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A pinching theorem for the first eigenvalue of the Laplacian on
hypersurfaces of the Euclidean space

Bruno Colbois and Jean-François Grosjean∗

Abstract. In this paper, we give pinching theorems for the first nonzero eigenvalue λ1(M) of
the Laplacian on the compact hypersurfaces of the Euclidean space. Indeed, we prove that if the
volume of M is 1 then, for any ε > 0, there exists a constant Cε depending on the dimension n
ofM and the L∞-norm of the mean curvature H , so that if the L2p-norm ‖H‖2p (p ≥ 2) of H
satisfies n‖H‖2

2p − Cε < λ1(M), then the Hausdorff-distance between M and a round sphere

of radius (n/λ1(M))
1/2 is smaller than ε. Furthermore, we prove that if C is a small enough

constant depending on n and the L∞-norm of the second fundamental form, then the pinching
condition n‖H‖2

2p − C < λ1(M) implies that M is diffeomorphic to an n-dimensional sphere.
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1. Introduction and preliminaries

Let (Mn, g) be a compact, connected and oriented n-dimensional Riemannian mani-
fold without boundary isometrically immersed by φ into the n + 1-dimensional eu-
clidean space (Rn+1, can) (i.e. φ�can = g). A well-known inequality due to Reilly
([11]) gives an extrinsic upper bound for the first nonzero eigenvalue λ1(M) of the
Laplacian of (Mn, g) in terms of the square of the length of the mean curvature.
Indeed, we have

λ1(M) ≤ n

V (M)

∫
M

|H |2 dv (1)

where dv and V (M) denote respectively the Riemannian volume element and the
volume of (Mn, g). Moreover the equality holds if and only if (Mn, g) is a geodesic
hypersphere of R

n+1.
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By using Hölder inequality, we obtain some other similar estimates for the L2p-
norm (p ≥ 1) with H denoted by ‖H‖2

2p

λ1(M) ≤ n

V (M)1/p
‖H‖2

2p, (2)

and as for the inequality (1), the equality case is characterized by the geodesic hyper-
spheres of R

n+1.
A first natural question is to know if there exists a pinching result as the one we

state now: does a constant C depending on minimum geometric invariants exist so
that if we have the pinching condition

(PC)
n

V (M)1/p
‖H‖2

2p − C < λ1(M)

then M is close to a sphere in a certain sense?
Such questions are known for the intrinsic lower bound of Lichnerowicz–Obata

([9]) of λ1(M) in terms of the lower bound of the Ricci curvature (see [4], [8], [10]).
Other pinching results have been proved for Riemannian manifolds with positive Ricci
curvature, with a pinching condition on the n + 1-st eigenvalue ([10]), the diameter
([5], [8], [15]), the volume or the radius (see for instance [2] and [3]).

For instance, S. Ilias proved in [8] that there exists ε depending on n and an upper
bound of the sectional curvature so that if the Ricci curvature Ric of M satisfies
Ric ≥ n− 1 and λ1(M) ≤ λ1(S

n)+ ε, then M is homeomorphic to S
n.

In this article, we investigate the case of hypersurfaces where, as far as we know,
very little is known about pinching and stability results (see however [12], [13]).

More precisely, in our paper, the hypothesis made in [8] thatM has a positive Ricci
curvature is replaced by the fact that M is isometrically immersed as a hypersurface
in R

n+1, and the bound on the sectional curvature by an L∞-bound on the mean
curvature or on the second fundamental form. Note that we do not know if such
bounds are sharp, or if a bound on the Lq -norm (for some q) of the mean curvature
would be enough.

We get the following results

Theorem 1.1. Let (Mn, g) be a compact, connected and oriented n-dimensional Rie-
mannian manifold without boundary isometrically immersed by φ in R

n+1. Assume
that V (M) = 1 and let x0 be the center of mass ofM . Then for any p ≥ 2 and for any
ε > 0, there exists a constant Cε depending only on n, ε > 0 and on the L∞-norm
of H so that if

(PCε) n‖H‖2
2p − Cε < λ1(M)

then the Hausdorff-distance dH ofM to the sphere S
(
x0,

√
n

λ1(M)

)
of center x0 and

radius
√

n
λ1(M)

satisfies dH
(
φ(M), S

(
x0,

√
n

λ1(M)

))
< ε.
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We recall that the Hausdorff-distance between two compact subsets A and B of a
metric space is given by

dH (A,B) = inf{η|Vη(A) ⊃ B and Vη(B) ⊃ A}
where for any subset A, Vη(A) is the tubular neighborhood of A defined by Vη(A) =
{x | dist(x,A) < η}.

Remark. We will see in the proof that Cε(n, ‖H‖∞) → 0 when ‖H‖∞ → ∞ or
ε → 0.

In fact the previous theorem is a consequence of the above definition and the
following theorem

Theorem 1.2. Let (Mn, g) be a compact, connected and oriented n-dimensional Rie-
mannian manifold without boundary isometrically immersed by φ in R

n+1. Assume
that V (M) = 1 and let x0 be the center of mass ofM . Then for any p ≥ 2 and for any
ε > 0, there exists a constant Cε depending only on n, ε > 0 and on the L∞-norm
of H so that if

(PCε) n‖H‖2
2p − Cε < λ1(M)

then

(1) φ(M) ⊂ B
(
x0,

√
n

λ1(M)
+ ε

)
\B

(
x0,

√
n

λ1(M)
− ε

)
;

(2) B(x, ε) ∩ φ(M) �= Ø for all x ∈ S
(
x0,

√
n

λ1(M)

)
.

