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Isometric immersions into 3-dimensional homogeneous manifolds

Benoît Daniel

Abstract. We give a necessary and sufficient condition for a 2-dimensional Riemannian manifold
to be locally isometrically immersed into a 3-dimensional homogeneous Riemannian manifold
with a 4-dimensional isometry group. The condition is expressed in terms of the metric, the sec-
ond fundamental form, and data arising from an ambient Killing field. This class of 3-manifolds
includes in particular the Berger spheres, the Heisenberg group Nil3, the universal cover of the
Lie group PSL2(R) and the product spaces S2 × R and H2 × R. We give some applications to
constant mean curvature (CMC) surfaces in these manifolds; in particular we prove the existence
of a generalized Lawson correspondence, i.e., a local isometric correspondence between CMC
surfaces in homogeneous 3-manifolds.
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1. Introduction

A classical problem in geometry is to determine whether a Riemannian manifold V

can be isometrically immersed in another Riemaniann manifold V. We will restrict
ourselves to the case of codimension 1 immersions, i.e., V has dimension n and V
has dimension n + 1.

It is well known that the Gauss and Codazzi equations are necessary conditions
relating the Riemann curvature tensor R of V, the Riemann curvature tensor R of
V and the shape operator S of V. Denoting by ∇ the Riemannian connection of V,
these equations are the following:

〈R(X, Y )Z, W 〉 − 〈R(X, Y )Z, W 〉 = 〈SX, Z〉〈SY, W 〉 − 〈SY, Z〉〈SX, W 〉
∇XSY − ∇Y SX − S[X, Y ] = R(X, Y )N,

for all vector fields X, Y , Z and W on V.
Moreover, in the case where V is a space-form, i.e., the sphere Sn+1, the Euclidean

space Rn+1 or the hyperbolic space Hn+1, the Gauss and Codazzi equations are also
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a sufficient condition for V to be locally isometrically immersed in V with S as shape
operator. In this case the Gauss and Codazzi equations involve only the metric and
the shape operator of V.

The author studied this problem when V is a product manifold Sn × R or Hn × R

([Dan04]). Then the Gauss and Codazzi equations involve the metric of V, its shape
operator S, the projection T of the vertical vector field (i.e., the unit vector field
corresponding to the factor R) on the tangent space of V and the normal component ν
of the vertical vector field (i.e., its inner product with the unit normal of V). The author
proved that the Gauss and Codazzi equations, together with two other compatibility
equations coming from the fact that the vertical vector field is parallel, are a necessary
and sufficient condition for V to be locally isometrically immersed in V with S as
shape operator, T as tangent projection of the vertical vector field and ν as normal
component of the vertical vector field.

It is natural to try to generalize this result to other homogeneous Riemannian
manifolds. We will investigate the case of surfaces in manifolds of dimension 3, i.e.,
n = 2. Indeed, the classification of simply connected 3-dimensional homogeneous
manifolds is well known. Such a manifold has an isometry group of dimension 3,
4 or 6. When the dimension of the isometry group is 6, then we have a space form.
When the dimension of the isometry group is 3, the manifold has the geometry of the
Lie group Sol3.

In this paper we will consider the homogeneous manifolds whose isometry groups
have dimension 4: such a manifold is a Riemannian fibration over a 2-dimensional
space form, the fibers are geodesics and there exists a one-parameter family of trans-
lations along the fibers, generated by a unit Killing field ξ which will be called the
vertical vector field. These manifolds are classified, up to isometry, by the curvature
κ of the base surface of the fibration and the bundle curvature τ , where κ and τ

can be any real numbers satisfying κ �= 4τ 2. The bundle curvature is the number τ

such ∇Xξ = τX × ξ for any vector field X on V, where ∇ denotes the Riemannian
connection of V.

When the bundle curvature τ vanishes (and then κ �= 0), we get a product manifold
M2(κ)×R where M2(κ) is the simply connected 2-manifold of constant curvature κ .
Their isometry group has 4 connected components. The vertical vector ξ is simply
the vector corresponding to the factor R. This case was treated in [Dan04].

When τ �= 0, the isometry group has 2 connected components: an isometry either
preserves the orientations of both the fibers and the base of the fibration, or reverses
both orientations. These manifolds are of three types: they have the isometry group
of the Berger spheres for κ > 0, of the Heisenberg group Nil3 for κ = 0, and of

˜PSL2(R) for κ < 0. In this paper we will deal with these three types of manifold.
Like for M2(κ) × R, the Gauss and Codazzi equations involve the metric of V, its
shape operator S, the tangential projection T of ξ and the normal component ν of ξ .
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Denoting by K the curvature of ds2, these equations become

K = det S + τ 2 + (κ − 4τ 2)ν2,

∇XSY − ∇Y SX − S[X, Y ] = (κ − 4τ 2)ν(〈Y, T 〉X − 〈X, T 〉Y )

The first theorem is the following one.

Theorem (Theorem 4.3). Let V be a simply connected oriented Riemannian manifold
of dimension 2, ds2 its metric (which we also denote by 〈·, ·〉), ∇ its Riemannian
connection and J the rotation of angle π

2 on TV. Let S be a field of symmetric
operators Sy : TyV → TyV, T a vector field on V and ν a smooth function on V
such that ‖T ‖2 + ν2 = 1.

Let E be a 3-dimensional homogeneous manifold with a 4-dimensional isometry
group and ξ its vertical vector field. Let κ be its base curvature and τ its bundle
curvature. Then there exists an isometric immersion f : V → E such that the shape
operator with respect to the normal N associated to f is

df � S � df −1

and such that
ξ = df (T ) + νN

if and only if (ds2, S, T , ν) satisfies the Gauss and Codazzi equations for E and, for
all vector fields X on V, the following equations:

∇XT = ν(SX − τ JX), dν(X) + 〈SX − τ JX, T 〉 = 0.

In this case, the immersion is unique up to a global isometry of E preserving the
orientations of both the fibers and the base of the fibration.

The two additional conditions come from the fact that ∇Xξ = τX × ξ for all
vector fields X. We notice that this theorem seems specific to dimension 2, since the
operator of rotation J is involved.

The method to prove this theorem is similar to that of [Dan04] and was inspired
by that of Tenenblat ([Ten71]): it is based on differential forms, moving frames and
integrable distributions. However, things are technically much more complicated
here: in [Dan04] the proof was simplified by the fact that Sn × R and Hn × R can be
included in Rn+2 and in the Lorentz space Ln+2 respectively. We will first present the
models used for the 3-dimensional homogeneous manifolds, and then we will prove
the theorem.

Finally we will give two applications of this theorem to constant mean curva-
ture (CMC) surfaces in 3-dimensional homogeneous manifolds with 4-dimensional
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isometry group. There were many recent developments in this topic (see for exam-
ple [FMP99], [NR04] and references therein); in particular Abresch and Rosenberg
proved the existence of a holomorphic quadratic differential for CMC surfaces in
these manifolds ([AR04], [AR05]).

The first application (Section 5.1) is the existence of an isometric correspon-
dence between certain CMC surfaces in homogeneous 3-manifolds with the same
“anisotropy coefficient” κ −4τ 2. This correspondence generalizes the classical Law-
son correspondence between certain CMC surfaces in space-forms. This is the fol-
lowing theorem.

Theorem (see Theorem 5.2). Let E1 and E2 be two 3-dimensional homogeneous
manifolds with 4-dimensional isometry groups, of base curvatures κ1 and κ2 and
bundle curvatures τ1 and τ2 respectively, and such that

κ1 − 4τ 2
1 = κ2 − 4τ 2

2 .

Let H1 and H2 be two real numbers such that

τ 2
1 + H 2

1 = τ 2
2 + H 2

2 .

Then there exists an isometric correspondence between simply connected CMC
H1 surfaces in E1 and simply connected CMC H2 surfaces in E2.

This correspondence is called the correspondence of the sister surfaces.

Moreover, one surface is obtained from the other one by rotating the traceless part
of its shape operator by a fixed angle θ (depending on the τj and the Hj ).

In particular we get a local isometric correspondence between minimal surfaces in
the Heisenberg group Nil3 (with its standard metric) and CMC 1

2 surfaces in H2 × R.
In this case we have θ = π

2 , which makes this correspondence similar to the conjugate
cousin correspondence in space forms (see [GBKS03], [Kar05]). We compute some
examples: the sister surface of the rotational minimal surface of equation z = 0 in
Nil3 is a graph over H2 in H2 × R invariant by a vertical rotation; the sister surface
of the translational minimal surface of equation z = xy

2 in Nil3 is a graph over H2 in
H2 × R invariant by a hyperbolic translation.

The second application (Section 5.3) is the existence of “twin immersions” of non-
minimal CMC immersions in homogeneous 3-manifolds with non-vanishing bundle
curvature. This twin immersion might be useful to prove anAlexandrov-type theorem
in these manifolds.

Conventions and notations. In this paper we will use the following index conven-
tions: Latin letters i, j , etc, denote integers between 1 and n (or the integers 1 and 2),
Greek letters α, β, etc., denote integers between 1 and n + 1 (or between 1 and 3).
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The set of vector fields on a Riemannian manifold V will be denoted by X(V).
The Riemann curvature tensor R of a Riemannian manifold V of Riemannian

connection ∇ is defined using the following convention:

R(X, Y )Z = ∇Y ∇XZ − ∇X∇Y Z + ∇[X,Y ]Z.

The shape operator of a hypersurface V of a Riemannian manifold V associated
to its unit normal N is

SX = −∇XN

where ∇ is the Riemannian connection of V.

2. 3-dimensional homogeneous manifolds with 4-dimensional isometry group

In this section we will give the general setting for simply connected homogeneous
3-manifolds with 4-dimensional isometry group and we will describe the models
used. We will consider only those having non-vanishing bundle curvature (since the
product manifolds M2(κ) × R were treated in [Dan04]). The reader can refer to
[Sco83] for the geometry of 3-dimensional homogeneous manifolds.

2.1. Canonical frame. Let E be a simply connected 3-dimensional homogeneous
manifold with a 4-dimensional isometry group. Such a manifold is a Riemannian
fibration over a simply connected 2-manifold of constant curvature κ . The fibers are
geodesics. We will denote by ξ a unit vector field on E tangent to the fibers; it will
be called the vertical vector field. It is a Killing field (corresponding to translations
along the fibers).

We will denote by ∇ and R the Riemannian connection and the Riemannian
curvature tensor of E respectively.

We assume that E is not a product manifold M2(κ) × R.
The manifold E locally has a direct orthonormal frame (E1, E2, E3) with

E3 = ξ

whose non-vanishing Christoffel symbols 
α
βγ = 〈∇Eβ Eγ , Eα〉 are the following:


3
12 = 
1

23 = −
3
21 = −
2

13 = τ,


1
32 = −
2

31 = τ − σ,

for some real numbers σ and τ �= 0 (this will be made explicit in the sequel). Then
we have

[E1, E2] = 2τE3, [E2, E3] = σE1, [E3, E1] = σE2.
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We will call (E1, E2, E3) the canonical frame of E. For all vector field X we have

∇XE3 = τX × E3

where×denotes the vector product in E, i.e., for all vector fieldsX, Y , Z, 〈X×Y, Z〉 =
det(E1,E2,E3)(X, Y, Z).

Setting
〈R(X ∧ Y ), Z ∧ W 〉 = 〈R(X, Y )Z, W 〉,

the matrix of R in the basis (E2 ∧ E3, E3 ∧ E1, E1 ∧ E2) is

R = diag(a, a, b)

with
a = τ 2, b = −3τ 2 + 2στ.

We now compute the curvature κ of the base of the fibration. If M → M is a
Riemannian submersion, then the sectional curvature of a 2-plane 
 in M generated
by an orthonormal pair (X, Y ) is

K(
) = K(
) + 3

4

∥∥[X, Y ]v
∥∥2

where X and Y are horizontal lifts of X and Y in M , K(
) is the sectional curvature
of a 2-plane 
 in M generated by (X, Y ), and where Zv denotes the vertical part of
a vector field Z in M (see [Car92], chapter 8). In our case we get

κ = 〈R(E1, E2)E1, E2〉 + 3

4

∥∥[E1, E2]v
∥∥2 = b + 3

4

∥∥2τEv
3

∥∥2 = b + 3τ 2.

