix, not proportional to A. Then

A - B =0, and hence
c d
B= (at bt)

for somereal ¢, d, t. If t = O then (c, d) is not proportional to (a, b), and the space V
consists of matrices with zero second row. This is the first case of the lemma: the
matrices have a fixed image spanned by the column vector (1, 0).
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Otherwise, ¢ # 0. Since B is degenerate, one has: (c,d) = s(a, b) for some

real s. Then
B —sA _ 0 0
¢ “\a b

and the space V consists of matrices with a fixed kernel spanned by the column vector
(—b, a). O

Lemma 2.2 obviously implies Theorem 2. O

For n = 2, Theorem 2 implies the claim of Theorem 1. Indeed, assume that
the Jacobi matrix Jf has a fixed 1-dimensional kernel, say, spanned by vector &.
Then the map f has zero directional derivative along &, and the tangent planes to the
graph of f are the same along this direction. Hence this graph is not 7-embedded.
Likewise, if Jf has a fixed 1-dimensional image then the transpose matrix has a
fixed kernel, say, n. This implies that the function f (u) - n has zero differential, and
hence the image of f is 1-dimensional. It follows that the graph of f belongs to a
3-dimensional space and therefore is not 7'-embedded.

Let us conclude with two examples motivated by the following erroneous attempt
to prove Theorem 1: if there exists a T-embedded disc D" C R?" then its tangent
spaces provide a foliation # of a domain in R?" by n-dimensional affine subspaces.
Then D" is everywhere tangent to the leaves of this n-dimensional foliation and
therefore must lie within a leaf. The mistake in this argument is that, no matter how
smooth the embedding is, the foliation ¥ may be not differentiable. This phenomenon
is illustrated in the following example.

Example 1. Let y be a smooth plane curve with positive curvature and free from
vertices (extrema of curvature). Then, by the classical Kneser theorem (1912), the
osculating circles to y are pairwise disjoint and nested as illustrated in Figure 1;
see, e.g., [6]. These osculating circles foliate the annulus A between the largest and
smallest of them. Denote this foliation by . Then ¥ is not C 1 namely, one has the
following result.

Proposition. Let f: A — R be a differentiable function, constant on the leaves
of F. Then f is constant in A.

Proof. Since f is constant on the leaves of ¥, the differential df vanishes on any
vector tangent to any leaf. Since y is everywhere tangent to the leaves, df is zero on
the tangent vectors to y. Hence f is constant on y. But A is the union of the leaves
of ¥ through the points of y, hence f is constant in A. O

One also wonders whether R?” can be foliated by non-parallel affine n-dimensional
subspaces (clearly impossible for n = 1).
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Figure 1. Osculating circles of a spiral.

Example 2. The following construction gives a foliation of R* by pairwise non-
parallel 2-dimensional affine subspaces. Start with partitioning 3-dimensional space
into the vertical z-axis and the hyperboloids of 1 sheet

24y =141, >0

(when 1 = 0, one has the z-axis). Each hyperboloid is foliated by lines, and thus R3
gets foliated by lines; these lines are pairwise skew. Multiply this foliation by R! to
obtain the desired example.

This example, of course, is the Hopf fibration of 3-dimensional sphere by great
circles, “in disguise”: the radial projection of the sphere on R3 yields a foliation of
space by pairwise skew lines. For classification of foliations of S3 by great circles
see [5].

Acknowledgment. We are grateful to M. Ghomi and B. Solomon for stimulating
discussions.
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