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The barycenter method on singular spaces

Peter A. Storm∗

Abstract. Compact convex cores with totally geodesic boundary are proven to uniquely mini-
mize volume over all hyperbolic 3-manifolds in the same homotopy class. This solves a conjec-
ture in Kleinian groups concerning acylindrical 3-manifolds. Closed hyperbolic manifolds are
proven to uniquely minimize volume over all compact hyperbolic cone-manifolds in the same
homotopy class with cone angles ≤ 2π . Closed hyperbolic manifolds are proven to minimize
volume over all compact Alexandrov spaces with curvature bounded below by −1 in the same
homotopy class. A version of the Besson–Courtois–Gallot theorem is proven for n-manifolds
with boundary. The proofs extend the techniques of Besson–Courtois–Gallot.

1. Introduction

This paper extends the barycenter map machinery of Besson–Courtois–Gallot [BCG1]
to a class of singular metric spaces called convex Riemannian amalgams (defined in
Section 2.8). This class of singular spaces includes cone-manifolds and the metric
doubling of hyperbolic convex cores across their boundary. These singular space
techniques are used to solve a conjecture in Kleinian groups due to Bonahon. Specif-
ically, we prove that compact convex cores with totally geodesic boundary uniquely
miminize volume over all hyperbolic 3-manifolds in the same homotopy class (see
Theorem 8.1).

The main tool of this paper is the following extension of Besson–Courtois–Gallot
techniques to convex Riemannian amalgams.

Theorem 4.1. For n ≥ 3, let Z be a compact n-dimensional convex Riemannian
amalgam. Let Mhyp be a closed hyperbolic n-manifold. Let h(Z̃) denote the vol-
ume growth entropy of the universal cover of Z. If f : Z → Mhyp is a homotopy
equivalence then

h(Z̃)n Vol(Z) ≥ (n− 1)nVol(Mhyp)

with equality if and only if f is homotopic to a homothetic homeomorphism.

By restricting attention to cone-manifolds, we obtain
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Theorem 8.6. For n ≥ 3, let Z be compact n-dimensional cone-manifold built with
simplices of constant curvature K ≥ −1. Assume all its cone angles are ≤ 2π . Let
Mhyp be a closed hyperbolic n-manifold. If f : Z → Mhyp is a homotopy equivalence
then

Vol(Z) ≥ Vol(Mhyp)

with equality if and only if f is homotopic to an isometry.

If Z is allowed to be any Alexandrov space with curvature bounded below by −1
(see Section 2.13), we then obtain

Theorem 8.7. Let Z be a compact n-dimensional (n ≥ 3) Alexandrov space with
curvature bounded below by −1. Let Mhyp be a closed hyperbolic n-manifold. If
f : Z → Mhyp is a homotopy equivalence then

Vol(Z) ≥ Vol(Mhyp).

As mentioned above, the paper’s main theorems solve a conjecture in Kleinian
groups. To state things precisely, let H(N) denote the set of marked oriented isom-
etry classes of hyperbolic 3-manifolds M equipped with a homotopy equivalence
N → M . Define a volume function

Vol : M ∈ H(N) �→ Vol(CM).

It is a consequence of Thurston’s Geometrization Theorem and Mostow Rigidity
thatN is acylindrical if and only if there exists a convex cocompactMg ∈ H(N) such
that ∂CMg is totally geodesic [Th2, p. 14]. Moreover, Mg is unique up to isometry.
Let Mopp

g denote Mg with the opposite orientation.

Conjecture. Mg and Mopp
g are the only global minima of Vol over H(N).

Initial progress on this conjecture was made by Bonahon [Bon]. Using different
methods, Bonahon proved that Mg is a strict local minimum of Vol (in the quasi-
isometric topology on H(N)). In [S], the author proved thatMg andMopp

g are global
minima of Vol. Here this conjecture is completely solved by

Theorem 8.1. Let N be a compact acylindrical 3-manifold. Let Mg ∈ H(N) be a
convex cocompact hyperbolic 3-manifold such that the boundary of the convex core
∂CMg ⊂ Mg is totally geodesic. Then for all M ∈ H(N),

Vol(CM) ≥ Vol(CMg),

with equality if and only if M and Mg are isometric.

The techniques used to prove Theorem 8.1 immediately generalize to a version
of the Besson–Courtois–Gallot theorem for manifolds with boundary. (Perelman’s
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unpublished Doubling theorem [P, Theorem 5.2] is used in the proof of Theorem 8.9.
See Theorem 8.8.)

Theorem 8.9. Let Z be a compact convex Riemannian n-manifold with boundary
(n ≥ 3). Assume the sectional curvature of int(Z) is bounded below by −1. Let
Ygeod be a compact convex hyperbolic n-manifold with totally geodesic boundary.
Let f : (Z, ∂Z) → (Ygeod, ∂Ygeod) be a homotopy equivalence of pairs. Then

Vol(Z) ≥ Vol(Ygeod),

with equality if and only if f is homotopic to an isometry.

This paper’s method of proof may be of independent interest. Following [BCG1],
these results are proven by defining a natural map from a nice path metric space Z
to a hyperbolic manifold Mhyp. Instead of obtaining this map as a uniform limit of
approximating maps, the natural map is here obtained in a single step. The idea is to
emulate the “short” proof of the Besson–Courtois–Gallot theorem found in [BCG2],
where it is additionally assumed that Z is nonpositively curved. Here the assumption
of nonpositive curvature is removed, but the gist of the “short” proof is retained. As a
cost for this generalization, the arguments here require that Z andMhyp be homotopy
equivalent. In [BCG1], only a map Z → Mhyp of nonzero degree is required.

The results in this paper represent a large portion of the author’s Ph.D. thesis,
completed at the University of Michigan. The author thanks his advisor, Richard
Canary, for his essential assistance at every stage of this project. The author also
enjoyed several helpful conversations with Yair Minsky. Thanks to Ralf Spatzier for
introducing the author to the work of Besson–Courtois–Gallot.

1.1. Sketch of the proof of the main theorem. Let Z be a compact n-dimensional
convex Riemannian amalgam with universal cover X (e.g. a cone-manifold or the
double of a convex core), Mhyp a closed hyperbolic n-manifold, and f : Z → Mhyp
a homotopy equivalence. Up to rescaling the metric of Z, way may assume that
h(X) = (n − 1) = h(Hn). The first goal is to find a volume decreasing map
F : Z → Mhyp homotopic to f . The second goal is to show that if the volume
decreasing map F is in fact volume preserving, then it is an isometry.

Step 1. Defining “visual measures” on ∂X (Section 3). Following [BM], we define
a generalization of Patterson–Sullivan measure {μx}x∈X supported on a function
theoretic compactification HX of X by Busemann functions. As Z and Mhyp are
homotopy equivalent, X must be Gromov hyperbolic with Gromov boundary ∂X.
We define an Isom(X)-equivariant continuous surjection π : HX → ∂X, and use
it to push forward the measures {μx} onto ∂X. The resulting family of probability
measures {π∗μx} are the “visual measures” used to define the natural map F .

Step 2. DefiningF (Section 4). The homotopy equivalence f lifts to a quasi-isometry
between the universal covers f : X → Hn, which in turn induces a homeomorphism
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of Gromov boundaries f : ∂X → ∂Hn. The measure π∗μx is pushed forward via the
boundary homeomorphism to obtain a measure f∗π∗μx on ∂Hn. Finally, F(x) ∈ Hn

is defined to be the barycenter of the measure f∗π∗μx . In sum,

F : X → Hn,

x �→ barycenter of measure (f 	 π)∗μx.
It is relatively easy to show thatF descends to a mapF : Z → Mhyp, and is homotopic
to f : Z → Mhyp. In particular, F : Z → Mhyp is surjective.

Step 3. F is locally Lipschitz (Section 5). In order to use calculus to study the map F ,
we must prove it is locally Lipschitz. (For example, a locally Lipschitz map which is
infinitesimally volume decreasing almost everywhere must be volume decreasing.)
This is done by factoring F as a composition F = P 	 �, such that P and � can
be analyzed directly. � : X → L2+(HX) ⊂ L2(HX) equivariantly maps X into
the strictly positive functions of the Hilbert space L2(HX). P : L2+(HX) → Hn is
basically the barycenter map, thinking of L2+(HX) as a space of measures. We show
� is locally Lipschitz by direct estimates. Applying the implicit function theorem
shows P is C1. Together this shows F = P 	� is locally Lipschitz.

Step 4. F is infinitesimally volume decreasing a.e. (Section 6). With only minor
modifications, the arguments of [BCG2] can be applied to show | JacF | ≤ 1 almost
everywhere. This accomplishes the first goal of showing F is volume decreasing.
The arguments of [BCG2] also show that if | JacF(x)| = 1 for some x, then dFx is
an infinitesimal isometry. Thus if F is volume preserving, it must be an infinitesimal
isometry almost everywhere.

Step 5. F is volume preserving implies it is an isometry (Section 7). Applying the
arguments from [BCG1, p .790–793], we show a volume preserving map F is a local
isometry on an open dense set. We show F is injective by using some local properties
of convex Riemannian amalgams. Thus F is a homeomorphism. Again using the
convex Riemannian structure on Z, we prove F is an isometry. This accomplishes
the second goal, and completes the proof of Theorem 4.1.

1.2. Sketch of the applications. With the above machinery established, the theo-
rems concerning cone-manifolds (Section 8.2), Alexandrov spaces (Section 8.3), and
manifolds with boundary (Section 8.4) are easy to prove. To apply the machinery to
hyperbolic convex cores requires more work (Section 8.1).

Recall the hypotheses of Theorem 8.1. Let M and Mg be homotopy equivalent
acylindrical convex cocompact hyperbolic 3-manifolds. Assume the convex core
CMg ⊂ Mg has totally geodesic boundary. The goal is to proveVol(CM) ≥ Vol(CMg),
with equality if and only if M and Mg are isometric. To begin, metrically double
the convex cores across their boundaries to obtain the convex Riemannian amalgams
DCM and DCMg . Notice that DCMg is in fact a closed hyperbolic 3-manifold. A
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short argument proves there exists a π1-equivariant quasi-isometric homeomorphism

f : D̃CM → D̃CMg . Applying the above machinery to f yields Theorem 8.1.
In the case where M is geometrically finite with at least one rank one cusp,

geometric (but not hyperbolic) Dehn surgery arguments are used to reduce to the case
of closed (non-hyperbolic) manifolds, where Theorem 4.1 can be applied. (These
geometric Dehn surgery techniques are based on [Bes], [L].)

2. Preliminaries

The following is a review of the necessary definitions. Throughout this paper, metric
spaces are assumed to be complete unless otherwise stated.

2.1. δ-hyperbolicity. This paper will follow the definitions and notation of [GH].
For convenience, we recall a few basic notions. Let (X, d) be a δ-hyperbolic space
with basepoint o ∈ X. Then for x, y ∈ X, the Gromov product of x and y is

(x | y) := 1

2
{d(x, o)+ d(y, o)− d(x, y)} .

