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CAT(0) and CAT(−1)dimensions of torsion free hyperbolic groups

Noel Brady∗ and John Crisp∗∗

Abstract. We show that a particular free-by-cyclic group G has CAT(0) dimension equal to 2,
but CAT(−1) dimension equal to 3. Starting from a fixed presentation 2-complex we define
a family of non-positively curved piecewise Euclidean “model” spaces for G, and show that
whenever the group acts properly discontinuously by isometries on any proper 2-dimensional
CAT(0) space X there exists a G-equivariant map from the universal cover of one of the model
spaces to X which is locally isometric off the 0-skeleton and injective on vertex links.

From this we deduce bounds on the relative translation lengths of various elements of G

acting on any such space X by first studying the geometry of the model spaces. By taking
HNN-extensions of G we then produce an infinite family of 2-dimensional hyperbolic groups
which do not act properly discontinuously by isometries on any proper CAT(0) metric space of
dimension 2. This family includes a free-by-cyclic group with free kernel of rank 6.
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1. Introduction

One of the foundational problems in the theory of hyperbolic groups is to determine
the relationship between coarse and continuous notions of negative curvature. Specif-
ically, one is interested in the relationship between coarse notions such as Gromov’s
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δ-hyperbolicity, and the more continuous notions due to Alexandrov and Toponogov
of CAT(0) and CAT(−1) metric spaces. It is known that if a group acts properly
discontinuously and cocompactly by isometries on a CAT(−1) metric space (or on
a CAT(0) metric space which contains no isometrically embedded flat planes [9])
then the group is hyperbolic in the sense of Gromov. It is still an open problem as
to whether all hyperbolic groups act properly discontinuously and cocompactly by
isometries on CAT(0) metric spaces.

The main results of this paper show that if one is trying to find a proper CAT(0) or
CAT(−1) metric space on which a given torsion free hyperbolic group acts properly
discontinuously and cocompactly by isometries, then the dimension of the space may
have to be strictly greater than the geometric dimension (usual topological dimension)
of the group. We find that this is so even in the case of hyperbolic free-by-cyclic groups
which constitute a particularly concrete class of 2-dimensional hyperbolic groups of
interest, amongst other reasons, for their analogy to fibred hyperbolic 3-manifolds.

The basic example upon which everything else is built is an F3 � Z group which
has CAT(0) dimension equal to 2, but has CAT(−1) dimension equal to 3. Further-
more, there is a one-parameter family of CAT(0) piecewise Euclidean 2-complexes
associated to this group with the following property. Every 2-dimensional proper
CAT(0) space on which this group acts properly discontinuously and isometrically
contains a (possibly immersed) scaled copy of one of these 2-complexes. Moreover,
this map is a local isometric embedding off the set of vertices.

Theorem 1. The group G with presentation 〈a, b | aba2 = b2〉 is of the form F3 �Z,
is hyperbolic, and admits a compact locally CAT(−1) 3-dimensional K(G, 1).

Furthermore, there is a one-parameter family {Kt }t of compact, locally CAT(0),
piecewise Euclidean 2-complexes with the following properties:

(1) Each Kt is a K(G, 1). In particular, G has CAT(0) dimension equal to 2.

(2) Let X be a proper CAT(0) space of dimension 2 on which G acts properly
discontinuously by isometries. Then, for some t ∈ R, there is a G-equivariant
map

ϕ : K̃t → X

which is locally injective and, up to a constant scaling of the metric on K̃t ,
locally isometric on the complement of the 0-skeleton of K̃t .

In particular, G does not act properly discontinuously isometrically on a proper
CAT(−1) space of dimension 2, and so G has CAT(−1) dimension equal to 3.

Historical note. We note that the complexes Kt referred to in the above theorem
are all combinatorially equivalent to the presentation complex K associated to the
presentation given for G (see Section 3.3). The universal cover K̃ of this complex be-
longs to a family of polygonal complexes studied by both Haglund [16] and Ballmann
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and Brin [2] (primarily in order to show the existence of a continuum of contractible
locally compact piecewise Euclidean polyhedra having the same local structure).
The particular example K̃ is one of just two maximally symmetric simply connected
polyhedra which can be built out of regular hexagonal cells in such a way that every
vertex link is a complete graph on four vertices. In [17], M. Kapovich considered
the full isomorphism group Isom(K̃) of K̃ and showed, by using the existence of
torsion elements, that Isom(K̃) does not act properly discontinuously isometrically
on any 2-dimensional CAT(−1) complex, despite being a 2-dimensional hyperbolic
group. This line of argument was also pursued in [6] for this and a number of similar
examples. The techniques used in the present paper to study the torsion free subgroup
G are necessarily quite different in flavour from the fixed point arguments of [17] and
[6], and we have not as yet succeeded in extending them to other examples.

Remarks. Property (2) in Theorem 1 can be viewed as a first, weak, hyperbolic
analogue of the Flat Torus Theorem which states that whenever the group Z

n acts
properly discontinuously and semi-simply on a CAT(0) space X there exists an in-
variant isometrically embedded Euclidean space E

n in X (on which Z
n acts with

quotient an n-torus). The analogy is “weak” in two senses. Firstly, we do not get
isometrically embedded copies of the universal covers of the Kt . However we do get
enough control to analyze translation lengths of many elements of G, which will be
a key element in the proof of Theorem 2 below. Secondly, we impose the dimension
restriction on the CAT(0) space X. On the other hand, we do not suppose that the
actions are semi-simple. This is similar to the 2-dimensional Torus Theorem of Fuji-
wara, Shioya and Yamagata [14] which includes the dimension restriction, but does
not require semi-simplicity. In fact we use Proposition 4.4 of [14] explicitly in order
to remove any co-compactness or semi-simplicity hypothesis from our arguments
(see Section 4.1).

Finally we note that the form of Theorem 1(2) is similar to that of [13] Theorem 1
which pertains to the classification of 2-dimensional CAT(0) structures for the 4-
string braid group B4 modulo it centre. In view of the observations made in [13] it
is unlikely that one can improve the quality of the map ϕ of Theorem 1(2): there
are certainly cases where the map is not an isometric embedding and probably some
where the map ϕ is not even globally injective.

The Flat Torus Theorem has been very useful in proving that certain groups are
not CAT(0) [15]. The groups typically contain a Z

2 subgroup, together with a lot of
conjugation relations, so that any putative, non-positively curved K(π, 1) for them
will contain an impossibly shaped flat torus. In the present case the Kt complexes
play the role of flat 2-tori. Although they are not necessarily isometrically embedded,
we know enough about the maps ϕ in order to determine translation lengths of various
elements of G on the ambient CAT(0) space. This information is sufficient in order to
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construct groups which will not be CAT(0) in dimension 2, because extra conjugation
relations will somehow contradict the translation length computations. For example,
we have the following theorem.

