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Non-existence of n-dimensional T -embedded discs in R
2n
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Abstract. We prove non-existence of C2-smooth embeddings of n-dimensional discs to R
2n

such that the tangent spaces at distinct points are pairwise disjoint.
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A number of recent papers concerned various non-degeneracy conditions on embed-
ding and immersions of smooth manifolds in affine and projective spaces defined in
terms of mutual positions of the tangent spaces at distinct points, see [1], [2], [3], [4],
[7], [8], [9], [10], [11]. Following Ghomi [1], a C1-embedded manifold Mn ⊂ R

N

is called T -embedded if the tangent spaces to M at distinct points do not intersect.
For example, the cubic curve (x, x2, x3) is a T -embedding of R to R

3, and the direct
product of such curves gives a T -embedding of R

n to R
3n.

A T -embedding Mn → R
N induces a topological embedding of the tangent

bundle T M → R
N , hence N ≥ 2n. One of the results in [1] is that no closed

manifold Mn admits T -embeddings to R
2n. In this note we extends this result as

follows (note that we assume more differentiability than Ghomi).

Theorem 1. There exist no C2-smooth T -embedded discs Dn in R
2n.

Proof. Arguing by contradiction, assume that such a disc Dn exists. Choose the
tangent space at the origin and its orthogonal complement as coordinaten-dimensional
spaces. Making D smaller, if necessary, assume that the disc is the graph of a (germ
of a) C2 smooth map f : R

n → R
n. Let U ⊂ R

n be the domain of f .
Let z = (u, f (u)) ∈ D where u ∈ U . The tangent space TzD is given by a linear

equation y = A(u)x − b(u) where A(u) is an n × n matrix and b(u) is a vector in
R

n, both depending on u. In terms of f , they have the following expressions. Let
f1, . . . , fn be the components of f .
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Lemma 1.1. One has

Aij = ∂fi

∂uj

, bi =
n∑

k=1

∂fi

∂uk

uk − fi.

Proof. The first statement is obvious, and the second follows from the fact that the
space y = A(u)x − b(u) passes through the point z = (u, f (u)). �

One has the next characterization of T -discs.

Lemma 1.2. For all u �= v ∈ U , the vector b(u)−b(v) does not belong to Im(A(u)−
A(v)).

Proof. The spaces y = A(u)x − b(u) and y = A(v)x − b(v) intersect if and only if
b(u) − b(v) ∈ Im(A(u) − A(v)). �

Lemma 1.3. If u �= v then b(u) �= b(v) and A(u) − A(v) is degenerate.

Proof. The first claim follows from the fact that zero vector lies in any subspace,
contradicting Lemma 1.2. If A(u)−A(v) is nondegenerate then it is surjective, again
contradicting Lemma 1.2. �

Now we compute the Jacobian of the map b : U → R
n. Denote by E the Euler

vector field in R
n:

E =
n∑

k=1

uk

∂

∂uk

.

Lemma 1.4. One has

∂bi

∂uj

=
∑

k

∂2fi

∂uj ∂uk

uk = E(Aij ).

Proof. This follows from Lemma 1.1. �

Lemma 1.5. For all u ∈ U , the Jacobian Jb of the map b is degenerate.

Proof. Lemma 1.4 implies that

Jb = lim
ε→0

A(u + εu) − A(u)

ε
.

By Lemma 1.3 with v = u+εu, the numerator is a degenerate matrix for all ε, and so
is its quotient by ε. Thus Jb is a limit of degenerate matrices. Since determinant is a
continuous function, the limit also has zero determinant and therefore is degenerate.

�
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Finally, we arrive at a contradiction. By Lemma 1.3, the map b is one-to-one, and
by the invariance of domain theorem, its image has positive measure. By Lemma 1.5,
every value of b is singular, and by Sard’s Lemma its image has zero measure. This
completes the proof of Theorem 1. �

According to Lemma 1.3, the n-parameter family of n×n matrices A(u), u ∈ Dn

enjoys the property that A(u) − A(v) is degenerate for all u �= v. If n = 2, such
families can be explicitly described. Assume that not all matrices A(u) are zero.

