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Gauss–Manin connections for arrangements, IV. Nonresonant
eigenvalues

Daniel C. Cohen∗ and Peter Orlik∗∗

Abstract. An arrangement is a finite set of hyperplanes in a finite dimensional complex affine
space. A complex rank one local system on the arrangement complement is determined by
a set of complex weights for the hyperplanes. We study the Gauss–Manin connection for the
moduli space of arrangements of fixed combinatorial type in the cohomology of the complement
with coefficients in the local system determined by the weights. For nonresonant weights, we
solve the eigenvalue problem for the endomorphisms arising in the 1-form associated to the
Gauss–Manin connection.
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1. Introduction

Let A = {H1, . . . , Hn} be an arrangement of n ordered hyperplanes in C
�, with

complement M = M(A) = C
� \⋃n

j=1Hj . Assume that A contains � linearly in-
dependent hyperplanes. A complex rank one local system on M is determined by a
collection of weights λ = (λ1, . . . , λn) ∈ C

n. Associated to λ, we have a repre-
sentation ρ : π1(M) → C

∗, given by γj �→ exp(−2π i λj ) for any meridian loop γj
about the hyperplane Hj of A, and an associated local system L on M. For weights
which are nonresonant in the sense of Schechtman, Terao, and Varchenko [13], the
local system cohomology vanishes in all but one dimension, Hq(M;L) = 0 for
q �= �. Parallel translation of fibers over curves in the moduli space of all arrange-
ments combinatorially equivalent to A gives rise to a Gauss–Manin connection on
the vector bundle over this moduli space with fiberH�(M;L). This connection arises
in a variety of applications, including the Aomoto–Gelfand theory of hypergeometric
integrals [2], [8], [12], and the representation theory of Lie algebras and quantum
groups [14], [16]. As such, it has been studied by a number of authors, including
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∗∗Partially supported by National Security Agency grant MDA904-02-1-0019.
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Aomoto [1], Schechtman and Varchenko [14], [16], Kaneko [10], and Kanarek [9].
Denote the combinatorial type of A by T . The moduli space of all arrangements

of type T is determined by the set of dependent collections of subsets of hyperplanes
in the projective closure of A in CP

�, see [15]. Let B(T ) be a smooth, connected
component of this moduli space. There is a fiber bundle p : M(T ) → B(T ) whose
fibers, p−1(b) = Mb, are complements of arrangements Ab of type T . Since B(T ) is
connected, Mb is diffeomorphic to M. The fiber bundle p : M(T )→ B(T ) is locally
trivial. Consequently, given a local system on the fiber, there is an associated flat
vector bundle H → B(T ), with fiber H�(Mb;Lb) at b ∈ B(T ). For nonresonant
weights, Terao [15] showed that the Gauss–Manin connection on this vector bundle
has connection 1-form

∇ =
∑

�T ′ ⊗�λ(T
′,T ), (1.1)

where�T ′ is a logarithmic 1-form on the closure of B(T )with a simple pole along the
divisor corresponding to the codimension one degeneration T ′ of T , and�λ(T

′,T )
is an endomorphism of H�(M;L). For general position arrangements, this Gauss–
Manin connection was found by Aomoto and Kita [2]. Terao [15] computed this
connection for a larger class of arrangements. In [4], we determined the “Gauss–
Manin endomorphisms”�λ(T

′,T ) for all arrangements. The aim of this paper is to
solve the eigenvalue problem for these endomorphisms.

Identify the hyperplanes of A with their indices. An edge of A is a nonempty
intersection of hyperplanes in A. An edge is dense if the subarrangement of hy-
perplanes containing it is irreducible: the hyperplanes cannot be partitioned into
nonempty sets so that, after a change of coordinates, hyperplanes in different sets
are in different coordinates, see [13]. For an edge X, define λX = ∑

X⊆Hj λj . Let
A∞ = A∪Hn+1 be the projective closure of A, the union of A and the hyperplane at
infinity in CP

�, see [12]. Set λn+1 = −∑n
j=1 λj . Schechtman, Terao, and Varchenko

[13], refining work of Esnault, Schechtman, and Viehweg [6], found conditions on
the weights which insure that the local system cohomology groups vanish except in
the top dimension. They proved that if M is the complement of an arrangement A in
C
� of combinatorial type T with � linearly independent hyperplanes and L is a rank

one local system on M whose weights λ satisfy the condition

λX /∈ Z≥0 for every dense edge X of A∞,

then Hq(M;L) = 0 for q �= � and dimH�(M;L) = |χ(M)|, where χ(M) is the
Euler characteristic of M. These conditions depend only on the type T , so we call
weights satisfying them T -nonresonant.

Throughout this paper, we assume that A contains � linearly independent hyper-
planes, hence n ≥ �, and that λ is T -nonresonant. We consider only codimension
one degenerations of combinatorial types and refer to these as simply degenerations.
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Theorem. Let T ′ be a degeneration of T , and let λ be a collection of generic T -
nonresonant weights for the rank one local system L. Then the Gauss–Manin endo-
morphism �λ(T

′,T ) is diagonalizable. The spectrum of �λ(T
′,T ) is contained in

the set {0, λS}, where λS =∑
j∈S λj for some S ⊂ {1, . . . , n+ 1}.

The set S is part of a pair (S, r), called the principal dependence of the degener-
ation T ′ of T , see Theorem 3.2. It follows from our results in Sections 2, 4, and 5
that weights λ which satisfy λS �= 0 are sufficiently generic. Our results also yield
an algorithm for determining the multiplicities of the eigenvalues, see Remark 5.3.

Let G denote the combinatorial type of a general position arrangement of n hyper-
planes in C

�. The cohomology of the complement of an arrangement of type G is the
rank � truncation, A•(G), of the exterior algebra on n generators ej , j ∈ [n], where
[n] = {1, . . . , n}, corresponding to the hyperplanes. The Orlik–Solomon algebra
A•(A) � H •(M(A);C) is generated by one dimensional classes aj , j ∈ [n]. It is
the quotient ofA•(G) by a homogeneous ideal, I •(A), hence it is a finite dimensional
graded C-algebra [11]. It is known that A•(A) depends only on the combinatorial
type T of A, so we may write A•(T ).

Weights λ yield an element aλ = ∑n
j=1 λjaj in A1(T ), and multiplication by

aλ gives A•(T ) the structure of a cochain complex. The resulting cohomology
H •(T ) = H •(A•(T ), aλ) is a combinatorial analog ofH •(M(A);L). If the weights
are T -nonresonant, then H •(M(A);L) � H •(A•(T ), aλ) and the only (possibly)
nonzero group H�(T ) has the βnbc basis of Falk and Terao [7]. This basis provides
an explicit surjection τ : H�(G) → H�(T ). Our results in [4] yield a commutative
diagram of endomorphisms for each degeneration T ′ of T :

H�(G)
τ ��

�̃λ(T
′,T )

��

H�(T )

�λ(T
′,T )

��
H�(G) τ

�� H�(T )

(1.2)

The endomorphism �̃λ(T
′,T ) ofH�(G) is induced by an endomorphism ω•λ(T ′,T )

of A•(G), see [5], (3.3), and Theorem 3.1.
Here is a brief outline of the paper. In Section 2, we recall the Aomoto complex

and the “formal Gauss–Manin connection matrices” of [5] which are essential in our
arguments. We recall the moduli space of combinatorially equivalent arrangements
in Section 3 and identify the principal dependence (S, r) of the degeneration T ′
of T . Using the principal dependence, we construct a realizable type T (S, r) and an
endomorphism �λ(S, r) of H�(G). In Section 4, we determine the eigenstructure of
the endomorphism�λ(S, r). In Section 5, we show that �̃λ(T

′,T )may be replaced
by �λ(S, r) in (1.2) and thereby determine the eigenstructure of �λ(T

′,T ). We
conclude with several examples to illustrate the main result.
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2. General position

In this section, we record a number of constructions in the Orlik–Solomon complex
of a general position arrangement which will be used subsequently.

Let G = G�n be the combinatorial type of a general position arrangement of n
hyperplanes in C

�, where n ≥ �. The Orlik–Solomon algebra A•(G) is the rank �
truncation of an exterior algebra on n generators. Let T = {i1, . . . , iq} ⊂ [n]. If
order matters, we call T a q-tuple and write T = (i1, . . . , iq) and eT = ei1 . . . eiq .
The algebraA•(G) is generated (as an algebra) by {ej | 1 ≤ j ≤ n}, and has (additive)
basis {eT }, where eT = 1 if T = ∅, and T �= ∅ is an increasingly ordered tuple of
cardinality at most �.

