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When does the associated graded Lie algebra of an arrangement
group decompose?

Stefan Papadima∗ and Alexander I. Suciu†

Abstract. Let A be a complex hyperplane arrangement, with fundamental group G and holon-
omy Lie algebra H. Suppose H3 is a free abelian group of minimum possible rank, given
the values the Möbius function μ : L2 → Z takes on the rank 2 flats of A. Then the asso-
ciated graded Lie algebra of G decomposes (in degrees ≥ 2) as a direct product of free Lie
algebras. In particular, the ranks of the lower central series quotients of the group are given
by φr(G) = ∑

X∈L2
φr(Fμ(X)), for r ≥ 2. We illustrate this new Lower Central Series formula

with several families of examples.
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1. Introduction

1.1. The purpose of this paper is to give an answer to the question posed in the
title. Let A be an arrangement of finitely many hyperplanes through the origin
of C�, and denote by G(A) = π1

(
C� \ ⋃

H∈A H
)

the fundamental group of its
complement. In Section 2, we single out a class of arrangements, closely related
to certain arrangements studied in [2], [15]. Roughly speaking, A is decomposable
if a certain quadratic, graded Lie algebra H(A), naturally defined in terms of the
codimension 2 flats of A, has minimal possible dimension in degree 3, over any
ground field.

Our main result (Theorem 2.4) implies the following: If A is decomposable, then
the associated graded Lie algebra of G(A) decomposes as a direct product of free
Lie algebras (in degrees r ≥ 2):

gr≥2(G(A)) ∼=
∏

X∈L2(A)

gr≥2(Fμ(X)). (1.1)

∗Partially supported by CERES grant 152/2003 of the Romanian Ministry of Education and Research.
†Partially supported by NSF grant DMS-0311142.
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Here:
• L(A) = {

X = ⋂
H∈B H | B ⊆ A

}
is the intersection lattice, L2(A) is the set

of codimension 2 flats, and μ : L(A) → Z is the Möbius function.
• {�rG}r≥1 is the lower central series, given by�1G = G and�r+1G = (�rG, G).
• gr(G) = ⊕

r≥1 �rG/�r+1G, with Lie bracket induced by the group commu-
tator.

• Fn is the free group of rank n, and gr(Fn) = Ln is the free Lie algebra on n

generators.

Moreover, as we show in Proposition 3.3, the decomposability property of A is
inherited by all sub-arrangements of A.

1.2. The associated graded Lie algebra gr(G(A)) is not a priori determined by
the intersection lattice, and, as such, it is not easy to handle. We turn instead to a
more manageable, combinatorial approximation: The holonomy Lie algebra of the
arrangement, H(A), defined as the quotient of L(A), the free Lie algebra on variables
{xH | H ∈ A}, modulo the ideal J (A) generated by relations corresponding to rank 2
flats:

H(A) = L(A)/ideal
{[

xH ,
∑

H ′∈A : H ′⊃X xH ′
] | X ∈ L2(A) and X ⊂ H

}
. (1.2)

As shown by Kohno [6] (based on foundational work by Sullivan [18] and Morgan
[10]), the associated graded Lie algebra gr(G(A)) and the holonomy Lie algebra
H(A) are rationally isomorphic:

gr(G(A)) ⊗ Q ∼= H(A) ⊗ Q. (1.3)

At the integral level, there is a surjective Lie algebra map, �A : H(A) � gr(G(A)),
such that �A ⊗Q is an isomorphism, see [9]. In general, there exist arrangements for
which �A is not injective. Nevertheless, for the class of decomposable arrangements
we consider here, �A gives an isomorphism gr(G(A)) ∼= H(A), see Theorem 2.4(2).

1.3. The lower central series ranks of a finitely-generated group G are defined as
φr(G) = rank grr (G). For a free group, the LCS ranks are given by Witt’s formula:∏∞

r=1(1−t r )φr (Fn) = 1−nt . For an arrangement group, the LCS ranks are determined
by the intersection lattice, via (1.3) and (1.2). Clearly, φ1(G(A)) = |A|. Hence, to
determine the LCS ranks of G(A), we only need to compute the graded ranks of the
derived holonomy algebra, H′(A) = ⊕

r≥2 Hr (A).
From work of Falk [3], we know that dimQ Hr (A) ⊗ Q ≥ ∑

X∈L2(A) φr(Fμ(X)),
for all r ≥ 2, with equality holding for r = 2. Guided by these facts, we say that A
is decomposable if the lower bound is attained in degree 3, for every field k:

dimk H3(A) ⊗ k =
∑

X∈L2(A)

φ3(Fμ(X)). (1.4)
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Up to now, an explicit formula for the LCS ranks of an arrangement group has only
been known in the case when the intersection lattice is supersolvable [4], or, more
generally, hypersolvable [5]. The isomorphism (1.1) leads to a new LCS formula, for
the combinatorially defined class of decomposable arrangements:

∞∏
r=1

(1 − t r )φr (G(A)) = (1 − t)|A| ∏
X∈L2(A)

1 − μ(X)t

(1 − t)μ(X)
. (1.5)

This LCS formula verifies the more general “resonance LCS formula”, conjectured
in [17], in what is arguably the simplest, yet most basic case.