In the following theorem, if the pinching is strong enough, with a control on n and
the L∞-norm of the second fundamental form, we obtain that M is diffeomorphic
to a sphere and even almost isometric with a round sphere in a sense we will make
precise.

Theorem 1.3. Let (Mn, g) be a compact, connected and oriented n-dimensional
Riemannian manifold (n ≥ 2) without boundary isometrically immersed by φ in
R
n+1. Assume that V (M) = 1. Then for any p ≥ 2, there exists a constant C

depending only on n and the L∞-norm of the second fundamental form B so that if

(PC) n‖H‖2
2p − C < λ1(M).

Then M is diffeomorphic to S
n.

More precisely, there exists a diffeomorphism F from M into the sphere

S
n
(√

n
λ1(M)

)
of radius

√
n

λ1(M)
which is a quasi-isometry. Namely, for any θ ,
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0 < θ < 1, there exists a constant C depending only on n, the L∞-norm of B
and θ , so that the pinching condition (PC) implies∣∣|dFx(u)|2 − 1

∣∣ ≤ θ

for any x ∈ M and u ∈ TxM so that |u| = 1.

Now we will give some preliminaries for the proof of these theorems. Throughout
the paper, we consider a compact, connected and oriented n-dimensional Riemannian
manifold (Mn, g) without boundary isometrically immersed by φ into (Rn+1, can)
(i.e. φ�can = g). Let ν be the outward normal vector field. Then the second fun-
damental form of the immersion will be defined by B(X, Y ) = 〈∇0

Xν, Y
〉
, where ∇0

and 〈 , 〉 are respectively the Riemannian connection and the inner product of R
n+1.

Moreover the mean curvature H will be given by H = (1/n) trace(B).
Now let ∂i be an orthonormal frame of R

n+1 and let xi : R
n+1 → R be the

associated component functions. Putting Xi = xi � φ, a straightforward calculation
shows us that

B ⊗ ν = −
∑
i≤n+1

∇dXi ⊗ ∂i

and
nHν =

∑
i≤n+1


Xi∂i,

where ∇ and 
 denote respectively the Riemannian connection and the Laplace–
Beltrami operator of (Mn, g). On the other hand, we have the well-known formula

1

2

|X|2 = nH 〈ν,X〉 − n (3)

where X is the position vector given by X = ∑
i≤n+1Xi∂i .

We recall that to prove the Reilly inequality, we use the functions Xi as test
functions (cf. [11]). Indeed, doing a translation if necessary, we can assume that∫
M
Xi dv = 0 for all i ≤ n + 1 and we can apply the variational characterization

of λ1(M) to Xi . If the equality holds in (1) or (2), then the functions are nothing
but eigenfunctions of λ1(M) and from the Takahashi Theorem ([14])M is immersed

isometrically in R
n+1 as a geodesic sphere of radius

√
n

λ1(M)
.

Throughout the paper we use some notations. From now on, the inner product
and the norm induced by g and can on a tensor T will be denoted respectively by
〈 , 〉 and | |2, and the Lp-norm will be given by

‖T ‖p =
(∫

M

|T |p dv
)1/p
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and
‖T ‖∞ = sup

M

|T |.

We end these preliminaries by a convenient result.

Lemma 1.1. Let (Mn, g) be a compact, connected and oriented n-dimensional Rie-
mannian manifold (n ≥ 2) without boundary isometrically immersed by φ in R

n+1.
Assume that V (M) = 1. Then there exist constants cn and dn depending only on n
so that for any p ≥ 2, if (PC) is true with C < cn then

n

λ1(M)
≤ dn. (4)

Proof. We recall the standard Sobolev inequality (cf. [6], [7], [16] and p. 216 in [1]).
If f is a smooth function and f ≥ 0, then

(∫
M

f
n
n−1 dv

)1−(1/n)
≤ K(n)

∫
M

(|df | + |H |f ) dv (5)

whereK(n) is a constant depending on n and the volume of the unit ball in R
n. Taking

f = 1 on M , and using the fact that V (M) = 1, we deduce that

‖H‖2p ≥ 1

K(n)

and if (PC) is satisfied and C ≤ n
2K(n)2

= cn, then

n

λ1(M)
≤ 1

n‖H‖2
2p − C

≤ 2K(n)2 = dn. �

Throughout the paper, we will assume that V (M) = 1 and
∫
M
Xi dv = 0 for

all i ≤ n + 1. The last assertion implies that the center of mass of M is the origin
of R

n+1.

2. An L2-approach of the problem

A first step in the proof of Theorem 1.2 is to prove that if the pinching condition (PC)
is satisfied, then M is close to a sphere in an L2-sense.

In the following lemma, we prove that the L2-norm of the position vector is close

to
√

n
λ1(M)

.
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Lemma 2.1. If we have the pinching condition (PC) with C < cn, then

nλ1(M)

(C + λ1(M))2
≤ ‖X‖2

2 ≤ n

λ1(M)
≤ dn.

Proof. Since
∫
M
Xi dv = 0, we can apply the variational characterization of the

eigenvalues to obtain

λ1(M)

∫
M

∑
i≤n+1

|Xi |2 dv ≤
∫
M

∑
i≤n+1

|dXi |2 dv = n

which gives the inequality of the right-hand side.
Let us prove now the inequality of the left-hand side.