A defining property of δ-hyperbolic spaces is that for any triple x, y, z ∈ X,

(x | y) ≥ min{(x | z), (z | y)} − δ. (1)

The geometric content of the Gromov product may be difficult to grasp initially. The
idea is that geodesic triangles in a δ-hyperbolic space are very close to being tripods.
For a tripod the Gromov product has the simple interpretation shown in Figure 1: it
is the length of the tripod’s “o” leg. Since long geodesic triangles in a δ-hyperbolic

x
(x | y)

y

o

Figure 1

space are very close to tripods, on a sufficiently large scale the Gromov product is
the length of the “o” leg of the geodesic triangle formed by o, x, and y.
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The Gromov boundary at infinity of X will be denoted by ∂X. The Gromov
product can be extended to all of X ∪ ∂X as follows. For a, b ∈ X ∪ ∂X, define

(a | b) := sup lim inf
i,j→∞(xi | yj )

where the supremum is taken over all sequences {xi}, {yj } ⊂ X such that xi → a

and yj → b. For a, b ∈ X this reduces to the previous definition. Using inequality
(1), one can show that for any given sequences xi → a, yj → b,

(a | b)− 2δ ≤ lim inf(xi | yj ) ≤ (a | b)
(see [GH, p. 122]). Therefore a sequence {zi} ⊂ X ∪ ∂X converges to a ∈ ∂X if and
only if (zi | a) → ∞.

2.2. Barycenter. Consider Hn with basepoint o. For each θ ∈ ∂Hn let Boθ be the
unique Busemann function of θ such that Boθ (o) = 0. Namely, if γ is the geodesic
ray based at o asymptotic to θ , then Boθ (p) = limt→∞[d(p, γ (t)) − t]. Let λ be a
Radon measure on the compact space ∂Hn. Define the average

Bλ(p) :=
∫
∂Hn

Boθ (p) dλ(θ).

Proposition 2.1 ([BCG1, Appendix A]). If λ has no atoms, thenBλ is proper and has
a unique critical point in Hn corresponding to the unique global minimum. Moreover,
the Hessian of Bλ is a positive definite bilinear form. Namely, for all v ∈ TpHn,

(HessBλ)(v, v) := 〈∇v∇Bλ, v〉 > 0.

The unique critical point of Bλ is the barycenter of λ, denoted bar λ. Since the
barycenter is the unique critical point of Bλ, it is defined implicitly as the unique
point p such that ∫

∂Hn
〈∇Boθ , v〉p dλ(θ) = 0

for all v ∈ TpHn. Notice that the barycenter map is scale invariant, i.e. the barycenter
of the measure λ equals the barycenter of the measure cλ for any c > 0.

2.3. The brain in a jar lemma. At a crucial stage in the proof of Proposition 4.3,
the following linear algebra lemma is needed.

Lemma 2.2. Let H be an n × n positive definite symmetric matrix with trace
tr(H) = 1. If n ≥ 3, then

det(H)

[det(Id −H)]2 ≤
[

n

(n− 1)2

]n
.

Moreover, equality holds if and only if H = 1
n

Id.
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This lemma is false for n = 2. It is the only part of this paper (and Besson–
Courtois–Gallot theory in general) which fails in 2 dimensions.

2.4. Generalized differentiable and Riemannian structures ([OS]). Let X be a
topological space, 	 ⊆ X, and n ∈ N. A family {(Uφ, φ)}φ∈� is called a C1-atlas
on 	 ⊆ X if the following hold:

(1) For each φ ∈ �, Uφ is an open subset of X.

(2) Each φ ∈ � is a homeomorphism from Uφ into an open subset of Rn.

(3) {Uφ}φ∈� is a covering of 	.

(4) If two maps φ,ψ ∈ � satisfy Uφ ∩ Uψ �= ∅, then

ψ 	 φ−1 : φ(Uφ ∩ Uψ) → ψ(Uφ ∩ Uψ)

is C1 on φ(Uφ ∩ Uψ ∩	).
A family {gφ}φ∈� is called a C0-Riemannian metric associated with a C1-atlas

{(Uφ, φ)}φ∈� on 	 ⊆ X if the following hold:

(1) For each φ ∈ �, gφ is a map from Uφ to the set of positive symmetric matrices.

(2) For each φ ∈ �, gφ 	 φ−1 is continuous on φ(Uφ ∩	).
(3) For any x ∈ Uφ ∩ Uψ, φ,ψ ∈ �, we have

gψ(x) = [d(φ 	 ψ−1)(ψ(x))]t gφ(x) [d(φ 	 ψ−1)(ψ(x))].

These two structures induce a distance metric Dg on 	 which we now describe.
The length of a piecewise C1 path γ : (0, 1) → 	 is defined in the usual way
by pulling back the metric tensor via γ . A path η : [0, 1] → X is admissible if
η−1(X \ 	) is a finite set of points {t1, . . . , tl}, and η is piecewise C1 on (0, 1) \
{t1, . . . , tl}. For x, y ∈ 	, define

Dg(x, y) := inf{ length(γ ) | γ joins x to y and is admissible}.
If x and y cannot be joined by an admissible path, setDg(x, y) = ∞. In general, the
topology of (	,Dg) can be quite different from the subspace topology of 	 ⊆ X.

2.5. Almost everywhere Riemannian spaces. Let (X, d) be a geodesic metric
space with Hausdorff dimension n < ∞. X is an almost everywhere Riemannian
metric space if there exists 	 ⊆ X, a dense subset of full n-dimensional Hausdorff
measure, such that:

(1) 	 admits a n-dimensional C1-atlas {(Uφ, φ)}φ∈�.

(2) 	 admits a C0-Riemannian metric {gφ}φ∈�.
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(3) Each homeomorphism φ ∈ � is in fact locally bilipschitz.

(4) The identity map (	,Dg) → (	, d) is an isometry (see Section 2.4).

(5) The Riemannian metric induces a volume element dvol	 on 	. The measure
onX obtained by integrating this element equals n-dimensional Hausdorff mea-
sure on X (X \	 has zero measure).

NoticeX is not assumed to be a topological manifold, and	 ⊆ X is not assumed
to be open. Conditions (1)–(5) are not as restrictive as they initially appear. For
example, Otsu and Shioya proved that a finite dimensional Alexandrov space with
curvature bounded below by k ∈ R is almost everywhere Riemannian [OS] (see
Section 2.13). Condition (3) allows Rademacher’s theorem to be applied to almost
everywhere Riemannian spaces. This means locally Lipschitz functions on an almost
everywhere Riemannian metric space are differentiable almost everywhere. Condi-
tion (4) says that the C0-Riemannian metric on 	 reproduces the metric d, in the
sense that the metric completion of (	,Dg) is isometric to (X, d).

2.6. Cone-manifolds ([CHK, p. 53]). An n-dimensional cone-manifold M is a
manifold which can be triangulated so that the link of each simplex is piecewise
linear homeomorphic to a standard sphere and M is equipped with a path metric
such that the restriction of the metric to each simplex is isometric to a geodesic
simplex of constant curvatureK . The singular locus
 consists of the points with no
neighborhood isometric to a ball in a Riemannian manifold.

It follows that
• 
 is a union of totally geodesic closed simplices of dimension n− 2.
• At each point of 
 in an open (n− 2)-simplex, there is a cone angle which is

the sum of dihedral angles of n-simplices containing the point.
In particular, the singular locus of a 3-dimensional cone-manifold forms a graph in

the manifold. A cone-manifold is an almost everywhere Riemannian metric space (see
Lemma 2.3). Though a definition will not be given here, a cubed-manifold is another
example of a cone-manifold (see [AMR]). More abstractly, any manifold admitting
a locally finite decomposition into convex geodesic polyhedra is a cone-manifold.
This can be seen by adding superfluous faces to the polyhedral decomposition.

The manifold structure of a cone-manifold will not be used in this paper. Theo-
rem 8.6 is equally valid for more general simplicial metric spaces not satisfying the
above link condition.

2.7. Convex Riemannian manifolds with boundary. A geodesic metric space C
is an n-dimensional convex Riemannian (resp. hyperbolic) manifold with boundary
if

(1) C is topologically an n-manifold with boundary,

(2) there is an incomplete Riemannian (resp. hyperbolic) metric on the interior ofC,
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(3) the metric on C is the metric completion of the Riemannian (resp. hyperbolic)
metric on the interior,

(4) for any pair of points in the interior of C, the shortest path between them lies in
the interior of C, and

(5) for any compactK ⊆ C, the curvature of the Riemannian manifoldK ∩ int(C)
is bounded from above and below by finite constants.

(Notice no differentiability assumptions have been made on the boundary.)
Property (5) ensures C has “locally bounded geometry”. The lower curvature

bound on compact sets guarantees thatC is locally anAlexandrov space with curvature
bounded below. This implies the boundary ∂C has Hausdorff dimension n − 1
[OS]. (In [OS], they prove the singular set of an n-dimensional Alexandrov space
with curvature bounded below has Hausdorff dimension ≤ n − 1. In this case, the
boundary is the singular set.) The local upper curvature bound gives a lower bound on
the volume of small metric balls in C. This useful property will be used in Section 7.

Given a convex Riemannian manifold with boundaryC, we can metrically double
it across its boundary to obtain a metric space DC. Topologically DC is the closed
manifold obtained by doubling C across its boundary. The metric on DC is the
path metric induced by gluing the two copies of C (one with opposite orientation)
along ∂C. The convexity of C (property (4)) insures that the path metric obtained
after doubling does not alter the original metric on C. Notice that DC is an almost
everywhere Riemannian metric space (see Lemma 2.3).

2.8. Convex Riemannian amalgams. A geodesic metric space Z is an n-dimen-
sional convex Riemannian amalgam if Z contains an isometrically embedded locally
finite countable collection {Cj } ⊆ Z of n-dimensional convex Riemannian manifolds
with boundary such that

(1)
⋃
j Cj = Z,

(2) int(Cj ) ∩ int(Ck) = ∅ for j �= k.

(NoticeZ is not assumed to be a manifold.) A cone-manifold is a convex Riemannian
amalgam (see Section 2.6). Another convex Riemannian amalgam is the metric
doubling DC of a convex Riemannian manifold with boundary C (see Section 2.7).

Lemma 2.3. A convex Riemannian amalgam is an almost everywhere Riemannian
metric space.

Proof. Define 	 := ⋃
j int(Cj ). We must check conditions (1)–(5) of Section 2.5.

(1)–(3) are trivial. For (4) use the following consequence of convexity: any x, y ∈ Z
can be joined by a path γ such that

• the length of γ is arbitrarily close to d(x, y), and
• γ ∩ ∂Cj is at most two points for any Cj in the decomposition.
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For (5) use that
⋃
j ∂Cj has measure zero. �

Convex Riemannian amalgams seem to be the most natural class of metric spaces
for which the arguments of Theorem 7.1 are valid.

2.9. Convex cores. LetM be a hyperbolic manifold. Let S ⊆ M be the union of all
closed geodesics in M . The convex core, CM , is the smallest closed convex subset
of M which contains S, in other words it is the closed convex hull of S in M . The
convex core may also be defined as the smallest closed convex subset of M such
that the inclusion map is a homotopy equivalence. M is geometrically finite if an
ε-neighborhood of CM has finite volume. Otherwise, M is geometrically infinite.