As a byproduct of our main theorem, we compute in Section 6 the integral Chen
Lie algebra of a decomposable arrangement, and we also obtain the Chen analog of
decomposition (1.1), thus improving upon results from [2].

1.4. Formula (1.5) is equivalent to φr(G(A)) = ∑
X∈L2(A) φr(Fμ(X)), for all

r ≥ 2. In other words, the (higher) LCS ranks behave as if G(A) were to decompose
as a direct product of free groups, of ranks dictated by the Möbius function. This
happens, for instance, for the class of (hypersolvable, decomposable) arrangements
considered in [1], where the arrangement group is always a product of free groups.
In general, though, the group of a decomposable arrangement does not decompose
in this manner.
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Figure 1. The X2 and X3 matroids.

For example, consider the X2 and X3 arrangements, whose matroids are depicted
in Figure 1. It is readily checked that both arrangements are decomposable (compare
with [2], [15]), but not hypersolvable (see Remark 7.3).

For the X2 arrangement, we find that φr(G(A)) = φr((F2)
×5), for all r ≥ 2, yet

φ1(G(A)) < φ1((F2)
×5); thus, G(A) ∼= (F2)

×5.
For the X3 arrangement, we find that φr(G(A)) = φr((F2)

×3), for all r ≥ 1.
Even so, G(A) ∼= (F2)

×3. Indeed, it can be checked that G(A) ∼= G × Z, where G

is the celebrated Stallings group,1 equal to the kernel of the projection (F2)
×3 → Z,

which sends each standard generator to 1. As shown in [16], the group H3(G) is

1As a consequence, we can compute the LCS ranks of the Stallings group: φ1(G) = 5, and φr (G) =
φr ((F2)×3), for r ≥ 2. In [13], we give an LCS formula that applies to any Bestvina–Brady group associated
to a connected flag complex.
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not finitely generated. It follows that G(A) does not admit a finite K(G(A), 1); in
particular, G(A) cannot be isomorphic to any finite direct product of free groups of
finite rank.

In view of these examples, and of the infinite families of decomposable, non-
hypersolvable graphic arrangements from Section 7, we see that the LCS formula
(1.5) is a genuinely new formula, with a range of applicability which overlaps only
marginally with that of the classical LCS formula.

Acknowledgment. Most of this work was done while the second author visited
the Institute of Mathematics of the Romanian Academy in June–July 2003, with
partial support from grant CERES/CE4 of the Romanian Ministry of Education and
Research.

2. Decomposable arrangements

In this section, we delineate the class of decomposable arrangements, and state in
detail our main result.

2.1. For an arrangement A, denote by ZA the free abelian group on A, with basis
{xH | H ∈ A}. For a sub-arrangement B ⊂ A, let πB : ZA → ZB be the canonical
projection map, defined by πB(xH ) = xH , if H ∈ B, and πB(xH ) = 0, if H /∈
B, and let L(πB) : L(A) → L(B) be its extension to free Lie algebras. Clearly,
L(πB)(J (A)) ⊂ J (B), and so we get a Lie algebra epimorphism,

H(πB) : H(A) � H(B). (2.1)

For a flat X ∈ L2(A), let AX = {H ∈ A | H ⊃ X} be the localization of A at X.
This is a pencil of |AX| = μ(X) + 1 hyperplanes. The group G(AX) is isomorphic
to Fμ(X) × Z; thus, gr(G(AX)) ∼= Lμ(X) × L1. From the defining relations (1.2),
we also have H(AX) ∼= Lμ(X) × L1, and so H(AX) ∼= gr(G(AX)).

Set πX = πAX
. The maps H(πX) : H(A) → H(AX) assemble into a Lie algebra

map from H(A) to the direct product of the holonomy Lie algebras of its localized
sub-arrangements:

π = (H(πX))X : H(A) −→
∏

X∈L2(A)

H(AX). (2.2)

The starting point of our investigation is the following result, to be proved in §3.2.