Thus we have b = κ − 3τ 2, and so

σ = κ

2τ
.

Proposition 2.1. For all vector fields X, Y, Z, W on E we have

〈R(X, Y )Z, W 〉 = (κ − 3τ 2)〈R0(X, Y )Z, W 〉 + (κ − 4τ 2)〈R1(ξ ; X, Y )Z, W 〉
with

R0(X, Y )Z = 〈X, Z〉Y − 〈Y, Z〉X,

R1(V ; X, Y )Z = 〈Y, V 〉〈Z, V 〉X + 〈Y, Z〉〈X, V 〉V
− 〈X, Z〉〈Y, V 〉V − 〈X, V 〉〈Z, V 〉Y.
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Proof. We set X = X̃ + xξ with X̃ horizontal and x = 〈X, ξ 〉, etc. Using the
multilinearity of the Riemann curvature tensor, we get a sum of 16 terms; the terms
where ξ appears three or four times, or twice at positions 1, 2 or 3, 4, vanish by
antisymmetry. The terms where ξ appears once vanish because the matrix of R in the
basis (E2 ∧ E3, E3 ∧ E1, E1 ∧ E2) is diagonal. Hence we have

〈R(X, Y )Z, W 〉 = 〈R(X̃, Ỹ )Z̃, W̃ 〉 + yw〈R(X̃, ξ)Z̃, ξ〉 + yz〈R(X̃, ξ)ξ, W̃ 〉
+ xw〈R(ξ, Ỹ )Z̃, ξ〉 + xz〈R(ξ, Ỹ )ξ, W̃ 〉

= (κ − 3τ 2)(〈X̃, Z̃〉〈Ỹ, W̃ 〉 − 〈X̃, W̃ 〉〈Ỹ, Z̃〉)
+ τ 2(yw〈X̃, Z̃〉 − yz〈X̃, W̃ 〉 − xw〈Ỹ, Z̃〉 + xz〈Ỹ, W̃ 〉)

= (κ − 3τ 2)(〈X, Z〉〈Y, W 〉 − 〈X, W 〉〈Y, Z〉)
− (κ − 4τ 2)(〈X, Z〉〈Y, ξ〉〈W, ξ〉 + 〈Y, W 〉〈X, ξ 〉〈Z, ξ〉
− 〈X, W 〉〈Y, ξ〉〈Z, ξ〉 − 〈Y, Z〉〈X, ξ 〉〈W, ξ〉). �

2.2. The manifolds with the isometry group of the Berger spheres. They occur
when τ �= 0 and κ > 0; they are fibrations over round 2-spheres. They are obtained
by deforming the metric of a round sphere in a way preserving the Hopf fibration but
modifying the length of the fibers. Their isometry group is included in that of the
round sphere. The reader can refer to [Pet98].

The sphere S3 is the universal covering of SO3(R), which can be identified with
the unitary tangent bundle to the 2-sphere US2. Indeed, the group SO3(R) acts
transitively on US2, and the stabilizer of any point in US2 is trivial. The unitary
tangent bundle US2 can be endowed with the metric induced by the standard metric
on the tangent bundle TS2. We will give an expression of this metric.

Let (x, y) 
→ ϕ(x, y) be a conformal parametrization of a domain D in S2 and
let λ be the conformal factor, i.e., the metric of D is given by λ2(dx2 + dy2). Then
a parametrization of UD is the following:

(x, y, θ) 
→
(
ϕ(x, y),

1

λ
(cos θ∂x + sin θ∂y)

)
.

Let p = ϕ(x, y) ∈ D, v ∈ TpD and V ∈ T(p,v)(UD). Let α(t) = (p(t), v(t))

be a curve such that v(t) ∈ Tp(t)H
2, p(0) = p, v(0) = v and α′(0) = V . Then the

norm of V is given by

‖V ‖2
(p,v) = ‖dπ(V )‖2

p +
∥∥∥∥Dv

dt
(0)

∥∥∥∥2

p

where π : UD → D is the canonical projection.
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We set α(t) = (x(t), y(t), θ(t)). Then we have

v(t) = 1

λ
(cos θ(t)∂x + sin θ(t)∂y),

and thus

Dv

dt
= − λ̇

λ2 (cos θ∂x + sin θ∂y) + θ̇

λ
(− sin θ∂x + cos θ∂y)

+ 1

λ
(cos θ(ẋ∇∂x ∂x + ẏ∇∂y ∂x) + sin θ(ẋ∇∂x ∂y + ẏ∇∂y ∂y)),

where the dot denotes the derivation with respect to t . Since λ̇ = ẋλx + ẏλy ,

∇∂x ∂x = λx

λ
∂x − λy

λ
∂y , ∇∂y ∂y = −λx

λ
∂x + λy

λ
∂y and ∇∂x ∂y = ∇∂y ∂x = λy

λ
∂x + λx

λ
∂y ,

we get
Dv

dt
= 1

λ2 (λθ̇ + ẏλx − ẋλy)(cos θ∂y − sin θ∂x).

Thus

‖V ‖2
(p,v) = λ2(ẋ2 + ẏ2) + 1

λ2 (λθ̇ + ẏλx − ẋλy)
2.

Setting z = θ on the universal covering, we get the following expression for the
metric of ŨD:

ds2 = λ2(dx2 + dy2) +
(

− λy

λ
dx + λx

λ
dy + dz

)2

.

We now choose D = S2 \ {∞} with the metric of constant curvature 4 (i.e., the
metric of the round sphere of radius 1

2 ) given by the stereographic projection, i.e.,

λ = 1

1 + x2 + y2 .

Then we get

ds2 = λ2(dx2 + dy2) + (2λ(ydx − xdy) + dz)2.

More generally, R3 endowed with the metric

ds2 = λ2(dx2 + dy2) + (τλ(ydx − xdy) + dz)2

with

λ = 1

1 + κ
4 (x2 + y2)

is the universal cover of a homogeneous manifold E of bundle curvature τ and of base
curvature κ > 0 minus the fiber corresponding to the point ∞ ∈ S2. The fibers are
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given by {x = x0, y = y0} in these coordinates. The canonical frame is (E1, E2, E3)

with

E1 = λ−1(cos(σz)∂x + sin(σz)∂y) + τ(x sin(σz) − y cos(σz))∂z,

E2 = λ−1(− sin(σz)∂x + cos(σz)∂y) + τ(x cos(σz) + y sin(σz))∂z,

E3 = ∂z

(1)

with
σ = κ

2τ
,

which satisfy

[E1, E2] = 2τE3, [E2, E3] = κ

2τ
E1, [E3, E1] = κ

2τ
E2.

This frame is defined on the open set E′ which is E minus the fiber corresponding to
the point ∞ ∈ S2.

The Berger spheres in the strict sense are the manifolds such that κ = 4.

2.3. The manifolds with the isometry group of the Heisenberg group Nil3. They
occur when τ �= 0 and κ = 0; they are fibrations over the Euclidean plane.

The Heisenberg group is the Lie group

Nil3 =
⎧⎨⎩
⎛⎝1 a c

0 1 b

0 0 1

⎞⎠ ; (a, b, c) ∈ R3

⎫⎬⎭
endowed with a left invariant metric.

It is useful to use exponential coordinates. In this model, the Heisenberg space
Nil3 is R3 endowed with the following metric:

ds2 = dx2 + dy2 + (τ (ydx − xdy) + dz)2.

The fibers are given by {x = x0, y = y0} in these coordinates.
The canonical frame is (E1, E2, E3) with

E1 = ∂x − τy∂z, E2 = ∂y + τx∂z, E3 = ∂z, (2)

which satisfy

[E1, E2] = 2τE3, [E2, E3] = 0, [E3, E1] = 0.

The reader can refer to [FMP99] (where τ = 1
2 ).



96 B. Daniel CMH

2.4. The manifolds with the isometry group of ˜PSL2(R). They occur when τ �= 0
and κ < 0; they are fibrations over hyperbolic planes.

The Lie group ˜PSL2(R) with its standard metric can be identified with the universal
covering of the unitary tangent bundle to the hyperbolic plane UH2 equipped with
its canonical metric. Indeed, the group PSL2(R) acts transitively on UH2, and the
stabilizer of any point in UH2 is trivial. The unitary tangent bundle UH2 can be
endowed with the metric induced by the standard metric on the tangent bundle TH2.
The reader can refer to [Sco83]. We will give an expression of this metric.

Let (x, y) 
→ ϕ(x, y) be a conformal parametrization of H2 and let λ be the
conformal factor, i.e., the metric of H2 is given by λ2(dx2 + dy2). Then, proceeding

as in Section 2.2, we obtain that a metric on ˜PSL2(R) is

ds2 = λ2(dx2 + dy2) +
(

−λy

λ
dx + λx

λ
dy + dz

)2

.

This metric defines a homogeneous manifold with κ = −1 and τ = − 1
2 .

More generally, we can take the Poincaré disk model for the hyperbolic plane of
constant curvature κ < 0. The manifold D2

( 2√−κ

) × R, where D2(ρ) = {(x, y) ∈
R2; x2 + y2 < ρ2}, endowed with the metric

ds2 = λ2(dx2 + dy2) + (τλ(ydx − xdy) + dz)2

with

λ = 1

1 + κ
4 (x2 + y2)

,

is a homogeneous manifold of bundle curvature τ and of base curvature κ < 0. The
fibers are given by {x = x0, y = y0} in these coordinates. The canonical frame is
(E1, E2, E3) with

E1 = λ−1(cos(σz)∂x + sin(σz)∂y) + τ(x sin(σz) − y cos(σz))∂z,

E2 = λ−1(− sin(σz)∂x + cos(σz)∂y) + τ(x cos(σz) + y sin(σz))∂z,

E3 = ∂z

(3)

with

σ = κ

2τ
,

which satisfy

[E1, E2] = 2τE3, [E2, E3] = κ

2τ
E1, [E3, E1] = κ

2τ
E2.
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3. Preliminaries

3.1. The compatibility equations for surfaces in 3-dimensional homogeneous
manifolds. We consider a 3-dimensional homogeneous manifold E with an isometry
group of dimension 4, of bundle curvature τ and of base curvature κ . Let R be the
Riemann curvature tensor of E. Let V be an oriented surface in E, ∇ the Riemannian
connection of V, J the rotation of angle π

2 on TV, N the unit normal to V and S the
shape operator of V.

Proposition 3.1. For X, Y, Z, W ∈ X(V) we have

〈R(X, Y )Z, W 〉 = (κ − 3τ 2)〈R0(X, Y )Z, W 〉 + (κ − 4τ 2)〈R1(T ; X, Y )Z, W 〉,
R(X, Y )N = (κ − 4τ 2)ν(〈Y, T 〉X − 〈X, T 〉Y ),

where
ν = 〈N, ξ〉,

T is the projection of ξ on TV, i.e.,

T = ξ − νN,

and R0 and R1 are as in Proposition 2.1.

Proof. This is a consequence of Proposition 2.1, using the fact that X, Y and Z are
tangent to the surface and N is normal to the surface. �

Corollary 3.2. The Gauss and Codazzi equations in E are

K = det S + τ 2 + (κ − 4τ 2)ν2,

∇XSY − ∇Y SX − S[X, Y ] = (κ − 4τ 2)ν(〈Y, T 〉X − 〈X, T 〉Y ),

where K is the Gauss curvature of V.

Proposition 3.3. For X ∈ X(V) we have

∇XT = ν(SX − τ JX), dν(X) + 〈SX − τ JX, T 〉 = 0.

Proof. On the one hand we have

∇Xξ = ∇X(T + νN)

= ∇XT + dν(X)N + ν∇XN

= ∇XT + 〈SX, T 〉N + dν(X)N − νSX.
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On the other hand we have

∇Xξ = τX × ξ

= τX × (T + νN)

= τ(〈JX, T 〉N − νJX).