Theorem 2. The family A(u) consists either of the matrices with a fixed 1-dimensional
image or with a fixed 1-dimensional kernel.

Proof. Let M2 be the space of linear maps R
2 → R

2. One has a non-degenerate
quadratic form in M2 given by the determinant of a matrix; this form has signature
(2, 2). Consider the respective dot product.

Let V ⊂ M2 be the linear span of the family A(u).

Lemma 2.1. The subspace V is isotropic.

Proof. It suffices to prove that A(u) · A(v) = 0 for all u, v. If u = v, this means
precisely that A(u) is degenerate. For u �= v, the matrix A(u) − A(v) is degenerate,
hence (A(u) − A(v)) · (A(u) − A(v)) = 0. Using bilinearity of the dot product, it
follows that A(u) · A(v) = 0. �

Since the dot product is non-degenerate, an isotropic subspace is at most 2-dimen-
sional.

Lemma 2.2. A 2-dimensional isotropic subspace in M2 consists either of the matrices
with a fixed 1-dimensional image or with a fixed 1-dimensional kernel.

Proof. Let A ∈ V be a non-zero matrix. Choose a basis in the target space R
2 in

such a way that Im A is orthogonal to the column vector (0, 1). Then

A =
(

a b

0 0

)

with a2 + b2 �= 0. Let B ∈ V be another matrix, not proportional to A. Then
A · B = 0, and hence

B =
(

c d

at bt

)

for some real c, d, t . If t = 0 then (c, d) is not proportional to (a, b), and the space V

consists of matrices with zero second row. This is the first case of the lemma: the
matrices have a fixed image spanned by the column vector (1, 0).
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Otherwise, t �= 0. Since B is degenerate, one has: (c, d) = s(a, b) for some
real s. Then

B − sA

t
=

(
0 0
a b

)

and the space V consists of matrices with a fixed kernel spanned by the column vector
(−b, a). �

Lemma 2.2 obviously implies Theorem 2. �

For n = 2, Theorem 2 implies the claim of Theorem 1. Indeed, assume that
the Jacobi matrix Jf has a fixed 1-dimensional kernel, say, spanned by vector ξ .
Then the map f has zero directional derivative along ξ , and the tangent planes to the
graph of f are the same along this direction. Hence this graph is not T -embedded.
Likewise, if Jf has a fixed 1-dimensional image then the transpose matrix has a
fixed kernel, say, η. This implies that the function f (u) · η has zero differential, and
hence the image of f is 1-dimensional. It follows that the graph of f belongs to a
3-dimensional space and therefore is not T -embedded.

Let us conclude with two examples motivated by the following erroneous attempt
to prove Theorem 1: if there exists a T -embedded disc Dn ⊂ R

2n then its tangent
spaces provide a foliation F of a domain in R

2n by n-dimensional affine subspaces.
Then Dn is everywhere tangent to the leaves of this n-dimensional foliation and
therefore must lie within a leaf. The mistake in this argument is that, no matter how
smooth the embedding is, the foliation F may be not differentiable. This phenomenon
is illustrated in the following example.

Example 1. Let γ be a smooth plane curve with positive curvature and free from
vertices (extrema of curvature). Then, by the classical Kneser theorem (1912), the
osculating circles to γ are pairwise disjoint and nested as illustrated in Figure 1;
see, e.g., [6]. These osculating circles foliate the annulus A between the largest and
smallest of them. Denote this foliation by F . Then F is not C1, namely, one has the
following result.

Proposition. Let f : A → R be a differentiable function, constant on the leaves
of F . Then f is constant in A.