Proposition 2.1. The restriction of π to derived subalgebras,

π ′ : H′(A) →
∏

X∈L2(A)

H′(AX),

is surjective.
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By comparing ranks of the source and target of πr : Hr (A) → ∏
X Hr (AX) for

r ≥ 2, we recover a lower bound for the LCS ranks of an arrangement group, first
obtained by M. Falk [3], by other methods.

Corollary 2.2 ([3]). For all r ≥ 2,

φr(G(A)) ≥
∑

X∈L2(A)

φr(Fμ(X)). (2.3)

2.2. Our main goal here is to understand when the natural map π ′ from Proposi-
tion 2.1 is, in fact, an isomorphism; in particular, when the inequalities (2.3) become
equalities.

It is easy to see that π2 is always an isomorphism. On the other hand, the maps
πr (r ≥ 3) may not be isomorphisms, as illustrated by the braid arrangements B� in
C� (� ≥ 4). In this case, the LCS formula of Kohno [7] and Falk–Randell [4], when
applied to the pure braid group P� = G(B�), shows that inequality (2.3) is strict in
degree r = 3.

This prompts the following definition.

Definition 2.3. Let r ≥ 2 be an integer, and let k be a field. We say that Hr (A) is
k-decomposable if

dimk Hr (A) ⊗ k =
∑

X∈L2(A)

φr(Fμ(X)). (2.4)

An arrangement A is decomposable if H3(A) is k-decomposable, for every field k.

By Proposition 2.1, Hr (A) is k-decomposable if and only if πr ⊗ k is an isomor-
phism, whereas A is decomposable precisely when π3 is an isomorphism.

2.3. Two other decomposability conditions were considered in [2] and [15]. Let us
briefly compare those conditions to ours.

The condition from [2] entails the decomposability of the I -adic completion of
the Alexander invariant of G(A) as the direct sum of the I -adic completions of the
Alexander invariants of G(AX), taken over X ∈ L2(A). It can be shown that this
condition on Alexander invariants is equivalent, over Q, to the decomposability of
H3(A), in the sense of Definition 2.3.

The condition from [15] entails the minimality of the linear strand of the free
resolution of the Orlik–Solomon algebra of A as a module over the corresponding
exterior algebra. As stated in [15, Definition 2.10], the MLS condition is equivalent
to the k-decomposability of H3(A), for k a field of characteristic 0. Actually, the
only place where the hypothesis char k = 0 is needed in that context is to insure
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that dimk gr∗(G(A)) ⊗ k = dimk H∗(A) ⊗ k. All the other homological algebra
arguments work as well over a field of positive characteristic. Consequently, Theo-
rem 5.6 from [15] gives the following: If H3(A) is k-decomposable, then H4(A) is
k-decomposable. In particular, if A is decomposable (i.e., π3 is an isomorphism),
then π4 is an isomorphism.

2.4. Our main result is Theorem 2.4 below, which improves upon the aforemen-
tioned result from [15], in several ways. For one, it pushes the range where πr is an
isomorphism from r = 4 to infinity. For another, it assembles the graded pieces πr

(r ≥ 2) into a Lie algebra isomorphism between the derived holonomy Lie algebra
of A and a product of derived free Lie algebras. Finally, it gives a new LCS-type
formula for the group of a decomposable arrangement, thus verifying Conjecture 5.7
from [15].

Theorem 2.4. Let A be a decomposable arrangement. Then:

(1) gr(G(A)) ∼= H(A), as graded Lie algebras.

(2) H(A) is torsion-free, as a graded abelian group.

(3) π ′ : H′(A) −→ ∏
X∈L2(A) H′(AX) is an isomorphism of graded Lie algebras.

(4) The LCS ranks φr = φr(G(A)) are given by the following combinatorial for-
mula: ∞∏

r=1

(1 − t r )φr = (1 − t)b1−b2
∏

X∈L2(A)

(1 − μ(X)t), (2.5)

where b1 = |A| and b2 = ∑
X∈L2(A) μ(X).

Here is an immediate corollary, already mentioned in the Introduction.

Corollary 2.5. If A is decomposable, then the associated graded Lie algebra of
G(A) decomposes as a direct product of free Lie algebras (in degrees r ≥ 2):

gr≥2(G(A)) ∼=
∏

X∈L2(A)

gr≥2(Fμ(X)). (2.6)

Over the rationals, we can be even more precise: H3(A) is decomposable over Q,
i.e., φ3(G(A)) = ∑

X∈L2(A) φ3(Fμ(X)), if and only if the derived subalgebra of the
rational associated graded Lie algebra of G(A) decomposes as a direct product of
derived free Lie algebras over Q:

(gr(G(A)) ⊗ Q)′ ∼=
∏

X∈L2(A)

L′
μ(X) ⊗ Q. (2.7)

This follows from Proposition 4.1 below and formula (1.3).
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Now set φk
r (A) := dimk Hr (A) ⊗ k, for k a field and r ≥ 1. The isomorphism

(1.3) implies φ
Q
r (A) = φr(G(A)), for all r . As a consequence of Theorem 2.4,

we obtain the following characterization of decomposability, in terms of LCS-type
formulas in arbitrary characteristic.