We conclude taking the tangential and normal parts in both expressions. �

3.2. Moving frames. In this section we introduce some material about the technique
of moving frames.

Let V be a Riemannian manifold of dimension n, ∇ its Levi-Civita connec-
tion, and R the Riemannian curvature tensor. Let S be a field of symmetric oper-
ators Sy : TyV → TyV. Let (e1, . . . , en) be a local orthonormal frame on V and
(ω1, . . . , ωn) the dual basis of (e1, . . . , en), i.e.,

ωi(ek) = δi
k.

We also set
ωn+1 = 0.

We define the forms ωi
j , ωn+1

j , ωi
n+1 and ωn+1

n+1 on V by

ωi
j (ek) = 〈∇ek

ej , ei〉, ωn+1
j (ek) = 〈Sek, ej 〉,

ω
j
n+1 = −ωn+1

j , ωn+1
n+1 = 0.

Then we have

∇ek
ej =

∑
i

ωi
j (ek)ei, Sek =

∑
j

ωn+1
j (ek)ej .

Finally we set Ri
klj = 〈R(ek, el)ej , ei〉.

Proposition 3.4. We have the following formulas:

dωi +
∑
p

ωi
p ∧ ωp = 0, (4)

∑
p

ωn+1
p ∧ ωp = 0, (5)

dωi
j +

∑
p

ωi
p ∧ ω

p
j = −1

2

∑
k

∑
l

Ri
kljω

k ∧ ωl, (6)

dωn+1
j +

∑
p

ωn+1
p ∧ω

p
j = 1

2

∑
k

∑
l

〈∇ek
Sel −∇el

Sek − S[ek, el], ej 〉ωk ∧ωl. (7)



Vol. 82 (2007) Isometric immersions into 3-dimensional homogeneous manifolds 99

For a proof of these classical formulas, the reader can refer to [Dan04], Proposi-
tion 2.4.

3.3. Some facts about hypersurfaces. In this section we consider an orientable
hypersurface V of an (n+ 1)-dimensional Riemannian manifold V. Let (e1, . . . , en)

be a local orthonormal frame on V, en+1 the normal to V, and (E1, . . . , En+1) a local
orthonormal frame on V. We denote by ∇ and ∇ the Riemannian connections on V

and V respectively, and by S the shape operator of V (with respect to the normal
en+1). We define the forms ωα , ωα

β on V as in Section 3.2. Then we have

∇ek
eβ =

∑
γ

ω
γ
β (ek)eγ .

Let A ∈ SOn+1(R) be the matrix whose columns are the coordinates of the eβ in
the frame (Eα), namely Aα

β = 〈eβ, Eα〉. Let � = (ωα
β) ∈ Mn+1(R).

Lemma 3.5. The matrix A satisfies the following equation:

A−1dA = � + L(A)

with

L(A)αβ =
∑

k

( ∑
γ,δ,ε

Aε
αA

γ

k Aδ
β
δ

γ ε

)
ωk,

where the 
δ
γ ε are the Christoffel symbols of the frame (Eα).

Proof. We have

eβ =
∑
α

Aα
βEα.

Then, on the one hand we have

∇ek
eβ =

∑
δ

dAδ
β(ek)Eδ +

∑
δ

Aδ
β∇ek

Eδ

=
∑

ε

dAε
β(ek)Eδ +

∑
γ

∑
δ

∑
ε

Aδ
βA

γ

k 
ε
γ δEε,

and on the other hand we have

∇ek
eβ =

∑
γ

∑
ε

ω
γ
β (ek)A

ε
γ Eε.



100 B. Daniel CMH

Identifying the coefficients we get

dAε
β(ek) = −

∑
γ

∑
δ

Aδ
βA

γ

k 
ε
γ δ +

∑
γ

ω
γ
β (ek)A

ε
γ

=
∑
γ

∑
δ

Aδ
βA

γ

k 
δ
γ ε +

∑
γ

ω
γ
β (ek)A

ε
γ

since the frame (Eα) is orthonormal.
We conclude using the fact that A−1 is the transpose of A. �

4. Isometric immersions of surfaces into 3-dimensional homogeneous manifolds

We consider a simply connected oriented Riemannian manifold V of dimension 2. Let
ds2 be the metric on V (we will also denote it by 〈·, ·〉), ∇ the Riemannian connection
of V, R its Riemann curvature tensor, K its Gauss curvature, and J the rotation of
angle π

2 on TV. Let S be a field of symmetric operators Sy : TyV → TyV, T a vector
field on V such that ‖T ‖ � 1 and ν a smooth function on V such that ν2 � 1.

The compatibility equations for surfaces in 3-dimensional homogeneous mani-
folds with 4-dimensional isometry group established in Section 3.1 suggest to intro-
duce the following definition.

Definition 4.1. Let E be a 3-dimensional homogeneous manifold with a 4-dimen-
sional isometry group. Let κ be its base curvature and τ its bundle curvature. We say
that (ds2, S, T , ν) satisfies the compatibility equations for E if

‖T ‖2 + ν2 = 1

and, for all X, Y, Z ∈ X(V),

K = det S + τ 2 + (κ − 4τ 2)ν2, (8)

∇XSY − ∇Y SX − S[X, Y ] = (κ − 4τ 2)ν(〈Y, T 〉X − 〈X, T 〉Y ), (9)

∇XT = ν(SX − τ JX), (10)

dν(X) + 〈SX − τ JX, T 〉 = 0. (11)

Remark 4.2. We notice that (10) implies (11) except when ν = 0 (by differentiating
the identity 〈T , T 〉 + ν2 = 1 with respect to X).
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Theorem 4.3. Let V be a simply connected oriented Riemannian manifold of dimen-
sion 2, ds2 its metric and ∇ its Riemannian connection. Let S be a field of symmetric
operators Sy : TyV → TyV, T a vector field on V and ν a smooth function on V
such that ‖T ‖2 + ν2 = 1.

Let E be a 3-dimensional homogeneous manifold with a 4-dimensional isometry
group and ξ its vertical vector field. Let κ be its base curvature and τ its bundle
curvature. Then there exists an isometric immersion f : V → E such that the shape
operator with respect to the normal N associated to f is

df � S � df −1

and such that
ξ = df (T ) + νN

if and only if (ds2, S, T , ν) satisfies the compatibility equations for E. In this case,
the immersion is unique up to a global isometry of E preserving the orientations of
both the fibers and the base of the fibration.

The fact that the compatibility equations are necessary was proved in Section 3.1.
To prove that they are sufficient, we consider a local orthonormal frame (e1, e2) on V
and the forms ωi , ω3, ωi

j , ω3
j , ωi

3 and ω3
3 as in Section 3.2 (with n = 2).

From now on we assume that τ �= 0 since the case τ = 0 was treated in [Dan04].
We denote by (E1, E2, E3) the canonical frame of E (see Section 2.1); in particular

we have E3 = ξ . We denote by E′ the open set where the canonical frame is defined
(in particular we have E′ = E when κ = 0 or κ < 0; see Sections 2.2, 2.3 and 2.4).

We set
T k = 〈T , ek〉, T 3 = ν.

We define the one-form η on V by

η(X) = 〈T , X〉.
In the frame (e1, e2) we have η = ∑

k T kωk . We define the following matrix of
one-forms:

� = (ωα
β) ∈ M3(R).

For a point y ∈ V where (e1, e2) is defined, let Z(y) be the set of matrices
Z ∈ SO3(R) such that the coefficients of the last line of Z are the T β(y). It is
diffeomorphic to the circle S1. For Z ∈ Z(y), we set

L(Z)αβ =
∑

k

( ∑
γ,δ,ε

Zε
αZ

γ

k Zδ
β
δ

γ ε

)
ωk,

where the 
δ
γ ε are the Christoffel symbols of the frame (Eα) (see Section 3.3). This

defines an antisymmetric matrix of 1-forms.
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We also set σ = κ
2τ

.
From now on we assume that the hypotheses of Theorem 4.3 are satisfied. We first

prove some technical lemmas that are consequences of the compatibility equations.

Lemma 4.4. We have
dη = −2τνω1 ∧ ω2.

Proof. By (10) we have dη(X, Y ) = 〈∇XT , Y 〉 − 〈∇Y T , X〉 = 2τν〈X, JY 〉. Thus
dη(e1, e2) = −2τν. �

Lemma 4.5. We have
dT 1 =

∑
γ

T γ ω
γ
1 + τT 3ω2,

dT 2 =
∑
γ

T γ ω
γ
2 − τT 3ω1,

dT 3 =
∑
γ

T γ ω
γ
3 − τT 1ω2 + τT 2ω1.

Proof. The first two identities are a consequence of condition (10) and the last one
of condition (11). �

Lemma 4.6. We have

d� + � ∧ � =
⎛⎝ 0 τ 2 0

−τ 2 0 0
0 0 0

⎞⎠ω1 ∧ ω2

+ (κ − 4τ 2)T 3

⎛⎝ 0 T 3 −T 2

−T 3 0 T 1

T 2 −T 1 0

⎞⎠ω1 ∧ ω2.

Proof. We set � = d� + � ∧ � and Ri
klj = 〈R(ek, el)ej , ei〉. By Proposition 3.4

we have

�i
j = −1

2

∑
k

∑
l

Ri
kljω

k ∧ ωl + ωi
3 ∧ ω3

j ,

and by the Gauss equation (8) we have Ri
klj = Ri

klj + ω3
j ∧ ω3

i (ek, el) with

Ri
klj = (κ − 3τ 2)(δk

j δl
i − δl

j δ
k
i )+ (κ − 4τ 2)(T lT j δk

i +T kT iδl
j −T lT iδk

j −T kT j δl
i ).

Thus we get

�i
j = (κ − 3τ 2)ωi ∧ ωj + (κ − 4τ 2)(T iωj − T jωi) ∧ η.
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In the same way, by Proposition 3.4 we have

�3
j = 1

2

∑
k

∑
l

〈∇ek
Sel − ∇el

Sek − S[ek, el], ej 〉ωk ∧ ωl,

and by the Codazzi equation (9) we have

〈∇ek
Sel − ∇el

Sek − S[ek, el], ej 〉 = (κ − 4τ 2)T 3(T lδk
j − T kδl

j ).

Thus we get

�3
j = (κ − 4τ 2)T 3ωj ∧ η.

Hence we have

� = (κ − 3τ 2)

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ω1 ∧ ω2

+ (κ − 4τ 2)

⎛⎝ 0 −T 2 −T 3

T 2 0 0
T 3 0 0

⎞⎠ω1 ∧ η

+ (κ − 4τ 2)

⎛⎝ 0 T 1 −0
−T 1 0 −T 3

0 T 3 0

⎞⎠ω2 ∧ η.

We conclude using that ω1 ∧ η = T 2ω1 ∧ ω2, ω2 ∧ η = −T 1ω1 ∧ ω2 and (T 1)2 +
(T 2)2 + (T 3)2 = 1. �

Lemma 4.7. We have

L(Z) = (2τ − σ)

⎛⎝ 0 −T 3 T 2

T 3 0 −T 1

−T 2 T 1 0

⎞⎠ η

+
⎛⎝0 0 0

0 0 τ

0 −τ 0

⎞⎠ω1 +
⎛⎝0 0 −τ

0 0 0
τ 0 0

⎞⎠ω2.
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Proof. We compute that

L(Z)αβ =
∑

k

(∑
γ

∑
δ

∑
ε

Zε
αZ

γ

k Zδ
β
δ

γ ε

)
ωk

=
∑

k

(τ (Z2
αZ1

kZ
3
β + Z3

αZ2
kZ

1
β − Z1

αZ2
kZ

3
β − Z3

αZ1
kZ

2
β)

+ (τ − σ)(Z2
αZ3

kZ
1
β − Z1

αZ3
kZ

2
β))ωk

=
∑

k

(τT β(Z1
kZ

2
α − Z1

αZ2
k ) + τT α(Z1

βZ2
k − Z1

kZ
2
β)

+ (τ − σ)T k(Z1
βZ2

α − Z1
αZ2

β))ωk.