Theorem 2. There is an infinite family of (torsion free)hyperbolic groups of geometric
dimension 2, which do not act properly discontinuously by isometries on any proper
CAT(0) metric space of dimension 2.

This family includes infinitely many free-by-cyclic groups, one of which is an
F6 � Z.

Theorem 2 offers the first conclusive proof that in tackling the question of whether
all (torsion free) hyperbolic groups are CAT(0), one is obliged to look for CAT(0)

structures above the geometric dimension of the group. This is the case even within
the class of hyperbolic free-by-cyclic groups.

It was already known that it is easier to find CAT(0) structures for hyperbolic
groups if one looks above the geometric dimension. The works of Wise [21] and of
Brady–McCammond [7] both exhibit high dimensional CAT(0) piecewise Euclidean
cubical structures for various classes of hyperbolic groups (certain small-cancellation
groups, and certain families of ample twisted face pairing 3-manifold groups). The
results of this paper imply that it is not only easier, but that in some cases it is also
necessary to look above the geometric dimension in the search for CAT(0) structures.

By the work of Bridson [10] and of Brady–Crisp [5] (see also [12], [14]) one
knows that the minimal dimension of a CAT(0) structure for a CAT(0) group, may
be strictly greater than its geometric dimension. However, all these papers used some
version of the Flat Torus Theorem, and make heavy use of the presence of periodic
flats in 2-dimensional CAT(0) spaces. The key idea in the current paper is to find
a very special hyperbolic group, and corresponding 2-complexes, which play a role
somewhat analogous to that of the Z

2 subgroups and flat 2-tori.

Acknowledgement. The second author would like to thank Luisa Paoluzzi, Robert
Roussarie, Sylvain Crovisier and Christian Bonatti for interesting discussions on
the variety of 2-dimensional structures Kt , and for several helpful observations and
simplifications of the arguments of Section 3.3. We also wish to thank Lee Mosher
and Leonid Potyagailo for raising the questions mentioned in Section 3.1.

2. Definitions and background

A metric space X is said to be proper if every closed ball Br(a) in X is compact.
An action of a group G by isometries on a metric space X is said to be properly
discontinuous if for each x ∈ X there is an open ball Br(x) about x (r > 0) such that
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g(Br(x)) ∩ Br(x) is nonempty for only finitely many g ∈ G. Note that when G is
torsion free (as with all the examples discussed here) a properly discontinuous action
of G is necessarily free, or “freely discontinuous”.

We refer to [11] for details on CAT(κ) spaces, for κ ≤ 0; metric spaces of global
non-positive curvature bounded above by κ ∈ R.

Let g be an isometry of a CAT(κ) space X, κ ≤ 0. The translation length of g

is defined as l(g) = inf{d(x, gx) : x ∈ X}. The isometry g is said to be semi-
simple if it attains its translation length at some point of x. In this paper we make
no assumptions on the semi-simplicity or otherwise of our group actions. This is in
contrast to previous works [5], [10], [12] where semi-simplicity is assumed (because
it is needed to apply the usual Flat Torus Theorem). In these cases this hypothesis
can be removed by using instead the 2-dimensional Torus Theorem of [14], at the
expense of supposing that the action is on a proper CAT(0) space.

In this paper we adopt the following notion of dimension, due to Bruce Kleiner
[19], which is defined over the class of CBA spaces, namely metric spaces with
curvature bounded above in the sense of Alexandrov [1]. Associated to any point p

in a CBA space X is the space of directions �pX, which is known to be a complete
CAT(1) space (see [20]). Since the CBA spaces include all complete CAT(κ) spaces
(κ ∈ R), the space �pX is once again CBA, for all p ∈ X. Kleiner [19] defines the
geometric dimension of a CBA space to be “the largest number of times we can pass
to spaces of directions without getting the empty set” – more precisely, the smallest
function GD : {CBA spaces} → N ∪ {∞} such that GD(X) = 0 if X is discrete, and
otherwise GD(X) ≥ 1 + GD(�pX) for all p in X.

This dimension theory is particularly well-adapted to the study of CAT(0) spaces.
Moreover, in [19], Kleiner shows that the geometric dimension is a lower bound for
the usual covering dimension (defined in general for topological spaces, see [18]).
He also remarks (on p. 412) that these two dimensions coincide for separable CBA
spaces, which include proper CAT(κ) spaces.

Since it will be useful later, we recall that the space of directions �pX is defined
as the space of all equivalence classes of geodesics emanating from p, where two
geodesics are said to be equivalent if the Alexandrov angle between them is zero.
This space carries a metric induced by the Alexandrov angle.

3. The group G = 〈a, b | aba2 = b2〉: geometric structures

In this section we prove all of the statements contained in Theorem 1 with the ex-
ception of part (2), which we defer until the next section. The work is broken into
three subsections: in (3.1) we show that the group G is F3 � Z, in (3.2) we exhibit
a 3-dimensional CAT(−1) structure, and in (3.3) we introduce the one-parameter
family of 2-dimensional CAT(0) structures. We shall give a Morse theory argument
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that the group is free-by-cyclic. This will easily extend to show that certain HNN-
extensions with base G and Z edge groups are also free-by-cyclic (see Proposition 19
of Section 5).

3.1. The free-by-cyclic structure. The group G has the presentation

〈a, b | abaa = bb〉.
The corresponding presentation 2-complex has one vertex (labeled v), two 1-cells
(labeled a and b), and a single hexagonal 2-cell (labeled by the relation).

Any map of G to Z takes the generators a and b to integers A and B respectively
which satisfy the equation 3A + B = 2B or B = 3A. Thus we may assume that a

is taken to a generator of Z and b to three times this generator. We can realize this
homomorphism topologically by a map from the presentation 2-complex to the circle
(with one 0-cell and one 1-cell). This map sends the vertex v to the base vertex of S1

and maps a once around the circle, and b three times around the circle. Extend this
map linearly over the 2-cell. This lifts to a Morse function on the universal cover.

Figure 1 shows how a typical 2-cell of the universal cover looks with respect to the
Morse function. The preimage of the base vertex of S1 is a graph in the 2-complex,
and is shown as the graph � in Figure 1. The vertices [b/3] and [2b/3] denote points
which are respectively 1/3 and 2/3 along the edge b, and which map to the vertex
of S1. Note that π1(�) is F3. One can check that the preimage of a generic point
of S1 will be a graph, �, with four vertices, and six edges. As the generic point on
the circle moves towards the base vertex, an edge of the preimage graph collapses to
a point,1 giving a homotopy equivalence with the graph �.