λ1(M)

∫
M

|X|2 dv ≤
(∫
M

∑
i≤n+1 |dXi |2 dv

)4
(∫
M

∑
i≤n+1 |dXi |2 dv

)3 =
(∫
M

∑
i≤n+1(
Xi)Xi dv

)4
n3

≤
(∫
M

∑
i≤n+1(
Xi)

2 dv
)2 (∫

M
|X|2 dv)2

n3

= n

(∫
M

H 2 dv

)2 (∫
M

|X|2 dv
)2

then using again the Hölder inequality, we get

λ1(M) ≤ 1

n

(
n‖H‖2

2p

)2 ∫
M

|X|2 dv ≤ (C + λ1(M))
2

n

∫
M

|X|2 dv.

This completes the proof. �

From now on, we will denote by XT the orthogonal tangential projection on
M . In fact, at x ∈ M , XT is nothing but the vector of TxM defined by XT =∑

1≤i≤n 〈X, ei〉 ei where (ei)1≤i≤n is an orthonormal basis of TxM . In the following
lemma, we will show that the condition (PC) implies that the L2-norm of XT of X
on M is close to 0.

Lemma 2.2. If we have the pinching condition (PC), then

‖XT ‖2
2 ≤ A(n)C.

Proof. From Lemma 2.1 and the relation (3), we have

λ1(M)

∫
M

|X|2 dv ≤ n = n

(∫
M

H 〈X, ν〉 dv
)2
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≤
(∫

M

|H || 〈X, ν〉 | dv
)2

≤ n‖H‖2
2p

(∫
M

| 〈X, ν〉 | 2p
2p−1 dv

) 2p−1
p

≤ n‖H‖2
2p

(∫
M

| 〈X, ν〉 |2 dv
)

= n‖H‖2
2p

∫
M

|X|2 dv.

Then we deduce that

n‖H‖2
2p‖XT ‖2

2 = n‖H‖2
2p

(∫
M

(|X|2 − | 〈X, ν〉 |2) dv)
≤ (n‖H‖2

2p − λ1(M))‖X‖2
2 ≤ dnC

where in the last inequality we have used the pinching condition and Lemma 2.1.
�

Next we will show that the condition (PC) implies that the component functions
are almost eigenfunctions in an L2-sense. For this, let us consider the vector field Y
on M defined by

Y =
∑
i≤n+1

(
Xi − λ1(M)Xi) ∂i = nHν − λ1(M)X.

Lemma 2.3. If (PC) is satisfied, then

‖Y‖2
2 ≤ nC.

Proof. We have∫
M

|Y |2 dv =
∫
M

(
n2H 2 − 2nλ1(M)H 〈ν,X〉 + λ1(M)

2|X|2) dv.
Now by integrating the relation (3) we deduce that∫

M

H 〈ν,X〉 dv = 1.

Furthermore, since
∫
M
Xi dv = 0, we can apply the variational characterization of

the eigenvalues to obtain

λ1(M)

∫
M

|X|2 dv = λ1(M)

∫
M

∑
i≤n+1

|Xi |2 dv ≤
∫
M

∑
i≤n+1

|dXi |2 dv = n.

Then ∫
M

|Y |2 dv ≤ n2
∫
M

|H |2 dv − nλ1(M) ≤ n
(
n‖H‖2

2p − λ1(M)
)

≤ nC

where in this last inequality we have used the Hölder inequality. �
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To proveAssertion 1 ofTheorem 1.2, we will show that
∥∥∥∥|X| −

(
n

λ1(M)

)1/2
∥∥∥∥∞

≤ ε.

For this we need an L2-upper bound on the function ϕ = |X|
(
|X| −

(
n

λ1(M)

)1/2 )2
.

Before giving such estimate, we will introduce the vector field Z on M defined
by

Z =
(

n

λ1(M)

)1/2

|X|1/2Hν − X

|X|1/2 .
We have

Lemma 2.4. If (PC) is satisfied with C < cn, then

‖Z‖2
2 ≤ B(n)C.

Proof. We have

‖Z‖2
2 =

∥∥∥∥
(

n

λ1(M)

)1/2

|X|1/2Hν − X

|X|1/2
∥∥∥∥

2

2

=
∫
M

(
n

λ1(M)
|X|H 2 − 2

(
n

λ1(M)

)1/2

H 〈ν,X〉 + |X|
)
dv

≤ n

λ1(M)

(∫
M

|X|2 dv
)1/2 (∫

M

H 4 dv

)1/2

− 2

(
n

λ1(M)

)1/2

+
(∫

M

|X|2 dv
)1/2

.

Note that we have used the relation (3). Finally for p ≥ 2, we get

‖Z‖2
2 ≤

(∫
M

|X|2 dv
)1/2 (

n

λ1(M)
‖H‖2

2p + 1

)
− 2

(
n

λ1(M)

)1/2

≤
(

n

λ1(M)

)1/2 (
C

λ1(M)
+ 2

)
− 2

(
n

λ1(M)

)1/2

=
(

n

λ1(M)

)1/2
C

λ1(M)
≤ d

3/2
n

n
C.

This concludes the proof of the lemma. �

Now we give an L2-upper bound of ϕ.