For finite volume hyperbolic manifolds, the convex core is the entire manifold.
Thus this is a useful object only in the infinite volume case, where CM is the smallest
submanifold which carries all the geometry of M .

2.10. Pared 3-manifolds [M, Def.4.8]. Let N be a compact orientable irreducible
3-manifold with nonempty boundary. Assume N is not a 3-ball. Let P ⊆ ∂N .
(N, P ) is a pared 3-manifold if the following three conditions hold.

(1) Every component of P is an incompressible torus or a compact annulus.

(2) Every noncyclic abelian subgroup of π1(N) is conjugate into the fundamental
group of a component of P .

(3) Every π1-injective cylinder C : (S1 × I, S1 × ∂I) → (N, P ) is relatively ho-
motopic to a map ψ such that ψ(S1 × I ) ⊆ P .

By Thurston’s Geometrization Theorem [M], (N, P ) is a pared 3-manifold if and
only if there exists a geometrically finite hyperbolic structure on the interior of N
such that CM ∼= N \ P .

2.11. Pared acylindrical ([Th3, p. 244]). A pared 3-manifold (N, P ) is pared
acylindrical if ∂N \ P is incompressible and if every π1-injective cylinder

C : (S1 × I, S1 × ∂I) → (N, ∂N \ P)
is homotopic rel boundary to ∂N .

2.12. Deformation theory. Let μ > 0 be the Margulis constant for hyperbolic 3-
manifolds. Then for a hyperbolic 3-manifold M , the μ-thin part of M is a disjoint
union of bounded Margulis tubes and unbounded cusps [BP]. After possibly makingμ
smaller, we may also assume that the intersection of ∂CM and the μ-thin part of M
is totally geodesic [M, Lemma 6.9]. Define Mo to be M minus the unbounded
components of its μ-thin part. In other words, Mo is the manifold with boundary
obtained by removing the cusps from M .
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Let (N, P )be a compact pared 3-manifold. Define the deformation space H(N, P )
as follows. For a hyperbolic 3-manifold M and a map m : N → Mo, (M,m) ∈
H(N, P ) if there exists a union QM of components of ∂Mo such that m : (N, P ) →
(M,QM) is a relative homotopy equivalence. (M1,m1) = (M2,m2) in H(N, P ) if
there exists an orientation preserving isometry � : M1 → M2 such that � 	m1 ∼ m2.
(H(N, P ) admits several interesting topologies [Th3]. They will not be needed here.)
(M,m) has no additional parabolics if QM = ∂Mo. Using the product structure on
the complement of CM [EM] and the thick-thin decomposition, there exists a relative
homotopy equivalence p : (M,QM) → (CM ∩Mo,CM ∩QM).

Theorem 2.4 (Johannson). Let (N, P ) be a compact pared acylindrical 3-manifold.
If (M,m) ∈ H(N, P ) is geometrically finite then p 	m is homotopic to a homeomor-
phism (N, P ) → (CM ∩Mo,CM ∩QM).

Proof. Since N is not homotopy equivalent to a surface, CM is a 3-manifold. Since
M is geometrically finite, (CM ∩ Mo,CM ∩ QM) is a compact pared 3-manifold
[M, Corollary 6.10]. So p 	m is a relative homotopy equivalence between compact
pared 3-manifolds, and the domain is pared acylindrical. By the work of Johannson
[J, Lemma X.23, p. 235], p 	 m is homotopic (rel the paring) to a homeomorphism
(N, P ) → (CM ∩Mo,CM ∩QM). �

We are interested in pared acylindrical 3-manifolds because of the following corol-
lary of Thurston’s Geometrization Theorem and Mostow rigidity.

Corollary 2.5 ([Th2, p. 14]). Let (N, P ) be a pared acylindrical 3-manifold. Then
there exist exactly two spaces (M,m), (Mopp,mopp) ∈ H(N,P ) such that M and
Mopp are geometrically finite, M and Mopp have no additional parabolics, and the
convex cores CM and CMopp have totally geodesic boundary. Moreover, there exists
an orientation reversing isometry � : M → Mopp such that mopp ∼ � 	m.

2.13. Alexandrov space with curvature bounded below by −1. There are many
equivalent definitions of Alexandrov spaces. Here we give the most common defini-
tion. (See [BBI] for more information.)

Let Y be a path metric space. Y is an Alexandrov space with curvature bounded
below by −1 if about each point in Y there exists a neighborhood U satisfying the
following comparison condition. Let x, y, z ∈ U be distinct points, let w lie on
the interior of a geodesic path xy connecting x to y. Let x̃, ỹ, z̃, w̃ ∈ H2 be such
that d(x, y) = d(x̃, ỹ), d(y, z) = d(ỹ, z̃), d(x, z) = d(x̃, z̃), d(x,w) = d(x̃, w̃),
d(w, y) = d(w̃, ỹ). We then require that d(z,w) ≥ d(z̃, w̃).

This comparison condition guarantees that geodesic triangles in Y are at least as
fat as hyperbolic triangles. The dimension of an Alexandrov space with curvature
bounded below is defined to be its Hausdorff dimension. For finite dimensional
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Alexandrov spaces with curvature bounded below, the Hausdorff and topological
dimensions agree [BGP, p. 21].

In Section 8.3, we will use

Theorem 2.6 ([OS]). If Y is a finite dimensional Alexandrov space with curvature
bounded below by −1, then Y is an almost everywhere Riemannian metric space.

Proof. Following [OS], let S be the singular set of Y . Define 	 := Y \ S. 	 is a
countable intersection of dense open sets with full measure. It is therefore dense and
has full measure. Conditions (1)–(5) of Section 2.5 also follow from results in [OS].
Specifically, conditions (1) and (2) follow from [Theorem B, p .630], condition (3)
follows from [Lemma 5.1.3, p. 651], condition (4) follows from [Theorem B, p. 630]
and [Theorem 6.4, p. 654], and condition (5) follows from [Section 7.1]. �

The main property of these Alexandrov spaces we will use is an upper bound on
their volume growth entropy, which we now define.

2.14. Volume growth entropy. Let X be a geodesic metric space of Hausdorff

dimension n, X̃ be the universal cover of X, and Hn be n-dimensional Hausdorff
measure. The volume growth entropy of X̃ is the number

h(X̃) := lim sup
R→∞

1

R
log Hn(BX̃(x, R)),

where x is any point in X̃, and the ball BX̃(x, R) is in X̃.
The volume growth entropy is independent of the choice of x ∈ X̃.
The following theorem of Burago, Gromov, and Perelman will be important for

this paper.

Theorem 2.7 ([BGP, p. 40]). If X is an Alexandrov space with curvature bounded
below by −1 and Hausdorff dimension n, then the volume growth entropy of X̃ is less
than or equal to the volume growth entropy of Hn. In other words

h(X̃) ≤ h(Hn) = n− 1.
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3. Horoboundary and densities

In order to define a density in the necessary generality, a second definition of the
boundary at infinity must be made. This is a more general definition than of the
Gromov boundary at infinity; it makes sense for any proper metric space. In the case
of negatively curved Riemannian manifolds, it reduces to the Gromov boundary. (For
more information, see [BGS, p. 21], [BM], and [F, Section 2].)

Let Y be a proper metric space. For p ∈ Y , define dp(y) := d(p, y). Denote the
space of continuous (real valued) functions on Y by C(Y ), and endow this set with
the topology of uniform convergence on compact sets. Define an equivalence relation
on C(Y ) by f ∼ g if and only if f − g is a constant function. Denote the quotient
space C(Y )/ ∼ by C∗(Y ). C∗(Y ) is Hausdorff. Define a map ι : Y → C∗(Y ) by
ι(p) := [dp]. ι is a topological embedding.

Definition 3.1. Let Cl(Y ) denote the closure of ι(Y ) in C∗(Y ). The horoboundary
of Y is

HY := Cl(Y ) \ ι(Y ).
A continuous function h ∈ C(Y ) such that [h] ∈ HY is a horofunction of Y .

For η ∈ C∗(Y ) define a function bη : Y × Y → R by

bη(p, q) := h(p)− h(q) for any h ∈ C(Y ) such that [h] = η.

If Y has a fixed basepoint o, then define bη(p) := bη(p, o).

It is a quick check to see that bη is well-defined, i.e. independent of the choice
of h. The functions bη are 1-Lipschitz. Thus applying the Arzela–Ascoli theorem
shows Cl(Y ) is compact, implying HY is compact. (If Y is nonpositively curved,
then horofunctions and the horoboundary are identical to Busemann functions and
the boundary at infinity [BGS, p. 22].)

Isometries of Y extend to homeomorphisms of HY in the following simple man-
ner. Consider the Isom(Y )-action by homeomorphisms on C(Y ) given by φ.f :=
f 	 φ−1. This action descends to an action on C∗(Y ). Since φ.[dp] = [dφ.p], the
map φ|ι(Y ) : ι(Y ) → ι(Y ) is a homeomorphism. Since φ acts as a homeomorphism
on both ι(Y ) and C∗(Y ), it also acts as a homeomorphism on HY . Thus we have
defined an Isom(Y )-action by homeomorphisms on HY .

Definition 3.2. LetY be proper metric space. LetG be a closed subgroup of Isom(Y ).
A continuous map (under the weak-∗ topology on measures)

μ : Y → {positive Radon measures on HY }
is an �-dimensional density for G if
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(1) μ is G-equivariant, i.e. μg.x = g∗μx ,

(2) μp � μq for all p, q, and for η ∈ HY ,

dμp

dμq
(η) = e−�(bη(p,q)).

Example. For Hn, HHn = ∂Hn. Let � : SpHn → ∂Hn be the standard radial
homeomorphism between the unit tangent sphere and the boundary at infinity. Define
μp to be the push-forward of Lebesgue measure on SpY by �. This is known as the
visual measure at p, and is an (n−1)-dimensional density for all of Isom(Hn). Visual
measure is the most natural density in this case.

Our entire reason for defining the horoboundary is the following proposition.

Proposition 3.1 ([BM, Prop. 1.1]). Let X be a proper metric space of Hausdorff
dimension n with basepoint o ∈ X. Let m be n-dimensional Hausdorff measure.
Assume m(X) = ∞ and X has finite volume growth entropy h(X). Then there
exists an h(X)-dimensional density x �→ μx for Isom(X). This density is called
Patterson–Sullivan measure.

By normalizing we may always assume that μo is a probability measure. Notice
this normalization implies that μg.o = g∗μo is also a probability measure for any
g ∈ Isom(X).

Let X be a δ-hyperbolic proper path metric space. Assume that h(X) ∈ (0,∞).
We have defined two different compactifications of X; the Gromov boundary at
infinity ∂X and the horoboundary HX. In general, those two compactifications are
not homeomorphic. However, they are both necessary for the work of this paper. To
connect the two compactifications, we now define a continuous Isom(X)-equivariant
surjection π : HX → ∂X.