Define a map ∂ : Aq(G)→ Aq−1(G) by ∂(eT ) =∑q
k=1(−1)k−1eTk , where Tk =

(i1, . . . , îk, . . . , iq) if T = (i1, . . . , iq). Then ∂ � ∂ = 0, providing A•(G) with the
structure of a chain complex

(A•(G), ∂) : A0(G)
∂←− A1(G)←− · · · ←− A�−1(G)

∂←− A�(G). (2.1)

It is well known that the homology of this complex is concentrated in the top dimen-
sion,Hq(A(G), ∂) = 0 for q �= �. The dimension of the unique nontrivial homology
group is β(n, �) = dimH�(A

•(G), ∂) =∑�
k=0(−1)k

(
n
k

) = (
n−1
�

)
.

Weights λ = (λ1, . . . , λn) ∈ C
n determine an element eλ =∑n

j=1 λjej inA1(G).
Since A•(G) is a quotient of an exterior algebra, we have eλeλ = 0. Consequently,
multiplication by eλ defines a cochain complex

(A•(G), eλ) : A0(G)
eλ−→ A1(G) −→ · · · −→ A�−1(G)

eλ−→ A�(G). (2.2)

If λ �= 0, it is well known that the cohomology of this complex is concentrated in
the top dimension, Hq(A•(G), eλ) = 0 for q �= �, and that dimH�(A•(G), eλ) =
β(n, �).

The endomorphism ωλ(T
′,T ) of A�(G) which induces the map �̃λ(T

′,T ) :
H�(G) → H�(G) of (1.2) is the specialization at λ of a “formal Gauss–Manin
connection endomorphism” given in [5] and in (3.3). The latter is a linear com-
bination of endomorphisms ω•S of the Aomoto complex (A•R(G), ey) of G, a univer-
sal complex for the cohomology H •(A•(G), eλ). The Aomoto complex has terms
A
q
R(G) = Aq(G) ⊗ R, where R = C[y1, . . . , yn] is the polynomial ring, and the

boundary map is given by multiplication by ey =∑n
j=1 yj ej .

The endomorphisms ω•S correspond to subsets S of [n + 1], the index set of the
projective closure of the general position arrangement in CP

�, G∞. The symmetric
group �n+1 on n + 1 letters acts on A•(G) by permuting the hyperplanes of G∞,
and on R by permuting the variables yj , where yn+1 = −∑n

j=1 yj . In the basis
{ej | 1 ≤ j ≤ n} for the Orlik–Solomon algebra, the action of σ ∈ �n+1 is given by
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σ(ei) = eσ(i) if σ(n+ 1) = n+ 1, and by

σ(ei) =
{
−eσ(n+1) if σ(i) = n+ 1,

eσ(i) − eσ(n+1) if σ(i) �= n+ 1,

if σ(n + 1) �= n + 1. Denote the induced action on the Aomoto complex by
φσ : A•R(G)→ A•R(G),

φσ (ei1 . . . eip ⊗ f (y1, . . . , yn)) = σ(ei1) . . . σ (eip )⊗ f (yσ(1), . . . , yσ(n)).
Lemma 2.1. For each σ ∈ �n+1, the map φσ is a cochain automorphism of the
Aomoto complex (A•R(G), ey).

If T = (i1, . . . , ip) ⊂ [n] is a p-tuple, then (j, T ) = (j, i1, . . . , ip) is the (p+1)-
tuple which adds j with 1 ≤ j ≤ n to T as its first entry. For S = {s1, . . . , sk} ⊂
[n+ 1], let σS denote the permutation

(
1 2 ··· k
s1 s2 ··· sk

)
. Write S ≡ T if S and T are equal

sets.

Definition 2.2. Let T be a p-tuple, S a q + 1 element subset of [n+ 1], and j ∈ [n].
If S = S0 = [q+1], define the endomorphism ω•S0

: (A•R(G), ey)→ (A•R(G), ey) by

ω
p
S0
(eT ) =

⎧⎪⎨⎪⎩
yj ∂e(j,T ) if p = q and S0 ≡ (j, T ),
ey∂eT if p = q + 1 and S0 ≡ T ,

0 otherwise.

If S �= S0, define ω•S = φσS � ω•S0
� φ−1

σS
.

One can check that this agrees with the case by case definition in [5, Def. 4.1].

Proposition 2.3 ([5, Prop. 4.2]). For every subset S of [n + 1], the map ω•S is a
cochain homomorphism of the Aomoto complex (A•R(G), ey)).

For S0 = [s], 1 ≤ q ≤ �, and 1 ≤ r ≤ min(q, s − 1), consider the sets V
q,r
S0

and

W
q,r
S0

of elements in AqR(G) given by

V
q,r
S0
= {eJ eK | |J | ≤ r − 1} ∪ {ηS0eJ eK | |J | = r − 1}

and

W
q,r
S0
= {eS0eK (if q ≥ s)} ∪ {(∂eJ )eK | |J | ≥ r + 1} ∪ {ηS0eJ eK | |J | ≥ r},

where J ⊂ S0, K ⊂ [n] \ S0, and ηS = ∑
i∈S yiei . Let B

q,r
S0
= V

q,r
S0
∪W

q,r
S0

. If

S ⊂ [n+ 1] and S �= S0, define B
q,r
S = {φσS (v) | v ∈ B

q,r
S0
}. Define V

q,r
S and W

q,r
S
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analogously. Given weights λ = (λ1, . . . , λn), let B
q,r
S (λ) = {v|yi �→λi | v ∈ B

q,r
S }

denote the specialization of B
q,r
S at λ, a sets of vectors in Aq(G). Define V

q,r
S (λ)

and W
q,r
S (λ) analogously. We will abuse notation and write ηS = ∑

i∈S λiei when
working in the Orlik–Solomon algebra. Note that ∂ηS = λS =∑

i∈S λi .

Lemma 2.4. If λS �= 0, the set of vectors B
q,r
S (λ) spans the vector space Aq(G).

Proof. It suffices to consider the case S = S0.
First, we show that the set {∂eJ | |J | = r + 1} ∪ {ηSeJ | |J | = r − 1} spans

Ar(Gss), where Gss is a general position arrangement of s hyperplanes (indexed by S)
in C

s . For this arrangement, both the chain complex (A•(Gss), ∂) of (2.1) and the
cochain complex (A•(Gss), eλ) = (A•(Gss), ηS) of (2.2) are acyclic, and

dim im[∂ : Ar+1(Gss)→ Ar(Gss)] = β(s, r) =
(
s − 1

r

)
,

dim im[ηS : Ar−1(Gss)→ Ar(Gss)] =
(
s

r

)
− β(s, r) =

(
s − 1

r − 1

)
.

Note that dimAr(Gss) =
(
s
r

) = (
s−1
r

)+ (
s−1
r−1

)
.

Suppose x ∈ span{∂eJ | |J | = r + 1} ∩ span{ηSeJ | |J | = r − 1}. Then
∂x = 0, and x = ηSy for some y ∈ Ar−1(Gss). So ∂x = ∂(ηSy) = λSy− ηS∂y = 0.
Since λS �= 0, we can write y = cηS∂y, where c = 1/λS . But this implies that
x = ηSy = 0. Consequently, {∂eJ | |J | = r + 1} ∪ {ηSeJ | |J | = r − 1} spans
Ar(Gss).

Using this, a straightforward exercise shows that the set of vectors B
q,r
S (λ) spans

the vector space Aq(G) = Aq(G�n). �

3. Principal dependence

Let T be the combinatorial type of the arrangement A of n hyperplanes in C
� with

n ≥ � ≥ 1. We consider the family of all arrangements of type T . Recall that A is
ordered by the subscripts of its hyperplanes and we assume that A, and hence every
arrangement of type T , contains � linearly independent hyperplanes.

Choose coordinates u = (u1, . . . , u�) on C
�. The hyperplanes of an arrangement

of type T are defined by linear polynomials αi = bi,0+∑�
j=1 bi,j uj (i = 1, . . . , n).

We embed the arrangement in projective space and add the hyperplane at infinity as
last in the ordering, Hn+1. The moduli space of all arrangements of type T may be
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viewed as the set of matrices

b =

⎛⎜⎜⎜⎜⎜⎝
b1,0 b1,1 · · · b1,�
b2,0 b2,1 · · · b2,�
...

...
. . .

...

bn,0 bn,1 · · · bn,�
1 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ (3.1)

whose rows are elements of CP
�, and whose (�+ 1)× (�+ 1)minors satisfy certain

dependency conditions, see [12, Prop. 9.2.2].
Given S ⊂ [n + 1], let NS(T ) = NS(b) denote the submatrix of (3.1) with

rows specified by S. Let rankNS(T ) be the size of the largest minor with nonzero
determinant. Define the multiplicity of S in T by

mS(T ) = |S| − rankNS(T ). (3.2)

Call S dependent (in type T ) if mS(T ) > 0. For such S, the linear polynomials
{αj | j ∈ S} are dependent. For q ≤ n+1, let Dep(T )q denote the dependent sets of
cardinality q, and let Dep(T ) =⋃

q Dep(T )q . If T ′ is a combinatorial type for which
Dep(T ) ⊂ Dep(T ′), let Dep(T ′,T ) = Dep(T ′) \ Dep(T ). Terao [15] showed that
the combinatorial type T is determined by Dep(T )�+1, but dependent sets of both
smaller and larger cardinality arise in our considerations, see Example 3.4.