Thus the presentation 2-complex of G can be viewed as a graph of spaces whose
underlying graph is the circle (with one vertex and one 1-cell), whose edge space is �,
whose vertex space is �, and whose maps are the homotopy equivalences � → �

obtained by collapsing particular single edges of �. Thus G is isomorphic to the fun-
damental group of this graph of spaces, and so is F3 �Z where the monodromy auto-
morphism is obtained by composing the “ascending” homotopy equivalence � → �

with the inverse of the “descending” one.
It is a good exercise to work out this automorphism explicitly from the graph of

spaces description; it is a “change of tree” automorphism, although it is not a change
of maximal trees. Here we give an explicit description of the automorphism in terms
of the original presentation of G.

The group G is an extension of the free group F3〈x, y, z〉 by Z where Z acts via
the automorphism ϕ : x �→ y �→ z �→ x−1y; that is G is the HNN-extension F3∗ϕ .
The automorphism is just conjugation by a. Putting x = a−2bx−1 (so b = a2xa)

1This collapsing edge corresponds to either the ascending or the descending link of the Morse function.
See Bestvina–Brady [3] for terminology, or Brady–Miller [8] where the connection between Morse theory and
free-by-free groups is made explicit.
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Figure 1. The Morse function on the 2-cell of the F3 � Z group, and the level set � through the
vertex v.

the relation aba2 = b2 is rewritten

a3xa3 = a2xa3xa,

which easily rearranges to ϕ(x) = xϕ3(x), or rather ϕ3(x) = x−1ϕ(x), where ϕ

denotes conjugation by a. Thus G is isomorphic to the given HNN-extension.
The automorphism ϕ is exponential, but with a very low expansion rate: λ =

2.325 = (the solution to λ3 = λ + 1). We wonder whether the existence of 2-
dimensional CAT(−1) structures for a free-by-cyclic group can, in any way, be related
to the expansion rate of its monodromy. We do not know, for example, whether any of
the extensions F3∗ϕn for n > 1 (which are subgroups of index n in G) are CAT(−1) in
dimension two. This latter problem was raised by Lee Mosher and is closely related
to the following question suggested by Leonid Potyagailo.

Question 3. Does every 2-dimensional word hyperbolic group contain a finite index
subgroup which acts properly discontinuously and cocompactly by isometries on a
2-dimensional CAT(−1) proper metric space?

3.2. The 3-dimensional CAT(−1) structure. Let P denote a regular solid octahe-
dron of “small” volume in hyperbolic 3-space, as illustrated in Figure 2. We label
the vertices 1, 2, . . . , 6 as indicated in the figure, and define the piecewise hyperbolic
3-complex M to be obtained from P by identifying the pair of faces labelled (1, 4, 6)

and (6, 3, 5) to a single face A, and the pair (1, 5, 2) and (2, 4, 3) to a single face B

(respecting the order of vertices in each case). The remaining four faces are left open.
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Figure 2. The 3-dimensional piecewise hyperbolic complex M = P/ ∼, and its vertex link
Lk(v, M).

Choose a basepoint in the interior of P and define oriented paths a and b in M

passing through the faces A and B, respectively, as indicated in the figure. One easily
checks that the loops a and b generate π1(M) subject to the single relation abaa = bb.
That is π1(M) ∼= G. (In fact the K(G, 1) complex K discussed in the next subsection
can be embedded in M as a “2-spine”– the complex K is a deformation retract of M ,
showing that M is also a K(G, 1)).

The complex M has a single vertex v with link Lk(v, M) as illustrated in Figure 2.
This is a Möbius band composed of six spherical quadrilaterals with sidelengths all
equal to π/3 − ε1 and diagonals all of length π/2 − ε2 where ε1, ε2 both tend to zero
as the chosen volume of the octahedron P tends towards 0. A systole for Lk(v, M) is
shown in bold in the figure. If P were chosen Euclidean, then the length of this systole
would be 4(π/3) + 2μ where μ (the length of the segment crossing quadrilateral 2)
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lies strictly between π/3 and π/4 (in fact μ > 72�). In the small volume hyperbolic
case the systole measures 4(π/3) + 2μ − ε where ε also tends to 0 with the volume
of P . For sufficiently small choice of volume of P this value is larger than 2π and M

is a locally CAT(−1) space. This also gives a further way of seeing that M is indeed
a compact K(G, 1) for our group G.

We refer the reader to [6] for further details concerning determination of the systole
in Lk(v, M) and the calculation of its length.

3.3. The 1-parameter family of CAT(0) structures. Let K denote the presentation
complex defined by the 1-relator presentation G = 〈a, b | abaa = bb〉. The asso-
ciated Cayley complex K̃ (the universal cover of K) has been previously studied by
both Haglund [16] and Ballmann and Brin [2]. It is one of the two completely regular
simply connected polyhedra which can be built out of regular hexagonal cells in such
a way that every vertex link is a complete graph on four vertices. The other is the
Cayley complex associated to the one-relator presentation with relation baa = abb,
which defines the Geisking 3-manifold group. A portion of the complex K̃ is il-
lustrated in Figure 3. Note that the band of hexagons immediately surrounding the

aa

a b

b b

Figure 3. The Cayley complex for 〈a, b | aba2 = b2〉. Note the twist in the outer band of
hexagons.

central one in the figure is twisted, so that their union is a Möbius band rather than
an annulus as in the case of the Geisking complex.
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The complex K̃ very naturally admits a CAT(0) metric in which each cell is a
regular Euclidean hexagon. Consequently, the quotient presentation 2-complex K is
a locally CAT(0) K(G, 1), and the group G therefore has CAT(0) dimension equal
to 2. Moreover, since the complex K̃ does not contain any isometrically embedded
flat planes (because of the twist), we have another way of concluding that the group G

is hyperbolic.
It is natural to ask whether there are any piecewise Euclidean, G-equivariant,

CAT(0) structures on the complex K̃ other than the regular one just described. In
fact, we have the following classification of such structures.

Proposition 4. There exists a continuous family {Kt : t ∈ R} of piecewise Euclidean
locally CAT(0) metrics on the presentation complex K . Furthermore, any locally
CAT(0) metric on K which is obtained by edge identifications on a convex Euclidean
hexagon is isometric, up to a linear scaling, to Kt for some t .

Proof. We start with an edge identification on a convex Euclidean hexagon H as
illustrated in Figure 4, where we identify the edges with common labels. The figure
H need not be a regular hexagon, however all three edges labelled a must have the
same length, all three b-edges the same length, and when identifications are made
the link condition at the vertex must be satisfied. Label the angles of H as shown
in Figure 4: namely, we label the angle from a+ to b+ by α0, from a− to b− by α3,
from a+ to a− by α1, from b+ to b− by α4, from a+ to b− by α2, and from b+ to a−
by α5. The link of the vertex v in the presentation 2-complex for G is the complete

α0

α1

α2

α3 α4

α5

a

a

ab

b

b

A

B

C D

E

F

Figure 4. The 1-parameter family of 2-dimensional CAT(0) structures for G.

graph on four vertices, with each edge αi complementary to (sharing no vertices with)
αi+3, where indices are taken mod 6. The link condition requires that the sum of the
angles contributing to each simple circuit in this graph is at least 2π . On the other
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hand, since the angles αi are angles in a Euclidean hexagon, they must sum to 4π .
The next lemma deduces relations among the αi . We will need to use it again later
on, with the weaker assumption that the sum of the αi is at most 4π , so we prove it
in that generality now.