Corollary 2.6. The arrangement A is decomposable if and only if, for every field k,

∞∏
r=1

(1 − t r )φ
k
r (A) = (1 − t)b1−b2

∏
X∈L2(A)

(1 − μ(X)t).

Finally, suppose A is hypersolvable, with exponents d1 = 1, d2, . . . , d�. The
Poincaré polynomial of the quadratic Orlik–Solomon algebra associated to A is then
given by PA(t) = ∏�

i=1(1 + dit); see [5, Proposition 3.2]. Putting together the
decomposable LCS formula (2.5) and the hypersolvable LCS formula from [5, Theo-
rem C], we obtain the following relationship between the exponents di and the level-2
Möbius function μ : L2(A) → Z of a decomposable, hypersolvable arrangement A.
(We will exploit this relationship in the last section, within the framework of graphic
arrangements.)

Corollary 2.7. If A is both hypersolvable and decomposable, then

�∏
i=1

(1 + dit) = (1 + t)|A| ∏
X∈L2(A)

1 + μ(X)t

(1 + t)μ(X)
.

3. The ι map

In this section, we define the natural candidate for the inverse map to π ′ : H′(A) →∏
X∈L2(A) H′(AX), and discuss some of its properties.

3.1. Let B be a sub-arrangement of A. Let ιB : ZB → ZA be the canonical
inclusion, defined by ιB(xH ) = xH , and let L(ιB) : L(B) → L(A) be its extension
to free Lie algebras. In general, the map L(ιB) need not preserve the defining ideals
of the holonomy Lie algebras of B and A.

However, suppose B is closed in A, i.e., the only linear combinations of defining
forms for the hyperplanes in B which are defining forms for hyperplanes in A are
(up to constants) the defining forms for the hyperplanes in B. Then L2(B) = {X ∈
L2(A) | AX ⊂ B}. Thus, L(ιB)(J (B)) ⊂ J (A), and so we get a map of graded
Lie algebras,

H(ιB) : H(B) → H(A). (3.1)

For a flat X ∈ L2(A), note that AX is closed in A. Set ιX = ιAX
.
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Lemma 3.1. Let X, Y ∈ L2(A), and B ⊂ A. Then:

(1) H(πX) � H(ιX) = id.

(2) H′(πB) � H′(ιX) = 0, if |B ∩ AX| ≤ 1.

(3) H′(πX) � H′(ιY ) = 0, if X = Y .

Proof. (1) Clearly, πX � ιX is the identity map on ZAX .
(2) For each r ≥ 2, the group Hr (AX) is generated by elements of the form

x = [xH1, [xH2, . . . [xHr−1, xHr ] . . . ]], where H1, . . . , Hr are hyperplanes in AX.
Now, since |B ∩ AX| ≤ 1, one of those hyperplanes, say Hi , must not belong to B;
otherwise, H1 = H2 = · · · = Hr , and so x = 0. Hence, by definition, πB(xHi

) = 0,
and so

H(πB) � H(ιX)(x) = [πB(xH1), [πB(xH2), . . . [πB(xHr−1), πB(xHr )] . . . ]] = 0.

Thus, H(πB) � H(ιX) = 0 in degrees ≥ 2.
(3) If X = Y , then |AX ∩ AY | ≤ 1. Hence (2) applies. �

3.2. Proof of Proposition 2.1 The maps H(ιX) define a homomorphism of graded
abelian groups,

ι :
∏

X∈L2(A)

H(AX) −→ H(A). (3.2)

Let ι′ : ∏
X H′(AX) → H′(A) be the restriction of ι to derived subalgebras. The

orthogonality relations from Lemma 3.1 imply that π ′ �ι′ = id. Thus, π ′ is surjective,
and so Proposition 2.1 is proved. �

3.3. The following lemma (the proof of which is an exercise in linear algebra) will
be used repeatedly later on.

Lemma 3.2. Let U and {VX}X∈X be finite-dimensional vector spaces over a field k,
with |X| finite. Set V = ⊕

X VX. Suppose we have linear maps πX : U → VX

and ιX : VX → U such that πX � ιY = δX,Y . Set π = (πX)X : U → V and
ι = ∑

X ιX : V → U . Then, the following conditions are equivalent:

(1) π is an isomorphism.