Lemma 2.5. Let p ≥ 2 and C ≤ cn. If we have the pinching condition (PC), then

‖ϕ‖2 ≤ D(n)‖ϕ‖3/4∞ C1/4.
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Proof. We have

‖ϕ‖2 =
(∫

M

ϕ3/2ϕ1/2 dv

)1/2

≤ ‖ϕ‖3/4∞ ‖ϕ1/2‖1/2
1 ,

and noting that

|X|
(

|X| −
(

n

λ1(M)

)1/2 )2

=
∣∣∣∣|X|1/2X −

(
n

λ1(M)

)1/2
X

|X|1/2
∣∣∣∣
2

we get

∫
M

ϕ1/2 dv =
∥∥∥∥|X|1/2X −

(
n

λ1(M)

)1/2
X

|X|1/2
∥∥∥∥

1

=
∥∥∥∥− |X|1/2

λ1(M)
Y + n

λ1(M)
|X|1/2Hν −

(
n

λ1(M)

)1/2
X

|X|1/2
∥∥∥∥

1

≤
∥∥∥∥ |X|1/2
λ1(M)

Y

∥∥∥∥
1
+
(

n

λ1(M)

)1/2

‖Z‖1 . (6)

From Lemmas 2.3 and 1.1 we get∥∥∥∥ |X|1/2
λ1(M)

Y

∥∥∥∥
1

≤ 1

λ1(M)

(∫
M

|X| dv
)1/2

‖Y‖2

≤ 1

λ1(M)

(∫
M

|X|2 dv
)1/4

‖Y‖2 ≤ d
3/4
n

n1/2C
1/2.

Moreover, using Lemmas 2.4 and 1.1 again it is easy to see that the last term of (6)
is bounded by d1/2

n B(n)1/2C1/2. Then ‖ϕ1/2‖1/2
1 ≤ D(n)C1/4. �

3. Proof of Theorem 1.2

The proof of Theorem 1.2 is immediate from the two following technical lemmas
which we state below.

Lemma 3.1. For p ≥ 2 and for any η > 0, there exists Kη(n, ‖H‖∞) ≤ cn so that
if (PKη) is true, then ‖ϕ‖∞ ≤ η. Moreover, Kη → 0 when ‖H‖∞ → ∞ or η → 0.

Lemma 3.2. Let x0 be a point of the sphereS(O,R) of R
n+1 with the center at the ori-

gin and of radius R. Assume that x0 = Re where e ∈ S
n. Now let (Mn, g) be a com-

pact oriented n-dimensional Riemannian manifold without boundary isometrically
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immersed byφ in R
n+1 so thatφ(M) ⊂ (B(O,R + η)\B(O,R − η)) \B(x0, ρ)with

ρ = 4(2n−1)η and suppose that there exists a point p ∈ M so that 〈X, e〉 > 0. Then
there exists y0 ∈ M so that the mean curvature H(y0) at y0 satisfies |H(y0)| ≥ 1

4nη .

Now, let us see how to use these lemmas to prove Theorem 1.2.

Proof of Theorem 1.2. We consider the function f (t) = t

(
t −

(
n

λ1(M)

)1/2
)2

. For

ε > 0 let us put

η(ε) = min

((
1

‖H‖∞
− ε

)
ε2,

(
1

‖H‖∞
+ ε

)
ε2,

1

27‖H‖3∞

)

≤ min

(
f

((
n

λ1(M)

)1/2

− ε

)
, f

((
n

λ1(M)

)1/2

+ ε

)
,

1

27‖H‖3∞

)
.

Then, as η(ε) > 0 and from Lemma 3.1, it follows that if the pinching condition
(PKη(ε)) is satisfied with Kη(ε) ≤ cn, then for any x ∈ M , we have

f (|X|) ≤ η(ε). (7)

Now to prove Theorem 1.2, it is sufficient to assume ε < 2
3‖H‖∞ . Let us show that

either(
n

λ1(M)

)1/2

− ε ≤ |X| ≤
(

n

λ1(M)

)1/2

+ ε or |X| < 1

3

(
n

λ1(M)

)1/2

. (8)

By studying the function f it is easy to see that f has a unique local maximum
in 1

3

(
n

λ1(M)

)1/2 and from the definition of η(ε) it follows that η(ε) < 4
27

1
‖H‖3∞

≤
4
27

(
n

λ1(M)

)3/2 = f
(1

3

(
n

λ1(M)

)1/2).
Since ε < 2

3‖H‖∞ , we have ε < 2
3

(
n

λ1(M)

)1/2 and 1
3

(
n

λ1(M)

)1/2
<
(

n
λ1(M)

)1/2 − ε.

This and (7) yield (8).
Now, from Lemma 2.1 we deduce that there exists a point y0 ∈ M so that

|X(y0)| ≥ n1/2λ1(M)
1/2

(Kη(ε)+λ1(M))
and since Kη(ε) ≤ cn = n

dn
≤ λ1(M) ≤ 2λ1(M) (see

the proof of Lemma 1.1), we obtain |X(y0)| ≥ 1
3

(
n

λ1(M)

)1/2.

By the connectedness ofM , it follows that
(

n
λ1(M)

)1/2 −ε ≤ |X| ≤ (
n

λ1(M)

)1/2 +ε
for any point ofM and Assertion 1 of Theorem 1.2 is shown for the condition (PKη(ε)).