Lemma 5. Suppose that the complete graph on four vertices has a CAT(1) metric,
where each edge length is in the range (0, π ], and where the total of all six edge
lengths is at most 4π . Then the following are true.

(1) The total of all six edge lengths is exactly 4π .

(2) The total of the edge lengths in any circuit of combinatorial length 3 is exactly 2π .

(3) The lengths of complementary edges (no vertices in common) are equal.

Proof. Label the edges by αi where i ∈ {0, 1, 2, 3, 4, 5}, so that αi and αi+3 (indices
are (mod 6)) are labels of complementary edges. The CAT(1) condition requires that
the sum of all edges in each complete subgraph on three vertices is at least 2π . This
gives four linear inequalities:

α0 + α1 + α2 ≥ 2π,

α0 + α4 + α5 ≥ 2π,

α3 + α1 + α5 ≥ 2π,

α3 + α4 + α2 ≥ 2π.

These combine with the hypothesis that
∑5

i=0 αi ≤ 4π to give five equalities. To see
this, simply add the four inequalities and divide by 2 to get

∑5
i=0 αi ≥ 4π . These

two opposite inequalities force equality, and hence equalities in all of the above.
Finally, since the four inequalities become four equations, one can reduce them

to get αi = αi+3 where indices are taken (mod 6). �

Thus we have extra information about the hexagonal 2-cell. Namely, α0 = α3,
α1 = α4, α2 = α5 (as indicated in Figure 4) and α0 + α1 + α2 = 2π . (This is also
sufficient to ensure that the link condition is satisfied). Note that all the vertices A, B,
C, D, E must lie on a common circle. This is seen in two steps. First, �(ABCD) is
a cyclic quadrilateral, since |AB| = |CD| and the angle α2 at B equals the angle α5
at C (it is an isosceles trapesium). Secondly, �(ABDE) is a cyclic quadrilateral,
since it is also an isosceles trapesium; |AB| = |ED| and angle �BAE equals angle
�DEA. These last two angles are equal since we are given that α0 = α3, and the
triangle �(AFE) is isosceles. These two cyclic quadrilaterals have three points A,
B, D in common, and so all five points lie on a common circle.

An arbitrary locally CAT(0) piecewise Euclidean structure on K may now be
described as follows. Take a circle with center O and points A, B, C, D, E on its
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circumference, so that

�AOB = �COD = �DOE = 2x

and that �BOC = 2y for positive numbers x, y satisfying 3x + y < π . Now
construct an isosceles triangle �(FAE) on the base AE which is similar to the
triangle �(DCE). Choose F so that it lies outside of the pentagon ABCDE. We
now have a hexagon ABCDEF which satisfies all the conditions to be a 2-cell in a
non-positively curved presentation 2-complex for G, with the possible exception that
the edge length |AF | = |FE| may not be equal to the edge length |BC|. Moreover,
the construction depends only on the choice of angles x and y (subject to 3x+y < π ).

We suppose without loss of generality that the circle containing A, B, C, D and
E has unit radius. Using the facts that |BC| = 2 sin y, |CD| = 2 sin x, |CE| =
2 sin(2x), |AE| = 2 sin(π − (3x +y)) = 2 sin(3x +y), and the fact that the triangles
�(DCE) and �(FAE) are similar, we have

|BC|
|CD| = sin y

sin x
and

|AF |
|CD| = sin(3x + y)

sin(2x)
= sin(3x + y)

2 sin x cos x
.

Therefore |AF | = |BC| if and only if the following trigonometric identity is satisfied:

sin(3x + y) = 2 cos(x) sin(y). (1)

Expanding the left hand side gives

sin(3x) cos(y) + cos(3x) sin(y) = 2 cos(x) sin(y).

Grouping the sin(y) terms and solving for tan(y) yields

tan y = sin(3x)

2 cos x − cos(3x)
. (2)

This expresses tan y as a smooth function of x for 0 < x < π/3. Thus, for each
x ∈ (0, π

3 ), there is a unique y-value in the interval (0, π
2 ) for which the corresponding

hexagon yields a non-positively curved, 2-dimensional K(G, 1). These K(G, 1)

spaces form a 1-parameter family Kt , for t ∈ R, where we set t = cot(3x), say, for x

ranging over the interval (0, π
3 ). (Note: With this convention K0 denotes the regular

hexagonal structure, x = π
6 ). This completes the proof of Proposition 4. �

We observe that the equation (2) given in the above proof may be re-expressed
by using the identities sin(3x) = 3 sin x cos2 x − sin3 x and cos(3x) = cos3 x −
3 cos x sin2 x. Thus

tan y = sin x(3 cos2 x − sin2 x)

cos x(5 sin2 x + cos2 x)
= tan x(3 − tan2 x)

5 tan2 x + 1
. (3)

Note that, for x ∈ (0, π
3 ), we have tan2(x) ∈ (0, 3).



Vol. 82 (2007) CAT(0) and CAT(−1) dimensions of torsion free hyperbolic groups 73

Lemma 6. Let U = tan2(x) and V = tan2(y), and suppose throughout that x ∈
(0, π

3 ) and y ∈ (0, π
2 ). Given that the identity (3) holds, then the following identities

also hold, with U ∈ (0, 3):

sin(y)

sin(x)
=

√
V (1 + U)

U(1 + V )
= (3 − U)√

U2 + 18U + 1
> 0, (4)

cos(y)

cos(x)
=

√
(1 + U)

(1 + V )
= (5U + 1)√

U2 + 18U + 1
> 0. (5)

Proof. We first of note that for x, y in the given ranges, all expressions in the statement
of the lemma take positive values (we consider only positive valued square roots).

The first equalities in (4) and (5) are immediate consequences of the usual trigono-
metric identities expressing sin θ and cos θ in terms of tan θ : namely,

sin2 θ = tan2 θ

1 + tan2 θ
and cos2 θ = 1

1 + tan2 θ
.

Equation (3) also gives us the fundamental identity

V = U(3 − U)2

(5U + 1)2

whence

1 + V = (3 − U)2U + (5U + 1)2

(5U + 1)2 = (U + 1)(U2 + 18U + 1)

(5U + 1)2 .

The remaining equalities in (4) and (5) now follow easily. �

Lemma 7. Label a fundamental domain hexagon in the universal cover of Kt as in
Figure 4, and suppose that the scaling on the metric for Kt is such that the circle
on which A, . . . , E all lie has unit radius. Let O be the center of this circle, and
let 2x and 2y be the respective measures of the angles AOB and BOC. (We have
t = cot(3x)).