Moreover the matrix Z lies in SO3(R), so it is equal to its comatrix. Using this
fact we compute that

L(Z)1
2 = −(2τ − σ)T 3(T 1ω1 + T 2ω2),

L(Z)1
3 = (2τ − σ)T 1T 2ω1 + (2τ − σ)(T 2)2ω2 − τω2,

L(Z)2
3 = −(2τ − σ)(T 1)2ω1 − (2τ − σ)T 1T 2ω2 + τω1,

which proves the lemma. �

Lemma 4.8. We have

L ∧ L = τ(2τ − σ)T 3

⎛⎝ 0 −T 3 T 2

T 3 0 −T 1

−T 2 T 1 0

⎞⎠ω1 ∧ ω2

+ τ(τ − σ)

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠ω1 ∧ ω2.

Proof. We compute that

L ∧ L = τ(2τ − σ)

⎛⎝ 0 T 1 0
−T 1 0 −T 3

0 T 3 0

⎞⎠ η ∧ ω2

+ τ(2τ − σ)

⎛⎝ 0 −T 2 −T 3

T 2 0 0
T 3 0 0

⎞⎠ η ∧ ω1 + τ 2

⎛⎝0 −1 0
1 0 0
0 0 0

⎞⎠ω1 ∧ ω2.

We conclude using that (T 1)2 + (T 2)2 + (T 3)2 = 1. �
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Lemma 4.9. We have

L ∧ � + � ∧ L = (2τ − σ)η ∧
⎛⎝ 0 −dT 3 dT 2

dT 3 0 −dT 1

−dT 2 dT 1 0

⎞⎠
+ τ(2τ − σ)T 3

⎛⎝ 0 T 3 −T 2

−T 3 0 T 1

T 2 −T 1 0

⎞⎠ω1 ∧ ω2

+ τ(2τ − σ)

⎛⎝0 −1 0
1 0 0
0 0 0

⎞⎠ω1 ∧ ω2

+ τ

⎛⎝0 0 0
0 0 −1
0 1 0

⎞⎠ dω1 + τ

⎛⎝ 0 0 1
0 0 0

−1 0 0

⎞⎠ dω2.

Proof. We compute that

L ∧ � + � ∧ L = (2τ − σ)η ∧ M

+ τω2 ∧
⎛⎝ 0 −ω3

2 0
−ω2

3 0 ω2
1

0 ω1
2 0

⎞⎠ + τω1 ∧
⎛⎝ 0 ω1

3 −ω1
2

ω3
1 0 0

−ω2
1 0 0

⎞⎠
with

M =
⎛⎝ 0 T 2ω3

2 − T 1ω1
3 −T 3ω2

3 + T 1ω1
2−T 1ω3

1 + T 2ω2
3 0 T 3ω1

3 − T 2ω2
1

T 1ω2
1 − T 3ω3

2 −T 2ω1
2 + T 3ω3

1 0

⎞⎠ .

We conclude using Lemma 4.5, formulas (4) and (5), and the fact that (T 1)2 +
(T 2)2 + (T 3)2 = 1. �

We now prove the following proposition.

Proposition 4.10. Assume that the compatibility equations for E are satisfied. Let
y0 ∈ V and A0 ∈ Z(y0). Then there exist a neighbourhood U1 of y0 in V and a
unique map A : U1 → SO3(R) such that

A−1dA = � + L(A),

A(y) ∈ Z(y) for all y ∈ U1,

A(y0) = A0.



106 B. Daniel CMH

Proof. Let U be a coordinate neighbourhood in V. The set

F = {(y, Z) ∈ U × SO3(R); Z ∈ Z(y)}
is a manifold of dimension 3, and

T(y,Z)F = {(u, ζ ) ∈ TyU ⊕ TZSO3(R); ζ 3
β = (dT β)y(u)}.

Let Z denote the projection U × SO3(R) → SO3(R) ⊂ M3(R). We consider
on F the following matrix of 1-forms:

� = Z−1dZ − � − L(Z)

where L(Z) is defined in Lemma 3.5, namely for (y, Z) ∈ F we have

�(y,Z) : T(y,Z)F → M3(R),

�(y,Z)(u, ζ ) = Z−1ζ − �y(u) − L(Z)(u).

We claim that, for each (y, Z) ∈ F , the space

D(y, Z) = ker �(y,Z)

has dimension 2. We first notice that the matrix � belongs to so3(R) since �, L(Z)

and Z−1dZ do. Moreover we have

(Z�)3
β = dZ3

β −
∑
γ

Z3
γ ω

γ
β −

∑
γ

Z3
γ L(Z)

γ
β = dT β −

∑
γ

T γ ω
γ
β −

∑
γ

T γ L(Z)
γ
β .

Using Lemmas 4.5 and 4.7 we compute that

(Z�)3
β = 0.

Thus the values of �(y,Z) lie in the space

H = {H ∈ so3(R); (ZH)3
β = 0},

which has dimension 1 (indeed, the map F : SO3(R) → S2, Z 
→ (Z3
β)β is a sub-

mersion, and we have H ∈ H if and only if ZH ∈ ker(dF)Z). Moreover, the space
T(y,Z)F contains the subspace {(0, ZH); H ∈ H}, and the restriction of �(y,Z) on
this subspace is the map (0, ZH) 
→ H . Thus �(y,Z) is onto H , and consequently
the linear map �(y,Z) has rank 1. This finishes proving the claim.

We now prove that the distribution D is involutive. We first compute that

d� = −Z−1dZ ∧ Z−1dZ − d� − dL

= −(� + � + L) ∧ (� + � + L) − d� − dL

= −� ∧ � − � ∧ � − � ∧ � − � ∧ L − L ∧ �

− � ∧ L − L ∧ � − � ∧ � − d� − L ∧ L − dL.
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Using Lemmas 4.4, 4.6, 4.8, 4.9 and the relation σ = κ
2τ

, we obtain

d� = −� ∧ � − � ∧ � − � ∧ � − � ∧ L − L ∧ �.

From this formula we deduce that if ξ1, ξ2 ∈ D , then d�(ξ1, ξ2) = 0, and so
�([ξ1, ξ2]) = ξ1 · �(ξ2) − ξ2 · �(ξ1) − d�(ξ1, ξ2) = 0, i.e., [ξ1, ξ2] ∈ D . Thus the
distribution D is involutive, and so, by the theorem of Frobenius, it is integrable.

Let A be the integral manifold through (y0, A0). If ζ ∈ TA0SO3(R) is such that
(0, ζ ) ∈ T(y0,A0)A = D(y0, A0), then we have 0 = �(y0,A0)(0, ζ ) = A−1

0 ζ . This
proves that

T(y0,A0)A ∩ ({0} × TA0SO3(R)
) = {0}.

Thus the manifold A is locally the graph of a function A : U1 → SO3(R) where U1
is a neighbourhood of y0 in U . By construction, this map satisfies the properties of
Proposition 4.10 and is unique. �

Proposition 4.11. Let x0 ∈ E (without loss of generality we can assume that
x0 ∈ E′). There exist a neighbourhood U2 of y0 contained in U1 and a unique
function f : U2 → E′ such that

df = (B � f )Aω,

f (y0) = x0,

where ω is the column (ω1, ω2, 0) and, for x ∈ E′, B(x) ∈ M3(R) is the matrix of
the coordinates of the frame (Eα(x)) in the frame (∂xα ).

Proof. We consider on U1 × E′ the following matrix of 1-forms:

� = B−1dx − Aω,

namely, for q ∈ U1 and x ∈ E′ we have

�(q,x) : TqU1 ⊕ TxE → M3,1(R),

�(q,x)(u, v) = B(x)−1v − A(q)ωq(u).

We first notice that for all (q, x) ∈ U1 ×E′ the linear map �(q,x) is onto M3,1(R).
Consequently the space

E(q, x) = ker �(q,x)

has dimension 2. We will prove that this distribution E is integrable.
We have

d� = −B−1dBB−1 ∧ dx − dA ∧ ω − A ∧ dω.
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By equations (4) and (5) we have dω = −� ∧ ω; and by Proposition 4.10 we have
dA = A� + AL(A). Thus we get

d� = −B−1dB ∧ � − B−1dB ∧ Aω − AL(A) ∧ ω.

Using Lemma 4.7 we compute that

L(A) ∧ ω = −(2τ − σ)T 3

⎛⎝T 1

T 2

T 3

⎞⎠ω1 ∧ ω2 −
⎛⎝0

0
σ

⎞⎠ω1 ∧ ω2,

and thus, using the fact that A3
β = T β and A = comA, we get

AL(A) ∧ ω =
⎛⎝−σA1

3−σA2
3−2τT 3

⎞⎠ω1 ∧ ω2.

We will use the notation (x, y, z) instead of (x1, x2, x3) for the coordinates in E

and we will use the local models described in Sections 2.2, 2.3 and 2.4. Using
formulas (1), (2) and (3), we get that the matrix B is

B =
⎛⎝ λ−1 cos(σz) −λ−1 sin(σz) 0

λ−1 sin(σz) λ−1 cos(σz) 0
τ(x sin σz − y cos σz) τ(x cos σz + y sin σz) 1

⎞⎠ ,

with

λ = 1

1 + κ
4 (x2 + y2)

.

We will write

Aω =
⎛⎝α1

α2

η

⎞⎠
with

αj = A
j
1ω

1 + A
j
2ω

2.

Then we have

� = B−1dX − Aω =
⎛⎝ λ(cos(σz)dx + sin(σz)dy) − α1

λ(− sin(σz)dx + cos(σz)dy) − α2

τλ(ydx − xdy) + dz − η

⎞⎠ .

We also compute that

B−1dB =
⎛⎝ κ

2 λ(xdx + ydy) −σdz 0
σdz κ

2 λ(xdx + ydy) 0
a b 0

⎞⎠
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with

a = τκ

2
λ(y cos(σz) − x sin(σz))(xdx + ydy) + τ(sin(σz)dx − cos(σz)dy),

b = −τκ

2
λ(x cos(σz) + y sin(σz))(xdx + ydy) + τ(cos(σz)dx + sin(σz)dy).

Thus we have

B−1dB ∧ Aω + AL(A) ∧ ω =
⎛⎝ κ

2 λ(xdx + ydy) ∧ α1 − σdz ∧ α2

σdz ∧ α1 + κ
2 λ(xdx + ydy) ∧ α2

a ∧ α1 + b ∧ α2

⎞⎠
+
⎛⎝−σA1

3−σA2
3−2τT 3

⎞⎠ω1 ∧ ω2.

Using the above expression for � we get

λdx = cos(σz)�1 − sin(σz)�2 + cos(σz)α1 − sin(σz)α2,

λdy = sin(σz)�1 + cos(σz)�2 + sin(σz)α1 + cos(σz)α2,

dz = �3 + η − τλ(ydx − xdy).

The term in the first line of the matrix B−1dB ∧ Aω + AL(A) is

κ

2
(y cos(σz) − x sin(σz))α2 ∧ α1 + στ(y cos(σz) − x sin(σz))α1 ∧ α2

−ση ∧ α2 − σA1
3ω

1 ∧ ω2 + χ1

where χ1 is a linear combination of the �α (the coefficients being 1-forms). Since
σ = κ

2τ
, the first two terms in this expression cancel. Moreover we have η ∧ α2 =

(A3
1A

2
2 − A3

2A
2
1)ω

1 ∧ ω2 = −A1
3ω

1 ∧ ω2, hence the term in the first line of the
matrix B−1dB ∧ Aω + AL(A) is χ1. In the same way, the term in the second line
of the matrix B−1dB ∧ Aω + AL(A) is a linear combination of the �α which will
be denoted by χ2. Finally we compute that the term in the third line of the matrix
B−1dB ∧ Aω + AL(A) is(

2τ

λ
− τκ

2
(x2 + y2)

)
α1 ∧ α2 − 2τT 3ω1 ∧ ω2 + χ3

where χ3 is a linear combination of the �α . Since λ−1 = 1 + κ
4 (x2 + y2) and

α1 ∧ α2 = (A1
1A

2
2 − A1

2A
2
1)ω

1 ∧ ω2 = T 3ω1 ∧ ω2, this term is simply χ3. We
conclude that

B−1dB ∧ Aω + AL(A) = χ
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where χ is a matrix of 2-forms which are linear combinations of the coefficients of �.
Finally we have

d� = −B−1dB ∧ � − χ.