Let
Dep(T )∗q =

{
S ∈ Dep(T )q |⋂j∈S Hj �= ∅

}
and let Dep(T )∗ = ⋃

q Dep(T )∗q . If S ∈ Dep(T )∗, then codim
( ⋂

j∈S Hj
)
< |S|.

If T ′ is a combinatorial type for which Dep(T )∗ ⊂ Dep(T ′)∗, let Dep(T ′,T )∗ =
Dep(T ′)∗ \Dep(T )∗. If |S| ≥ �+ 2, then S ∈ Dep(T ) but S ∈ Dep(T )∗ if and only
if every subset of S of cardinality � + 1 is dependent. It is convenient to work with
these smaller collections of dependent sets.

Define endomorphisms of A•R(G) by

ω•(T ) =
∑

S∈Dep(T )

mS(T )·ω•S and ω•(T ′,T ) =
∑

S∈Dep(T ′,T )
mS(T

′)·ω•S. (3.3)

These are cochain homomorphisms of theAomoto complex by Proposition 2.3. Since
Dep(T )∗q = Dep(T )q for q ≤ �+ 1, we have

ω•(T ) =
∑

S∈Dep(T )∗
mS(T ) · ω•S and ω•(T ′,T ) =

∑
S∈Dep(T ′,T )∗

mS(T
′) · ω•S.

(3.4)

Theorem 3.1 ([5]). The endomorphism �̃λ(T
′,T ) is induced by the specialization

ωλ(T
′,T ) := ω�(T ′,T )|yj �→λj of the endomorphism ω�(T ′,T ).
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Denote the cardinality of S by s = |S|. For 1 ≤ r ≤ min(�, s − 1), consider the
combinatorial type T (S, r) defined by

T ∈ Dep(T (S, r))∗ ⇐⇒ |T ∩ S| ≥ r + 1.

This type is realized by a pencil of hyperplanes indexed by S with a common subspace
of codimension r , together with n− s hyperplanes in general position. Note that for
r = 1 the hyperplanes in S coincide, so T (S, r) is a multi-arrangement.

Theorem 3.2. Let T ′ be a degeneration of a realizable combinatorial type T . For
each set Si ∈ Dep(T ′,T )∗, let ri be minimal so that Dep(T (Si, ri))∗ ⊂ Dep(T ′)∗.
Given the collection {(Si, ri)}, there is a unique pair (S, r) with r = min{ri}, Si ⊂ S
for every pair (Si, ri) where ri = r , and Dep(T (S, r))∗ ⊂ Dep(T ′)∗.

Proof. Terao [15] classified the three codimension one degeneration types in the
moduli space of an arrangement whose only dependent set is the minimally dependent
set T of size q + 1.

I: |S ∩ T | ≤ q − 1 for all S ∈ Dep(T ′,T )∗;
II: {(m, Tk) | m �∈ T } for each fixed k, 1 ≤ k ≤ |T |;

III: {(m, Tk) | 1 ≤ k ≤ |T |} for each fixed m �∈ T .

If q = 1, then Type II does not appear. Recall that Tk = (i1, . . . , îk, . . . , iq+1) if
T = (i1, . . . , iq+1), and note that m ∈ [n+ 1] in cases II and III above.

It follows from our analysis of the corresponding types in general [5] that if a
Type II degeneration is present, then the value of r decreases and there is a unique set
of maximal cardinality with minimal r . In the other types, r remains constant, but a
unique dependent set of T increases in T ′. �

Definition 3.3. Let T ′ be a degeneration of T . We call the pair (S, r)which satisfies
the conditions of Theorem 3.2 the principal dependence of the degeneration.

Example 3.4. Let T be the combinatorial type of the arrangement A of 4 lines in C
2

depicted in Figure 1. Here Dep(T )∗ = {123}.

�
�

�
��

�
�

�
��

3

4

1 2

A
�

�
�

��

�
�

�
��

�
�

�
��
3 41 2

A1

�
�

�
��

�
�

�
��

3
4

1 2

A3

�
�

�
��

3

4

12

A2

Figure 1. A line arrangement and three degenerations.
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The combinatorial types Ti of the (multi)-arrangements Ai shown in Figure 1
are degenerations of T . For these degenerations, the collections {(Si, ri)} and corre-
sponding principal dependencies (S, r) are given in the table below.

{(Si, ri)} (S, r)

T1 (345, 2) (345, 2)
T2 (12, 1), (124, 2), (125, 2) (12, 1)
T3 (124, 2), (134, 2), (234, 2), (1234, 2) (1234, 2)

For the combinatorial type T (S, r), write ω•(S, r) = ω•(T (S, r)), see (3.4).
In Theorem 5.1 below, we show that the Gauss–Manin endomorphism �λ(T

′,T )
of (1.1) is induced by the specialization of ω�(S, r) at T -nonresonant weights λ,
ω�λ(S, r). First, we solve the eigenvalue problem for the latter endomorphism.

4. Diagonalization

The purpose of this section is to solve the eigenvalue problem for ωqλ(S, r), the
endomorphism of the Orlik–Solomon algebra obtained by specializing ωq(S, r) at
generic weights λ = (λ1, . . . , λn). This allows calculation of the eigenstructure of
the induced endomorphism in cohomology, �λ(S, r), which is related to the Gauss–
Manin endomorphism in Theorem 5.1. First, we establish several technical results
concerning the endomorphism ωq(S, r) of the Aomoto complex itself. Recall that
these endomorphisms are given explicitly by

ω•(S, r) =
∑

K∈Dep(T (S,r))∗
mK(S, r) · ω•K,

where mK(S, r) is the multiplicity of K in type T (S, r), see (3.2), and ω•K is given
in Definition 2.2. It follows from Proposition 2.3 that ω•(S, r) is a chain map. Note
that ωq(S, r) = 0 for q < r .

Given (S, r), define
�
q
S,r =

∑
T⊂S
|T |=r+1

ωq(T , r).

Note that �rS,r = ωr(S, r). For q ≥ r , the endomorphisms ωq(S, r) satisfy the
following recursion.

Lemma 4.1. For q ≥ r , we have

�
q
S,r =

s−r−1∑
k=0

(
r + k − 1

k

)
ωq(S, r + k).
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Proof. IfT ⊂ [n] satisfies |T | = r+1, then Dep(T (T , r))∗ = {K | K ⊇ T }, and it is
readily checked thatmK(T , r) = 1 for each suchK . Hence, ωq(T , r) =∑

K⊇T ω
q
K ,

and we have
�
q
S,r =

∑
T⊂S
|T |=r+1

∑
K⊇T

ω
q
K =

∑
|K∩S|≥r+1

ω
q
K.

If |K ∩ S| = r + p, then ωqK occurs
(
r+p
r+1

)
times in this sum, so

�
q
S,r =

∑
|K∩S|≥r+1

ω
q
K =

∑
p≥1

∑
|K∩S|=r+p

(
r + p
r + 1

)
ω
q
K.

If K ∈ Dep(T (S, j))∗, then |K ∩ S| ≥ j + 1, and mK(S, j) = |K ∩ S| − j . It
follows that ωq(S, j) =∑

|K∩S|≥j+1(|K ∩ S| − j)ωqK . Hence,

s−r−1∑
k=0

(
r + k − 1

k

)
ωq(S, r + k) =

s−r−1∑
k=0

∑
i≥k+1

∑
|K∩S|=r+i

(
r + k − 1

k

)
(i − k)ωqK.

Rewriting this last sum, we obtain

s−r−1∑
k=0

(
r + k − 1

k

)
ωq(S, r + k) =

∑
p≥1

∑
|K∩S|=r+p

p−1∑
j=0

(
r + j − 1

j

)
(p − j)ωqK.

A straightforward inductive argument shows that
∑p−1
j=0

(
r+j−1
j

)
(p − j) = (

r+p
r+1

)
,

which completes the proof. �

Given S, recall that ηS =∑
i∈S yiei and yS =∑

i∈S yi = ∂ηS .

Lemma 4.2. Let J ⊂ S and L ⊂ [n] \ S. Then

�
q
S,r (eJ eL) =

{
0 if |J | ≤ r − 1,(
r+p
r

)
ySeJ eL −

(
r+p−1
r−1

)
ηS(∂eJ )eL if |J | = r + p, where p ≥ 0.