For u, v ∈ {a, b} we define δuv to be the distance in Kt between the midpoints of
the two edges in any edge path labelled uv in the 1-skeleton of Kt . Then we have:

(1) δab = |AC|/2 = sin(x + y).

(2) δba = |BD|/2 = sin(x + y).

(3) δaa = |CE|/2 = sin(2x).

(4) δbb = |AE|/2 = sin(3x + y) = 2 cos x sin y.
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Proof. The proof uses just the following observation from trigonometry. The length
of the base of an isosceles triangle with two edges of length 1 subtending an angle of θ

is 2 sin(θ/2). The segments AC, BD, CE and AE subtend angles at the center O of
the circle measuring (respectively) 2(x + y), 2(x + y), 2x and 2(π − (3x + y)). The
result follows from the fact that each path ab, ba, aa and bb occur on the boundary
of the given hexagon, and that δuv is exactly half the length of the interval spanned by
the endpoints of the path uv. In case (4) we apply the identity sin(π − θ) = sin(θ)

and the equation (1) derived in the proof of Proposition 4. �

Proposition 8. Let w be a positive word in the generators a, b of the group G which
contains at least one occurrence of b (w �= ak). Let

L : G → Z

denote the abelianisation homomorphism (L(a) = 1, L(b) = 3). Then in any of the
2-dimensional CAT(0) structures Kt for G the translation length of w is strictly less
than that of aL(w):

l(w)

l(a)
< L(w).

Moreover, we have l(w)
l(a)

→ L(w) as t → ∞ (x → 0).

Proof. Without loss of generality we suppose that the metric on Kt is scaled as in
the statement of Lemma 7. We first observe that, in the universal cover of any of
the Kt , the piecewise geodesic which connects midpoints of successive a-edges is
actually a geodesic. This allows us to compute the translation length of a precisely
to be l(a) = δaa = sin(2x).

On the other hand, we get an upper bound estimate for the translation length
of w obtained by measuring the length of the piecewise geodesic path drawn between
successive midpoints of the edges of the hexagons in the edge-path corresponding
to w. More precisely, let w = u1u2 . . . un be a positive word in a and b (ui ∈ {a, b}
for all i), viewed as a cyclic word. Then

l(w) ≤
n∑

i=1

δuiui+1, while L(w) = 1

2

n∑
i=1

L(uiui+1).

The inequality stated in the lemma now follows by showing that δuv/ l(a) < 1
2L(uv)

in each of the cases uv = ab, ba, and bb. (Since, in addition we have δaa/ l(a) =
1 = 1

2L(aa), we obtain an inequality l(w)/l(a) ≤ L(w) which is strict if and only
if w �= ak for some k).

Case uv = ab or ba: By Lemma 7 we have

2δab/ l(a) = 2 sin(x + y)

sin(2x)
= sin x cos y + cos x sin y

sin x cos x
= cos y

cos x
+ sin y

sin x
.
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Applying Lemma 6 this gives

2δab/ l(a) = (5U + 1) + (3 − U)√
U2 + 18U + 1

= 4(U + 1)√
U2 + 18U + 1

< 4 = L(ab).

The inequality follows since
√

U2 + 18U + 1 > (U + 1) > 1, for U > 0. The case
uv = ba is identical.

Case uv = bb: This time, by Lemmas 7 and 6, we have

δbb/ l(a) = 2 cos x sin y

sin(2x)
= sin y

sin x
= (3 − U)√

U2 + 18U + 1
< 3 = 1

2
L(bb).

The inequality follows once again since U > 0.

This completes the proof that l(w)/l(a) < L(w) for positive words w �= ak .
Finally, we observe that as x tends to zero the hexagon H of Figure 4 degenerates

towards an interval with endpoints A and E and length 2|BC| = 3|AB| + |BC|.
Thus Kt collapses onto a real line where translation lengths are determined by the
abelianisation homomorphism: l(g)/ l(a) = L(g) for all g ∈ G. This completes the
proof of Proposition 8. �

4. Proof of Theorem 1(2): an analogue Flat Torus Theorem

In this section we complete the proof of Theorem 1 by establishing part (2), the
“analogue Flat Torus Theorem”. This section forms the geometric heart of this paper.
In the interest of continuity, we defer the details of two major claims in the proof
below until the next two subsections.

Theorem 9. Let G = 〈a, b | aba2 = b2〉. Let X be a proper CAT(0) space of
dimension 2 on which G acts properly discontinuously by isometries. There is a
G-equivariant map ϕ from the universal cover of some Kt (up to a constant scaling
of the metric on Kt) into X which is an isometry on the 2-cells, and which is a local
isometric embedding off the 0-skeleton and injective on vertex links.

Proof. We construct a family of maps K̃ → X from the Cayley complex of G into X

as follows. Let � denote the 1-skeleton of K̃ (the Cayley graph of G with respect to
{a, b}) and let v denote a base vertex in �. Given any point x ∈ X we may define
a continuous map ϕx : � → X by sending v to x, extending G-equivariantly on the
vertex set of � and then mapping each edge to the (unique) geodesic joining the
images of its endpoints. This construction also leads to a natural choice of “lengths”
for each edge in Lk(v, K̃). For simplicity of notation we write L = Lk(v, K̃), the link
of v in the Cayley complex, and write � = �xX, the space of directions at x in X.
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We recall that L is the complete graph on four vertices. If p denotes a vertex of L,
determined by the edge e say, then we write p for the direction in � determined by the
geodesic segment ϕx(e). We now assign to each edge (p, q) in L a “length” given by
the distance between p and q in �. Note that, since it is possible that p = q, which
endows the edge (p, q) with zero length, this choice determines a pseudo-metric,
rather than a metric, on L. We shall write Lx to denote the graph L equipped with
this pseudo-metric. We emphasize that the pseudo-metric defined on Lx depends in
an essential way on the initial point x ∈ X chosen to start the construction.

There are now two key claims whose proofs we defer to the subsequent sections.
We first claim that there exists a point x in X which minimizes the combined dis-
placement function f (x) = d(x, a(x)) + d(x, b(x)). This is a straightforward
consequence of Lemma 10 in Subsection 4.1 below, since here G is a torsion free
hyperbolic group of cohomological dimension 2.

The key geometric insight in this proof is the following claim. If the point x is
chosen so as to minimize the combined displacement function f then Lx turns out
to satisfy the link condition for a CAT(1) metric graph: each circuit has length at
least 2π . This is proven in Subsection 4.2; specifically Lemma 12 and the remark
which follows it.

On the other hand, the six edge lengths in Lx appear as the angles of a “geodesic
hexagon” C in X (take the image of any hexagonal circuit in � which bounds a 2-cell
of K̃). Nonpositive curvature in X implies that the sum of these angles is at most 4π

(see [12], Lemma 1, for example). It now follows by Lemma 5 that the total of all
six angles is exactly 4π and that each simple circuit in L of combinatorial length 3
has length exactly 2π .