From this formula we deduce that if ξ1, ξ2 ∈ E , then d�(ξ1, ξ2) = 0, and therefore
[ξ1, ξ2] ∈ E . Thus the distributionE is involutive, and so, by the theorem of Frobenius,
it is integrable.

Let A be the integral manifold through (y0, x0). If v ∈ Tx0E is such that (0, v) ∈
T(y0,x0)A = D(y0, x0), then we have 0 = �(y0,x0)(0, v) = B(x0)

−1v. This proves
that

T(y0,x0)A ∩ ({0} × Tx0E
) = {0}.

Thus the manifold A is locally the graph of a function A : U2 → E′ where U2 is
a neighbourhood of y0 in U1. By construction, this map satisfies the properties of
Proposition 4.10 and is unique. �

We now prove the theorem.

Proof of Theorem 4.3. Let y0 ∈ V, A0 ∈ Z(y0) and x0 ∈ E′. We consider on V a
local orthonormal frame (e1, e2) in the neighbourhood of y0 and we keep the same
notations. Then by Propositions 4.10 and 4.11 there exists a unique map A : U2 →
SO3(R) such that

A−1dA = � + L(A),

A(y) ∈ Z(y) for all y ∈ U1,

A(y0) = A0,

and a unique map f : U2 → E′ such that

df = (B � f )Aω,

f (y0) = x0,

where U2 is a neighbourhood of y0, which we can assume simply connected. We will
check that f has the properties required in the theorem on U2.

We have df α(ek) = (B(f )A)αk , so in the frame (∂xα ) the vector df (ek) is given by
the column k of the matrix BA, which is invertible. Hence df has rank 2, and thus f is
an immersion. Moreover, in the frame (Eα) the vector df (ek) is given by the column k

of the matrix A, which is orthogonal, and thus we have 〈df (ep), df (eq)〉 = δ
p
q , which

means that f is an isometry.
The columns of A(y) form a direct orthonormal frame of E. The first and second

columns form a direct orthonormal frame of Tf (y)f (V) Thus the third column gives,
in the frame (Eα), the unit normal N(f (y)) to f (V) in E at the point f (y).
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We set Xj = df (ej ). Then we have

dAα
j (ek) = 〈∇Xk

Xj , Eα〉 + 〈Xj, ∇Xk
Eα〉

= 〈∇Xk
Xj , Eα〉 +

∑
γ

∑
δ

A
γ

k Aδ
j 
δ

γα

= 〈∇Xk
Xj , Eα〉 + (AL(A))αj (ek),

so

〈∇Xk
Xj , N〉 =

∑
α

〈∇Xk
Xj , Eα〉Aα

3 =
∑
α

Aα
3 (dA − AL(A))αj (ek)

=
∑
α

Aα
3 (A�)αj (ek) =

∑
α

∑
γ

Aα
γ Aα

3 ω
γ

j (ek)

= ω3
j (ek) = 〈Sek, ej 〉.

This means that the shape operator of f (V) in E is df � S � df −1.
Finally, the coefficients of the vertical vector ξ = E3 in the orthonormal frame

(X1, X2, N) are given by the last line of A. Since A(y) ∈ Z(y) for all y ∈ U2 we get

ξ =
∑
j

T jXj + T 3N = df (T ) + νN.

We now prove that the local immersion is unique up to a global isometry of E

preserving ξ (and also, consequently, the orientation of the base of the fibration).
Let f̃ : U3 → E be another immersion satisfying the conclusion of the theorem,
where U3 is a simply connected neighbourhood of y0 included in U2, let (X̃β) be the
associated frame (i.e., X̃j = df̃ (ej ) and X̃3 is the normal of f̃ (V)) and let Ã the
matrix of the coordinates of the frame (X̃β) in the frame (Eα). Up to an isometry
of E (which is necessarily direct), we can assume that f (y0) = f̃ (y0) and that the
frames (Xβ(y0)) and (X̃β(y0)) coincide, i.e., A(y0) = Ã(y0). We notice that this
isometry necessarily fixes ξ since the T α are the same for x and x̃. The matrices
A and Ã satisfy A−1dA = � + L(A) and Ã−1dÃ = � + L(Ã) (see Section 3.3),
A(y), Ã(y) ∈ Z(y) and A(y0) = Ã(y0), thus by the uniqueness of the solution of
the equation in Proposition 4.10 we get A(y) = Ã(y). We conclude similarly that
f = f̃ on U3.

The proof that this local immersion f can be extended to the whole V (since V
is simply connected) is exactly the same as the proof of the corresponding statement
in Theorem 3.3 in [Dan04] (it is a standard argument). �

Remark 4.12. If (ds2, S, T , ν) satisfies the compatibility equations and correspond
to an immersion f : � → E, then (ds2, S, −T , −ν) also satisfies the compatibility
equations and corresponds to the immersion σ � f where σ is an isometry of E

reversing the orientations of both the fibers and the base of the fibration.
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5. Constant mean curvature surfaces in 3-dimensional homogeneous manifolds

In this section we will give applications of Theorem 4.3 to constant mean curvature
surfaces (CMC) in 3-dimensional homogeneous manifolds with 4-dimensional isom-
etry group. Abresch and Rosenberg proved that there exists a holomorphic quadratic
differential for CMC surfaces in S2×R and H2×R, generalizing the Hopf differential
for CMC surfaces in 3-dimensional space forms ([AR04]). Since the Hopf differential
is a very useful tool for CMC surfaces, this motivated many works on CMC surfaces
in S2 × R and H2 × R. Recently, Abresch and Rosenberg announced the existence of
a holomorphic quadratic differential for CMC surfaces in all 3-dimensional homo-
geneous manifolds with 4-dimensional isometry group ([AR05]). This indicates that
the theory of CMC surfaces in these manifolds may be particularly interesting.

We will consider constant mean curvature immersions of oriented surfaces. Con-
sequently the mean curvature will be defined with a sign: it will be positive if the
mean curvature vector induces the same orientation as the initial orientation, and it
will be negative if the mean curvature vector induces the opposite orientation.

We will denote by I and J the identity and the rotation of angle π
2 on the tangent

bundle of a surface.

5.1. A generalized Lawson correspondence. It is well known that there exists
an isometric correspondence between certain simply connected CMC surfaces in
space-forms ([Law70]): more precisely, every simply connected CMC H1 surface
in M3(K1) is isometric to a simply connected CMC H2 surface in M3(K2) with
K1 − K2 = H 2

2 − H 2
1 , and the shape operators of these two surfaces differ by

(H2 − H1)I. Two such surfaces are called cousin surfaces. This correspondence is
often called the Lawson correspondence. In particular, any simply connected minimal
surface in S3 is isometric to a CMC 1 surface in R3, and any simply connected minimal
surface in R3 is isometric to a CMC 1 surface in H3.

The Lawson correspondence is a consequence of the Gauss and Codazzi equations
in the space-forms.

In this section we will use the compatibility equations for homogeneous 3-mani-
folds with 4-dimensional isometry group and Theorem 4.3 to prove the existence of an
isometric correspondence between certain simply connected CMC surfaces in these
3-manifolds. Hence this will be a generalisation of the Lawson correspondence.

The technique will be to start with some data (ds2, S, T , ν) on a surface satisfying
the compatibility equations for some homogeneous 3-manifold and to modify them
in order to get data satisfying the compatibility equations for another homogeneous
3-manifold. An important fact is that the space of symmetric traceless operators is
globally invariant by rotation. The easiest change is to keep ds2 and ν, and to rotate
T and the traceless part of S by some fixed angles; the Codazzi equation then implies
that we need to take the same angle for T and the traceless part of S.
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Proposition 5.1. Let E1 and E2 be two 3-dimensional homogeneous manifolds with
4-dimensional isometry groups, of base curvatures κ1 and κ2 and bundle curvatures
τ1 and τ2 respectively. Assume that

κ1 − 4τ 2
1 = κ2 − 4τ 2

2 .

Let H1 and H2 be two real numbers such that

τ 2
1 + H 2

1 = τ 2
2 + H 2

2 .

Let V be a surface with a quadruple (ds2, S1, T1, ν) satisfying the compatibility
equations for E1 and such that

tr S1 = 2H1.

Let
θ ∈ R,

T2 = eθJT1,

S2 = eθJ(S1 − H1I) + H2I.

In particular S2 is symmetric and satisfies

tr S2 = 2H2.

If the real number θ satisfies

τ2 + iH2 = eiθ (τ1 + iH1), (12)

then the quadruple (ds2, S2, T2, ν) satisfies the compatibility equations for E2.
Conversely, if the function ν is not identically zero and if the quadruple

(ds2, S2, T2, ν) satisfies the compatibility equations for E2, then (12) holds.

Proof. The fact that S2 is symmetric comes from the fact that the space of symmetric
traceless operators is invariant by a rotation.

We have
det(Sk − HkI) = det Sk − H 2

k

for k = 1, 2, and so
det S1 = det S2 + H 2

1 − H 2
2 .

Let K be the Gauss curvature of the metric ds2. By the Gauss equation (8) we have

K = det S1 + τ 2
1 + (κ1 − 4τ 2

1 )ν2

= det S2 + H 2
1 − H 2

2 + τ 2
1 + (κ1 − 4τ 2

1 )ν2

= det S2 + τ 2
2 + (κ2 − 4τ 2

2 )ν2
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sinceκ1−4τ 2
1 = κ2−4τ 2

2 and τ 2
1 +H 2

1 = τ 2
2 +H 2

2 . Thus the quadruple (ds2, S2, T2, ν)

satisfies the Gauss equation for E2.
Since J commutes with ∇X for all vector fields X, we have

∇XS2Y − ∇Y S2X − S2[X, Y ] = eθJ(∇XS1Y − ∇Y S1X − S1[X, Y ]).
On the other hand, a computation done in the proof of Proposition 4.1 in [Dan04]
shows that

〈Y, T2〉X − 〈X, T2〉Y = eθJ(〈Y, T1〉X − 〈X, T1〉Y ).

Hence the Codazzi equation for E2 is satisfied by (ds2, S2, T2, ν).
To prove that the quadruple (ds2, S2, T2, ν) satisfies the compatibility equations

(10) and (11) for E2, it suffices to prove that

S2 − τ2J = eθJ(S1 − τ1J). (13)

Using the expression of S2, equation (13) is equivalent to

H2I − τ2J = eθJ(H1I − τ1J). (14)

We notice that this is a purely algebraic condition: the shape operators are not involved
anymore. We consider a local direct orthonormal frame and we will identify the
operators with their matrix in this frame. Then we have

J =
(

0 −1
1 0

)
.

Then equation (14) is equivalent to{
H2 = H1 cos θ + τ1 sin θ,

τ2 = τ1 cos θ − H1 sin θ,

i.e., it is equivalent to equation (12). This proves the first assertion of the theorem.
Conversely, if (ds2, S2, T2, ν) satisfies the compatibility equations for E2, then

the compatibility equations (10) for (ds2, S1, T1, ν) and (ds2, S2, T2, ν) imply that
(13) holds at every point where ν �= 0. If there exists a point where ν �= 0, this
implies that (12) holds. �

Theorem 5.2. Let E1 and E2 be two 3-dimensional homogeneous manifolds with
4-dimensional isometry groups, of base curvatures κ1 and κ2 and bundle curvatures
τ1 and τ2 respectively, and such that

κ1 − 4τ 2
1 = κ2 − 4τ 2

2 .

Let ξ1 and ξ2 be the vertical vector fields of E1 and E2 respectively.
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Let � be a simply connected Riemann surface and let x1 : � → E1 be a conformal
constant mean curvature H1 immersion with H 2

1 � τ 2
2 − τ 2

1 . Let N1 be the induced
normal (compatible with the orientation of �). Let S1 be the symmetric operator
on � induced by the shape operator of x1(�) associated to the normal N1. Let T1
be the vector field on � such that dx1(T1) is the projection of ξ1 onto T(x1(�)). Let
ν = 〈N1, ξ1〉.

Let H2 ∈ R such that
τ 2

1 + H 2
1 = τ 2

2 + H 2
2 .