Fix a basepoint o ∈ X. Pick ξ ∈ HX and a sequence {pn} such that [dpn] → ξ in
C∗(X). Then {pn} leaves every compact set of X. So by the Arzela–Ascoli theorem
there exists a subsequence {al} ⊆ {pn} such that the geodesic segments oal converge
to some [γ ] ∈ ∂X in the compact-open topology, where γ is a geodesic ray based
at o.

Define π : HX → ∂X by π(ξ) = [γ ]. Before proving π is well defined, we
need the following lemma.

Lemma 3.2. In the above notation, the sequence {al} converges to [γ ] ∈ ∂X.

Proof. It is enough to show ( [γ ] | al) → ∞. Pick a large M � 0, and consider the
metric ball B(o,M). Find L such that for l ≥ L, the geodesic segment oal is 1-close
to γ on B(o,M). Then the picture looks roughly like Figure 3.
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B(o,M)

o

[γ ] a1

Figure 3

As M → ∞, intuitively ([γ ]|al) → ∞. To prove this carefully, notice that for
k > 1

d(γ (kM), al) ≤ [d(al, o)−M] + [d(γ (kM), o)−M] + 1.

This implies
(γ (kM) | al) ≥ M − 1/2.

So finally

([γ ] | al) ≥ lim inf
k→∞ (γ (kM) | al)− 2δ ≥ M − 2δ − 1/2. �

Lemma 3.3. The map π : HX → ∂X is well defined.

Proof. Suppose π is not well defined. Then there exist sequences pi, qi → ξ ∈ HX

such that {pi}, {qi} do not converge to a common point in ∂X. Thus there exists an
M > 0 such that (pi | qi) < M for all i.

Pick a metric closed ballK much larger thanB(o,M). pi, qi → ξ ∈ HX implies
that for large i and all x ∈ K ,

d(pi, x)− d(pi, o) ≈ d(qi, x)− d(qi, o). (2)

This will lead to a contradiction.
To begin, pick x ∈ K ∩ oqi such that d(x, o) � M . Then

d(qi, x)− d(qi, o) = −d(x, o). (3)
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qi x

K

B(o,M)

o

pi

Figure 4

Approximate the four point metric space {x, o, qi, pi} by a tree. Let the correspond-
ing four points in the tree be {x̃, õ, q̃i , p̃i}. We may assume this tree is at worst
(1, 2δ)-quasi-isometric to {x, o, qi, pi} [GH, p. 33] (see Figure 4). We thus obtain
the inequalities

d(pi, x)− d(pi, o) ≥ d(p̃i, x̃)− d(p̃i, õ)− 4δ

= d(x̃, õ)− 2(x̃ | p̃i)− 4δ

= d(x̃, õ)− 2(q̃i | p̃i)− 4δ

≥ d(x, o)− 2δ − 2(qi |pi)− 6δ − 4δ

≥ d(x, o)− 2M − 12δ >
d(x, o)

2
.

Together with equation (3), this contradicts equation (2). �

Lemma 3.4. π is continuous and surjective.

Proof. To see that π is surjective, pick a geodesic ray γ based at o. By compactness
there is a sequence {ti} ⊂ (0,∞) such that γ (ti) converges to a point ξ ∈ HX. Then
by definition π(ξ) = [γ ].

Let ξn → ξ in HX. Pick sequences {pni } such that for all n, limi→∞ pni = ξn.
This implies limi→∞ pni = π(ξn) in ∂X for all n. There is an increasing sequence
i1, i2, i3, . . . of natural numbers such that

lim
n→∞p

n
in

= ξ in HX, and (π(ξn) |pnin) > n.
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This implies limn→∞ pnin = π(ξ) in ∂X. By the definition of δ-hyperbolicity

(π(ξ) |π(ξn)) ≥ [
min{(π(ξ) |pnin), (π(ξn) |pnin)} − 3δ

] → ∞ as n → ∞.

Therefore π(ξn) → π(ξ) in ∂X. �

The proof of the following lemma is trivial and has been omitted.

Lemma 3.5. For all g ∈ Isom(X), g 	 π = π 	 g.

Lemma 3.6. If X admits a cocompact isometric action, then π∗μp has no atoms for
all p ∈ X.

Proof. As π∗μp � π∗μo, it is sufficient to show π∗μo has no atoms. Suppose there
exists α ∈ ∂X such that π∗μo(α) > 0. SinceX admits a cocompact isometric action,
there is a constant D > 0 such that any p ∈ X is at most a distance D from an orbit
point gp.o for gp ∈ Isom(X). It follows that the total mass of the measure μp is at
most eDh(X).

We first show all the horofunctions in the fiber π−1(α) are a bounded distance
from each other. Pick a geodesic ray inX based at o asymptotic to α. Pick a sequence
pi of points going to infinity on the geodesic ray. After passing to a subsequence we
may assume the points pi converge to some ξ ∈ π−1(α) ⊂ HX.

By definition
bξ (x) = lim (−2(pi | x)+ d(x, o)) .

We know
(α | x)− 2δ ≤ lim inf(pi | x) ≤ (α | x).

Because bξ is well defined, the lim inf can be replaced by a limit. Thus

−2(α | x)+ d(x, o) ≤ bξ (x) ≤ −2(α | x)+ d(x, o)+ 4δ.

So for any other ζ ∈ π−1(α) we have

|bξ (x)− bζ (x)| ≤ 4δ.

Using this we obtain the inequality

π∗μpi (α) =
∫
π−1(α)

dμpi =
∫
π−1(α)

e−h(X)bζ (pi)dμo(ζ )

≥
∫
π−1(α)

e−h(X)[bξ (pi)+4δ]dμo(ζ )

= e−h(X)[bξ (pi)+4δ] · π∗μo(α) > 0.
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But limi→∞ bξ (pi) = −∞. So

lim
i→∞π∗μpi (α) = ∞.

Since π∗μpi has total mass at most eDh(X), this is a contradiction. Therefore π∗μo
has no atoms. �

4. The Besson–Courtois–Gallot inequality

Theorem 4.1. Let Mhyp be a closed hyperbolic n-manifold for n ≥ 3. Let Z be a
compact n-dimensional almost everywhere Riemannian metric space with universal
cover X. (For a definition, see Section 2.5.) Let f : Z → Mhyp be a homotopy
equivalence. Then

h(X)n Vol(Z) ≥ (n− 1)n Vol(Mhyp).

Let f also denote the lifted map f : X → Hn. Recall that if Z and Mhyp are
compact, then a homotopy equivalence f : Z → Mhyp lifts to a quasi-isometry

f : X → M̃hyp between the universal covers. This implies that the volume growth
entropy of X is a strictly positive and finite (see for example [Gr, Prop.5.10]). Fix
a basepoint o ∈ X, and let f (o) ∈ Hn be a basepoint of Hn. Since f : X → Hn is
a quasi-isometry, f extends to a homeomorphism between the Gromov boundaries
f : ∂X → ∂Hn.

We now define the natural map F : X → Hn, but postpone proving its regularity
properties until later sections. For x ∈ X, let μx be the Patterson–Sullivan measure
at x. Recall we have defined a continuous map π : HX → ∂X. Push forward the
Patterson–Sullivan measure μx on HX to a probability measure (f 	π)∗μx on ∂Hn.
Define F : X → Hn by

F(x) := barycenter((f 	 π)∗μx).
F is the natural map induced by f . F is a � := π1(Z) ∼= π1(Mhyp)-equivariant
continuous map. It therefore descends to a continuous map F : Z → Mhyp.

Remark 4.2. Any additional symmetries of the map f : Z → Mhyp also become
symmetries of F . Namely, if Z and Mhyp possess an isometric involution, and
f : Z → Mhyp is equivariant with respect to the involutions, then F : Z → Mhyp
is similarly equivariant. This follows immediately from the definition, because both
π : HX → ∂X and Patterson–Sullivan measure are Isom(X)-equivariant. This fact
will be used in the proofs of Theorems 8.1 and 8.9.
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F, f : X → Hn are �-equivariant maps. The straight-line homotopy between
them is also �-equivariant. Therefore the downstairs maps F, f : Z → Mhyp are
homotopic. This shows F : Z → Mhyp is a homotopy equivalence. As Mhyp is a
closed manifold, F must be surjective.

Proving the local regularity properties of the natural map requires some work.
These properties are summarized in

Proposition 4.3. The natural map F : Z → Mhyp has the following properties:

(1) It is locally Lipschitz and differentiable almost everywhere.

(2) | JacF(p)| ≤ (
h(X)
n−1

)n
almost everywhere.

(3) If for some p, | JacF(p)| = (
h(X)
n−1

)n
, then the differential dFp is a homothety

of ratio
(
h(X)
n−1

)n
.

This proposition will be proven in later sections. Specifically, (1) will be proven
in Section 5, (2) and (3) will be proven in Section 6. Let us now temporarily assume
it, and complete the proof of Theorem 4.1. (In this section, we use only (1) and (2).
(3) will not be used until Section 7.)

By assumption, Z is an almost everywhere Riemannian metric space. So by
definition Z has a subset 	 of full measure admitting a C1-atlas {Uφ, φ}φ∈� and a
C0-Riemannian metric {gφ}φ∈�. This Riemannian metric induces a volume element
ωZ which agrees with n-dimensional Hausdorff measure on Z. Let ωMhyp be the
volume element on Mhyp.

Lemma 4.4.

Vol(Mhyp) = Vol(F (Z)) =
∫
F(Z)

ωMhyp ≤
∫
Z

| JacF | ωZ ≤
(
h(X)

n− 1

)n
Vol(Z).

Proof. Assuming Proposition 4.3, the only non-trivial part is to prove∫
F(Z)

ωMhyp ≤
∫
Z

| JacF | ωZ.

This amounts to justifying the change of variables formula for the singular space Z.
To do this, we will unpack the definitions and apply the change of variables formula
for Lipschitz maps.

Z \	 is measure zero, and F is locally Lipschitz. This implies F(Z \	) ⊂ Mhyp
is also measure zero. The collection of open sets {Uφ}φ∈� covers 	. Let {Ek} be a
countable partition of ∪φUφ ⊂ Z into measurable sets such that eachEk is contained
in some open set Uφ . Since F(∪kEk) = F(∪φUφ) ⊂ Mhyp is of full measure, it
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suffices to prove the inequality on each measureable set Ek , i.e. it suffices to show
that ∫

F(Ek)

ωMhyp ≤
∫
Ek

| JacF | ωZ.

Assume thatEk ⊂ Uφ . Let us also assume without a loss of generality that the image
F(Uφ) ⊂ Mhyp lies in an open set VM equipped with a smooth diffeomorphism ψ

onto an open subset of Rn. Let gM denote the smooth Riemannian metric on ψ(VM)
given by the hyperbolic metric on Mhyp.

The volume element (φ−1)∗(ωZ|Uφ ) is defined on an open subset of Rn. It is
induced by the C0-Riemannian metric gφ . Concretely this means that

(φ−1)∗(ωZ|Uφ ) = √
det gφ dx1dx2 . . . dxn.