(2) ι is surjective.

(3)
∑

X ιX � πX = idU .

(4) dimk U = ∑
X dimk VX.
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3.4. By Lemmas 3.1 and 3.2, H3(A) is k-decomposable if and only if the map

ι3 ⊗ k :
⊕

X∈L2(A)

H3(AX) ⊗ k −→ H3(A) ⊗ k (3.3)

is surjective. We use this criterion to show that decomposability is hereditary.

Proposition 3.3. If B is a sub-arrangement of A, and if H3(A) is k-decomposable,
then H3(B) is also k-decomposable.

Proof. Note that L2(B) = {X ∈ L2(A) | |AX ∩ B| ≥ 2}. Furthermore, if X ∈
L2(B), then BX = AX ∩ B. Consider the following diagram:

⊕
X∈L2(A) H′(AX)

ι′A ��

ρ
����

H′(A)

H′(πA
B )

����⊕
X∈L2(B) H′(BX)

ι′B �� H′(B)

(3.4)

where ρ restricts to H′(πAX

BX

) : H′(AX) → H′(BX) if X ∈ L2(B), and ρ = 0
otherwise. Diagram (3.4) commutes. Indeed, if X ∈ L2(B), this is clear. If X /∈
L2(B), then |AX ∩ B| ≤ 1, and so, by Lemma 3.1 (2), H′(πA

B

) � H′(ιAAX

) = 0.

Now, if H3(A) is k-decomposable, then ιA3 ⊗ k is surjective. From the commu-
tativity of diagram (3.4), we infer that ιB3 ⊗ k is also surjective, and we are done.

�

4. Surjectivity of ι′

In general, the map ι′ : ∏
X H′(AX) → H′(A) is not surjective. On the other hand,

if A is decomposable, ι′ is surjective. This we show in the next proposition, which is
the key to our main result.

Proposition 4.1. Suppose H3(A) is k-decomposable. Then

ιr ⊗ k :
∏
X

Hr (AX) ⊗ k −→ Hr (A) ⊗ k

is surjective, for all r ≥ 2.

Proof. For simplicity, we will suppress the field k from the notation. We will need to
establish various commutation relations inH(A), between elements inH(ιX)(H(AX))
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and H(ιY )(H(AY )), where X and Y are distinct flats in L2(A). Again for simplicity,
we will suppress the inclusion ι from the notation, and work in H(A).

Since X = Y , there are two possibilities: either AX ∩ AY = ∅, or AX ∩ AY

consists of a single hyperplane. Pick H ′ ∈ AX and H ′′ ∈ AY , so that, if A∗
X =

AX \ {H ′} and A∗
Y = AY \ {H ′′} are the corresponding deletions, then

A∗
X ∩ AY = AX ∩ A∗

Y = ∅. (4.1)

Let us note the following fact, whose proof is immediate, and which will be used
repeatedly in the sequel. For any flat Z ∈ L2(A), and for any hyperplane H ∈ AZ ,

H′(AZ) = Lie>1(A∗
Z), (4.2)

where A∗
Z = AZ \ {H }, and where Lier (A∗

Z) denotes the degree r piece of the Lie
subalgebra generated by {xK | K ∈ A∗

Z} inside H(AZ).
Here is the first commutation property, for which the decomposability assumption

on H3(A) is needed in a crucial way.

Claim I. If Hi ∈ A∗
X and c ∈ H2(AY ), then [xHi

, c] = 0.

Proof. By (4.2), it is enough to verify the claim for c ∈ Lie2(A∗
Y ). Apply H(πZ), for

some Z ∈ L2(A). If Z = Y , we get [H(πZ)(xHi
), H(πZ)(c)] = [H(πZ)(xHi

), 0] =
0. If Z = Y , we get [H(πY )(xHi

), c] = [0, c] = 0, since A∗
X ∩ AY = ∅. Thus,

π3([xHi
, c]) = 0, and so [xHi

, c] = 0, since, by assumption, π3 is an isomorphism.
�

Using Claim I, we obtain the next commutation property.

Claim II. If b ∈ H2(AX) and c ∈ Hs(AY ) (s ≥ 2), then [b, c] = 0.

Proof. As before, we may assume that b ∈ Lie2(A∗
X) and c ∈ Lies(A∗

Y ). The proof
is by induction on s. For s = 2, Claim II follows from Claim I, via the Jacobi identity.
For the induction step, take an element c ∈ Lies+1(A∗

Y ), and write it as c = [xHj
, c′],

with Hj ∈ A∗
Y and c′ ∈ Lies(A∗

Y ). By the Jacobi identity,

[b, c] = [[b, xHj
], c′] + [xHj

, [b, c′]].
Note that [b, xHj

] = 0 by Claim I, and [b, c′] = 0 by induction. Thus, [b, c] = 0.
�

Finally, using both Claims I and II, we prove the following key commutation
property.