Note that the above arguments apply even when there are zero length edges in L.
By the Flat Triangle Lemma [11], it now follows that the geodesic hexagon C ac-
tually bounds a genuine convex (but possibly degenerate) 2-dimensional Euclidean
hexagon H isometrically embedded in X. Since the action of G on X is properly
discontinuous this hexagon cannot degenerate onto an interval (for then the orbit
of x would lie on a single line!), so has non-empty interior and nonzero angles. We
now choose a G-equivariant metric on K̃ by letting each 2-cell be isometric to the
hexagon H , and extend the map ϕx to a map ϕ : K̃ → X which is locally isometric
on the interior of 2-cells. Note that the link of each vertex in K̃ is isometric to Lx

and CAT(1). Thus, by Proposition 4, K̃ equipped with this metric is (up to scaling)
G-equivariantly isometric to the universal cover of one of the model complexes Kt for
t ∈ R. In particular, all edge-lengths in the link L are strictly less than π . It therefore
follows from Lemma 12 that the map ϕ∗ : Lx → �xX induced on the vertex link is
injective, and as a consequence, that ϕ : K̃t → X is locally injective.

It now only remains show that ϕ is a locally isometric embedding away from
the 0-skeleton. This follows easily from the local injectivity and the fact that the
hexagon H (and each of its G translates) is a convex Euclidean hexagon in X. In
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particular, the link of a point p ∈ K̃t \ K̃
(0)
t is either a circle of length 2π or a θ -graph

all of whose edges are of length exactly π . In either case, the ϕ∗ image of this link
has diameter exactly π and so is a convex subspace of �ϕ(p)X. �

4.1. Finding a minimum for the combined displacement. In this section we prove
the following result:

Lemma 10. Let X be a proper CAT(0) space, let g1, g2, . . . , gn be a finite collection
of isometries of X which generate a group G acting properly discontinuously on X,
and let λ1, λ2, . . . , λn denote strictly positive real numbers. Then either

(1) there exists a point in X which minimizes the “combined displacement function”:

f : X → R
+, f (x) =

n∑
i=1

λid(x, gi(x)),

or

(2) the group G fixes a point x∞ on the ideal boundary ∂X of X.

If G happens to be a word hyperbolic group with finite K(G, 1) then case (2) above
implies that either G ∼= Z or cd(G) ≤ dim(X) − 1.

Proof. In the first instance, if f is a proper map then it clearly achieves a minimum.
Supposing otherwise, and using the fact that X is proper (and so X∪∂X is a compact
space – see, for example, Exercise II.8.15 (2) of [11]), one can find a sequence of
points {xk}N which converges to a point x∞ in ∂X yet such that the sequence {f (xk)}
is bounded. It follows that each gi fixes x∞ and so (2) holds.

Now suppose that G is a hyperbolic group with finite K(G, 1) (i.e., G is torsion
free). In particular, G is finitely generated and torsion free. By considering the action
of G on the horofunctions at x∞ we deduce an exact sequence

H → G → Z

where H is the subgroup of elements which act by leaving invariant every horosphere
at x∞.

Suppose firstly that the map G → Z is nontrivial. By the proper discontinuity of
the action of G, any two elements which map nontrivially to Z must share a common
power. Thus all elements of G − H leave fixed a common pair of points {p, q} in
∂G. Moreover H must also fix the pair {p, q} (since it conjugates elements of G−H

to elements of G − H ). But this implies that G is virtually Z, or rather Z since it is
torsion free.

We may now suppose that G ∼= H and acts by leaving invariant all horospheres
at x∞. But then our conclusion that cd(G) ≤ dim(X) − 1 follows directly from
Proposition 4.4 of [14]. �
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4.2. Angle measurements. In this section we wish to use an idea from elementary
calculus: that the “rate of change” of a function in any direction from a local minimum
is never negative. The functions that we consider are linear combinations of distance
functions in a CAT(0) space. For these reasons we introduce the following:

Lemma 11. Let X be a CAT(0) space, and [p, q] a nontrivial geodesic segment
(d(p, q) > 0), let γ : [0, ε] → X denote a nontrivial constant speed geodesic with
γ (0) = p, and let θ denote the Alexandrov angle at p between [p, q] and γ . Let
f : [0, ε] → R be the (necessarily continuous) function such that f (t) = d(γ (t), q).
Then

lim
t→0;t>0

f (t) − f (0)

t
= − cos θ .

We refer to the above limit as the derivative of f in the direction of γ .

Remark. The above lemma asserts, if you like, the existence of a directional deriva-
tive in the first variable of the distance function, which is defined, for a point (p, q) ∈
X × X, over the space of directions �pX at p in X.

Proof. Note firstly that the lemma is precisely true in the Euclidean plane E
2. Now,

given the general situation described above, choose in E
2 points p̂, q̂ such that

dE(p̂, q̂) = d(p, q), and a geodesic γ̂ from p̂ such that the Alexandrov angle
at p̂ between γ̂ and [p̂, q̂] equals θ . This configuration determines the function
f̂ (t) = dE(γ̂ (t), q̂) where f̂ (0) = f (0) = f0 say. By one version of the comparison
axiom (Proposition II.1.7 (5) of [11]), we have that f̂ (t) ≤ f (t) for all t ∈ [0, ε].
Since f̂ is a convex function we then have f0 − t cos θ ≤ f̂ (t) ≤ f (t) and hence
f (t)−f0

t
≥ − cos θ for all t ∈ [0, ε].

Fix s ∈ (0, ε] and let �′(p′, q ′, r ′) denote the Euclidean comparison triangle for
the triangle in X with corners p, q and r = γ (s). That is dE(p′, q ′) = d(p, q), etc.
Let θs denote the angle in E

2 between the sides of �′ meeting at p′. Also, define a
function fs : [0, s] → R such that fs(t) is the distance from q ′ to a point a distance t

from p′ along the side of �′ between p′ and r ′. By the comparison axiom, we have
f (t) ≤ fs(t) for every t ∈ [0, s]. Also by the comparison axiom, θ ≤ θs for each s.
Moreover, by the interpretation of Alexandrov angle as the “strong upper angle” (see
Proposition I.1.16 of [11]), we have that lims→0;s>0 θs = θ .