Let θ ∈ R such that
τ2 + iH2 = eiθ (τ1 + iH1).

Then there exists a conformal immersion x2 : � → E2 such that:

(1) the metrics induced on � by x1 and x2 are the same,

(2) the symmetric operator on � induced by the shape operator of x2(�) is
eθJ(S1 − H1I) + H2I,

(3) ξ2 = dx2(e
θJT1) + νN2 where N2 is the unit normal to x2.

Moreover, this immersion x2 is unique up to isometries of E2 preserving the
orientations of both the fibers and the base of the fibration, and it has constant mean
curvature H2.

The immersions x1 and x2 are called sister immersions. The number θ is called
the phase of (x1, x2).

This means that there exists an isometric correspondence between CMC H1 simply
connected surfaces in E1 and CMC H2 simply connected surfaces in E2.

Proof. Let ds2 be the metric on � induced by x1. Then (ds2, S1, T1, ν) satis-
fies the compatibility equations for E1. Thus, by Proposition 5.1, the quadruple
(ds2, S2, e

θJT1, ν) with S2 = eθJ(S1 − H1I) + H2I also does. Thus by Theorem 4.3
there exists an immersion x2 satisfying properties 1, 2, and 3, and this immersion is
unique up to isometries of E2 preserving the orientations of both the fibers and the
base of the fibration. Moreover, we have tr S2 = 2H2, i.e., the immersion x2 has
mean curvature H2. �

Figure 1 helps visualizing which classes of CMC surfaces are related by the sis-
ter surface correspondence. We start from a CMC surface in some homogeneous
3-manifold. Then we can go horizontally on the graph. We can go to the left un-
til reaching a manifold with τ = 0; in this case the absolute mean curvature |H |
increases. We can go to the right until reaching H = 0; in this case |H | decreases.

A particularly interesting case is when E1 is the Heisenberg group Nil3 with its
standard metric (κ1 = 0, τ1 = 1

2 ) and E2 = H2 × R (κ2 = −1, τ2 = 0). Then CMC
H1 surfaces in Nil3 correspond isometrically to CMC H2 surfaces in H2 × R with
H 2

2 = H 2
1 + 1

4 . In particular we have the following corollary.
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κ

Berger spheres

(second type)˜PSL2(R)

round spheres

Nil3
H2(κ) × R

|H | increasing

Berger spheres

(first type)

R3

S2(κ) × R

Figure 1. The correspondence of the sister surfaces.

Corollary 5.3. There exists an isometric correspondence with phase θ = π
2 be-

tween simply connected minimal surfaces in the Heisenberg group Nil3 and simply
connected CMC 1

2 surfaces in H2 × R.

The fact that θ = π
2 suggests that this correspondence looks like the conjugate

cousin correspondence between minimal surfaces in R3 and CMC 1 surfaces in H3

([Bry87], [UY93]). This correspondence has nice geometric properties, and is useful
to construct CMC 1 surfaces in H3 with some prescribed geometric properties starting
from a solution of a Plateau problem in R3 (see for example [Kar05], [Dan06]). In the
same way, the conjugate cousin correspondence between minimal surfaces in S3 and
CMC 1 surfaces in R3 was used to construct CMC 1 triunduloids in R3 ([GBKS03]).
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In particular, if a minimal surface �1 in Nil3 contains an ambient geodesic γ , then
the normal curvature of γ vanishes, and so

0 = 〈γ ′, S1γ
′〉 =

〈
γ ′, −JS2γ

′ + 1

2
Jγ ′〉 = −〈γ ′, JS2γ

′〉.

This means that Sγ ′ is colinear to γ ′, i.e., γ is a geodesic line of curvature in the
sister CMC 1

2 surface in H2 × R.
We describe three examples of sister CMC 1

2 surfaces in H2 × R of minimal
surfaces in Nil3. We will use the exponential coordinates given in Section 2.3 (with
τ = 1

2 ). We will denote between parentheses ( ) the coordinates of a vector in the
coordinate frame (∂x, ∂y, ∂z), and between brackets [ ] the coordinates of a vector in
the canonical frame (E1, E2, E3); with these notations one has⎛⎝a

b

c

⎞⎠ =
⎡⎣ a

b
1
2 (ya − xb) + c

⎤⎦ .

Example 5.4 (vertical plane). A vertical plane P in Nil3 is a flat minimal surface
(but not totally geodesic). A conformal parametrisation is

ϕ : (u, v) 
→
⎛⎝v

0
u

⎞⎠ .

We have
ϕu = E3, ϕv = E1, N = E2,

and so
ν = 0,

〈T , ∂u〉 = 〈ξ, ϕu〉 = 1,

〈T , ∂v〉 = 〈ξ, ϕv〉 = 0,

i.e.,
T = ∂u.

We also have

∇ϕuN = 1

2
E1 = 1

2
ϕu, ∇ϕvN = 1

2
E3 = 1

2
ϕv,

so in the direct orthonormal frame (∂u, ∂v) we have

S = −1

2

(
0 1
1 0

)
.
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We now show that the CMC 1
2 sister in H2 × R of P is the product H × R

where H is a horocycle in H2. We will use the upper half-plane model for H2. Then
H2 × R = {(x, y, z) ∈ R3; y > 0} and the metric is ds2 = 1

y2 (dx2 + dy2)+ dz2. We
consider the direct orthonormal frame (E1, E2, E3) defined by E1 = y∂x , E2 = y∂y ,

E3 = ∂z; it satisfies ∇E1E1 = E2, ∇E1E2 = −E1, and the other derivatives vanish.
For H , we can choose the curve of equationy = 1 in H2. A conformal parametrization
of H × R is

ϕ̃ : (u, v) 
→
⎛⎝−u

1
v

⎞⎠ .

We have
ϕ̃u = −E1, ϕ̃v = E3, N = E2,

and so
ν̃ = 0, T̃ = ∂v.

We also have
∇ϕ̃u

N = E1 = −ϕ̃u, ∇ϕ̃v
N = 0,

so in the direct orthonormal frame (∂u, ∂v) we have

S̃ =
(

1 0
0 0

)
.

Hence, ϕ̃ induces on R2 the same metric as ϕ, and we have ν̃ = ν, T̃ = JT and
S̃ = JS + 1

2 I, so ϕ̃ is the sister immersion of ϕ. The vertical lines in P are mapped
to horizontal horocycles in H × R, and horizontal lines in P are mapped to vertical
lines in H × R.

Example 5.5 (surface of equation z = 0). The surface A of equation z = 0 in the
exponential coordinates is a minimal surface in Nil3 which is invariant by rotation
about the z-axis (but it is not invariant by any translation; see [FMP99]). We consider
the following parametrisation:

ϕ : (u, v) 
→
⎛⎝u cos v

u sin v

0

⎞⎠ ,

for u > 0 (the origin in A is excluded). We have

ϕu =
⎛⎝cos v

sin v

0

⎞⎠ =
⎡⎣cos v

sin v

0

⎤⎦ ,
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ϕv =
⎛⎝−u sin v

u cos v

0

⎞⎠ =
⎡⎣−u sin v

u cos v

− 1
2u2

⎤⎦ ,

so
〈ϕu, ϕu〉 = 1,

〈ϕv, ϕv〉 = u2
(

1 + u2

4

)
,

〈ϕu, ϕv〉 = 0.

The unit normal vector is N = ϕu×ϕv‖ϕu×ϕv‖ ; we compute that

ν = 1√
1 + u2

4

.

A direct orthonormal frame (e1, e2) is given by

e1 = ∂u, e2 = 1

u

√
1 + u2

4

∂v.

We compute that

T = − u

2
√

1 + u2

4

∂v.

We now show that the CMC 1
2 sister in H2 × R of A is the CMC 1

2 graph B of
Theorem D in [NR04]. This surface B is a graph over the entire H2 and it is invariant
by rotation about a vertical axis. If we take for H2 the Poincaré unit disk model,
then B is the graph of the function (x, y) 
→ 2√

1−x2−y2
. We will use the Lorentzian

for H2 × R, i.e.,

H2 × R = {(x0, x1, x2, x3) ∈ L3 × R; −(x0)2 + (x1)2 + (x2)2 = −1, x0 > 0}
with the restriction of the quadratic form −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2. In
this model, we consider the map

ϕ̃ : (u, v) 
→

⎛⎜⎜⎜⎜⎜⎝
1 + u2

2

u

√
1 + u2

4 cos v

u

√
1 + u2

4 sin v

2
√

1 + u2

4

⎞⎟⎟⎟⎟⎟⎠ ,
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for u > 0. We can check that it is a parametrization of B minus the origin (using that
the correspondence between the Poincaré model and the Lorentzian model is given
by x + iy = x1+ix2

1+x0 , z = x3). We have

ϕ̃u = 1√
1 + u2

4

⎛⎜⎜⎜⎜⎜⎝
u

√
1 + u2

4(
1 + u2

2

)
cos v(

1 + u2

2

)
sin v

u
2

⎞⎟⎟⎟⎟⎟⎠ , ϕ̃v =

⎛⎜⎜⎜⎜⎝
0

−u

√
1 + u2

4 sin v

u

√
1 + u2

4 cos v

0

⎞⎟⎟⎟⎟⎠ ,

so
〈ϕ̃u, ϕ̃u〉 = 1,

〈ϕ̃v, ϕ̃v〉 = u2
(

1 + u2

4

)
,

〈ϕ̃u, ϕ̃v〉 = 0,

so ϕ̃ induces the same metric as ϕ. We compute that

T̃ = u

2
√

1 + u2

4

e1 = JT .

Thus we also have ν̃2 = ν2. Moreover, ϕ̃u points outwards and ϕ̃v points in the
counter-clockwise direction, so the normal Ñ points up, i.e., ν̃ > 0. So we get

ν̃ = ν.

It remains to check that S̃ = JS + 1
2 I. Since ν �= 0, the compatibility equations (10)

for ϕ and ϕ̃ imply that S̃ = J(S − 1
2 J) = JS + 1

2 I. Hence ϕ̃ is the sister immersion
of ϕ.

The straight lines in A passing through the origin are mapped to the generatrices
of B, which are lines of curvatures lying in vertical planes. Thus the symmetries
of B with respect to these vertical planes correspond to the symmetries of A with
respect to the straight lines passing through the origin.

Example 5.6 (surface of equation z = xy
2 ). The surface A of equation z = xy

2 in the
exponential coordinates is a minimal surface in Nil3 which is invariant by translation
along the x-axis (see [FMP99]; note that in this model this translation is not given by
the Euclidean one). We consider the following conformal parametrisation:

ϕ : (u, v) 
→
⎛⎝ u

sinh v
1
2u sinh v

⎞⎠ .
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We have

ϕu =
⎡⎣ 1

0
sinh v

⎤⎦ , ϕv =
⎡⎣ 0

cosh v

0

⎤⎦ .

We have 〈ϕu, ϕu〉 = 〈ϕv, ϕv〉 = cosh2 v and 〈ϕu, ϕv〉 = 0. The unit normal vector is

N = 1

cosh v

⎡⎣− sinh v

0
1

⎤⎦ .

We have

ν = 1

cosh v
, T = sinh v

cosh2 v
∂u.

We now show that the CMC 1
2 sister in H2 × R of A is the CMC 1

2 graph B given
by formula (29) in [SE05]. This surface B is a graph over the entire H2 and it is
invariant by a one-parameter family of hyperbolic transactions. If we take for H2 the

upper half-plane model, then B is the graph of the function (x, y) 
→
√

x2+y2

y
. We

will use the notations of example 5.4. A conformal parametrisation of B is

ϕ̃ : (u, v) 
→
⎛⎝−eu tanh v

eu

cosh v

cosh v

⎞⎠ .

We have

ϕ̃u =
⎛⎝−eu tanh v

eu

cosh v

0

⎞⎠ , ϕ̃v =
⎛⎝ − 1

sinh v− tanh v

sinh v

⎞⎠ ,

so 〈ϕ̃u, ϕ̃u〉 = 〈ϕ̃v, ϕ̃v〉 = cosh2 v and 〈ϕ̃u, ϕ̃v〉 = 0. Hence ϕ̃ induces the same
metric as ϕ. We compute that

ν̃ = 1

cosh v
= ν

and

T̃ = sinh v

cosh2 v
∂v = JT .