Claim III. If Hi ∈ A∗
X and c ∈ Hs(AY ) (s ≥ 2), then [xHi

, c] ∈ Hs+1(AY ).
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Proof. The proof is by induction on s. The case s = 2 follows from Claim I. For
the induction step, take an element c = [xHj

, c′] ∈ Hs+1(AY ), with Hj ∈ AY and
c′ ∈ Hs(AY ). By the Jacobi identity,

[xHi
, c] = [[xHi

, xHj
], c′] + [xHj

, [xHi
, c′]].

By induction, [xHi
, c′] ∈ Hs+1(AY ), and so [xHj

, [xHi
, c′]] ∈ Hs+2(AY ).

On the other hand, since Hi = Hj , there exists a flat Z ∈ L2(A) such that
{Hi, Hj } ⊂ AZ , and so [xHi

, xHj
] ∈ H2(AZ). If Z = Y , then [[xHi

, xHj
], c′] ∈

[H2(AY ), Hs(AY )] ⊂ Hs+2(AY ). If Z = Y , then [[xHi
, xHj

], c′] = 0, by Claim II.
Either way, we conclude that [xHi

, c] ∈ Hs+2(AY ). �

Having established the above claims, we are now ready to prove Proposition 4.1,
by induction on r . For r = 2, the map ι2 is surjective, since π2 � ι2 = id, and π2 is an
isomorphism (for arbitrary A). For the induction step, it is plainly enough to show
that

[xH , c] ∈ Hr+1(AY ), (4.3)

for any H ∈ A and c ∈ Hr (AY ), where Y ∈ L2(A) and r ≥ 2.
If H ∈ AY , this is clear. Assuming H /∈ AY , pick any H ′′ ∈ AY , and set

X = H ∩H ′′ ∈ L2(A). Note that X = Y , and A∗
X = AX \ {H ′′}. Hence, H ∈ A∗

X,
and (4.3) now follows from Claim III. The proof of Proposition 4.1 is thus complete.

�

5. Proof of Theorem 2.4

We are now in the position to prove our main result.
Let A be an arbitrary arrangement. Recall we defined in §2.1 a homomorphism

of graded Lie algebras, π : H(A) → ∏
X∈L2(A) H(AX). Recall also we defined in

§3.2 a homomorphism of graded abelian groups, ι : ∏
X∈L2(A) H(AX) → H(A),

with the property that π ′ � ι′ = id, which showed that π ′ is an epimorphism.
Now suppose A is decomposable. By Proposition 4.1, each map ιr (r ≥ 2)

is surjective. By Lemmas 3.1 and 3.2, each map πr (r ≥ 2) is an isomorphism.
Hence, π ′ is an isomorphism of Lie algebras, with inverse ι′. This proves Part (3) of
Theorem 2.4.

Part (2) follows at once from (3), and the fact that each Lie algebra H(AX) ∼=
Lμ(X) × L1 is torsion-free.

Part (1) follows from (2), together with (1.3) and [9, Proposition 5.1].
Part (4) follows from (3), together with (1.3) and the discussion from [15, §1.5].

�
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6. Decomposable Chen Lie algebras

Another, much coarser approximation to the associated graded Lie algebra of a group
is its Chen Lie algebra. We now study the effect of the decomposability condition on
the Chen Lie algebra of an arrangement group.

Given a finitely-generated group G, let G/G′′ be the quotient by its second derived
subgroup. We call the associated graded Lie algebra gr(G/G′′), the Chen Lie algebra
of G. Set θk(G) = rank grk(G/G′′). Plainly, θk(G) = φk(G) for k ≤ 3, and
θk(G) ≤ φk(G) for k > 3.

Now suppose G(A) is an arrangement group. Then, as shown in [12, Theo-
rem 11.1], there is an isomorphism of graded Lie algebras,

gr(G(A)/G′′(A)) ⊗ Q ∼= (H(A)/H′′(A)) ⊗ Q. (6.1)

Let B(A) = H′(A)/H′′(A) be the infinitesimal Alexander invariant of A. Taking
graded ranks on both sides of (6.1), we find

θk(G(A)) = rank Bk(A) for all k ≥ 2. (6.2)

Recall once more the surjective map of graded Lie algebras from Proposition 2.1,
π ′ : H′(A) �

∏
X∈L2(A) H′(AX). By abelianization, we obtain an epimorphism of

graded abelian groups,

B(π) : B(A) −→
⊕

X∈L2(A)

B(AX) . (6.3)

By comparing graded ranks of the source and target of B(π), we recover a lower
bound for the Chen ranks of an arrangement group, first obtained in [2] by other
methods.