In order to prove the second assertion, let us consider the pinching condition
(PCε) with Cε = Kη( ε

4(2n−1) )
. Then Assertion 1 is still valid. Let x = (

n
λ1(M)

)1/2
e ∈

S
(
O,
√

n
λ1(M)

)
, with e ∈ S

n and suppose thatB(x, ε)∩M = Ø. Since
∫
M
Xi dv = 0
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for any i ≤ n + 1, there exists a point p ∈ M so that 〈X, e〉 > 0 and we can apply
Lemma 3.2. Therefore there is a point y0 ∈ M so thatH(y0) ≥ 2n−1

nε
> ‖H‖∞ since

we have assumed ε < 2
3‖H‖∞ ≤ 2n−1

2n‖H‖∞ . Then we obtain a contradiction which
implies B(x, ε) ∩M �= Ø and Assertion 2 is satisfied. Furthermore, Cε → 0 when
‖H‖∞ → ∞ or ε → 0. �

4. Proof of Theorem 1.3

From Theorem 1.2, we know that for any ε > 0, there exists Cε depending only on
n and ‖H‖∞ so that if (PCε) is true then∣∣∣∣|X|x −

√
n

λ1(M)

∣∣∣∣ ≤ ε

for any x ∈ M . Now, since
√
n‖H‖∞ ≤ ‖B‖∞, it is easy to see from the previous

proofs that we can assume that Cε is depending only on n and ‖B‖∞.
The proof of Theorem 1.3 is a consequence of the following lemma on the L∞-

norm of ψ = |XT |.
Lemma 4.1. For p ≥ 2 and for any η > 0, there existsKη(n, ‖B‖∞) so that if (PKη)
is true, then ‖ψ‖∞ ≤ η. Moreover, Kη → 0 when ‖B‖∞ → ∞ or η → 0.

This lemma will be proved in the Section 5.

Proof of Theorem 1.3. Let ε < 1
2

√
n

‖B‖∞ ≤
√

n
λ1(M)

. From the choice of ε, we

deduce that the condition (PCε) implies that |Xx | is nonzero for any x ∈ M (see the
proof of Theorem 1.2) and we can consider the differential application

F : M −→ S

(
O,

√
n

λ1(M)

)
,

x �−→
√

n

λ1(M)

Xx

|Xx | .

We will prove that F is a quasi-isometry. Indeed, for any 0 < θ < 1, we can choose
a constant ε(n, ‖B‖∞, θ) so that for any x ∈ M and any unit vector u ∈ TxM , the
pinching condition (PCε(n,‖B‖∞,θ)

) implies∣∣|dFx(u)|2 − 1
∣∣ ≤ θ.

For this, let us compute dFx(u). We have

dFx(u) =
√

n

λ1(M)
∇0
u

(
X

|X|
) ∣∣∣

x
=
√

n

λ1(M)
u

(
1

|X|
)
X +

√
n

λ1(M)

1

|X|∇
0
uX =
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= −1

2

√
n

λ1(M)

1

|X|3u(|X|2)X +
√

n

λ1(M)

1

|X|u

= −
√

n

λ1(M)

1

|X|3 〈u,X〉X +
√

n

λ1(M)

1

|X|u

=
√

n

λ1(M)

1

|X|
(

−〈u,X〉
|X|2 X + u

)
.

By a straightforward computation, we obtain

∣∣|dFx(u)|2 − 1
∣∣ =

∣∣∣∣∣ n

λ1(M)

1

|X|2
(

1 − 〈u,X〉2

|X|2
)

− 1

∣∣∣∣∣
≤
∣∣∣∣ n

λ1(M)

1

|X|2 − 1

∣∣∣∣+ n

λ1(M)

1

|X|4 〈u,X〉2 .

(9)

Now ∣∣∣∣ n

λ1(M)

1

|X|2 − 1

∣∣∣∣ = 1

|X|2
∣∣∣∣ n

λ1(M)
− |X|2

∣∣∣∣
≤ ε

∣∣∣√ n
λ1(M)

+ |X|
∣∣∣

|X|2 ≤ ε

2
√

n
λ1(M)

+ ε(√
n

λ1(M)
− ε

)2 .

Let us recall that n
dn

≤ λ1(M) ≤ ‖B‖2∞ (see (4) for the first inequality). Since we

assume ε < 1
2

√
n

‖B‖∞ , the right-hand side is bounded above by a constant depending

only on n and ‖B‖∞ and we have∣∣∣∣ n

λ1(M)

1

|X|2 − 1

∣∣∣∣ ≤ εγ (n, ‖B‖∞). (10)

On the other hand, sinceCε(n, ‖B‖∞) → 0 when ε → 0, there exists ε(n, ‖B‖∞, η)
so thatCε(n,‖B‖∞,η)

≤ Kη(n, ‖B‖∞) (whereKη is the constant of the lemma) and then
by Lemma 4.1, ‖ψ‖2∞ ≤ η2. Thus there exists a constant δ depending only on n and
‖B‖∞ so that

n

λ1(M)

1

|X|4 〈u,X〉2 ≤ n

λ1(M)

1

|X|4 ‖ψ‖2∞ ≤ η2δ(n, ‖B‖∞), (11)

and from (9), (10) and (11) we deduce that the condition (PCε(n,‖B‖∞,η)
) implies

∣∣|dFx(u)|2 − 1
∣∣ ≤ εγ (n, ‖B‖∞)+ η2δ(n, ‖B‖∞).
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Now let us choose η = (
θ
2δ

)1/2
. Then we can assume that ε(n, ‖B‖∞, η) is small

enough in order to have ε(n, ‖B‖∞, η)γ (n‖B‖∞) ≤ θ
2 . In this case we have∣∣|dFx(u)|2 − 1

∣∣ ≤ θ.

Now let us fix θ , 0 < θ < 1. It follows that F is a local diffeomorphism from M

to S
(
O,
√

n
λ1(M)

)
. Since S

(
O,
√

n
λ1(M)

)
is simply connected for n ≥ 2, F is a

diffeomorphism. �

5. Proof of the technical lemmas

The proofs of Lemmas 3.1 and 4.1 are providing from a result stated in the following
proposition using a Nirenberg–Moser type of proof.