Proof. Given (J, L), it follows from Definition 2.2 that ωqK(eJ eL) �= 0 only for the
following K:

(J, L), (Jk, L, n+ 1), (J, Lk, n+ 1),

(i, J, L), (J, L, n+ 1), (i, Jk, L, n+ 1), (i, J, Lk, n+ 1),
(4.1)

where i /∈ (J, L).
If |J | ≤ r−1, then |K ∩S| ≤ r for each of the aboveK , so T �⊂ K for all T ⊂ S

with |T | = r+1. It follows thatωq(T , r)(eJ eL) = 0 for each such T . Consequently,
�
q
S,r (eJ eL) = 0.
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Let T ⊂ S be a subset of cardinality r + 1, and note that �qT,r =
∑
K⊃T ω

q
K , so

�
q
S,r =

∑
T⊂S �

q
T,r , where the sum is over all T ⊂ S with |T | = r + 1. Given such

a T , if |T ∩ J | ≤ r − 1, then none of the sets K recorded in (4.1) contains T . It
follows that �qT,r (eJ eL) = 0 if |T ∩ J | ≤ r − 1.

Suppose |J | = r . If |J ∩ T | = r , then T ≡ (i, J ) for some i ∈ S \ J , and

�
q
T,r (eJ eL) = ω(i,J,L)(eJ eL)+

q−r∑
k=1

ω(i,J,Lk,n+1)(eJ eL)

= yi∂(eieJ eL)+
q−r∑
k=1

(−1)r+kyieieJ eLk

= yieJ eL − yiei∂(eJ eL)+ (−1)ryieieJ ∂eL = yieJ eL − yiei(∂eJ )eL.
Therefore, using the identity yJ eJ = ηJ ∂eJ , we have

�
q
S,r (eJ eL) =

∑
T⊂S

�
q
T,r (eJ eL) =

∑
i∈S\J

(yieJ eL − yiei(∂eJ )eL)

= (yS − yJ )eJ eL − (ηS − ηJ )(∂eJ )eL = ySeJ eL − ηS(∂eJ )eL.

Now, assume that |J | = r+p for somep ≥ 1. As above, we have�qT,r (eJ eL) = 0
if |T ∩ J | �= r, r + 1. If |T ∩ J | = r + 1, then T ⊆ J and all of the sets K of (4.1)
contain T . In this instance, �qT,r (eJ eL) = ψ(eJ eL), where

ψ = ω(J,L) + ω(J,L,n+1) +
q∑
k=1

(
ω((J,L)k,n+1) +

∑
i /∈(J,L)

ω(i,(J,L)k,n+1)

)
.

Writing J ≡ (T , J ′), a calculation reveals that �qT,r (eJ eL) = ψ(eJ eL) = yT eJ eL.
If |T ∩ J | = r , then T \ T ∩ J = {t} for some t ∈ S \ J . For such T , of the

sets K from (4.1), only (t, J, L), (t, Jk, L, n + 1) for jk /∈ T , and (t, J, Lk, n + 1)
contain T . This observation, and a calculation, yields

�
q
T,r (eJ eL) =

(
ω(t,J,L) +

∑
jk /∈T

ω(t,Jk,L,n+1) +
q−r−p∑
k=1

ω(t,J,Lk,n+1)

)
(eJ eL)

=
(
ω(t,J,L) +

r+p∑
k=1

ω(t,(J,L)k,n+1) −
∑
jk∈T

ω(t,Jk,L,n+1)
)
(ej eL)

= yteJ eL −
∑
jk∈T

(−1)k−1ytet eJk eL.
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Summing over all T ⊂ S with |T ∩ J | = r , we obtain∑
|T∩J |=r

�
q
T,r (eJ eL)

=
∑
t∈S\J

∑
A⊂[r+p]
|A|=r

(
yteJ eL −

r∑
i=1

(−1)ai−1ytet eJai eL
)

=
(
r + p
r

)
(yS − yJ )eJ eL −

∑
t∈S\J

r+p∑
k=1

(−1)k−1
(
r + p − 1

r − 1

)
ytet eJk eL

=
(
r + p
r

)
(yS − yJ )eJ eL −

∑
t∈S\J

(
r + p − 1

r − 1

)
ytet (∂eJ )eL

=
(
r + p
r

)
ySeJ eL −

(
r + p − 1

r

)
yJ eJ eL −

(
r + p − 1

r − 1

)
ηS(∂eJ )eL.

Recall that �qT,r (eJ eL) = yT eJ eL for T ⊂ J . Summing over all T ⊂ J , we obtain∑
T⊂J �

q
T,r (eJ eL) =

(
r+p−1
r

)
yJ eJ eL. Therefore,

�
q
S,r (eJ eL) =

(∑
T⊂S

�
q
T,r

)
(eJ eL) =

( ∑
|T |=r

�
q
T,r +

∑
|T |=r+1

�
q
T,r

)
(eJ eL)

=
(
r + p
r

)
ySeJ eL −

(
r + p − 1

r − 1

)
ηS(∂eJ )eL

if |J | = r + p. �

Let λ = (λ1, . . . , λn) be a collection of weights, and consider the endomorphism
ω
q
λ(S, r) : Aq(G) → Aq(G) of the Orlik–Solomon algebra obtained by specializing
ωq(S, r) at λ. Given S, we abuse notation and write ηS = ∑

i∈S λiei . Recall the
spanning set B

q,r
S (λ) = V

q,r
S (λ) ∪W

q,r
S (λ) of Aq(G) from Lemma 2.4.

Theorem 4.3. Let λ be a collection of weights satisfying λS �= 0. Then the special-
ization, ωqλ(S, r), of ωq(S, r) at λ is diagonalizable, with eigenvalues 0 and λS .

1. The 0-eigenspace is spanned by the set of vectors V
q,r
S (λ) and has dimension

r∑
p=0

(
s

p

)(
n− s
q − p

)
−

(
s − 1

r

)(
n− s
q − r

)
.

2. The λS-eigenspace is spanned by the set of vectors W
q,r
S (λ) and has dimension

min(q,s)∑
p=r+1

(
s

p

)(
n− s
q − p

)
+

(
s − 1

r

)(
n− s
q − r

)
.
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Proof. By Lemma 2.4, the set of vectors B
q,r
S (λ) = V

q,r
S (λ) ∪W

q,r
S (λ) spans the

vector space Aq(G�n). So to establish this result, it suffices to show that these vec-
tors are eigenvectors of the endomorphism ω

q
λ(S, r), and that the dimensions of the

eigenspaces are as asserted. We will prove this by induction on q − r .
For ease of notation, we will suppress dependence on λ in the proof, and, for in-

stance, write simplyωq(S, r) = ωqλ(S, r) and�qS,r = �qS,r |yj �→λj . Using Lemma 2.1,
it suffices to consider the case S ⊂ [n]. Let J ⊂ S, K ⊂ [n] \ S, and recall that

V
q,r
S = {eJ eK | |J | ≤ r − 1} ∪ {ηSeJ eK | |J | = r − 1}

and

W
q,r
S = {eSeK (if q ≥ s)} ∪ {(∂eJ )eK | |J | ≥ r + 1} ∪ {ηSeJ eK | |J | ≥ r}.

In the case q−r = 0, we have Vr,r
S = {eJ eK | |J | ≤ r−1}∪{ηSeJ | |J | = r−1},

W r,r
S = {∂eJ | |J | = r + 1}, and ωr(S, r) = �rS,r . By Lemma 4.2, if |J | ≤ r − 1,

then �rS,r (eJ eK) = 0. If |J | = r − 1, then, using Lemma 4.2 again, we have

�rS,r (ηSeJ ) =
∑
i∈S

λi�
r
S,r (eieJ ) =

∑
i∈S

λi(λSeieJ − ηS∂(eieJ ))

= λSηSeJ −
∑
i∈S

λiηS(eJ − ei∂eJ )

= λSηSeJ − λSηSeJ + ηSηS∂eJ = 0.

Thus, every element of Er(0) = span Vr,r
S is a 0-eigenvector of ωr(S, r). A straight-

forward exercise reveals that dimEr(0) = ∑r
k=0

(
s
k

)(
n−s
r−k

) − (
s−1
r

)
. If |J | = r + 1,

then, using Lemma 4.2 again,

�rS,r (∂eJ ) =
r+1∑
k=1

(−1)k−1�rS,r (eJk ) =
r+1∑
k=1

(−1)k−1(λSeJk − ηS∂eJk )

= λS∂eJ − ηS∂2eJ = λS∂eJ .
Thus, every element of Er(λS) = span W r,r

S is a λS-eigenvector of ωr(S, r). Note
that dimEr(λS) =

(
s−1
r

)
. Since dimEr(0)+ dimEr(λS) = dimAr(G�n), the above

calculations establish Theorem 4.3 in the case q − r = 0.
If q − r ≥ 1, then by induction, for each k ≥ 1, ωq(S, r + k) is diagonalizable,

with eigenvalues 0 and λS , and corresponding eigenspaces Er+k(0) = span Vr+k,r
S

andEr+k(λS) = span W r+k,r
S . In the determination of the eigenstructure ofωq(S, r),

we will use the recursion provided by Lemma 4.1 in the following form:

ωq(S, r) = �qS,r −
s−r−1∑
k=1

(
r + k − 1

k

)
ωq(S, r + k). (4.2)
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First, consider the 0-eigenspace of the endomorphism ωq(S, r). If |J | ≤ r − 1,
then by (4.2), Lemma 4.2, and induction, we have

ωq(S, r)(eJ eK) = �qS,r (eJ eK)−
s−r−1∑
k=1

(
r + k − 1

k

)
ωq(S, r + k)(eJ eK) = 0.