Corollary 6.1 ([2]). For all r ≥ 2,

θr(G(A)) ≥
∑

X∈L2(A)

θr (Fμ(X)), (6.4)

where θr(Fn) = (r − 1)
(
n+r−2

r

)
.

Note that B2(π) = π2 is an isomorphism, and thus equality holds in (6.4) for
r = 2. For r ≥ 3, though, the inequality can well be strict; see again [2].

As another application of our methods, we provide a complete description of the
Chen Lie algebra of a decomposable arrangement.
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Theorem 6.2. If A is decomposable, then:

(1) gr(G(A)/G′′(A)) = H(A)/H′′(A), as graded Lie algebras over Z.

(2) gr(G(A)/G′′(A)) is torsion-free, as a graded abelian group.

(3) The Chen ranks of G(A), for r ≥ 2, are given by

θr(G(A)) =
∑

X∈L2(A)

θr (Fμ(X)). (6.5)

Proof. For any flat X ∈ L2(A), we have B(AX) = L′
μ(X)/L

′′
μ(X), which is known

to be torsion-free. Now, since A is decomposable, Theorem 2.4(3) implies that
B(π) is an isomorphism, and consequently B(A) is torsion-free, as well. Hence,
H(A)/H′′(A) is also torsion-free. Parts (1) and (2) now follow from Theorem B in
[12]. Part (3) follows from the fact that B(π) is an isomorphism, and (6.2). �

Formula (6.5) was derived by other methods in [2], under the decomposability
condition from that paper.

7. Decomposable graphic arrangements

To a (simple) graph G, with vertex set V = {1, . . . , �} and edge set E, there corresponds
a graphic arrangement in C�, denoted by AG. The hyperplane corresponding to an
edge e = (i, j) is He = {zi − zj = 0}. For example, if G = K�, the complete graph
on � vertices, then AK�

= B�, the braid arrangement in C�.
For each flat X ∈ L2(AG), there are either 2 or 3 hyperplanes containing X.

Under the identification AG = E, a flat of size 3 of corresponds to a triangle in the
graph, while a flat of size 2 corresponds to a pair of edges which is not included in any
element of the triangle-set T. Thus, the holonomy Lie algebra of AG can be identified
with the quotient of the free Lie algebra on variables e ∈ E by the corresponding ideal
of quadratic relations:

H(G) = L(E)
/

ideal

{
[e1, e2 + e3] , if {e1, e2, e3} ∈ T
[e1, e2] , if {e1, e2, e} /∈ T for all e ∈ E

}
. (7.1)

As shown in [15], the Q-decomposability condition for a graphic arrangement can
be read off the graph itself, as the absence of complete quadrangles in G. We present
a strengthened form of this result, which nicely illustrates our methods.

Proposition 7.1. For a graphic arrangement AG, the following conditions are equiv-
alent:

(1) AG is decomposable.
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(2) H3(G) is decomposable over some field k.

(3) G contains no complete subgraphs on 4 vertices.

Proof. The implication (1) ⇒ (2) is obvious.
To show (2) ⇒ (3), suppose K4 is a subgraph of G. Then, the braid arrangement

B = AK4 is a sub-arrangement of AG. But B is not k-decomposable, for any field k.
Indeed,

∑
X∈L2(B) φ3(Fμ(X)) = 8, whereas dimk H3(B) ⊗ k = 10 (see [7] for the

case k = Q, and [5] for the general case). This contradicts Proposition 3.3.
To show (3) ⇒ (1), we must check that H3(G) is spanned by {ιτ (H3(τ )) | τ ∈ T},

where ιτ : H(τ ) → H(G) is the natural inclusion. As an abelian group, H3(G) is
generated by elements of the form x = [e1, [e2, e3]]. Note that the edges e2, e3 must
belong to a common triangle, say, τ , for, otherwise, [e2, e3] = 0 in H(G). If e1 ∈ τ ,
then clearly x ∈ ιτ (H3(τ )). If e1 /∈ τ , we will show that x = 0, and that will finish
the proof.

First, we claim that there are two edges, e and e′, in τ such that

[e1, e] = [e1, e
′] = 0. (7.2)

To verify the claim, denote by G0 the subgraph supported on the vertices of τ and e1.
Since e1 /∈ τ , there are two possibilities:

(a) G0 has 5 vertices. Then [e1, e] = 0, for any edge e ∈ τ .