Proposition 5.1. Let (Mn, g) be a compact, connected and oriented n-dimensional
Riemannian manifold without boundary isometrically immersed into the n+1-dimen-
sional euclidean space (Rn+1, can). Let ξ be a nonnegative continuous function so
that ξk is smooth for k ≥ 2. Let 0 ≤ r < s ≤ 2 so that

1

2

ξ2ξ2k−2 ≤ δω + (A1 + kA2)ξ

2k−r + (B1 + kB2)ξ
2k−s

where δω is the codifferential of a 1-form and A1, A2, B1, B2 are nonnegative con-
stants. Then for any η > 0, there exists a constant L(n,A1, A2, B1, B2, ‖H‖∞, η)
depending only on n, A1, A2, B1, B2, ‖H‖∞ and η so that if ‖ξ‖∞ > η then

‖ξ‖∞ ≤ L(n,A1, A2, B1, B2, ‖H‖∞, η)‖ξ‖2.

Moreover, L is bounded when η → ∞, and if B1 > 0, L → ∞ when ‖H‖∞ → ∞
or η → 0.

This proposition will be proved at the end of the paper.

Before giving the proofs of Lemmas 3.1 and 4.1, we will show that under the
pinching condition (PC) with C small enough, the L∞-norm of X is bounded by a
constant depending only on n and ‖H‖∞.

Lemma 5.1. If we have the pinching condition (PC) with C < cn, then there exists
E(n, ‖H‖∞) depending only on n and ‖H‖∞ so that ‖X‖∞ ≤ E(n, ‖H‖∞).

Proof. From the relation (3), we have

1

2

|X|2|X|2k−2 ≤ n‖H‖∞|X|2k−1.
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Then applying Proposition 5.1 to the function ξ = |X| with r = 0 and s = 1, we
obtain that if ‖X‖∞ > E, then there exists a constant L(n, ‖H‖∞, E) depending
only on n, ‖H‖∞ and E so that

‖X‖∞ ≤ L(n, ‖H‖∞, E)‖X‖2,

and under the pinching condition (PC) with C < cn we have from Lemma 2.1 that

‖X‖∞ ≤ L(n, ‖H‖∞, E)d1/2
n .

Now since L is bounded when E → ∞, we can choose E = E(n, ‖H‖∞) large
enough so that

L(n, ‖H‖∞, E)d1/2
n < E.

In this case, we have ‖X‖∞ ≤ E(n, ‖H‖∞). �

Proof of Lemma 3.1. First we compute the Laplacian of the square of ϕ2. We have


ϕ2 = 


(
|X|4 − 2

(
n

λ1(M)

)1/2

|X|3 + n

λ1(M)
|X|2

)

= −2|X|2|d|X|2|2 + 2|X|2
|X|2

− 2

(
n

λ1(M)

)1/2 (
−3

4
|X|−1|d|X|2|2 + 3

2
|X|
|X|2

)
+ n

λ1(M)

|X|2.

Now by a direct computation one gets |d|X|2|2 ≤ 4|X|2. Moreover by the relation
(3) we have |
|X|2| ≤ 2n‖H‖∞|X| +n. Then applying Lemmas 1.1 and 5.1 we get


ϕ2 ≤ α(n, ‖H‖∞)

and
1

2

ϕ2ϕ2k−2 ≤ α(n, ‖H‖∞)ϕ2k−2.

Now, we apply Proposition 5.1 with r = 0 and s = 2. Then if ‖ϕ‖∞ > η, there
exists a constant L(n, ‖H‖∞) depending only on n and ‖H‖∞ so that

‖ϕ‖∞ ≤ L‖ϕ‖2.

From Lemma 2.5, if C ≤ cn and (PC) is true, we have ‖ϕ‖2 ≤ D(n)‖ϕ‖3/4∞ C1/4.
Therefore

‖ϕ‖∞ ≤ (LD)4C.

Consequently, if we choose C = Kη = inf
( η

(LD)4
, cn

)
, then we obtain ‖ϕ‖∞ ≤ η.

�
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Proof of Lemma 4.1. First we will prove that for any C < cn, if (PC) is true, then

1

2
(
ψ2)ψ2k−2 ≤ δω + (α1(n, ‖B‖∞)+ kα2(n, ‖B‖∞)) ψ2k−2 (12)

where δω is the codifferential of a 1-form ω.
First observe that the gradient ∇M |X|2 of |X|2 satisfies ∇M |X|2 = 2XT . Then

by the Bochner formula we get

1

2

|XT |2 = 1

4

〈

d|X|2, d|X|2〉− 1

4
|∇d|X|2|2 − 1

4
Ric(∇M |X|2,∇M |X|2)

≤ 1

4

〈
d
|X|2, d|X|2〉− 1

4
Ric(∇M |X|2,∇M |X|2)

and by the Gauss formula we obtain

1

2

|XT |2 ≤ 1

4

〈
d
|X|2, d|X|2〉− 1

4
nH

〈
B∇M |X|2,∇M |X|2〉+ 1

4
|B∇M |X|2|2

= 1

4

〈
d
|X|2, d|X|2〉− nH

〈
BXT ,XT

〉+ |BXT |2.
By Lemma 5.1 we know that ‖X‖∞ ≤ E(n, ‖B‖∞) (the dependance in ‖H‖∞ can
be replaced by ‖B‖∞). Then it follows that

1

2
(
ψ2)ψ2k−2 ≤ 1

4

〈
d
|X|2, d|X|2〉ψ2k−2 + α′(n, ‖B‖∞)ψ2k−2. (13)

Now, let us compute the term
〈
d
|X|2, d|X|2〉ψ2k−2. We have〈

d
|X|2, d|X|2〉ψ2k−2

= δω + (
|X|2)2ψ2k−2 − (2k − 2)
|X|2 〈d|X|2, dψ 〉ψ2k−3

= δω + (
|X|2)2ψ2k−2 − 2(2k − 2)
|X|2〈XT ,∇Mψ
〉
ψ2k−3

where ω = −
|X|2ψ2k−2d|X|2. Now,

ei(ψ) = ei |XT |2
2|XT | = ei |X|2 − ei 〈X, ν〉2

2|XT | = 〈ei, X〉 − Bij
〈
X, ej

〉 〈X, ν〉
|XT | .