If |J | = r − 1, then ωq(S, r + k)(ηSeJ eK) = 0 for k ≥ 1 by Lemma 4.2. Using
(4.2) and Lemma 4.2, we have

ωq(S, r)(ηSeJ eK) = �qS,r (ηSeJ eK)−
s−r−1∑
k=1

(
r + k − 1

k

)
ωq(S, r + k)(ηSeJ eK)

= �qS,r (ηSeJ eK) =
∑
i∈S

λi�
q
S,r (eieJ eK)

=
∑
i∈S

[
λiλSeieJ eK − λiηS∂(eieJ )eK

]
= λSηSeJ eK −

∑
i∈S

λiηSeJ eK +
∑
i∈S

λiηSei(∂eJ )eK

= λSηSeJ eK − λSηSeJ eK + ηSηS(∂eJ )eK = 0.

Next, consider the λS-eigenspace. If q ≥ s, we must show that eSeK is an
eigenvector of ωq(S, r) corresponding to the eigenvalue λS for each K ⊂ [n] \ S
with |K| = q − s. By induction, we have ωq(S, r + k)(eSeK) = λSeSeK for each
k ≥ 1. By Lemma 4.2, we have �qS,r (eSeK) =

(
s
r

)
λSeSeK −

(
s−1
r−1

)
ηS∂eSeK . Since

ηS∂eS = λSeS , we have �qS,r (eSeK) =
(
s−1
r

)
λSeSeK . Hence, by (4.2), we have

ωq(S, r)(eSeK) = �qS,r (eSeK)−
s−r−1∑
k=1

(
r + k − 1

k

)
ωq(S, r + k)(eSeK)

=
(
s − 1

r

)
λSeSeK −

s−r−1∑
k=1

(
r + k − 1

k

)
λSeSeK = λSeSeK,

using the binomial identities

p∑
k=0

(
N + k
k

)
=

(
N + p + 1

p

)
=

(
N + p + 1

N + 1

)
, (4.3)

with N = r − 1 and p = s − r − 1.
If |J | ≥ r + 1, we must show that ωq(S, r)(∂eJ eK) = λS∂eJ eK . Suppose
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|J | = r + p + 1 for some p ≥ 0. Then, by Lemma 4.2, we have

�
q
S,r (∂eJ eK) =

r+p+1∑
i=1

(−1)i−1�
q
S,r (eJi eK)

=
r+p+1∑
i=1

(−1)i−1
[(
r + p
r

)
λSeJi eK −

(
r + p − 1

r − 1

)
ηS(∂eJi )eK

]
=

(
r + p
r

)
λS(∂eJ )eK −

(
r + p − 1

r − 1

)
ηS(∂

2eJ )eK

=
(
r + p
r

)
λS(∂eJ )eK.

By induction, we have

ωq(S, r + k)((∂eJ )eK) =
{
λS(∂eJ )eK if 1 ≤ k ≤ p,
0 if p + 1 ≤ k ≤ s − r − 1.

So using the recursion (4.2) and the identities (4.3), we obtain

ωq(S, r)((∂eJ )eK) =
(
r + p
r

)
λS(∂eJ )eK −

p∑
k=1

(
r + k − 1

k

)
λS(∂eJ )eK

= λS(∂eJ )eK.
If |J | ≥ r , we must show that ωq(S, r)(ηSeJ eK) = λSηSeJ eK . Suppose |J | =

r + p for some p ≥ 0. Then, by Lemma 4.2, we have

�
q
S,r (ηSeJ eK) =

∑
i∈S

λi�
q
S,r (eieJ eK)

=
∑
i∈S

λi

[(
r + p + 1

r

)
λSeieJ eK −

(
r + p
r − 1

)
ηS∂(eieJ )eK

]
=

(
r + p + 1

r

)
λSηSeJ eK −

(
r + p
r − 1

) ∑
i∈S

λiηS(eJ − ei∂eJ )eK

=
[(
r + p + 1

r

)
−

(
r + p
r − 1

)]
λSηSeJ eK +

(
r + p
r − 1

)
ηSηS(∂eJ )eK

=
(
r + p
r

)
λSηSeJ eK.

By induction, we have

ωq(S, r + k)(ηSeJ eK) =
{
λSηSeJ eK if 1 ≤ k ≤ p,
0 if p + 1 ≤ k ≤ s − r − 1.
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So using the recursion (4.2) and the identities (4.3), we obtain ωq(S, r)(ηSeJ eK) =
λSηSeJ eK as above.

Thus the vectors in the sets V
q,r
S (λ) and W

q,r
S (λ) are eigenvectors of ωq(S, r)

corresponding to the eigenvalues 0 and λS as asserted. Since these vectors span
Aq(G�n) by Lemma 2.4, it remains to compute the dimensions of the eigenspaces
Eq(0) = span V

q,r
S and Eq(λS) = span W

q,r
S corresponding to these eigenvalues.

If |J | = p and |J | + |K| = q, then span{eJ eK | J ⊂ S,K ⊂ [n] \ S} has
dimension (

s

p

)(
n− s
q − p

)
.

If |J | = p + 1 and |J | − 1 + |K| = q, then span{(∂eJ )eK | J ⊂ S,K ⊂ [n] \ S}
has dimension

dim im[∂ : Ap+1(Gss)→ Ap(Gss)] ·
(
n− s
q − p

)
=

(
s − 1

p

)(
n− s
q − p

)
.

If |J | = p− 1 and |J | + 1+ |K| = q, then span{ηSeJ eK | J ⊂ S,K ⊂ [n] \ S} has
dimension

dim ker[ηS : Ap(Gss)→ Ap+1(Gss)] ·
(
n− s
q − p

)
=

[(
s

p

)
−

(
s − 1

p

)] (
n− s
q − p

)
.

Using these calculations, it is readily checked that

dimEq(0) =
r∑

p=0

(
s

p

)(
n− s
q − p

)
−

(
s − 1

r

)(
n− s
q − r

)
,

and

dimEq(λS) =
min(q,s)∑
p=r+1

(
s

p

)(
n− s
q − p

)
+

(
s − 1

r

)(
n− s
q − r

)
.

The fact that dimEq(0)+ dimEq(λS) = dimAq(G�n) =
(
n
q

)
may be checked using

the binomial identities

k∑
p=0

(
m

p

)(
N

k − p
)
=

(
m+N
k

)
and

m∑
p=0

(
m

p

)(
N

k + p
)
=

(
m+N
m+ r

)
=

(
m+N
N − k

)

with m = s, N = n − s, and k = q in the case q < s, and m = s, N = n − s, and
k = n− s − q in the case q ≥ s. �
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If n = � and λ �= 0, the complex (A•(G), eλ) is acyclic. So assume that n > �.
Then, for λ �= 0, the cohomology of this complex is concentrated in dimension �, and
dimH�(G) = (

n−1
�

)
. Let ρ = ρG : A�(G) → H�(G) denote the projection. Since

ω•λ(S, r) is a chain map, the kernel of this projection, ker(ρ) ⊂ A�(G), is an invariant
subspace for ω�λ(S, r).

Lemma 4.4. Let T : V → V be an endomorphism of a finite dimensional (complex)
vector space, and V ′ an invariant subspace. If T is diagonalizable, then the in-
duced endomorphism T ′′ on the quotient V ′′ = V/V ′ is also diagonalizable, and the
spectrum of T ′′ is contained in the spectrum of T .

Proof. Let T ′ denote the restriction of T to V ′, and let π : V → V ′′ be the projection.
The vector space V admits a basis B = {v1, . . . , vk, vk+1, . . . , vn} for which B ′ =
{v1, . . . , vk} is a basis for the subspace V ′ and B ′′ = {π(vk+1), . . . , π(vn)} is a basis
for the quotient V ′′. The matrix of T relative to the basis B is

A =
(

A′ ∗
0 A′′

)
,

where A′ is the matrix of T ′ relative to B ′ and A′′ is the matrix of the induced
endomorphism T ′′ relative to B ′′.