Now, suppose we are given a small ε > 0. Then there exists s ∈ (0, ε] such
that θ ≤ θs < θ + ε. Since fs is a differentiable function with derivative − cos θs <

− cos(θ +ε) (ε sufficiently small) we may find a sufficiently small δ such that f (δ) ≤
fs(δ) < f0 − δ cos(θ + ε). But this implies that for all sufficiently small ε > 0 there
exists a δ > 0 such that

− cos θ ≤ f (δ) − f0

δ
< − cos(θ + ε) .
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This establishes the lemma. �

As in the main body of the proof of Theorem 9, we suppose that G = 〈a, b |
bab2 = a2〉 acts properly discontinuously by isometries on a proper CAT(0) space
X of geometric dimension two. We recall the notation introduced in the proof of
Theorem 9. In particular, for a choice of pointx ∈ X, we defined the mapϕx : � → X,
where � denotes the Cayley graph of G (with respect to {a, b}). As before we write
L = Lk(v, K̃) and � = �xX, the space of directions at x in X, and we write p

for the point in � associated to a vertex p of L via the map ϕx . Recall that L is a
complete graph on four vertices.

Since X is CAT(0) the space of directions � is CAT(1). We recall that CAT(1)

spaces are uniquely π -geodesic, meaning that if d(x, y) < π then there exists a
unique geodesic in the space joining x to y. We also note that, by the dimension
constraint on X, � is 1-dimensional (a CAT(1) metric R-graph). We note that, in
a 1-dimensional CBA space, a path is locally geodesic if and only if it is locally
embedded.

Lemma 12. Suppose that x ∈ X is chosen so as to minimize the combined dis-
placement f (x) = d(x, a(x)) + d(x, b(x)). Let p1, p2, p3 denote three distinct
vertices of L and, for each i = 1, 2, 3, let φi denote the angle measured between pi

and pi+1 in � (indices taken mod 3), and suppose that each φi < π . Then either
φ1 + φ2 + φ3 > 2π or the (unique) geodesic triangle in � spanned by the vertices
p1, p2, p3 is a closed geodesic of length exactly 2π .

Remark. Note that if φi = π , for some i, then the triangle inequality implies straight-
away that φ1 + φ2 + φ3 ≥ 2π .

Proof. Suppose that φ1 +φ2 +φ3 ≤ 2π . We show that the geodesic triangle spanned
by p1, p2, p3 in � is a closed geodesic of length exactly 2π . Since each φi < π ,
and since � is uniquely π -geodesic space, there is a unique (but possibly degenerate)
geodesic triangle � spanned by p1, p2, p3. Either this triangle supports a simple
closed circuit in � or it is in fact a (possibly degenerate) tripod. In the former case,
since � is 1-dimensional and CAT(−1), the simple circuit is a closed geodesic and
must have length at least 2π . Thus � is exactly a 2π closed geodesic, as required.
In the latter case we shall obtain a contradiction.

Suppose then that the geodesic triangle � is a tripod. We let m denote the branch
point of the tripod (or rather the median of p1, p2, p3 – the unique point which lies
on all three sides of the triangle �) and let θi denote the angle between pi and m, for
each i = 1, 2, 3. We have θ1 + θ2 + θ3 = 1

2 (φ1 + φ2 + φ3) ≤ π .
We now consider the effect of moving the point x a very small distance in the

direction m. For convenience we G-equivariantly subdivide all edges in the Cayley
graph �. Let e1, e2, e3, e4 denote the geodesic segments at x in X which are the images
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under ϕx of the four half-edges of � which emanate from the vertex v. We suppose
that the labels are such that ei determines the point pi in � for each i = 1, 2, 3. We
now allow x to move in the direction of m while fixing the other endpoints of the
“half-edges” ei . Using Lemma 11 we may compute the derivative of �(ei) in the
direction m at x to be simply − cos θi for each i = 1, 2, 3. On the other hand the
derivative of �(e4) is at most 1 (in any direction). Thus it follows from Lemma 13
below that the sum of the lengths of the ei strictly decreases under a sufficiently small
perturbation of the point x. (Note that since we suppose each φi < π we cannot have
equality in Lemma 13).

Performing this disturbance G-equivariantly, it is clear that the sum of the lengths
of the new segments e′

i is an upper bound for f (x′) and hence that f (x′) < f (x) for
a sufficiently small disturbance. But this contradicts the choice of x. �

Lemma 13. Given real numbers θ1, θ2, θ3 ≥ 0 such that θ1 + θ2 + θ3 ≤ π , we have

cos θ1 + cos θ2 + cos θ3 ≥ 1

with equality if and only if θ1 + θ2 + θ3 = π and θi = 0 for some i.

Proof. The region of interest in R
3 is a right simplex

R = {(θ1, θ2, θ3) : θi ≥ 0 and θ1 + θ2 + θ3 ≤ π}.
Write g(θ1, θ2, θ3) = cos θ1 + cos θ2 + cos θ3. We first consider the problem of
minimizing the function g over the 2-simplex Rπ = {(θ1, θ2, θ3) ∈ R : θ1+θ2+θ3 =
π}. Observe that g = 1 on the boundary of Rπ , namely when θ1 + θ2 + θ3 = π and
θi = 0 for some i. For, if θ1 = 0 and θ2 = π − θ3, for instance, then g(0, θ2, θ3) =
1 + cos(π − θ3) + cos θ3 = 1.

Consider now the possibility of local minima in the interior of Rπ . At such points
the gradient of g is normal to Rπ . That is,

∇g = −(sin θ1, sin θ2, sin θ3) = λ(1, 1, 1) for some λ ∈ R.

Thus sin θ1 = sin θ2 = sin θ3 = −λ. But then one sees that θ1 = θ2 = θ3 = π
3 (since

if, for some i �= j , we had θi �= θj but sin θi = sin θj we would have θi + θj = π

contradicting the choice of point in the interior of Rπ ). Now g(π
3 , π

3 , π
3 ) = 3 cos π

3 =
3
2 > 1. Therefore g is always strictly greater that 1 on the interior of Rπ .

Finally, since g is strictly decreasing along rays from the origin (through R), we
deduce that g > 1 at all points of R \ Rπ . �

Remark 14. In fact the barycentre of Rπ is a local maximum of g over Rπ , as can be
seen by looking at the Hessian matrix which is − cos(π

3 )In at the barycentre. More
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generally, an easy induction shows that

g(θ1, . . . , θn) =
n∑

i=1

cos θi ≥ n − 2

whenever θi are non-negative and sum to at most π , with equality precisely on the
1-skeleton of the “level π simplex” Rπ .

5. The hyperbolic versus CAT(0) problem: Theorem 2

Consider the following family of 2-dimensional groups:

Gw,m = 〈a, b, t | abaa = bb, tamt−1 = w〉
with m ∈ Z \ {0} and w a positive word in a, b which contains at least one b.

These are easily seen to be 2-dimensional, since they are HNN’s of the 2-dimensio-
nal groupGover infinite cyclic subgroups. In particular, they are all torsion free groups.