Similarly,

(ψ−1)∗ωMhyp = √
det gM dy1dy2 . . . dyn.

Define the locally Lipschitz mapG := ψ 	F 	 φ−1, which is a map between subsets
of Euclidean space. By definition, the Jacobian of F : Z → Mhyp at p ∈ Uφ is

| JacF(p)| :=
√

det gM(ψ(F (p)))√
det gφ(φ(p))

· | JacG(φ(p))|.

Applying the change of variables formula for Lipschitz maps [EG, 3.4.3] toG yields

∫
φ(Uφ)

χφ(Ek)(x)
√

det gM(G(x))| JacG(x)| dx1dx2 . . . dxn

=
∫
ψ(VM)

#{G−1(y) ∩ φ(Ek)}
√

det gM(y) dy1dy2 . . . dyn.

Since det gφ vanishes on a set of measure zero, way may perform the following step

∫
φ(Uφ)

χφ(Ek)(x)
√

det gM(G(x)) | JacG(x)| dx1dx2 . . . dxn

=
∫
φ(Uφ)

χφ(Ek)(x)

√
det gM(G(x))√

det gφ(x)

√
det gφ(x) | JacG(x)| dx1dx2 . . . dxn

=
∫
φ(Uφ)

χφ(Ek)(x) | JacF(φ−1(x))| √
det gφ(x) dx1dx2 . . . dxn.
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Putting this together yields∫
Ek

| JacF(z)| ωZ =
∫
φ(Uφ)

χφ(Ek)(x) | JacF(φ−1(x))| √
det gφ(x) dx1dx2 . . . dxn

=
∫
ψ(VM)

#{G−1(y) ∩ φ(Ek)}
√

det gM(y) dy1dy2 . . . dyn

=
∫
VM

#{F−1(m) ∩ Ek} ωMhyp(m) ≥
∫
F(Ek)

ωMhyp . �

The above lemma implies that

h(X)n Vol(Z) ≥ (n− 1)n Vol(Mhyp).

This proves the inequality of Theorem 4.1.

5. The Barycenter map is locally Lipschitz

In this section we prove part (1) of Proposition 4.3.

(1) The natural map F : Z → Mhyp is locally Lipschitz and differentiable almost
everywhere.

It is only necessary to prove F is locally Lipschitz. Almost everywhere differentia-
bility will then follow by using Rademacher’s theorem (see Section 2.5). We will
prove the lifted map F : X → Hn is locally Lipschitz by factoring it as a composi-
tion of two locally Lipschitz maps. Namely we will define a locally Lipschitz map
� : X → L2(HX) and a C1-map P : L2(HX) → Hn such that F = P 	�.

The barycenter map takes a positive atomless measure ν on ∂Hn to the unique
point x = bar(ν) defined implicitly by the equation∫

∂Hn
〈∇Boθ , v〉x dν(θ) = 0 for all v ∈ TxHn,

where Bo is the Busemann function on Hn (normalized so Bo(o, θ) = 0 for all
θ ∈ ∂Hn).

Consider the Hilbert space L2(HX) of square integrable functions on HX with
respect to the Patterson–Sullivan probability measure μo. Define a � := π1(Z)-
action on L2(HX) by

(γ.φ)(η) := φ(γ−1.η) · √
exp (−h(X)bη(γ.o)).

Lemma 5.1. � acts by isometries on L2(HX).
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Proof. ∫
HX

(γ.φ)2(η) dμo(η) =
∫

HX

φ2(γ−1.η)e−h(X)bη(γ.o) dμo(η)

=
∫

HX

φ2(γ−1.η) dμγ.o(η)

=
∫

HX

φ2(η) d(γ−1∗ μγ.o)(η) =
∫

HX

φ2 dμo �

Let L2+(HX) denote the strictly positive functions in L2(HX). Notice that
� acts by isometries on L2+(HX). An element φ ∈ L2+(HX) defines a positive
atomless measure φ2 dμo. Push this measure forward via the map f 	π to a measure
(f 	 π)∗(φ2dμo) on ∂Hn. Define the map P : L2+(HX) → Hn by

P : φ �→ bar((f 	 π)∗(φ2dμo)).

In other words P(φ) is the unique point x defined implicitly by the equation∫
∂Hn

〈∇Boθ , v〉x d((f 	 π)∗(φ2dμo))(θ) =
∫

HX

〈∇Bof 	π(η), v〉x φ2(η) dμo = 0,

for all v ∈ TxHn.

Lemma 5.2. P is �-equivariant.

Proof. P(γ.φ) is the unique point x such that for all v ∈ TxHn,

0 =
∫

HX

〈∇Bof 	π(η), v〉x φ2(γ−1η)e−h(X)bη(γ.o) dμo(η)

=
∫

HX

〈∇Bof 	π(η), v〉x φ2(γ−1η) dμγ.o(η)

=
∫

HX

〈∇Bof 	π	γ (η), v〉x φ2(η) dμo(η) (change of variables)

=
∫

HX

〈∇Boγ 	f 	π(η), v〉x φ2(η) dμo(η) (f 	 π is �-equivariant)

=
∫

HX

〈∇Bof 	π(η), dγ
−1(v)〉γ−1.x φ

2(η) dμo(η) (∇Bo is Isom(Hn)-invariant).

Since dγ−1 : TxHn → Tγ−1.xH
n is an isomorphism, this implies γ−1.x = P(φ).

Therefore P(γ.φ) = x = γ.P (φ). �
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Pick a C∞ frame {ei} on Hn and define a map Q : Hn × L2+(HX) → Rn by

Q : (x, φ) �→(∫
HX

〈∇Bof 	π(η), e1〉x φ2(η) dμo(η), . . . ,

∫
HX

〈∇Bof 	π(η), en〉x φ2(η) dμo(η)

)
.

HX is compact, Boθ (x) is a C∞ function of both θ and x, and {ei} is a C∞ frame.
Using these facts, applying the Lebesgue dominated convergence theorem proves
that Q is C∞. Notice P is defined implicitly by the equation

Q(P (φ), φ) = (0, . . . , 0).

The goal is to show that P is C1. This can be accomplished by employing the implicit
function theorem. (The implicit function theorem is true on Banach spaces. See [RS,
p. 366].) For each fixedφ, we must show the mapQφ : x �→ Q(x, φ) has an invertible
differential at each point x of the fiber (Qφ)−1(0, . . . , 0). Split Qφ into coordinate
functions Qφ = (Q

φ
1 , . . . ,Q

φ
n). Then

∂

∂xj
Q
φ
i (x) =

∫
HX

(HessBof 	π(η))x(ej , ei) φ
2(η) dμo(η)

+
∫

HX

〈∇Bof 	π(η),∇ej ei〉x φ2(η) dμo(η).

The second term in this sum satisfies∫
HX

〈∇Bof 	π(η),∇ej ei〉x φ2(η) dμo(η)

=
∫

HX

〈∇Bof 	π(η) ,
∑n
k=1 c

k
jiek

〉
x
φ2(η) dμo(η) =

n∑
k=1

ckjiQ
φ
k (x) = 0,

for some constants ckji depending on the frame {ei}. This implies the bilinear form

on TxHn determined by the differential of Qφ at x satisfies

〈v, dQφ
x (v)〉 =

∫
HX

(HessBof 	π(η))x(v, v) φ
2(η) dμo(η)

=
∫
∂Hn
(HessBoθ )x(v, v) d((f 	 π)∗ (φ2dμo))(θ),

for all v ∈ TxHn. The right hand side of this equation is strictly positive by Lemma 2.1.
This implies the differential ofQφ at x is positive definite, and thus invertible. There-
fore the implicit function theorem may be applied to conclude that P is C1.

Define a map

� : X → L2+(HX) ⊂ L2(HX)

x �→ √
exp (−h(X)bη(x)).
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Lemma 5.3. � is Lipschitz.

Proof. Let D be the diameter of the downstairs metric space Z covered by X. It
follows that for any p ∈ X, ‖�(p)‖ is at most eDh(X). Pick points x, y ∈ X. The
goal is to control the quantity∫

HX

∣∣e− 1
2h(X)bη(x) − e−

1
2h(X)bη(y)

∣∣2
dμo(η).

For η ∈ HX, bη is 1-Lipschitz. This implies bη(y) ≤ d(y, x) + bη(x). Using this
we obtain the inequalities

e−
1
2h(X)bη(x) − e−

1
2h(X)bη(y) ≤ e−

1
2h(X)bη(x) − e−

1
2h(X)d(y,x)e−

1
2h(X)bη(x)

= e−
1
2h(X)bη(x)(1 − e−

1
2h(X)d(y,x)),

yielding∣∣e− 1
2h(X)bη(x) − e−

1
2h(X)bη(y)

∣∣ ≤ (
e−

1
2h(X)bη(x) + e−

1
2h(X)bη(y)

)(
1 − e−

1
2h(X)d(x,y)

)
.

Therefore,∫
HX

∣∣e− 1
2h(X)bη(x) − e−

1
2h(X)bη(y)

∣∣2
dμo(η)

≤ (
1 − e−

1
2h(X)d(x,y)

)2
∫

HX

∣∣e− 1
2h(X)bη(x) + e−

1
2h(X)bη(y)

∣∣2
dμo(η)

= (
1 − e−

1
2h(X)d(x,y)

)2 · ‖�(x)+�(y)‖2

≤ (
1 − e−

1
2h(X)d(x,y)

)2 · [‖�(x)‖ + ‖�(y)‖]2 ≤ (
1 − e−

1
2h(X)d(x,y)

)2 · 4e2Dh(X)

To complete the proof, notice that for t ≥ 0, (1 − e− 1
2h(X)t ) ≤ 1

2h(X)t . Applying
this yields∫

HX

∣∣e− 1
2h(X)b(x,η) − e−

1
2h(X)bη(y)

∣∣2
dμo(η) ≤

(
1

2
h(X)d(x, y)

)2

· 4e2Dh(X).

So finally we’ve obtained

‖�(x)−�(y)‖
d(x, y)

≤ h(X) · eDh(X). �

P is C1, therefore F = P 	 � is locally Lipschitz. �-equivariance implies F
descends to a locally Lipschitz mapX/� = Z → Hn/� = Mhyp. By Rademacher’s
theorem, F is differentiable almost everywhere (see Section 2.5).
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6. The Jacobian estimate

In this section we prove parts (2) and (3) of Proposition 4.3.

(2) | JacF(p)| ≤ (
h(X)
n−1

)n almost everywhere.

(3) If for some p, | JacF(p)| = (
h(X)
n−1

)n, then the differential dFp is a homothety

of ratio
(
h(X)
n−1

)n.

The proof closely follows Section 5 of [F], which is in turn based on [BCG2,
p. 636–639]. Recall thatX is the universal cover ofZ, � := π1(Z) ∼= π1(Mhyp), {ei}
is a C∞ frame on THn, and 	 ⊂ X is a subset of full measure possessing a C1-atlas
(see Sections 2.4 and 2.5).