Let r1, . . . , rm be the distinct eigenvalues of T . Since T is diagonalizable, the
minimal polynomial p of T factors as p(t) = (t− r1) . . . (t− rm). The polynomial p
annihilates the matrix A of T , p(A) = 0. Using the block decomposition of A above,
it follows that p also annihilates the matrix A′′ of T ′′, p(A′′) = 0. Consequently, the
minimal polynomialp′′ of T ′′ dividesp. Hence, p′′ is of the form (t−ri1) . . . (t−rij ),
T ′′ is diagonalizable, and the eigenvalues of T ′′ are among the eigenvalues of T . �

For an arrangement A of arbitrary combinatorial type T , and T -nonresonant
weights λ, we recall the βnbc basis of [7] for the single nonvanishing cohomology
groupH�(T ) = H�(M;L). Recall that the hyperplanes of A = {Hj }nj=1 are ordered.
A circuit is an inclusion-minimal dependent set of hyperplanes in A, and a broken
circuit is a set T for which there exists H < min(T ) so that T ∪ {H } is a circuit.
A frame is a maximal independent set, and an nbc frame is a frame which contains
no broken circuit. Since A contains � linearly independent hyperplanes, every frame
has cardinality �. The set of nbc frames is a basis for A�(T ). An nbc frame B =
(Hj1, . . . , Hj�) is a βnbc frame provided that for each k, 1 ≤ k ≤ �, there exists
H ∈ A such that H < Hjk and (B \ {Hjk }) ∪ {H } is a frame. Note that these
constructions depend only on the combinatorial type T of A, and let βnbc(T ) be the
set of all βnbc frames of an arrangement of type T .

Definition 4.5. Given B = (Hj1, . . . , Hj�) in βnbc(T ), define ξ(B) ∈ A�(T ) by
ξ(B) = ∧�

p=1 aλ(Xp), where Xp = ⋂�
k=p Hjk and aλ(X) = ∑

X⊆Hi λiai . Denote
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the cohomology class of ξ(B) inH�(T ) = H�(A•(T ), aλ) by the same symbol. The
set {ξ(B) | B ∈ βnbc(T )} is the βnbc basis for H�(T ).

Theorem 4.6. Let S ⊂ [n + 1] be a subset of cardinality s, and fix r , 1 ≤ r ≤
min(�, s − 1). For G-nonresonant weights λ satisfying λS �= 0, the endomorphism
�λ(S, r) ofH�(G) induced by ω�λ(S, r) is diagonalizable, with eigenvalues 0 and λS .
The dimension of the λS-eigenspace is

min(�,s)∑
p=r+1

(
s

p

)(
n− s − 1

�− p
)
+

(
s − 1

r

)(
n− s − 1

�− r
)
,

and the dimension of the 0-eigenspace is

r∑
p=0

(
s

p

)(
n− s − 1

�− p
)
−

(
s − 1

r

)(
n− s − 1

�− r
)
.

Proof. By Theorem 4.3 and Lemma 4.4, the endomorphism �λ(S, r) is diagonaliz-
able, with spectrum contained in {0, λS}.

Let I = {I = (i1, . . . , i�) | 1 ≤ i1 < i2 < · · · < i� ≤ n}. Then {eI | I ∈ I } is
the nbc basis of A�(G) and {ξI = λi1 . . . λi�eI | I ∈ I , 1 /∈ I } is the βnbc basis of
H�(G). The projection ρ : A�(G)→ H�(G) is given by

ρ(eI ) =
{

(λi1 . . . λi�)
−1ξI if 1 /∈ I ,

−(λi1 . . . λi�)−1 ∑
j /∈I ξj ξI1 if 1 ∈ I .

Using Lemma 2.1, we can assume that S ⊂ [2, n]. As ρ�ω�λ(S, r) = �λ(S, r)�ρ,
if v is an eigenvector of ω�λ(S, r) and ρ(v) �= 0, then ρ(v) is an eigenvector of
�λ(S, r). Let J ⊂ S and K ⊂ [2, n] \ S. Note that 1 /∈ K . Then one can check that
the 0-eigenspace of �λ(S, r) is spanned by

{ρ(eJ eK) | |J | ≤ r − 1} ∪ {ρ(ηSeJ eK) | |J | = r − 1},
that the λS-eigenspace of �λ(S, r) is spanned by

{ρ(eSeK) | if � ≥ s} ∪ {ρ((∂eJ )eK) | |J | ≥ r + 1} ∪ {ρ(ηSeJ eK) | |J | ≥ r},
and that the dimensions of these eigenspaces are as asserted. �

Example 4.7. Let n = 5, � = 2, S = {3, 4, 5}, and r = 1. By Theorem 4.6, for G-
nonresonant weights satisfying λS �= 0, the endomorphism�λ(S, r) ofH 2(G) � C

6
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is diagonalizable, the λS-eigenspace is 5-dimensional, and the 0-eigenspace is 1-
dimensional (note that

(
p
q

) = 0 if p < q). Calculating as in the proof of Theorem 4.6,
we find that the λS-eigenspace has basis

ρ(λ2λ3λ5(∂e3,5)e2) = λ5ξ2,3 − λ3ξ2,5, ρ(−λ3η3,4,5e3) = ξ3,4 + ξ3,5,

ρ(λ2λ4λ5(∂e4,5)e2) = λ5ξ2,4 − λ4ξ2,5, ρ(λ5η3,4,5e5) = ξ3,5 + ξ4,5,

ρ(λ3λ4λ5∂e3,4,5) = λ5ξ3,4 − λ4ξ3,5 + λ3ξ4,5,

and the 0-eigenspace has basis ρ(λ1λ2e1,2) = ξ2,3 + ξ2,4 + ξ2,5.

5. Nonresonant eigenvalues

In this section, we prove that the Gauss–Manin endomorphism �λ(T
′,T ) of (1.1)

is diagonalizable and determine its eigenvalues. We accomplish this by showing that
the endomorphism �̃λ(T

′,T ) in the commutative diagram (1.2) may be replaced by
the endomorphism �λ(S, r), whose eigenstructure was computed in Theorem 4.6.

For an arbitrary type T , let I •(T ) be the corresponding Orlik–Solomon ideal, so
that A•(T ) � A•(G)/I •(T ). The natural projection of A•(G) onto A•(T ) is a chain
map π : (A•(G), eλ) → (A•(T ), aλ) which, for T -nonresonant weights λ, induces
the projection τ : H�(G)→ H�(T ) upon passage to cohomology. If ρG : A�(G)→
H�(G) and ρT : A�(T )→ H�(T ) are the projections, then τ � ρG = ρT � π .

Theorem 5.1. If T ′ is a degeneration of T with principal dependence (S, r), then
�λ(T

′,T ) � τ = τ ��λ(S, r). In other words, the following diagram commutes:

H�(G)

�λ(S,r)

��

τ �� H�(T )

�λ(T
′,T )

��
H�(G) τ

�� H�(T )

Proof. As noted in the introduction, the Gauss–Manin endomorphism�λ(T
′,T ) of

H�(T ) is induced by the endomorphism �̃λ(T
′,T ) of H�(G), see [4, Thm. 7.3]

and (1.2). In turn, �̃λ(T
′,T ) is the map in cohomology induced by the cochain

endomorphism ω•λ(T ′,T ) of the complex (A•(G), eλ), see Theorem 3.1. The map
ω•λ(T ′,T ) also induces a cochain endomorphism ω̄•λ(T ′,T ) of (A•(T ), aλ), and the
Gauss–Manin endomorphism �λ(T

′,T ) may be realized as the map in cohomol-
ogy induced by the latter, see [5, Thm. 7.1]. In summary, we have the following
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commutative diagram.

A�(G)
π ��

ω�λ(T
′,T )

��

ρG ����
��

��
��

� A�(T )
ρT

�����������

ω̄�λ(T
′,T )

��

H�(G)
τ ��

�̃λ(T
′,T )

��

H�(T )

�λ(T
′,T )

��

A�(G)

ρG ����
��

��
��

�
π �� A�(T )

ρT

�����������

H�(G) τ
�� H�(T )

(5.1)

To establish the theorem, it suffices to show that the endomorphisms ω•λ(T ′,T ) and
ω•λ(S, r) of A•(G) induce the same endomorphism of A•(T ).

The Orlik–Solomon ideal I •(T ) gives rise to a subcomplex I •R(T ) = I •(T )⊗ R
of theAomoto complexA•R(G), with quotientA•R(T ), theAomoto complex of type T .
Since ω•λ(T ′,T ) and ω•λ(S, r) are specializations at λ of the corresponding endo-
morphims of the Aomoto complex A•R(G), it is enough to show that ω•(T ′,T ) and
ω•(S, r) induce the same endomorphism of A•R(T ).

By Theorem 3.2, there are dependence pairs (Si, ri), 1 ≤ i ≤ k, such that Dep(T )∗
contains Dep(T (Si, ri))∗ and Dep(T ′)∗ =⋃k

i=0 Dep(T (Si, ri))∗, where (S0, r0) =
(S, r) is the pair of principal dependence. It follows that there are constants ci so that
ω•(T ′) = ω•(S, r)+∑k

i=1 ci · ω•(Si, ri).
If Dep(T (Si, ri))∗ ⊂ Dep(T )∗, it follows from Theorem 4.3 that the image of

ω•(Si, ri) : A•R(G) → A•R(G) is contained in I •R(T ). Consequently, the endomor-
phisms ω̄•(T ′) and ω̄•(S, r) of the Aomoto complex A•R(T ) induced by ω•(T ′) and
ω•(S, r) are equal.