Finally, since ν �= 0, the compatibility equations (10) for ϕ and ϕ̃ imply that S̃ =
J(S − 1

2 J) = JS + 1
2 I. Hence ϕ̃ is the sister immersion of ϕ.

The straight lines in A given by x = x0 are mapped to the generatrices of B,
which are lines of curvatures lying in vertical planes. Moreover, the x-axis in A is
mapped to a horizontal geodesic of H2 × R lying in B. Thus the symmetries of B
with respect to vertical planes correspond to the symmetries of A with respect to the
straight lines.
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Example 5.7 (CMC rotational spheres). The sister of the CMC H1 rotational sphere

in Nil3 is the CMC
√

H 2
1 + 1

4 rotational sphere in H2 × R. Indeed, the sister of this

sphere is a possibly immersed CMC sphere in H2 ×R, which is necessarily rotational
by a theorem of Abresch and Rosenberg ([AR04]).

Remark 5.8. CMC H surfaces in H2 ×R have very different properties when H � 1
2

and when H > 1
2 ; for example compact embedded CMC H surfaces exist only for

H > 1
2 . The reader can refer for example to [NR04]. An explanation could be that

CMC H surfaces in H2 × R arise from minimal surfaces in a Berger sphere when

H > 1
2 , in Nil3 when H = 1

2 , and in a space ˜PSL2(R) when H < 1
2 .

Remark 5.9. When κj −4τ 2
j = 0, the sister relation is the composition of the classical

cousin relation between the round 3-spheres and R3 and of the conjugation by a phase
θ in the associate family. The hyperbolic 3-space does not appear in this classification
since it is not a fibration over a 2-manifold of constant curvature.

Remark 5.10. When τj = Hj = 0, the sister relation gives the associate family of a
minimal surface in M2(κ)×R (any θ works). The associate family is a one-parameter
family of minimal isometric deformations of this surface obtained by rotating the
shape operator (see [Dan04]).

A natural question is that of the existence of minimal isometric deformations
of a given minimal surface in a homogeneous 3-manifold E such that τ �= 0. The
compatibility equations show that an associated family cannot be obtained in a simple
way as when τ = 0; indeed, if the quadruple (ds2, S, T , ν) satisfies the compatibility
equations for E, then, in general, the quadruple (ds2, eθJS, eθJT , ν) where θ ∈ R \
2πZ does not. The question of the existence of the associate family for minimal
surfaces in E when τ �= 0 remains open.

5.2. Sister surfaces and stability. We now show that the stability operator is pre-
served by the sister immersion correspondence, which was not obvious a priori since
the stability operator is extrinsic.

Proposition 5.11. Let � be a simply connected Riemann surface and let x : � → E

be a CMC H immersion. Then the stability operator induced by x on � is

L = � − 2K + 4H 2 + 4τ 2 + (κ − 4τ 2)(1 + ν2)

where � is the Laplacian of the induced metric on � and K the Gauss curvature of
this metric.



Vol. 82 (2007) Isometric immersions into 3-dimensional homogeneous manifolds 123

Proof. We recall that the stability operator is

L = � + ‖S‖2 + Ric(N)

where N is the unit normal to x(�), S its shape operator and Ric the Ricci curvature
in E (see for example [NR04] and references therein).

Let (E1, E2, E3)be the canonical frame of E. Then we have Ric(E1) = Ric(E2) =
κ − 2τ 2 and Ric(E3) = 2τ 2 (see Section 2.1), and so

Ric(N) = (κ − 2τ 2)(1 − ν2) + 2τ 2ν2 = (κ − 4τ 2)(1 − ν2) + 2τ 2.

On the other hand we have

‖S‖2 = 4H 2 − 2 det S = 4H 2 + 2τ 2 + 2(κ − 4τ 2)ν2 − 2K

by the Gauss equation (8). Thus we get

‖S‖2 + Ric(N) = 4H 2 + 4τ 2 + (κ − 4τ 2)(1 + ν2) − 2K. �

Proposition 5.12. Let � be a simply connected Riemann surface and let x1 : � → E1
and x2 : � → E2 be two sister immersions. Then x1 and x2 induce the same stability
operator on �.

Proof. This follows Proposition 5.11 since x1 and x2 induce the same metric on �,
H 2

1 + τ 2
1 = H 2

2 + τ 2
2 and κ1 − 4τ 2

1 = κ2 − 4τ 2
2 by hypotheses. �

We recall that a CMC surface V (possibly with boundary) in a Riemannian 3-
manifold V is said to be strongly stable if

−
∫

V
f Lf � 0 (15)

for all smooth functions f on V with compact support, where L is the stability operator
of V. The CMC surface V is said to be weakly stable if (15) holds for all smooth
functions f on V with compact support and such that

∫
V f = 0.

Corollary 5.13. Let �1 ⊂ E1 and �2 ⊂ E2 be sister surfaces (possibly with
boundaries). Assume that �1 and �2 are simply connected. Then �1 is strongly
stable (respectively, weakly stable) if and only if �2 is strongly stable (respectively,
weakly stable).

Proof. Since �1 and �2 are simply connected, we can identify them globally, and
the result follows from Proposition 5.12. �
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5.3. Twin immersions. In this section we will study the special case of sister im-
mersions lying in the same homogeneous 3-manifold. They necessarily have opposite
mean curvatures.

Theorem 5.14. Let E be a homogeneous 3-manifold with a 4-dimensional isometry
group, of base curvature κ and bundle curvature τ . Let ξ be its vertical vector field.

Let � be a simply connected Riemann surface and let x : � → E be a conformal
constant mean curvatureH �= 0 immersion. LetN be the induced normal (compatible
with the orientation of �). Let S be the symmetric operator on � induced by the
shape operator of x(�) associated to the normal N . Let T be the vector field on �

such that dx(T ) is the projection of ξ onto T(x(�)). Let ν = 〈N, ξ〉. Let

θ = −2 arctan
H

τ
.

Then there exists a unique conformal immersion x̂ : � → E such that:

(1) the metrics induced on � by x and x̂ are the same,

(2) the symmetric operator on � induced by the shape operator of x̂(�) is S̃ =
eθJ(S − H I) − H I = eθJ(S − τ J) + τ J,

(3) ξ = dx̂(eθJT ) + νN̂ where N̂ is the unit normal to x̂.

Moreover, this immersion x̂ is unique up to isometries of E preserving the ori-
entations of both the fibers and the base of the fibration, and it has constant mean
curvature −H .

It is called the twin immersion of the immersion x.

Proof. This is a particular case of Theorem 5.2 with E1 = E2 = E, τ1 = τ2 = τ ,
H1 = −H2 = H . It suffices to check that the phase θ satisfies τ −iH = eiθ (τ +iH).

The equivalence of the two expressions of S̃ is a consequence of (14). �

We notice that when τ → 0, then θ → π , i.e., T̃ → −T , and also S̃ → −S.
This limit corresponds to the image of the initial surface by a horizontal symmetry in
M2(κ) × R.

Moreover, we notice that the twin surface of a multigraph (over a part of the base
of the fibration) is also a multigraph (since a surface is a multigraph if and only if ν

does not vanish).
This suggests that the twin surface could be used to get an Alexandrov reflection-

type principle in homogeneous manifolds with non-vanishing bundle curvature, since
there is no Alexandrov reflection principle (see [Ale62]) in these manifolds (the hor-
izontal and vertical “symmetries” are not isometries). Such an Alexandrov reflection
principle would be very useful for the theory of CMC surfaces in homogeneous
manifolds, in particular for proving that any closed embedded CMC surface in the



Vol. 82 (2007) Isometric immersions into 3-dimensional homogeneous manifolds 125

Heisenberg group or in ˜PSL2(R) is a rotational sphere (this was proved for CMC
surfaces in R3, H3, a 3-hemisphere, H2 × R and a 2-hemisphere cross R using the
Alexandrov reflection principle).

We now give some examples of twin surfaces in the Heisenberg group Nil3 with
its standard metric (i.e., κ = 0, τ = 1

2 ). We will use the exponential coordinates
described in Section 2.3. Figueroa, Mercuri and Pedrosa classified CMC surfaces in
Nil3 invariant by a one-parameter family of translations or rotations (see [FMP99];
note that in their article the mean curvature is defined as the trace of the shape operator,
whereas in this paper it is defined as the half of the trace). We will compute the twin
surfaces of these examples. We will denote between parentheses ( ) the coordinates of
a vector in the coordinate frame (∂x, ∂y, ∂z), and between brackets [ ] the coordinates
of a vector in the canonical frame (E1, E2, E3).

Example 5.15 (translational tubes). Let H > 0. The map

ϕ : (u, v) 
→
⎛⎝ u

cos v
2H

u cos v
4H

+ 1
4H

f (v)

⎞⎠ ,

with

f (v) =
√

1 + cos2 v

4H 2 sin v + 1 + 4H 2

2H
arcsin

(
sin v√

1 + 4H 2

)
,

for (u, v) ∈ R2, is a CMC H immersion defining a surface which is invariant by
horizontal translations in the x-direction. This surface is an annulus, and it is a bigraph
over a part of the minimal surface of equation z = xy

2 ; moreover it is “symmetric”
with respect to this minimal surface.

We have

ϕu =
⎛⎝ 1

0
cos v
4H

⎞⎠ =
⎡⎣ 1

0
cos v
2H

⎤⎦ ,

ϕv =
⎛⎝ 0

− sin v
2H−u sin v

4H
+ 1

4H
f ′(v)

⎞⎠ =
⎡⎣ 0

− sin v
2H

1
4H

f ′(v)

⎤⎦ ,

f ′(v) = 2 cos v

√
1 + cos2 v

4H 2 ,

and so

〈ϕu, ϕu〉 = 1 + cos2 v

4H 2 ,
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〈ϕv, ϕv〉 = 1

4H 2

(
1 + cos4 v

4H 2

)
.

〈ϕu, ϕv〉 = cos2 v

4H 2

√
1 + cos2 v

4H 2 .

The unit normal vector is given by N = ϕu×ϕv‖ϕu×ϕv‖ ; we compute that

ν = − sin v√
1 + cos4 v

4H 2

.

We have
〈T , ∂u〉 = 〈ξ, ϕu〉 = cos v

2H
,

〈T , ∂v〉 = 〈ξ, ϕv〉 = cos v

2H

√
1 + cos2 v

4H 2 ,

We notice that ν(u1, −v) = −ν(u2, v) for all (u1, u2, v). This indicates that the
twin immersion could be an orientation-reversing reparametrization of the surface.
For this reason we set

ϕ̃ : (u, v) 
→ ϕ(u + h(v), −v) =
⎛⎝ u + h(v)

cos v
2H

(u + h(v)) cos v
4H

− 1
4H

f (v)

⎞⎠
where h is a function. This is a CMC −H immersion defining globally the same
surface as ϕ. We compute that

ϕ̃u =
⎡⎣ 1

0
cos v
2H

⎤⎦ , ϕ̃v =
⎡⎣ h′(v)

− sin v
2H

h′(v) cos v
2H

− 1
4H

f ′(v)

⎤⎦ ,

and so

〈ϕ̃u, ϕ̃u〉 = 1 + cos2 v

4H 2 ,

〈ϕ̃v, ϕ̃v〉 =
(

1 + cos2 v

4H 2

)
h′(v)2 − cos2 v

2H 2 h′(v)

√
1 + cos2 v

4H 2

+ 1

4H 2

(
1 + cos4 v

4H 2

)
,

〈ϕ̃u, ϕ̃v〉 =
(

1 + cos2 v

4H 2

)
h′(v) − cos2 v

4H 2

√
1 + cos2 v

4H 2 .
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Thus ϕ̃ induces on R2 the same metric as ϕ if and only if

h′(v) = cos2 v

2H 2
√

1 + cos2 v
4H 2

.

We now assume that this condition is satisfied; we can also assume that h(0) = 0.
The function h is increasing. We have

ν̃ = ν,

〈T̃ , ∂u〉 = 〈ξ, ϕ̃u〉 = cos v

2H
,

〈T̃ , ∂v〉 = 〈ξ, ϕ̃v〉 = cos v

2H

√
1 + cos2 v

4H 2

(
cos2 v

4H 2 − 1

)
.