In the previous section we have defined a �-equivariant locally Lipschitz map
� : X → L2+(HX), a �-equivariant C1 barycenter map P : L2+(HX) → Hn, and a
C∞ map Q = (Q1, . . . ,Qn) : Hn × L2+(HX) → Rn. They satisfied the equations
F = P 	 � and Q(P (φ), φ) = 0 for φ ∈ L2+(HX). We thus obtain the implicit
equationQ(F,�) = 0.Let O ⊆ 	 ⊆ X be the set of points where� is differentiable.
By Rademacher’s theorem (see Section 2.5), O ⊆ X is a subset of full measure. Pick
p ∈ O and v ∈ TpX.

Lemma 6.1. Differentiating the function

x �→ Qi(F (x),�(x)) =
∫

HX

〈∇Bof 	π(η), ei〉F(x) e−h(X)bη(x) dμo(η) = 0

at p in the direction of v yields

0 =
∫

HX

(HessBof 	π(η))F (p)(dF (v), ei) e
−h(X)bη(p)dμo(η)

+
∫

HX

〈∇Bof 	π(η), ∇dF(v)ei〉F(p) e−h(X)bη(p)dμo(η) (�)

+
∫

HX

〈∇Bof 	π(η), ei〉F(p) [−h(X) 〈∇bη, v〉p e−h(X)bη(p)] dμo(η).

Proof. This is an application of the Lebesgue dominated convergence theorem. HX

is compact. So to apply the theorem it is sufficient to find a c > 0 such that for all
η ∈ HX, the function

x �→ 〈∇Bof 	π(η), ei〉F(x) e−h(X)bη(x)

is locally c-Lipschitz near p. To show the existence of such a constant, use that bη is
1-Lipschitz, HX is compact, and 〈∇Boθ , ei〉q : Hn × ∂Hn → R is C∞. �
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The second term in equation (�) satisfies∫
HX

〈∇Bof 	π(η), ∇dF(v)ei〉F(p) e−h(X)bη(p)dμo(η)

=
∫

HX

〈∇Bof 	π(η),
n∑
j=1

cij ej 〉F(p) e−h(X)bη(p)dμo(η)

=
n∑
j=1

cij Qj (F (p),�(p)) = 0,

for some constants cij depending on the frame {ei}. Therefore, for v ∈ TpX, u ∈
TF(p)H

n we have∫
HX

(HessBof 	π(η))F (p)(dF (v), u) e
−h(X)bη(p)dμo(η)

(��)

= h(X)

∫
HX

〈∇Bof 	π(η), u〉F(p) 〈∇bη, v〉p e−h(X)bη(p) dμo(η).

Let ‖μp‖ denote the total mass μp(HX) of the measure μp. Define a bilinear
form K and a quadratic form H on TF(p)Hn by

〈K(w) , u〉F(p) := 1

‖μp‖
∫

HX

(HessBof 	π(η))F (p)(w, u) e
−h(X)bη(p)dμo(η)

〈H(u) , u〉F(p) := 1

‖μp‖
∫

HX

〈∇Bof 	π(η), u〉2
F(p) e

−h(X)bη(p)dμo(η).

Note that the symmetric endomorphism K is positive definite by Theorem 2.1. It is
therefore invertible. This is used in the proof of Lemma 6.2.

Use equation (��), the Cauchy–Schwarz inequality, and the definition of K to
obtain

|〈K 	 dF(v), u〉F(p)|
=

∣∣∣∣h(X)‖μp‖
∫

HX

〈∇Bof 	π(η), u〉F(p) · 〈∇bη, v〉p · e−h(X)bη(p) dμo(η)
∣∣∣∣

≤ h(X)

‖μp‖
[∫

HX

〈∇Bof 	π(η), u〉2
F(p) dμp(η)

]1/2

·
[∫

HX

〈∇bη, v〉2
p dμp(η)

]1/2

= h(X)

‖μp‖1/2

[〈H(u), u〉F(p)]1/2 ·
[∫

HX

〈∇bη, v〉2
p dμp(η)

]1/2

,

for all u ∈ TF(p)Hn and v ∈ Tp	.



Vol. 82 (2007) The barycenter method on singular spaces 159

Lemma 6.2 ([BCG2, p. 637]). For all p ∈ O,

| JacF(p)| ≤ h(X)n(detH)1/2

nn/2 detK
.

Proof. The proof is the proof of Lemma 5.4 of [BCG2, p. 637] with two modifications.
First replace the Busemann function Bα with the horofunction bη, and notice that

n∑
i=1

〈∇bη, vi〉2
p = ‖∇ bη‖2

p ≤ 1. (‡)

Second, the total mass of the Patterson–Sullivan measure ‖μp‖ must be carried
through the estimate, but it cancels itself out in the final step. �

A key property of hyperbolic space is that Busemann functions on Hn satisfy the
equation

(HessBoθ )(u, v) = 〈u, v〉 − 〈∇Boθ , u〉 · 〈∇Boθ , v〉
for all θ ∈ ∂Hn (see [BCG1, p. 750–751]). Integrating this equation over HX yields

K = Id −H.

Lemma 6.3. The symmetric endomorphism H is positive definite.

Proof. Suppose there exists x ∈ X and u ∈ TxX such that 〈H(u), u〉x = 0. From the
definition ofH , this implies the support of the measure (f 	π)∗μ0 on ∂Hn is contained
in a codimension one conformally round sphere in S ⊂ Hn. By the equivariance of
the Patterson–Sullivan measures, the support of (f 	 π)∗μγ.o is contained in γ (S)
for γ ∈ �. But μγ.o � μo implies the support of (f 	 π)∗μγ.o is contained in S.
Therefore � preserves S ⊂ ∂Hn. This contradicts the fact that the limit set of � is
the entire sphere at infinity. �

A short computation shows that tr(H) = 1. Therefore we can apply the brain in
a jar lemma (Lemma 2.2) to H . This yields

det(H)

[det(Id −H)]2 ≤
[

n

(n− 1)2

]n
,

with equality if and only if H = 1
n

Id. Combining this with Lemma 6.2 proves the
desired inequality, namely

| JacF(p)| ≤
(
h(X)

n− 1

)n
.

This completes the proof of part (2) of Proposition 4.3.
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The proof of part (3) of Proposition 4.3 is the “equality case” argument on page 639
of [BCG2] with two modifications (as in Lemma 6.2). First replace the Busemann
function Bα with the horofunction bη and use inequality (‡). Second, the total mass
of the Patterson–Sullivan ‖μp‖ must be carried through the estimate, and again it
cancels itself out. This completes the proof of Proposition 4.3.

7. The equality case

Theorem 7.1. Let Mhyp be a closed hyperbolic n-manifold for n ≥ 3. Let Z
be a compact n-dimensional convex Riemannian amalgam (see Section 2.8). Let
f : Z → Mhyp be a homotopy equivalence. If

h(X)n Vol(Z) = (n− 1)n Vol(Mhyp)

then the natural map F : Z → Mhyp is a homothetic homeomorphism.

Remark 7.2. Recall that if Z is either
• the metric doubling of a convex hyperbolic manifold with boundary (see Sec-

tion 2.7), or
• a cone-manifold (see Section 2.6),

then Z is a convex Riemannian amalgam.

LetX be the universal cover ofZ. Lift the convex Riemannian amalgam structure
on Z to a convex Riemannian amalgam structure onX with decomposition {Cj } into
convex Riemannian manifolds with boundary. Define the incomplete disconnected
Riemannian manifold 	 := ⋃

j int(Cj ) ⊆ X.
The equation

h(X)n Vol(Z) = (n− 1)n Vol(Mhyp)

implies the string of inequalities from Lemma 4.4 is in fact a string of equalities.
Therefore | JacF(p)| = (

h(X)
n−1

)n almost everywhere. By Proposition 4.3, dF is a
homothety almost everywhere. The goal is to prove F : Z → Mhyp is a homothetic
homeomorphism. Without a loss of generality, scale the metric of Z so that dF is
an isometry (not necessarily orientation preserving) almost everywhere. This forces
Vol(Z) = Vol(Mhyp). It now suffices to show that F : Z → Mhyp is an isometric
homeomorphism. This will be done by working on the universal covers and showing
F : X → Hn is an equivariant isometric homeomorphism.

Lemma 7.3. F : X → Hn is a contraction mapping, i.e. for any pair x, y ∈ X,
dHn(F (x), F (y)) ≤ dX(x, y).
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Proof. Pick a length minimizing geodesic segment α connecting x to y. Define
O ⊆ 	 ⊆ X to be the set of full measure where dF is an isometry. There exists a
small perturbation αε of α such that αε ∩ O ⊆ αε is a subset of full measure, and
length(αε) ≤ length(α)+ε. F is locally Lipschitz, so in all Hausdorff dimensions F
maps measure zero sets to measure zero sets. This implies F preserves length on αε.
Therefore

dHn(F (x), F (y)) ≤ length(F (αε)) = length(αε) ≤ length(α)+ ε = dX(x, y)+ ε.

Since ε was arbitrary, the result follows. �

We claim thatF is volume preserving. | JacF | = 1 a.e. andF is locally Lipschitz,
so F is volume non-increasing. If it strictly decreased the volume of some measur-
able set, then we would have Vol(Z) > Vol(Mhyp). This would be a contradiction.
Therefore F is volume preserving.

There exist constants C1, εhyp > 0 such that if y ∈ Hn and ε < εhyp then

vnε
n ≤ Vol(BHn(y, ε)) ≤ vnε

n(1 + C1ε
2), (4)

where vn is the volume of a unit ball in Rn. Similarly, 	 ⊆ X is a Riemannian
manifold with sectional curvature bounded from above. (An upper curvature bound
follows from the definition of a convex Riemannian amalgam.) For compactK ⊂ 	

(possibly a point), define

inj	(K) := inf
z∈K(injectivity radius of 	 at z).

The upper curvature bound implies there exist constants C2, ε	 > 0 such that if
ε < ε	, ε < inj	(z), and BX(z, ε) ⊂ 	 then

vnε
n(1 − C2ε

2) ≤ Vol(B	(z, ε)). (5)

We now consider the restriction of F to the “smooth” set 	. Define F	 :=
F |	 : 	 → Hn.

Lemma 7.4. F	 is injective.

Proof. (This proof is an adaptation of [BCG1, Lemma C.4].) Suppose there exist
distinct z1, z2 ∈ 	 such that F	(z1) = F	(z2) = y. Pick

ε0 < min{ε	, inj	(z1), inj	(z2), εhyp}
sufficiently small such that

BX(z1, ε0) ∩ BX(z2, ε0) = ∅ and BX(z1, ε0) ∪ BX(z2, ε0) ⊂ 	.
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In particular, inequality 4 (resp. inequality 5) is valid at y (resp. z1 and z2) for ε < ε0.
Since F is contracting, F	(B	(zi, ε)) ⊆ BHn(y, ε) for all ε < ε0. Therefore

B	(z1, ε) ∪ B	(z2, ε) ⊆ F−1
	 (BHn(y, ε)).