Finally, ω•(T ′) = ω•(T ′,T )+ ω•(T ), see (3.3). It follows from the definitions
that the image of ω•(T ) is also contained in I •R(T ). Hence, the endomorphisms
ω̄•(T ′) and ω̄•(T ′,T ) ofA•R(T ) induced by ω•(T ′) and ω•(T ′,T ) are equal. �

Theorem 4.6 and Theorem 5.1 yield the result stated in the introduction.

Theorem 5.2. Let T ′ be a degeneration of T with principal dependence (S, r), and λ

a collection of T -nonresonant weights satisfying λS �= 0. Then the Gauss–Manin
endomorphism �λ(T

′,T ) is diagonalizable, with spectrum contained in {0, λS}.
Proof. By Theorem 4.6, the endomorphism �λ(S, r) of H�(G) is diagonalizable,
with eigenvalues 0 and λS . By Theorem 5.1, we have�λ(T

′,T ) � τ = τ ��λ(S, r).
Checking that ker(τ ) ⊂ H�(G) is an invariant subspace for �λ(S, r), the result
follows from Lemma 4.4. �
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Remark 5.3. The Gauss–Manin endomorphism�λ(T
′,T ) ofH�(T ) is determined

by the endomorphism �λ(S, r) of H�(G) and the projection τ : H�(G) → H�(T )
via the equality�λ(T

′,T ) � τ = τ ��λ(S, r). Together with the explicit description
of the eigenstructure of �λ(S, r) provided by Theorems 4.3 and 4.6, this yields an
algorithm for finding the (geometric) multiplicities of the eigenvalues of�λ(T

′,T ).

The Gauss–Manin connection ∇ = ∑
�T ′ ⊗ �λ(T

′,T ) on the vector bun-
dle H → B(T ) with fiber H�(T ) corresponds to a monodromy representation
� : π1(B(T )) → AutC

(
H�(T )

)
. For a degeneration T ′ of T , let γT ′ ∈ π1(B(T ))

be a simple loop in B(T ) around a generic point in B(T ′). Then the automorphism
�(γT ′) is conjugate to exp

(−2π i�λ(T
′,T )

)
, see for instance [3, Prop. 4.1]. The-

orem 5.2 yields:

Corollary 5.4. Let T ′ be a degeneration of T with principal dependence (S, r), and λ

a collection of T -nonresonant weights satisfying λS �= 0. Then the automorphism
�(γT ′) is diagonalizable, with spectrum contained in {1, exp(−2π i λS)}.

We conclude with several examples which illustrate these results.

5.5. Codimension zero. Recall that G denotes the combinatorial type of a gen-
eral position arrangement of n hyperplanes in C

�, and that n ≥ �. Weights λ =
(λ1, . . . , λn) are G-nonresonant if λj �= 0 for each j . If n = �, then H •(G) = 0, so
we assume that n > �. Then dimH�(G) = (

n−1
�

)
. The moduli space B(G) has codi-

mension zero in (CP
�)n, and consists of all matrices b for which every (�+1)×(�+1)

minor is nonzero, see (3.1). For general position arrangements, the Gauss–Manin
connection was determined by Aomoto and Kita [2]. The corresponding connection
1-form is given by ∇ =∑

�T ⊗�λ(T ,G), where the sum is over all �+ 1 element
subsets S of [n + 1], T = T (S, � + 1), and �T is a logarithmic 1-form on (CP

�)n

with a simple pole along the divisor defined by the vanishing of the (�+ 1)× (�+ 1)
minor of b with rows indexed by S. Theorem 4.6 gives:

Proposition 5.6. Let S be an � + 1 element subset of [n], let T = T (S, �+ 1),
and λ a collection of G-nonresonant weights satisfying λS �= 0. Then the Gauss–
Manin endomorphism �λ(T ,G) is diagonalizable, with eigenvalues 0 and λS .
The dimension of the λS-eigenspace is 1, and the dimension of the 0-eigenspace
is

(
n−1
�

)− 1.

5.7. Codimension one. If T is a combinatorial type for which the cardinality of
Dep(T )�+1 is 1, then the moduli space B(T ) is of codimension one in (CP

�)n. Write
Dep(T )�+1 = {K}. As shown by Terao [15], noted in the proof of Theorem 3.2,
and illustrated in Example 3.4, the combinatorial type T admits three types of de-
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generation T ′ = T (S, r). The principal dependencies of these degenerations are as
follows.

I: (S, �), where |S| = �+ 1 and |S ∩K| ≤ �− 1;

II: (S, �− 1), where S = Kp, for each p, 1 ≤ p ≤ �+ 1;

III: (S, �), where S = (m,K), for each m ∈ [n+ 1] \K .

For the combinatorial type T and T -nonresonant weights λ, the Gauss–Manin
connection was determined by Terao [15]. The corresponding connection 1-form
is given by ∇ = ∑

�T ′ ⊗ �λ(T
′,T ), where T ′ ranges over the three types of

degeneration of T noted above. In [15], Terao also found the eigenvalues of the
endomorphism �λ(T

′,T ) and their algebraic multiplicities. If λ satisfies λS �= 0
for each of the principal dependence sets S recorded above, Terao’s result concerning
the eigenstructure of the endomorphism �λ(T

′,T ) may be strengthened as follows.

Proposition 5.8. Let T be a combinatorial type of codimension one, let T ′ = T (S, r)
be a degeneration of T , and λ a collection of T -nonresonant weights satisfying
λS �= 0. Then the Gauss–Manin endomorphism �λ(T

′,T ) is diagonalizable, with
eigenvalues 0 and λS .

1. If T ′ is a degeneration of type I, the dimension of the λS-eigenspace is 1, and
the dimension of the 0-eigenspace is dimH�(T )− 1 = (

n−1
�

)− 2.

2. If T ′ is a degeneration of type II, the dimension of the λS-eigenspace is n−�−1,
and the dimension of the 0-eigenspace is

(
n−1
�

)− n+ �.
3. If T ′ is a degeneration of type III, the dimension of the λS-eigenspace is �, and

the dimension of the 0-eigenspace is
(
n−1
�

)− �− 1.

Proof. By Theorem 5.2, the endomorphism�λ(T
′,T ) is diagonalizable, with spec-

trum contained in {0, λS}.
Without loss, assume that Dep(T )�+1 = {K}, where K = [�+ 1]. Then the nbc

basis ofA�(T ) consists of monomials aI , where I ⊂ [n], |I | = �, and I �= [2, �+1].
Write F = [2, �+ 1]. The projection π : A�(G)→ A�(T ) is given by

π(eI ) =
{
aI if I �= F ,

a1∂aF if I = F .

The βnbc basis forH�(T ) consists of monomials ξI , where I ⊂ [2, n], |I | = �, and
I �= F . The projection ρ = ρT : A�(T )→ H�(T ) is given by

ρ(aI ) =

⎧⎪⎨⎪⎩
(λi1 . . . λi�)

−1ξI if 1 /∈ I ,

−(λi1 . . . λi�)−1 ∑
j /∈I ξj ξI1 if 1 ∈ I, I �⊂ K ,

−(λKλi1 . . . λi�)−1 ∑
j /∈K

[
λI ξj ξI1 + ξj ξp∂ξI1

]
if 1 ∈ I, I = K \ {p}.
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If T ′ is a degeneration of type I with principal dependence (S, �), then |S ∩K| ≤
�−1 and we can assume that S∩K ⊂ [3, �+1]. By Theorem 4.3, the endomorphism
ω�λ(S, �) of A�(G) is diagonalizable, with eigenvalues 0 and λS . The 0-eigenspace is
spanned by {eJ eL | |J | ≤ �−1}∪{ηSeJ | |J | = �−1}, where J ⊂ S andL ⊂ [n]\S,
and the λS-eigenspace is spanned by ∂eS . By Theorem 5.1, the endomorphism
�λ(T

′,T ) ofH�(T ) satisfies�λ(T
′,T )�ρ �π = ρ �π �ω�λ(S, �), see (5.1). Write

S = (s1, . . . , s�+1). Calculations with the projections π and ρ yield

ρ � π(∂eS)=(λs1 . . . λs�+1)
−1∂ξS,

ρ � π(eJ eL)=(λi1 . . . λi�)−1ξJ ξL, where I=(J, L) and 1 /∈ L,

ρ � π(ηSeJ )=λs1λsp(λs1 . . . λs�+1)
−1(ξSp ± ξS1), where J =(s2, . . . , ŝp, . . . , s�+1).