(b) G0 has 4 vertices. Since by assumption G0 = K4, again there are two possibil-
ities:

(b1) G0 has 4 edges. Then [e1, e] = 0, for any edge e ∈ τ .

(b2) G0 has 5 edges. Then G0 is the union of two triangles, with an edge in
common. If e, e′ are the other two edges in τ , then [e1, e] = [e1, e

′] = 0.

Thus, (7.2) holds in all cases.
Now, applying (4.2) to τ ∗ = {e, e′}, we see that [e2, e3] is a multiple of [e, e′] in

H2(τ ). Hence, by (7.2) and the Jacobi identity, x = 0. �

Let κs = κs(G) be the number of Ks+1 subgraphs of G; for example, κ0 = |V|,
κ1 = |E|, κ2 = |T|. If κ3 = 0, then, by Proposition 7.1 and Theorem 2.4, we have

∞∏
r=1

(1 − t r )φr = (1 − t)κ1−2κ2(1 − 2t)κ2 . (7.3)

We now provide concrete examples where this LCS formula gives new informa-
tion. For that, we need graphs which are not chordal (i.e., supersolvable), or, more
generally, hypersolvable (in the sense of [11]), since otherwise, previously known
formulas apply.
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Proposition 7.2. Let G be a graph with κ1 ≤ 2κ2 and κ3 = 0. Then AG is decom-
posable, but not hypersolvable.

Proof. Since κ3 = 0, the arrangement AG is decomposable. If AG were hypersolv-
able, then, by the LCS formula from [5],

∏∞
r=1(1 − t r )φr = (1 − t)P (t), for some

polynomial P . In view of (7.3), this can only happen when κ1 − 2κ2 > 0. �

Remark 7.3. Let A be an arrangement (not necessarily graphic) for which the Möbius
function takes only the values 1 and 2 on L2(A). Set

κ1 = |A| and κ2 = |{X ∈ L2(A) | μ(X) = 2}| .
The same argument as in Proposition 7.2 shows the following: If A is decomposable
and hypersolvable, then κ1 − 2κ2 > 0.
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� �������

��
��

��
�

•
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e�������

•

•
G′ •��

��
��

� �������

��
��

��
�

•
w•

f1

��
��

��
�

•
e������� f2

�������

Figure 2. Coning an edge.

Now suppose G is a graph with κ1 − 2κ2 ≤ 0 and κ3 = 0. One can create a new
graph, G′, with the same properties, as follows. Choose an edge e of G, pick a new
vertex w, and join it by edges f1 and f2 to the endpoints of e, as in Figure 2. Clearly,
V′ = V ∪ {w}, E′ = E ∪ {f1, f2}, T′ = T ∪ {e, f1, f2}, and there are no complete
quadrangles introduced. Thus, κ ′

1 − 2κ ′
2 = (κ1 + 2) − 2(κ2 + 1) ≤ 0, and κ ′

3 = 0.
Moreover, it is easy to check that AG is solvable in AG′ , in the sense of [5].

This permits us to create infinite families of graphs satisfying the hypothesis of
Proposition 7.2. For instance, start with the graph G0 = G from the above figure (see
also [15, Example 6.14]), and define inductively a sequence of graphs {Gi} by Gi =
(Gi−1)′. Since G satisfies κ1 − 2κ2 = κ3 = 0, all the graphic arrangements AGi are
decomposable, but not hypersolvable. By (7.3), the LCS ranks of the corresponding
arrangement groups are given by

∏∞
r=1(1 − t r )φr = (1 − 2t)i+4.

Remark 7.4. To the best of our knowledge, the decomposable arrangements dis-
cussed in this paper provide the first non-hypersolvable examples where the LCS
ranks φr are computed for all values of r . Note that the two graphic arrangements in
Examples 3.7 and 5.4 from [14] are hypersolvable. Indeed, the two underlying graphs
can be obtained from hypersolvable graphs, by iterating the above construction: the
first one, starting from a 4-cycle, and the second one, starting from the K4 graph. As
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such, both arrangements are hypersolvable, cf. [11, §6]. The first one has rank 4 and
exponents {1, 1, 1, 1, 2}; the second one has rank 6 and exponents {1, 2, 2, 2, 2, 3},
and thus is actually supersolvable (by [5, Theorem D]), despite a claim to the contrary
in [14].

Note added in proof. Using the holonomy Lie algebra approach, P. Lima-Filho and
H. Schenck have recently announced in [8] a proof of the LCS formula for graphic
arrangements, as conjectured in [15].
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