Then〈
d
|X|2, d|X|2〉ψ2k−2 = δω + (
|X|2)2ψ2k−2 − 2(2k − 2)
|X|2|XT |ψ2k−3

+ 2(2k − 2)
|X|2
〈
BXT ,XT

〉
|XT | 〈X, ν〉ψ2k−3

≤ δω + (
|X|2)2ψ2k−2 + 2(2k − 2)|
|X|2|ψ2k−2

+ 2(2k − 2)|
|X|2| |B| |X|ψ2k−2.
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Now by relation (3) and Lemma 5.1 we have〈
d
|X|2, d|X|2〉ψ2k−2 ≤ δω + (

α′′
1 (n, ‖B‖∞)+ kα′′

2 (n, ‖B‖∞)
)
ψ2k−2.

Inserting this in (13), we obtain the desired inequality (12).
Now applying again Proposition 5.1, we get that there exists L(n, ‖B‖∞, η) so

that if ‖ψ‖∞ > η then
‖ψ‖∞ ≤ L‖ψ‖2.

From Lemma 2.2 we deduce that if the pinching condition (PC) holds then ‖ψ‖2 ≤
A(n)1/2C1/2. Then taking C = Kη = inf

(
η

LA1/2 , cn

)
, then ‖ψ‖∞ ≤ η. �

Proof of Lemma 3.2. The idea of the proof consists in foliating the region
B(O,R + η)\B(O,R − η) with hypersurfaces of large mean curvature and to show
that one of these hypersurfaces is tangent to φ(M). This will imply that φ(M) has a
large mean curvature at the contact point.

Consider S
n−1 ⊂ R

n and R
n+1 = R

n × Re. Let a, L > l > 0 and

�L,l,a : S
n−1 × S

1 −→ R
n+1

(ξ, θ) �−→ Lξ − l cos θξ + l sin θe + ae.

Then �L,l,a is a family of embeddings from S
n−1 × S

1 in R
n+1. If we orient the

family of hypersurfaces �L,l,a(Sn−1 × S
1) by the unit outward normal vector field,

a straightforward computation shows that the mean curvature H(θ) depends only on
θ and we have

H(θ) = 1

n

(
1

l
− (n− 1) cos θ

L− l cos θ

)
≥ 1

n

(
1

l
− n− 1

L− l

)
. (14)

Now, let us consider the hypotheses of the lemma and for t0 = 2 arcsin
(
ρ

2R

) ≤
t ≤ π

2 , put L = R sin t , l = 2η and a = R cos t . Then L > l and we can
consider for t0 ≤ t ≤ π

2 the family MR,η,t of hypersurfaces defined by MR,η,t =
�R sin t,2η,R cos t (S

n−1 × S
1).

From the relation (14), the mean curvature HR,η,t of MR,η,t satisfies

HR,η,t ≥ 1

n

(
1

2η
− n− 1

R sin t − 2η

)
≥ 1

n

(
1

2η
− n− 1

R sin t0 − 2η

)

≥ 1

n

(
1

2η
− n− 1

R sin(t0/2)− 2η

)
= 1

n

(
1

2η
− n− 1

ρ
2 − 2η

)
= 1

4nη

where we have used in this last equality the fact that ρ = 4(2n− 1)η.
Since there exists a point p ∈ M so that 〈X(p), e〉 > 0, we can find t ∈ [t0, π/2]

and a point y0 ∈ M which is a contact point with MR,η,t . Therefore |H(y0)| ≥ 1
4nη .
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MR,η,t0 ∩ FMR,η,t0 ∩ F

MR,η,t0 ∩ FMR,η,t0 ∩ F
M ∩ F y0

2η

2η

R

ρ

x0

η

t0

t e

O

ξ

F is the vector space spanned by e and ξ .

�

Proof of Proposition 5.1. Integrating by parts we have

∫
M

1

2

ξ2ξ2k−2 dv = 1

2

∫
M

〈
dξ2, dξ2k−2

〉
dv = 2

(
k − 1

k2

)∫
M

|dξk|2 dv

≤ (A1 + kA2)

∫
M

ξ2k−r dv + (B1 + kB2)

∫
M

ξ2k−s dv.

Now, given a smooth function f and applying the Sobolev inequality (5) to f 2, we
get

(∫
M

f
2n
n−1 dv

)1−(1/n)
≤ K(n)

∫
M

(
2|f ||df | + |H |f 2) dv

≤ 2K(n)

(∫
M

f 2 dv

)1/2 (∫
M

|df |2 dv
)1/2

+K(n)‖H‖∞
∫
M

f 2 dv

= K(n)

(∫
M

f 2 dv

)1/2
(

2

(∫
M

|df |2 dv
)1/2

+ ‖H‖∞
(∫

M

f 2 dv

)1/2
)
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where in the second inequality, we have used the Hölder inequality. Using it again,
by assuming that V (M) = 1, we have(∫

M

f 2 dv

)1/2

≤
(∫

M

f
2n
n−1 dv

) n−1
2n

.