Checking that

{∂ξS)} ∪ {ξJ ξL | J ⊂ S, |J | ≤ �− 1, L ⊂ [2, n] \ S} ∪ {ξSp ± ξS1 | 2 ≤ p ≤ �+ 1}
forms a basis for H�(T ), we conclude that the dimensions of the eigenspaces are as
asserted for a degeneration of type I.

If T ′ is a degeneration of type II with principal dependence (S, � − 1), we can
assume that S = K1 = [2, �+ 1]. By Theorem 4.3, the endomorphism ω�λ(S, �− 1)
of A�(G) is diagonalizable, with eigenvalues 0 and λS . The 0-eigenspace is spanned
by {eJ eL | |J | ≤ � − 2} ∪ {ηSeJ eq | |J | = � − 2}, where J ⊂ S, L ⊂ [n] \ S,
q /∈ S, and the λS-eigenspace is spanned by {eS} ∪ {(∂eS)eq | q /∈ S}. Note that
the λS-eigenspace of ω�λ(S, � − 1) has dimension n − � + 1. Note also that the λS-
eigenvectors ∂eK = eS − e1∂eS and eλ∂eS are annihilated by the projection ρ � π .
On the other hand, it is readily checked that

{ρ � π((∂eS)eq) | �+ 2 ≤ q ≤ n} (5.2)

is a linearly independent set of (n−�−1) λS-eigenvectors for�λ(T
′,T ) inH�(T ).

Additionally, one can check that the set

{ρ � π(eJ eL) | J ⊂ S, |J | ≤ �− 2} ∪ {ρ � π(ηSeJ eq) | J ⊂ [3, �+ 1], |J | = �− 2}
(5.3)

where L ⊂ [n] \ S and q /∈ S, is a linearly independent set of 0-eigenvectors for
�λ(T

′,T ) in H�(T ). Checking that the dimension of the subspace spanned by the
vectors (5.3) is dimH�(T ) − (n − � − 1), since eigenvectors associated to distinct
eigenvalues are linearly independent, the vectors (5.2) and (5.3) form a basis for
H�(T ). Hence, the dimensions of the eigenspaces are as asserted for a degeneration
of type II.

If T ′ is a degeneration of type III with principal dependence (S, �), we can assume
that S = K ∪ {q} for some q ∈ [� + 2, n]. By Theorem 4.3, the endomorphism
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ω�λ(S, �) of A�(G) is diagonalizable, with eigenvalues 0 and λS . The 0-eigenspace is
spanned by {eJ eL | |J | ≤ �− 1} ∪ {ηSeJ | |J | = �− 2}, where J ⊂ S, L ⊂ [n] \ S,
and the λS-eigenspace is spanned by {∂eJ | J ⊂ S, |J | = � + 1}. Note that the
λS-eigenspace of ω�λ(S, �) has dimension � + 1. Note also that the λS-eigenvector
∂eK is annihilated by the projection ρ �π . Recall that F = [2, �+ 1]. Let Sq denote
the subspace of H�(T ) spanned by {ξI | I ⊂ F ∪ {q}}, and let pq : H�(T ) → Sq
be the natural projection. For J ⊂ F , |J | = � − 1, a calculation reveals that pq �
ρ �π(ηKeJ eq) = λS(λ2 . . . λ�+1λq)

−1ξJ ξq . Consequently, the set {ρ �π(ηKeJ eq) |
J ⊂ F, |J | = �−1} is a linearly independent set of � λS-eigenvectors for�λ(T

′,T )
in H�(T ). Check that the set {ρ � π(eJ eL) | J ⊂ S1, |J | ≤ �− 1, L ⊂ [n] \ S} is a
linearly independent set of dimH�(T )− � 0-eigenvectors for�λ(T

′,T ) inH�(T ).
It follows that the dimensions of the eigenspaces are as asserted for a degeneration
of type III. �

5.9. Further examples. We present three examples of higher codimension.

Example 5.10. Let S be the combinatorial type of the Selberg arrangement A in
C

2 with defining polynomial Q(A) = u1u2(u1 − 1)(u2 − 1)(u1 − u2) depicted in
Figure 2. See [1], [14], [10] for detailed studies of the Gauss–Manin connections
arising in the context of Selberg arrangements.

�
�

�
�

�
5

4
3

1 2

A

345

1 2

A′

Figure 2. A Selberg arrangement and one degeneration.

Here Dep(S)∗ = {126, 346, 135, 245}. Weights λ are S-nonresonant if

λj (1 ≤ j ≤ 6), λ1 + λ2 + λ6, λ1 + λ3 + λ5, λ2 + λ4 + λ5, λ3 + λ4 + λ6 /∈ Z≥0.

For S-nonresonant weights, the βnbc basis forH 2(S) is {�2,4, �2,5}, where�2,j =
(λ2a2 + λ4a4 + λ5a5)λjaj , see Definition 4.5. Recall that λJ = ∑

j∈J λj . The

projection map τ : H 2(G)→ H 2(S) is given by

τ(ξi,j ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�2,4 −�2,5 if (i, j) = (2, 3),

(λ2,4�2,4 + λ4�2,5)/λ2,4,5 if (i, j) = (2, 4),

(λ5�2,4 + λ2,5�2,5)/λ2,4,5 if (i, j) = (2, 5),

0 if (i, j) = (3, 4),

(−λ5�2,4 − λ3,5�2,5)/λ1,3,5 if (i, j) = (3, 5),

(−λ5�2,4 + λ4�2,5)/λ2,4,5 if (i, j) = (4, 5).
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The arrangement A′ in Figure 2 represents one degeneration type S′ of S. Here
Dep(S′,S)∗ = {34, 35, 45, 134, 145, 234, 235, 345, 356, 456}. The sets 34, 35, 45,
and 345 have r = 1, and the others r = 2. The principal dependence is (S, r),
where S = 345 and r = 1. For S-nonresonant weights with λS �= 0, �λ(S

′,S) is
diagonalizable, with spectrum contained in {0, λS} by Theorem 5.2. The projection
τ annihilates the 0-eigenspace of �λ(S, r), and restricts to a surjection E(λS) �
H 2(S), where E(λS) is the λS-eigenspace of �λ(S, r), see Example 4.7. It follows
that �λ(S

′,S) has eigenvalues λS, λS . Note that 0 is not an eigenvalue of �λ(S
′,S)

in this instance.

Although the eigenvalues are determined by the principal dependence (S, r), the
same principal dependence may occur for degenerations of different types. Thus the
multiplicities of the eigenvalues depend on the combinatorial types as well.

Example 5.11. Consider the arrangement A of type T obtained from the arrangement
A in Example 5.10 by rotating line 1 by a (small) angle about the triple point 135,
see Figure 3. Here, lines 1 and 2 meet in affine space, so 126 is no longer dependent.
This change implies that dimA2(T ) = 7 and dimH 2(T ) = 3.

�
�

�
�

��

�
�

�
�

5

4
3

1
2

A
�

�
�

�
345

1
2

A′

Figure 3. A line arrangement and one degeneration.

Weights λ are T -nonresonant if

λj (1 ≤ j ≤ 6), λ1 + λ3 + λ5, λ2 + λ4 + λ5, λ3 + λ4 + λ6 /∈ Z≥0.

For T -nonresonant weights, the βnbc basis for H 2(T ) is {�2,3, �2,4, �2,5}, where
�2,3 = λ2λ3a2,3 and�2,j = (λ2a2+λ4a4+λ5a5)λjaj for j = 4, 5. The projection
map τ : H 2(G)→ H 2(T ) is given by

τ(ξi,j ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2,3 if (i, j) = (2, 3),

(λ2,4�2,4 + λ4�2,5)/λ2,4,5 if (i, j) = (2, 4),

(λ5�2,4 + λ2,5�2,5)/λ2,4,5 if (i, j) = (2, 5),

0 if (i, j) = (3, 4),

(λ5�2,3 − λ3�2,5)/λ1,3,5 if (i, j) = (3, 5),

(−λ5�2,4 + λ4�2,5)/λ2,4,5 if (i, j) = (4, 5).
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The combinatorial type T has a degeneration of type T ′ similar to S′, represented
by the arrangement A′ in Figure 3. As in Example 5.10, the principal dependence
is (S, r), where S = 345 and r = 1. For T -nonresonant weights with λS �= 0, the
spectrum of �λ(T

′,T ) is contained in {0, λS}. Calculations with the projection τ
and the eigenspace decomposition of the endomorphism�λ(S, r) ofH 2(G) given in
Example 4.7 reveal that �λ(T

′,T ) has eigenvalues λS, λS, 0.

Example 5.12. The combinatorial type S in Example 5.10 is a degeneration of the
type T in Example 5.11. The principal dependence of this degeneration is (S, r),
where S = 126 and r = 2. For T -nonresonant weights with λS �= 0, the spectrum
of �λ(S,T ) is contained in {0, λS}. A calculation shows that the eigenvalues are
λS, 0, 0. It is interesting to note that λS = λ1,2,6 = −λ3,4,5.
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