That this family contains an infinite collection of hyperbolic groups which do
not act properly discontinuously and isometrically on any proper CAT(0) space of
dimension 2 follows by combining Proposition 16 and Proposition 17 below. More
precisely, we obtain:

Theorem 15. Let w to be any positive word which represents a primitive element of G
different from a, and let m ∈ Z such that |m| ≥ L(w). Then Gw,m is a 2-dimensional
hyperbolic group but does not act properly discontinuously by isometries on any
2-dimensional CAT(0) space.

For example, one could take w = b and |m| ≥ 3. (For other possible words w

see Remark 18 below). Finally, in Proposition 19, we see that when one chooses
m = L(w), the resulting group is always a free-by-cyclic group. In the case of
the previous example, the group Gb,3 is isomorphic to F6 � Z. These observations
complete the proof of Theorem 2.

Proposition 16. Let w denote a positive word in the letters a, b which contains at
least one b. If |m| ≥ L(w) then Gw,m admits no properly discontinuous isometric
action on a proper CAT(0) space of dimension 2.

Proof. Suppose thatGw,m acts properly discontinuously and isometrically on a proper
CAT(0) space X of dimension 2. The group Gw,m is an HNN-extension of the group
G = 〈a, b | abaa = bb〉 of Theorem 1. Thus G acts properly discontinuously and
isometrically onX (as a subgroup ofGw,m) and by Theorem 1 we have aG-equivariant
map ϕ : K̃t → X which is a local isometric embedding off the 0-skeleton.
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The translation lengths of the elements a and w (acting on X) may be measured
in K̃t , and this information can be used to estimate lengths in X as follows. Since the
translation axis for a connects midpoints of adjacent edges in the hexagonal 2-cell
it avoids the 0-skeleton of K̃t . Thus its ϕ image in X is still a geodesic, and so
the translation length of a on X is equal to the translation length, l(a), of a on K̃t .
The axis for w may pass through the 0-skeleton, and so may not have a geodesic
image in X. Thus all we can say is that the translation length of w on X is bounded
above by the translation length, l(w), of w on K̃t . From Proposition 4 we have that
l(w)/l(a) < L(w), and the preceding analysis tells us that the same inequality holds
if we replace l() by translation lengths in X. However, the relation tamt−1 = w in
Gw,m forces l(w)/l(a) = |m| ≥ L(w), a contradiction. �

Proposition 17. Let w denote a positive word in the letters a, b which contains at
least one b. If w represents a primitive element of the group G (and m �= 0) then
Gw,m is a word hyperbolic group.

Proof. The groups Gw,m are HNN extensions of the hyperbolic group G via an
isomorphism identifying the cyclic subgroup 〈am〉 with the cyclic subgroup 〈w〉,
so we can apply criterion (2) of Corollary 2.3 of the Bestvina–Feighn Combination
Theorem [4].

Since the centralizer of any element in a torsion free hyperbolic group is always
an infinite cyclic group, it follows that any primitive element w of G generates its
own centralizer. Therefore 〈w〉 is malnormal in G, and so one of the conditions (a),
(b) of criterion (2) in Corollary 2.3 holds.

Note also that no non-trivial power of a is conjugate to a non-trivial power of w.
For if this were the case then the ratio l(w)/l(a) would be constant over the full range
of model spaces Kt for G. However, the fact that l(w)/l(a) tends towards a strict
upper bound (Proposition 8) shows that this is not the case. Thus, the set CC′(x) of
criterion (2) of Corollary 2.3 is always finite (actually is always {1}).

By criterion (2) of Corollary 2.3 of [4] and the results of the preceding two
paragraphs, we conclude that the HNN extension Gw,m is torsion free hyperbolic
whenever w is a (positive) primitive element of G different from a. �

Remark 18. The only technical obstacle to applying the above propositions is know-
ing when a positive word w represents a primitive element of G. In many cases,
however, we can give a geometric argument using geodesics in the universal cover of
the regular hexagonal structure K0 to prove primitivity.

For suitable w, we observe that the piecewise geodesic which connects midpoints
of successive edges in the bi-infinite edge-path determined by w is actually an axis
for w.2 This is the case if w is a positive word which is required not to contain either of

2This reasoning enabled us earlier to compute exact translation lengths for the element a.



Vol. 82 (2007) CAT(0) and CAT(−1) dimensions of torsion free hyperbolic groups 83

the two positive, length 3 subwords (aba and baa) which form half of the hexagonal
relator. If, moreover, w has odd wordlength then the axis is unique (w acts as a “glide
reflection” along this axis). Since any root of w must leave this axis invariant, it
follows that w is primitive in G if it is primitive in the free group F{a,b} (i.e., if it is
not obviously a nontrivial power). Examples of such primitive elements w include b,
ab2n (n ≥ 1), ab2ab3 etc. We note however that ab3 = (a2b)2 is not primitive. Many
further elements may be seen to be primitive by variations on this argument. These
include elements ab and a2b, as well as positive words which contain no subword
aba or baa, other than the exception ab3 just mentioned.

The next proposition shows that the examples afforded by Theorem 15 include
infinitely many free-by-cyclic groups.

Proposition 19. If m = L(w), then the group Gw,m is free-by-cyclic.

Proof. Consider the group

Gb,3 = 〈a, b, t | abaa = bb, ta3t−1 = b〉
for example.

Recall that the original group G admits an epimorphism L : G → Z, where
L(b) = 3L(a). Since the abelianization of the new relation still implies that L(b) =
3L(a), we can extend the circle-valued Morse function from the presentation 2-
complex of G to the presentation 2-complex for Gb,3 by mapping t once around the
circle, and extending “linearly” over the new 2-cell as shown in Figure 5. Ascending

a

a

a

b

t

t

[b/3] [2b/3]

v

Figure 5. The Morse function on the extra 2-cell in the F6 �Z group, and the level set through v.

and descending links are trees (segments of length two each), so the space is home-
omorphic to the total space of a graph of spaces where the underlying graph is again
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a one vertex circle, the vertex space is as shown on the left hand side of Figure 5,
and the edge space is a graph which is homotopy equivalent to this, and maps are
homotopy equivalences. Thus Gb,3 is isomorphic to a semidirect product F6 � Z.

In the general case of the group Gw,L(w) the picture of the Morse function on the
new 2-cell will be as in Figure 5, with a3 replaced by aL(w) and with b replace by w.
This has the effect of adding L(w) new edges to the level set � passing through v.
Just as in the preceding paragraph, the ascending and descending links will still be
contractible (segments of length 2 each). Thus

Gw,L(w) = 〈a, b, t | abaa = bb, taL(w)t−1 = w〉
is free-by-cyclic with free kernel of rank 3 + L(w). �

Remark 20. We do not know if any of the groups Gw,m where |m| ≥ L(w) are
CAT(0). Some of them may indeed have 3-dimensional CAT(0) structures. However,
it is hard to imagine low dimensional CAT(0) structures for Gw,m when |m| � L(w),
or when one takes further HNN extensions over suitably chosen Z subgroups of these
Gw,m. There is more to explore here.
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