Since F is volume preserving (and X \	 is measure zero),

Vol(BHn(y, ε)) = Vol(F−1
	 (BHn(y, ε))) ≥ Vol (B	(z1, ε) ∪ B	(z2, ε))

= Vol(B	(z1, ε))+ Vol(B	(z2, ε)).

Now apply inequalities 4 and 5 to obtain

vnε
n(1 + C1ε

2) ≥ 2vnε
n(1 − C2ε

2).

This implies ε2(C1 + 2C2) ≥ 1 for all ε < ε0, which is a contradiction. �

Since 	 is locally compact, Lemma 7.4 shows that F	 : 	 → F	(	) is a home-
omorphism.

Lemma 7.5. F−1
	 is locally Lipschitz.

Proof. (This proof is an adaptation of [BCG1, Lemma C.7].) Pick z ∈ 	. Let
y := F	(z). Pick ε0 < min{εhyp, ε	} sufficiently small such that BX(z, 3ε0) ⊂ 	,
ε0 < inj	(BX(z, 2ε0) ), and

2ε2
0(C1 + C2) <

1

2n
.

Define V := B	(z, ε0). Since F is a contraction mapping, F(V ) ⊆ BHn(y, ε0). We
will show that if z1, z2 ∈ V are distinct, then

dX(z1, z2) < 2dHn(F (z1), F (z2)).

This will imply F |V −1 is 2-Lipschitz on the open set F(V ).
Suppose the above inequality is false, i.e. there exist distinct z1, z2 ∈ V such that

2dHn(F (z1), F (z2)) ≤ dX(z1, z2). Set ε := dHn(F (z1), F (z2)) ≤ ε0. Since ε < ε0,
inequality 4 remains valid atF(z1) andF(z2) for ε. BHn(F (z1), ε) andBHn(F (z2), ε)

intersect, and their intersection contains a ball of radius ε/2 centered in the middle
of the minimizing geodesic joining F(z1) to F(z2) (see Figure 5). Therefore

Vol (BHn(F (z1), ε) ∪ BHn(F (z2), ε)) ≤ vn

[
2εn(1 + C1ε

2)− 1

2n
εn

]
.

Moreover, dX(z1, z2) ≥ 2ε implies BX(z1, ε) ∩ BX(z2, ε) = ∅. Since BX(z1, ε) ∪
BX(z2, ε) ⊂ B(z, 2ε0) ⊂ 	, we may apply inequality 5 to conclude

Vol (F (BX(z1, ε) ∪ BX(z2, ε))) = Vol (BX(z1, ε) ∪ BX(z2, ε))

≥ vn[2εn(1 − C2ε
2)].
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z1

ε

z
ε0

z2

V

F	
y

F(z1)

Mhyp

F(z2)

Figure 5

F is a contraction mapping. Therefore

F(BX(z1, ε)) ⊆ BHn(F (z1), ε) and F(BX(z2, ε)) ⊆ BHn(F (z2), ε).

Putting these inequalities together yields

vn

[
2εn(1 + C1ε

2)− 1

2n
εn

]
≥ vnε

n[2(1 − C2ε
2)],

implying

2ε2(C1 + C2) ≥ 1

2n
.

This contradicts our choice of ε0. �

Since F |	−1 is locally Lipschitz, it is differentiable almost everywhere. There-
fore, for almost every z ∈ 	,

d(Id	)z = d(F |	−1 	 F	)z = d(F |	−1) 	 dF	.
This implies d(F |	−1) is an isometry of tangent spaces almost everywhere. By an
argument analogous to Lemma 7.3, and by working on small balls in Mhyp, one can
see that F |	−1 is locally a contraction mapping F(	) → 	. Both F	 and F |	−1

are local contraction maps. Thus they are both local isometries.

Lemma 7.6. For all j , F |Cj is an isometry onto its image, and F(int(Cj )) is convex.

Proof. By continuity, it suffices to show F |int(Cj ) is an isometry onto its image. Pick
x, y ∈ int(Cj ). Since int(Cj ) is convex, there exists a geodesic segment xy ⊂ int(Cj )
joining x to y. F	 is a local isometry. Thus length(F (xy)) = length(xy), and
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F(xy) ⊂ Hn is locally a hyperbolic geodesic joining F(x) to F(y). In Hn, a local
geodesic is a global geodesic. Therefore

dHn(F (x), F (y)) = length(F (xy)) = length(xy) = dX(x, y). �

Lemma 7.7. For each z ∈ X, there exists δz > 0 such that dX(z, x) < δz implies
dHn(F (z), F (x)) = dX(z, x).

(Notice that this lemma proves neither that F is an isometry nor that it is locally
injective. To see why, consider the branched double covering of an Euclidean disk
by an Euclidean cone with cone angle 4π .)

Proof. Pick z ∈ X. If z ∈ 	 then we are done. So assume z ∈ X \ 	. Up to
rearranging the indices we may assume

z ∈ (∂C1 ∪ ∂C2 ∪ · · · ∪ ∂Cl) \ (∂Cl+1 ∪ · · · ∪ ∂CN) .
By this, there exists δz > 0 such that

BX(z, δz) ∩	 ⊆
l⋃

j=1

Cj .

For x ∈ BX(z, δz), there exists an integer jx and a geodesic segment xz ⊂ Cjx . F |Cjx
is an isometry, so dX(z, x) = dCjx (z, x) = dHn(F (z), F (x)). This proves the lemma.

�

As a corollary of this lemma, we see that F−1(y) is a discrete set for all y ∈ Hn.

Lemma 7.8. F : X → Hn is injective.

Proof. For y ∈ Hn, F−1(y) is the discrete set {zi}. We will show F−1(y) must be a
single point. For all i, pick δi < 1 so that dX(zi, x) < δi implies dHn(F (zi), F (x)) =
dX(zi, x). Assume the metric balls BX(zi, δi) are disjoint.

If for some i, F |BX(zi ,δi ) : BX(zi, δi) → BHn(F (zi), δi) is not surjective, then F
can be properly homotoped to a map taking BX(zi, δi) → ∂BHn(F (zi), δi). More-
over, this can be done without altering F outside of BX(zi, δi).

If for every i, F |BX(zi ,δi ) : BX(zi, δi) → BHn(F (zi), δi) is not surjective, then
F is properly homotopic to a map which does not have y in its image. F is a
proper surjective homotopy equivalence. Thus every map properly homotopic to F
is surjective. Therefore for some i, F |BX(zi ,δi ) is surjective. We may assume i = 1.

F	 is injective and open, 	 is open and dense, and F(BX(z1, δ1)) = BHn(y, δ1).
Thus

F(	 \ BX(z1, δ1)) ∩ BHn(y, δ1) = ∅.
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By extending to the closure of 	, this shows that for all i > 1,

F(zi) = y /∈ BHn(y, δ1).

Therefore F−1(y) must be the single point z1. �

Recall that F : X → Hn is surjective. Therefore F : X → Hn is a continuous
bijection. Since X is locally compact, F is a homeomorphism. To prove that F is an
isometry, it is sufficient to show F−1 is a contraction mapping.

Lemma 7.9. F−1 is a contraction mapping, i.e. it is 1-Lipschitz.

Proof. By the above lemmas, F imposes a convex Riemannian amalgam structure
on Hn. The collection of convex Riemannian manifolds with boundary is {F(Cj )}.

Pick x, y ∈ Hn, ε > 0. Since each F(Cj ) is convex, there exists a path γ ⊂ Hn

joining x to y such that:
• length(γ ) ≤ d(x, y)+ ε,
• γ ∩ F(∂Cj ) is at most two points for any F(Cj ) of the decomposition.

As the collection {F(Cj )} is locally finite, the set F−1(γ ) \ 	 is finite. F |Cj is an
isometry for all j . Therefore F−1(γ ) is a path of the same length as γ . This implies
F−1 is 1-Lipschitz. �

This completes the proof of Theorem 7.1.

8. Applications

8.1. Kleinian groups. The Kleinian group theory notation used here is defined in
Sections 2.9–2.12.

Let N be a compact acylindrical 3-manifold (see Section 2.10). Recall that by
Corollary 2.5, there exists a convex cocompact hyperbolic 3-manifold Mg such that
CMg is homeomorphic to N and the boundary of the convex core ∂CMg ⊂ Mg is
totally geodesic.

As was discussed in Section 1, the following theorem solves a conjecture in
Kleinian groups.

Theorem 8.1. LetN be a compact acylindrical 3-manifold. Let (Mg,mg) be a convex
cocompact hyperbolic 3-manifold such that CMg is homeomorphic to N and the
boundary of the convex core ∂CMg ⊂ Mg is totally geodesic. For all (M,m) ∈ H(N),

Vol(CM) ≥ Vol(CMg),

with equality if and only if M and Mg are isometric.
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Fix an (M,m) ∈ H(N). We may assume without a loss of generality that M is
geometrically finite. Since ∂CMg is totally geodesic, metrically doubling CMg across
its boundary produces a compact hyperbolic manifold DCMg .

Lemma 8.2. Metrically doubling the convex core CM across its boundary yields an
Alexandrov space with curvature bounded below by −1.

Proof. In [S, Appendix A] it was proven that taking an ε-neighborhood of CM inM ,
and metrically doubling that across its boundary to obtainDNεCM , yields an Alexan-
drov space with curvature bounded below by −1. DCM is the Gromov–Hausdorff
limit of these spaces as ε → 0. Being an Alexandrov space with curvature bounded
below by −1 is a closed property in the Gromov–Hausdorff topology [BBI, Proposi-
tion 10.7.1, p. 376]. This proves the lemma. �

Remark 8.3. Lemma 8.2 also follows from a more general theorem of Perelman (see
Theorem 8.8).

In particular, by Lemma 8.2 and Theorem 2.7, the volume growth entropy of D̃CM
is not greater than 2 = h(H3). This will be used later. Let σ denote the boundary
preserving isometric involution of DCM and DCMg .

Case 1. Assume M is convex cocompact.

Proof of Case 1. BothM norMg are convex cocompact. By Theorem 2.4,mg 	m−1

is homotopic to a homeomorphism CM → CMg . (m−1 denotes a relative homotopy
inverse ofm.) This homeomorphism can be “doubled” to produce a homeomorphism
between the doubled manifolds f : DCM → DCMg . Theorem 4.1 may now be
applied to f : DCM → DCMg . This proves that

h(D̃CM)
3 Vol(DCM) ≥ 23 Vol(DCMg),

with equality if and only if DCM and DCMg are isometric. Since h(D̃CM) ≤ 2 we
have

Vol(DCM) ≥ Vol(DCMg),

with equality if and only ifDCM andDCMg are isometric. Dividing both sides by 2
yields the desired inequality.

Let us now assume Vol(DCM) = Vol(DCMg). The goal is to show M and Mg

are isometric. To do this it is sufficient to show CM and CMg are isometric. The map
f : DCM → DCMg is by construction σ -equivariant. LetF : DCM → DCMg be the
natural map induced by f . The σ -equivariance of f implies F is also σ -equivariant
(see Remark 4.2). Therefore F : CM → CMg is an isometry. This completes the
proof of Case 1. �
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Case 2. (M,m) is not convex cocompact.