And finally, we obtain

‖f ‖ 2n
n−1

≤ K(n)(2‖df ‖2 + ‖H‖∞‖f ‖2).

For k ≥ 2, ξk is smooth and we apply the above inequality to f = ξk . Then we get

‖ξ‖k2kn
n−1

≤ K(n)

[
2

(∫
M

|dξk|2 dv
)1/2

+ ‖H‖∞
(∫

M

ξ2k dv

)1/2
]

≤ K(n)

[
2

(
k2

2(k − 1)

)1/2 (
(A1 + kA2)

∫
M

ξ2k−r dv

+ (B1 + kB2)

∫
M

ξ2k−s dv
)1/2

+ ‖H‖∞
(∫

M

ξ2k dv

)1/2
]

≤ K(n)

[
2

(
k2

2(k − 1)

)1/2 (
(A1 + kA2)‖ξ‖2−r∞

+ (B1 + kB2)‖ξ‖2−s∞ )1/2 ‖ξ‖k−1
2k−2 + ‖H‖∞‖ξ‖∞‖ξ‖k−1

2k−2

]

≤ K(n)

[
2

(
k2

2(k − 1)

)1/2 (
A1 + kA2

‖ξ‖r∞
+ B1 + kB2

‖ξ‖s∞

)1/2

+ ‖H‖∞
]
‖ξ‖∞‖ξ‖k−1

2k−2

≤ K(n)

[
2

(
k2

2(k − 1)

)1/2
(
A

1/2
1 + k1/2A

1/2
2

‖ξ‖r/2∞
+ B

1/2
1 + k1/2B

1/2
2

‖ξ‖s/2∞

)

+ ‖H‖∞
]
‖ξ‖∞‖ξ‖k−1

2k−2.

If we assume that ‖ξ‖∞ > η, the last inequality becomes

‖ξ‖k2kn
n−1

≤ K(n)

[
2

(
k2

2(k − 1)

)1/2
(
A

1/2
1 + k1/2A

1/2
2

ηr/2
+ B

1/2
1 + k1/2B

1/2
2

ηs/2

)

+ ‖H‖∞
]
‖ξ‖∞‖ξ‖k−1

2k−2
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=
[
(K1 + k1/2K2)

(
k2

k − 1

)1/2

+K ′
]

‖ξ‖∞‖ξ‖k−1
2k−2.

Now let q = n
n−1 > 1 and for i ≥ 0 let k = qi + 1 ≥ 2. Then

‖ξ‖2(qi+1+q) ≤
((
K1 + (qi + 1)1/2K2

)(qi + 1

qi/2

)
+K ′′

) 1
qi+1 ‖ξ‖

1
qi+1∞ ‖ξ‖

1− 1
qi+1

2qi

≤
(
K̃qi

) 1
qi+1 ‖ξ‖

1
qi+1∞ ‖ξ‖

1− 1
qi+1

2qi

where K̃ = 2K1 + 23/2K2 +K ′. We see that K̃ has a finite limit when η → ∞ and
if B1 > 0, K̃ → ∞ when ‖H‖∞ → ∞ or η → 0. Moreover the Hölder inequality
gives

‖ξ‖2qi+1 ≤ ‖ξ‖2(qi+1+q)
which implies

‖ξ‖2qi+1 ≤ (
K̃qi

) 1
qi+1 ‖ξ‖

1
qi+1∞ ‖ξ‖

1− 1
qi+1

2qi
.

Now, by iterating from 0 to i, we get

‖ξ‖2qi+1

≤ K̃

(
1−∏i

k=i−j
(

1− 1
qk+1

))
q

∑i
k=i−j k

qk+1 ‖ξ‖
(

1−∏i
k=i−j

(
1− 1

qk+1

))
∞ ‖ξ‖

∏i
k=i−j

(
1− 1

qk+1

)
2qi−j

≤ K̃

(
1−∏i

k=0

(
1− 1

qk+1

))
q

∑i
k=0

k

qk+1 ‖ξ‖
(

1−∏i
k=0

(
1− 1

qk+1

))
∞ ‖ξ‖

∏i
k=0

(
1− 1

qk+1

)
2 .

Let α = ∑∞
k=0

k
qk+1

and β = ∏∞
k=0

(
1 − 1

qk+1

)
= ∏∞

k=0

(
1

1+(1/q)k
)

. Then

‖ξ‖∞ ≤ K̃1−βqα‖ξ‖(1−β)∞ ‖ξ‖β2 ,
and finally

‖ξ‖∞ ≤ L‖ξ‖2

where L = K̃
1−β
β qα/β is a constant depending only on n, A1, A2, B1, B2, ‖H‖∞ and

η. From classical methods we show that β ∈ [e−n, e−n/2]. In particular, 0 < β < 1
and we deduce that L is bounded when η → ∞ and L → ∞ when ‖H‖∞ → ∞ or
η → 0 with B1 > 0. �

Remark. In [12] and [13] Shihohama and Xu have proved that if (Mn, g) is a compact
n-dimensional Riemannian manifold without boundary isometrically immersed in
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R
n+1 and if

∫
M

(|B|2 − n|H |2) < Dn where Dn is a constant depending on n, then
all Betti numbers are zero. For n = 2, D2 = 4π , and it follows that if∫

M

|B|2 dv − 4π < λ1(M)V (M)

then we deduce from the Reilly inequality λ1(M)V (M) ≤ 2
∫
M
H 2 dv that∫

M
(|B|2 − 2|H |2) dv < 4π and by the result of Shihohama and Xu M is diffeo-

morphic to S
2.
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