The direct orthonormal frame (e1, e2) obtained from the frame (∂u, ∂v) by the
Gram–Schmidt process satisfies

e1 = ∂u

‖∂u‖ , e2 = −〈∂u, ∂v〉∂u + ‖∂u‖2∂v

‖∂u‖
√‖∂u‖2‖∂u‖2 − 〈∂u, ∂v〉2

.

A computation gives

‖∂u‖2‖∂u‖2 − 〈∂u, ∂v〉2 = 1

4H 2

(
1 + cos2 v

4H 2

)
.

Thus we get

e1 = 1√
1 + cos2 v

4H 2

∂u, e2 = − cos2 v

2H

√
1 + cos2 v

4H 2

∂u + 2H∂v.

So we have

T = cos v√
1 + cos2 v

4H 2

(
1

2H
e1 + e2

)
,

T̃ = cos v√
1 + cos2 v

4H 2

(
1

2H
e1 − e2

)
.

Let θ = −2 arctan(2H). Then we have

cos θ = 1 − 4H 2

1 + 4H 2 , sin θ = − 4H

1 + 4H 2 .
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Since Je1 = e2 and Je2 = −e1, we get

eθJT = T̃ .

Finally, the compatibility equation (10) implies that

S̃ = eθJ(S − τ J) + τ J

at points where ν �= 0; and by continuity this identity holds everywhere. This proves
that ϕ̃ is the twin immersion of ϕ.

Thus the translational tube is globally invariant by the twin relation, but it is not
pointwise invariant: the correspondence is

ϕ(u, v) 
→ ϕ(u + h(v), −v).

Geometrically, this correspondence maps a point of the tube to the other point of
the tube lying in the same fiber and then translates it by h(v) in the x-direction. In
particular, the closed curve v 
→ ϕ(u0, v) is mapped to the curve v 
→ ϕ(u0 +
h(v), −v), which is not closed.

Example 5.16 (rotational spheres). Let H > 0. The map

ϕ : (u, v) 
→
⎛⎜⎝

1
H

cos u cos v

1
H

sin u cos v
1

2H
f (v)

⎞⎟⎠ ,

with f as in example 5.15, for (u, v) ∈ R × (−π
2 , π

2 ), is a CMC −H immersion
defining a rotational sphere minus the top and bottom points (the normal of the
immersion points outside whereas the mean curvature vector points inside). It is
a bigraph over a part of the minimal surface of equation z = 0; moreover it is
“symmetric” with respect to this minimal surface.

We have

ϕu = 1

H

⎡⎣− sin u cos v

cos u cos v

− 1
2H

cos2 v

⎤⎦ , ϕv = 1

H

⎡⎣− cos u sin v

− sin u sin v
1
2f ′(v)

⎤⎦ ,

and so

〈ϕu, ϕu〉 = cos2 v

H 2

(
1 + cos2 v

4H 2

)
,

〈ϕv, ϕv〉 = 1

H 2

(
1 + cos2 v

4H 2

)
,
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〈ϕu, ϕv〉 = −cos3 v

2H 3

√
1 + cos2 v

4H 2 .

The unit normal vector is given by N = ϕu×ϕv‖ϕu×ϕv‖ ; we compute that

ν = sin v√
1 + cos4 v

4H 2

.

We have

〈T , ∂u〉 = 〈ξ, ϕu〉 = −cos2 v

2H 2 ,

〈T , ∂v〉 = 〈ξ, ϕv〉 = cos v

H

√
1 + cos2 v

4H 2 .

Let

ϕ̃ : (u, v) 
→ ϕ(u + g(v),−v) =
⎛⎝ 1

H
cos(u + g(v)) cos v

1
H

sin(u + g(v)) cos v

− 1
2H

f (v)

⎞⎠
where g is a function. This is a CMC H immersion defining globally the same surface
as ϕ. We compute that

ϕ̃u = 1

H

⎡⎣− sin(u + g(v)) cos v

cos(u + g(v)) cos v

− 1
2H

cos2 v

⎤⎦ ,

ϕ̃v = 1

H

⎡⎣− cos(u + g(v)) sin v − g′(v) sin(u + g(v)) cos v

− sin(u + g(v)) sin v + g′(v) cos(u + g(v)) cos v

− 1
2f ′(v) − 1

2H
g′(v) cos2 v

⎤⎦ ,

and thus ϕ̃ induces on R × (π
2 , π

2 ) the same metric as ϕ if and only if

g′(v) = − cos v

H

√
1 + cos2 v

4H 2

.

We now assume that this condition is satisfied; we can also assume that g(0) = 0,
which gives

g(v) = −2 arcsin

(
sin v√

1 + 4H 2

)
.

The function g is odd and 2π -periodic. We have

ν̃ = ν,
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〈T̃ , ∂u〉 = 〈ξ, ϕ̃u〉 = −cos2 v

2H 2 ,

〈T̃ , ∂v〉 = 〈ξ, ϕ̃v〉 = cos v

H

√
1 + cos2 v

4H 2

(
cos2 v

4H 2 − 1

)
.

The direct orthonormal frame (e1, e2) obtained from the frame (∂u, ∂v) by the
Gram–Schmidt process satisfies

e1 = H

cos v

√
1 + cos2 v

4H 2

∂u, e2 = − cos v

2
√

1 + cos2 v
4H 2

∂u + H∂v.

So we have

T = cos v√
1 + cos2 v

4H 2

(
− 1

2H
e1 + e2

)
,

T̃ = cos v√
1 + cos2 v

4H 2

(
− 1

2H
e1 − e2

)
.

Let θ = 2 arctan(2H). We check as in example 5.15 that

eθJT = T̃ ,

S̃ = eθJ(S − τ J) + τ J.

This proves that ϕ̃ is the twin immersion of ϕ.
Thus the rotational sphere is globally invariant by the twin relation, but it is not

pointwise invariant: the correspondence is

ϕ(u, v) 
→ ϕ(u + g(v), −v).

Geometrically, this correspondence maps a point of the sphere to the other point of
the sphere lying in the same fiber and then rotates it by the angle g(v) about the z-axis.
In particular, the circle v 
→ ϕ(u0, v) lying in a vertical plane is mapped to the curve
v 
→ ϕ(u0 + g(v),−v), which is closed but not contained in a vertical plane.

References

[Ale62] A. D. Alexandrov, A characteristic property of spheres. Ann. Mat. Pura Appl. (4) 58
(1962), 303–315. MR 143162

[AR04] U. Abresch and H. Rosenberg, A Hopf differential for constant mean curvature
surfaces in S2×R and H2×R. Acta Math. 193 (2) (2004), 141–174. Zbl 1078.53053
MR 2134864

http://www.ams.org/mathscinet-getitem?mr=143162
http://www.emis.de/MATH-item?1078.53053
http://www.ams.org/mathscinet-getitem?mr=2134864


Vol. 82 (2007) Isometric immersions into 3-dimensional homogeneous manifolds 131

[AR05] U. Abresch and H. Rosenberg, Generalized Hopf differentials. Mat. Contemp. 28
(1) (2005), 1–28. Zbl 05031437 MR 2195187

[Bry87] R. Bryant, Surfaces of mean curvature one in hyperbolic space. Astérisque 154–155
(1988), 321–347. Zbl 0635.53047 MR 0955072

[Car92] M. do Carmo, Riemannian geometry. Math. TheoryAppl., Birkhäuser, Boston, MA,
1992. Zbl 0752.53001 MR 1138207

[Dan04] B. Daniel, Isometric immersions into Sn×R and Hn×R and applications to minimal
surfaces. Preprint, math.DG/0406426, 2004.

[Dan06] B. Daniel, Minimal disks bounded by three straight lines in Euclidean space
and trinoids in hyperbolic space. J. Differential Geom. 72 (3) (2006), 467–508.
Zbl 05039965 MR 2219941

[FMP99] C. Figueroa, F. Mercuri, and R. Pedrosa, Invariant surfaces of the Heisenberg groups.
Ann. Mat. Pura Appl. (4) 177 (1999), 173–194. Zbl 0965.53042 MR 1747630

[GBKS03] K. Grosse-Brauckmann, R. Kusner, and J. Sullivan, Triunduloids: embedded con-
stant mean curvature surfaces with three ends and genus zero. J. Reine Angew. Math.
564 (2003), 35–61. Zbl 1058.53005 MR 2021033

[Kar05] H. Karcher, Hyperbolic surfaces of constant mean curvature one with compact
fundamental domains. In Global theory of minimal surfaces, Clay Math. Proc. 2,
Amer. Math. Soc., Providence, RI, 2005, 311–323. MR 2167265

[Law70] H. B. Lawson, Complete minimal surfaces in S3. Ann. of Math. (2) 92 (1970),
335–374. Zbl 0205.52001 MR 0270280

[NR04] B. Nelli and H. Rosenberg. Global properties of constant mean curvature surfaces
in H2 × R. Pacific J. Math., to appear.

[Pet98] P. Petersen, Riemannian geometry. Grad. Texts in Math. 171 Springer-Verlag, New
York 1998. Zbl 0914.53001 MR 1480173

[Sco83] P. Scott, The geometries of 3-manifolds. Bull. London Math. Soc. 15 (5) (1983),
401–487. Zbl 0561.57001 MR 0705527

[SE05] R. Sá Earp, Parabolic and hyperbolic screw motion surfaces in H2 × R. Preprint,
PUC Rio, 2005.

[Ten71] K. Tenenblat, On isometric immersions of Riemannian manifolds. Bol. Soc. Brasil.
Mat. 2 (2) (1971), 23–36. Zbl 0338.53010 MR 0328832

[UY93] M. Umehara and K. Yamada, Complete surfaces of constant mean curvature 1 in
the hyperbolic 3-space. Ann. of Math. (2) 137 (3) (1993), 611–638. Zbl 0795.53006
MR 1217349

Received April 21, 2005

Benoît Daniel, IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro - RJ, Brazil
E-mail: bdaniel@impa.br

http://www.emis.de/MATH-item?05031437
http://www.ams.org/mathscinet-getitem?mr=2195187
http://www.emis.de/MATH-item?0635.53047
http://www.ams.org/mathscinet-getitem?mr=0955072
http://www.emis.de/MATH-item?0752.53001
http://www.ams.org/mathscinet-getitem?mr=1138207
http://www.emis.de/MATH-item?05039965
http://www.ams.org/mathscinet-getitem?mr=2219941
http://www.emis.de/MATH-item?0965.53042
http://www.ams.org/mathscinet-getitem?mr=1747630
http://www.emis.de/MATH-item?1058.53005
http://www.ams.org/mathscinet-getitem?mr=2021033
http://www.ams.org/mathscinet-getitem?mr=2167265
http://www.emis.de/MATH-item?0205.52001
http://www.ams.org/mathscinet-getitem?mr=0270280
http://www.emis.de/MATH-item?0914.53001
http://www.ams.org/mathscinet-getitem?mr=1480173
http://www.emis.de/MATH-item?0561.57001
http://www.ams.org/mathscinet-getitem?mr=0705527
http://www.emis.de/MATH-item?0338.53010
http://www.ams.org/mathscinet-getitem?mr=0328832
http://www.emis.de/MATH-item?0795.53006
http://www.ams.org/mathscinet-getitem?mr=1217349

	Introduction
	3-dimensional homogeneous manifolds with 4-dimensional isometry group
	Canonical frame
	The manifolds with the isometry group of the Berger spheres
	The manifolds with the isometry group of the Heisenberg group Nil_3
	The manifolds with the isometry group of PSL_2(R)"0365PSL_2(R)

	Preliminaries
	The compatibility equations for surfaces in 3-dimensional homogeneous manifolds
	Moving frames
	Some facts about hypersurfaces

	Isometric immersions of surfaces into 3-dimensional homogeneous manifolds
	Constant mean curvature surfaces in 3-dimensional homogeneous manifolds
	A generalized Lawson correspondence
	Sister surfaces and stability
	Twin immersions