Proof of Case 2. (M,m) ∈ H(N), so by definition m : N → Mo is a homotopy
equivalence (see Section 2.12). Moreover, by Theorem 2.4 there exists a homeomor-
phism g : N → CM ∩ Mo. Let P := g−1(CM ∩ ∂Mo) ⊂ ∂N . Consider (M,m)
as an element of H(N, P ) with no additional parabolics. (N, P ) is pared acylindri-
cal. Therefore there exists a geometrically finite MP ∈ H(N, P ) with no additional
parabolics such that CMP

has totally geodesic boundary.
Again by Theorem 2.4, there is a homeomorphism CMP

→ N \ P , inducing
a doubled homeomorphism DCMP

→ D(N \ P) between open manifolds. Let
p ⊂ P ⊂ ∂N be a finite collection of disjoint simple closed curves such that p
is a strong deformation retract of P , i.e. each component of p is a core curve of a
component ofP . Then there is a homeomorphismD(N \P) → (DN)\p. Moreover,
the manifoldsDCMP

∼= D(N \P) are topologically obtained by removing the curves
p ⊂ ∂N ⊂ DN . Conversely, replacing the removed curves ofDN \p corresponds to
performing a (topological) Dehn surgery onDN \p. Therefore the homeomorphism
type of DN ∼= DCMg can be obtained by performing a topological Dehn surgery on
DCMP

. DCMP
is a finite volume hyperbolic manifold. Therefore Mostow rigidity

implies thatDCMg may in fact be obtained by performing a hyperbolic Dehn surgery
on DCMP

[Th1].
Hyperbolic Dehn surgery strictly decreases volume [Th1, Theorem 6.5.6], [Bes].

Therefore Vol(DCMP
) > Vol(DCMg). Moreover, by [NZ] there exists a closed hy-

perbolic 3-manifold L obtained from hyperbolic Dehn surgery on DCMP
such that

Vol(DCMP
) > Vol(L) > Vol(DCMg).

So to complete the proof it suffices to show that

Vol(DCM) ≥ Vol(L).

This will be accomplished by geometrically filling in the cusps and reducing to the
case of closed manifolds.

The geometric (though not hyperbolic) Dehn surgery arguments below are based
on techniques from [Bes], [L]. (See also [BCS] for another application of these
methods.) The exposition here will roughly follow [Bes].

Outside a compact set, the metric on DCM is a collection of smooth rank two
hyperbolic cusps. For simplicity, let us assume thatDCM has exactly one cusp. The
general case follows by performing the following geometric operations on each cusp
individually.

Pick a compact exhaustionKi ofDCM such that each boundary ∂Ki is a smooth
horospherical torus. By “opening up” the cusp of DCM one can construct a family
of metric spaces {(A, dε)}ε∈(0,1] such that:



168 P. A. Storm CMH

1. A is homeomorphic to Ki .

2. (A, dε) is anAlexandrov space with curvature bounded below by −1−c2
ε , where

limε→0 cε = 0.

3. For each i, there is an isometric embedding Ki → (A, dε) for all sufficiently
small ε.

4. limε→0 Vol(A, dε) = Vol(DCM).

5. Near the boundary of A the metric dε is a flat Riemannian metric with totally
geodesic boundary ∂A.

6. For any ε ≤ 1, (∂A, dε) = (∂A, ε · d1).

(A careful and clear explanation of this procedure is in [Bes, Section 2.2]. See also
[L].)

Let W denote a solid torus. Using the fact that W is a product of a disk and a
circle, one can build a product Riemannian metric g on W such that:

1. (W, g) has totally geodesic boundary isometric to an Euclidean torus.

2. (W, g) has sectional curvature bounded below by zero.

A manifold homemorphic to L is obtained from A by appropriately gluing ∂W
to ∂A (i.e. by an appropriate Dehn surgery). The goal is to perform this gluing
geometrically. To do so we must scale appropriately and interpolate between the
flat torus boundaries of (A, dε) and (W, g). Let T 2 × [0, 1] denote a trivial interval
bundle over a torus. Pick diffeomorphisms

φ0 : T 2 × {0} → ∂A and φ1 : T 2 × {1} → ∂W

such that the glued up manifold

A
⋃
φ0

(T 2 × [0, 1])
⋃
φ1

W

is homeomorphic to L.
Consider the metrics φ∗

0dε and φ∗
1g on the boundary of T 2 ×[0, 1]. We now apply

a lemma from [Bes].

Lemma 8.4 ([Bes, Appendix A.2]). For any n > 0 there exist αn, εn > 0 and a
Riemannian metric σn on T 2 × [0, 1] such that:

1. The curvature of σn is bounded between −1/n and 1/n.

2. The volume of (T 2 × [0, 1], σn) is less than 1/n.

3. (T 2 × [0, 1], σn) has totally geodesic boundary given by (T 2 × {0}, φ∗
0dεn) and

(T 2 × {1}, αn · φ∗
1g).

4. αn and εn go to zero as n → ∞.
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We may now glue geometrically to form

(Y,�n) := (A, dεn)
⋃
φ0

(T 2 × [0, 1], σn)
⋃
φ1

(W, αn · g),
such that:

1. Vol(Y,�n) → Vol(DCM).

2. (Y,�n) is an Alexandrov space with curvature bounded below by −1 − c2
εn

.

3. Y is homeomorphic to the closed hyperbolic manifold L.

There is a sequence ηn → 1 such that the homothetically scaled spaces (Y, ηn ·�n)
are Alexandrov spaces with curvature bounded below by −1. Theorem 4.1 applied
to (Y, ηn ·�n) and L yields the inequality

Vol(Y, ηn ·�n) ≥ Vol(L).

Taking n → ∞ yields the desired inequality

Vol(DCM) ≥ Vol(L). �

Using the above geometric surgery arguments, we now prove that the inequality
of Theorem 8.1 holds also for pared acylindrical manifolds.

Corollary 8.5. Let (N, P )be a compact pared acylindrical 3-manifold. Let (Mg,mg)

be a hyperbolic 3-manifold such thatCMg is homeomorphic toN\P and the boundary
of the convex core ∂CMg ⊂ Mg is totally geodesic. For all (M,m) ∈ H(N, P ),

Vol(CM) ≥ Vol(CMg).

Proof. DCMg is a finite volume hyperbolic manifold. By repeating the arguments
from the beginning of Case 2 above, it follows that DCMg is obtained topologically
by performing a (possibly empty) set of Dehn surgeries on the manifoldDCM . (Note
that since DCMg is not compact, Dehn surgery is not performed on every end of
DCM . The ends corresponding to the cusps of DCMg are not changed.)

By performing an infinite sequence of hyperbolic Dehn surgeries onDCMg we ob-
tain a sequence of closed hyperbolic manifolds Lk such that Vol(Lk) ↗ Vol(DCMg)

[NZ]. For each k, a manifold homeomorphic to Lk can be obtained from DCM by
performing an appropriate topological Dehn surgery on each end of DCM . By re-
peating the geometric surgery arguments of Case 2 above, the closed manifold Yk
obtained by these Dehn surgeries on DCM can be given a sequence of metrics δnk
such that:

1. limn→∞ Vol(Yk, δnk ) → Vol(DCM).

2. (Yk, δnk ) is an Alexandrov space with curvature bounded below by −1.
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3. Yk is homeomorphic to the closed hyperbolic manifold Lk .

Applying Theorem 4.1 to the sequence {(Yk, δnk )}n and Lk yields

Vol(DCM) ≥ Vol(Lk).

Taking k → ∞ yields
Vol(DCM) ≥ Vol(DCMg). �

8.2. Cone-manifolds

Theorem 8.6. Let Z be compact n-dimensional (n ≥ 3) cone-manifold built with
simplices of constant curvature K ≥ −1. Assume all its cone angles are ≤ 2π . Let
Mhyp be a closed hyperbolic n-manifold. If f : Z → Mhyp is a homotopy equivalence
then

Vol(Z) ≥ Vol(Mhyp)

with equality if and only if f is homotopic to an isometry.

Proof. Since K ≥ −1 and all the cone angles of Z are ≤ 2π , this implies Z is
an Alexandrov space with curvature bounded below by −1 [BGP, p. 7]. Therefore,
by Theorem 2.7, the volume growth entropy of Z̃ is less than or equal to (n − 1).
Applying Theorems 4.1 and 7.1 proves the theorem. �

8.3. Alexandrov spaces

Theorem 8.7. Let Z be a compact n-dimensional (n ≥ 3) Alexandrov space with
curvature bounded below by −1. Let Mhyp be a closed hyperbolic n-manifold. If
f : Z → Mhyp is a homotopy equivalence then

Vol(Z) ≥ Vol(Mhyp).

Proof. Otsu and Shioya proved that a finite dimensionalAlexandrov space with curva-
ture bounded below by −1 is almost everywhere Riemannian [OS]. By Theorem 2.7,
the volume growth entropy of Z̃ is ≤ (n − 1). The theorem now follows from
Theorem 4.1. �

8.4. n-manifolds with boundary. The argument used in Section 8.1 generalizes
immediately to prove a version of the Besson–Courtois–Gallot theorem for convex
Riemannian n-manifolds with boundary. (For the definition of convex Riemannian
manifolds with boundary, see Section 2.7.) A good example of a convex Riemannian
manifold with boundary is a convex core with positive volume.

Perelman’s Doubling theorem [P, Theorem 5.2] is used in the proof of Theo-
rem 8.9. Unfortunately, the well known preprint [P] remains unpublished.
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Theorem 8.8 ([P, Theorem 5.2]). Metrically doubling any Alexandrov space with
curvature bounded below by k across its boundary produces an Alexandrov space
with curvature bounded below by k.

Theorem 8.9. Let Z be a compact convex Riemannian n-manifold with boundary
(n ≥ 3). Assume the sectional curvature of int(Z) is bounded below by −1. Let
Ygeod be a compact convex hyperbolic n-manifold with totally geodesic boundary.
Let f : (Z, ∂Z) → (Ygeod, ∂Ygeod) be a homotopy equivalence of pairs. Then

Vol(Z) ≥ Vol(Ygeod),

with equality if and only if f is homotopic to an isometry.

Proof. The homotopy equivalence of a pairs f : (Z, ∂Z) → (Ygeod, ∂Ygeod) can be
extended to a homotopy equivalence between the doubled manifolds f : DZ →
DYgeod. We know the sectional curvature of int(Z) is bounded below by −1. So Z
is an Alexandrov space with curvature bounded below by −1. By Perelman’s The-
orem 8.8, DZ is also an Alexandrov space with curvature bounded below by −1.
Theorem 2.7 then implies the volume growth entropy of D̃Z is not greater than
h(Hn) = (n− 1). Applying Theorem 4.1 yields the desired inequality.

Assume the inequality is an equality. Theorem 7.1 then implies the natural map
F : DZ → DYgeod is an isometry. As before, let σ be the boundary preserving
isometric involution ofDZ andDYgeod. Since f is σ -equivariant, F is σ -equivariant
(see Remark 4.2). Therefore, by Theorem 7.1, F : Z → Ygeod is an isometry. �
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