Proof. Since f is constant on the leaves of F , the differential df vanishes on any
vector tangent to any leaf. Since γ is everywhere tangent to the leaves, df is zero on
the tangent vectors to γ . Hence f is constant on γ . But A is the union of the leaves
of F through the points of γ , hence f is constant in A. �

One also wonders whether R
2n can be foliated by non-parallel affinen-dimensional

subspaces (clearly impossible for n = 1).
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Figure 1. Osculating circles of a spiral.

Example 2. The following construction gives a foliation of R
4 by pairwise non-

parallel 2-dimensional affine subspaces. Start with partitioning 3-dimensional space
into the vertical z-axis and the hyperboloids of 1 sheet

x2 + y2 = t (z2 + 1), t > 0

(when t = 0, one has the z-axis). Each hyperboloid is foliated by lines, and thus R
3

gets foliated by lines; these lines are pairwise skew. Multiply this foliation by R
1 to

obtain the desired example.

This example, of course, is the Hopf fibration of 3-dimensional sphere by great
circles, “in disguise”: the radial projection of the sphere on R

3 yields a foliation of
space by pairwise skew lines. For classification of foliations of S3 by great circles
see [5].

Acknowledgment. We are grateful to M. Ghomi and B. Solomon for stimulating
discussions.

References

[1] M. Ghomi. Tangent bundle embeddings of manifolds in Euclidean space. Comment. Math.
Helv. 81 (2006), 259–270. MR 2208806

[2] M. Ghomi. Nonexistence of skew loops on ellipsoids. Proc. Amer. Math. Soc. 133 (2005),
3687–3690. Zbl 1081.53002 MR 2163608

[3] M. Ghomi, B. Solomon. Skew loops and quadratic surfaces. Comment. Math. Helv. 77
(2002), 767–782. Zbl 1029.53002 MR 1949113

[4] M. Ghomi, S. Tabachnikov. Totally skew embeddings of manifolds. Preprint.

http://www.ams.org/mathscinet-getitem?mr=2208806
http://www.emis.de/MATH-item?1081.53002
http://www.ams.org/mathscinet-getitem?mr=2163608
http://www.emis.de/MATH-item?1029.53002
http://www.ams.org/mathscinet-getitem?mr=1949113


882 G. Stojanovic and S. Tabachnikov CMH

[5] H. Gluck, F. Warner. Great circle fibrations of the three-sphere. Duke Math. J. 50 (1983),
107–132. Zbl 0523.55020 MR 0700132

[6] H. Guggenheimer. Differential geometry. McGraw-Hill, New York 1963. Zbl 0116.13402
MR 0156266

[7] J.-P. Sha, B. Solomon. No skew branes on non-degenerate hyperquadrics. Preprint.

[8] G. Stojanovic. Embeddings with multiple regularity. Geom. Dedicata, to appear.

[9] S. Tabachnikov. On skew loops, skew branes and quadratic hypersurfaces. Moscow
Math. J. 3 (2003), 681–690 Zbl 1050.53010 MR 2025279

[10] S. Tabachnikov, Yu. Tyurina. Existence and non-existence of skew branes. Preprint.

[11] Y.-Q. Wu. Knots and links without parallel tangents. Bull. London Math. Soc. 34 (2002),
681–690. Zbl 1030.57013 MR 1924195

Received February 8, 2005

Gordana Stojanovic, Department of Mathematics, Brown University, Providence, RI 02912,
U.S.A.
E-mail: stojanov@math.psu.edu

Serge Tabachnikov, Department of Mathematics, Penn State University, University Park,
PA 16802, U.S.A.
E-mail: tabachni@math.psu.edu

http://www.emis.de/MATH-item?0523.55020
http://www.ams.org/mathscinet-getitem?mr=0700132
http://www.emis.de/MATH-item?0116.13402
http://www.ams.org/mathscinet-getitem?mr=0156266
http://www.emis.de/MATH-item?1050.53010
http://www.ams.org/mathscinet-getitem?mr=2025279
http://www.emis.de/MATH-item?1030.57013
http://www.ams.org/mathscinet-getitem?mr=1924195

