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1. Introduction

We analyse the existence question for essential laminations in 3-manifolds. The
purpose of the article is to prove that there are infinitely many closed hyperbolic 3-
manifolds which do not admit essential laminations. This gives a definitive negative
answer to a fundamental question posed by Gabai and Oertel when they introduced
essential laminations in [Ga-Oe], see also [Ga4], [Ga5]. The proof is obtained by
analysing certain group actions on trees and showing that certain 3-manifold groups
only have trivial actions on trees. There are corollaries concerning the existence
question for Reebless foliations and pseudo-Anosov flows.

This article deals with the topological structure of 3-manifolds. Two dimensional
manifolds are extremely well behaved in the sense that the universal cover is always
either the plane or the sphere (for closed manifolds), the fundamental group deter-
mines the manifold and many other important properties. Similarly for a 3-manifold
one asks: When is the universal cover R?? When does the fundamental group deter-
mine the manifold? Are homotopic homeomorphisms always isotopic? An obvious
necessary condition is that the manifold be irreducible, that is, every embedded sphere
bounds a ball. As for 2-manifolds, the existence of a compact codimension one object
which is topologically good is extremely useful. A properly embedded 2-sided sur-
face not S?, D? is incompressible if it injects in the fundamental group level [He]. A
compact, irreducible manifold with an incompressible surface is called Haken. Fun-
damental work of Haken [Hak1], [Hak2] and Waldhausen [Wa] shows that Haken
manifolds have fantastic properties, answering in the positive the 3 questions above.

Buthow common are Haken 3-manifolds, thatis, how common are incompressible
surfaces amongst irreducible 3-manifolds? In some sense they are not very common.

*Reseach partially supported by NSF grants DMS-0296139 and DMS-0305313.



248 S. R. Fenley CMH

Recall that Dehn surgery along an orientation preserving simple closed curve § is the
process of removing a tubular neighborhood N () (a solid torus) and glueing back
by a homeomorphism of the boundary — which is a two dimensional torus 77 [Rol],
[Bu-Zi]. The surgered manifold is completely determined by which simple closed
curve in 77 becomes the new meridian, that is, which curve of 77 is glued to the null
homotopic curve in the boundary of N(§8). Hence this is parametrized by a pair of
relatively prime integers (g, p), corresponding to the description of simple closed
curves in 71. When viewed this way, the set of relatively prime (g, p) is the Dehn
surgery space — a subset of Z> C R?. The same can be done iterating the process
doing Dehn surgery on links [He], [Rol], [Bu-Zi]. Notice that all closed, orientable
3-manifolds can be obtained from S* by some Dehn surgery on an appropriate link in
S? [Rol]. So one can interpret how common a property is by verifying how many of
the Dehn surgered manifolds have that property. Along these lines some of the many
results on incompressible surfaces are: If K is a two bridge knot in S* then almost
all Dehn surgeries on K yield manifolds without incompressible surfaces [Ha-Th].
The same is true for any knot K in a manifold M so that M — K does not have
any closed incompressible surfaces [Hatl]. Notice that there are also results on the
other direction: for example Oertel [Oe] proved that for many star links in S, then
any non trivial Dehn surgery yields a manifold with incompressible surfaces. There
are similar results for Montesinos knots [Ha-Oe]. Basically a lot of it depends on
whether the complement has closed incompressible surfaces or not. In many cases
the complement does not have such surfaces, yielding the non existence results for
most Dehn surgered manifolds.

This amongst other reasons led to the concept of an essential lamination as intro-
duced by Gabai and Oertel in the seminal paper [Ga-Oe] of the late 80s. A lamination
is a foliation of a closed subset of the manifold. Roughly a lamination in a closed
3-manifold is essential if it has no sphere leaves, no tori leaves bounding solid tori,
the complement of the lamination is irreducible and the leaves in the boundary of
the complement are incompressible and end incompressible in their respective com-
plementary components [Ga-Oe]. Gabai and Oertel proved the fundamental result
that essential laminations have far reaching and deep consequences: the manifold M
is irreducible, its universal cover is R, leaves of the lamination inject in the funda-
mental group level, efficient closed transversals are not null homotopic; and there are
other consequences [Ga-Ka3]. In addition manifolds with genuine essential lamina-
tions satisfy the weak hyperbolization conjecture [Ga-Ka4]: either there is a Z & Z
subgroup of the fundamental group or the fundamental group is Gromov hyperbolic
[Gr], [Gh-Ha]. Genuine means that not all complementary regions are /-bundles, or
equivalently it is not just a blow up of a foliation. Brittenham also proved properties
concerning homotopy equivalences for manifolds with essential laminations [Br2].

In addition essential laminations are extremely common: For exampleif K isanon
trivial knot in S® then off of at most two lines and a couple of points in Dehn surgery
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space, the surgered manifold contains an essential lamination. This is obtained as
follows: first Gabai constructed a Reebless foliation & in (S* — N(K)) which is
transverse to the boundary [Gal], [Ga2], [Ga3]. Reebless means it does not have a
Reeb component: a foliation of the solid torus with the boundary being a leaf, all
other leaves are planes spiralling to the boundary [Re], [No]. Then results of Mosher,
Gabai [Mo2] show that either there is an incompressible torus transverse to ¥ or there
is an essential lamination in S* — N (K ) with solid torus complementary regions. This
lamination remains essential off of at most two lines in Dehn surgery space [Mo2]
— see more on solid torus complementary regions later. Also Brittenham produced
examples of essential laminations which remain essential after all non trivial Dehn
surgeries [Br3], [Br4]. Roberts has also obtained many important existence results
concerning alternating knots in the sphere [Ro1], [De-Ro] (partly jointly with Delman)
and punctured surface bundles [Ro2], [Ro3].

So successful was the search for essential laminations that at first one might
wonder whether all manifolds that can (irreducible, with infinite fundamental group),
in fact do admit essential laminations. Given that an incompressible torus is an
essential lamination, the Geometrization conjecture [Th2] suggests that one should
only have to analyse Seifert fibered spaces and hyperbolic manifolds [Sc], [Th2]. The
Geometrization conjecture may well have been proved at this point: after this article
was written Perelman announced a proof of this conjecture [Pel], [Pe2] — this is being
very carefully scrutinized by the experts at this point.

The situation for Seifert fibered spaces has been completely resolved: Britten-
ham produced examples of Seifert fibered spaces which are irreducible, have infinite
fundamental group, universal cover R3, but which do not have essential laminations
[Br1]. Naimi [Na], using work of Bieri, Neumann and Strebel [BNS], completely
determined which Seifert fibered manifolds admit essential laminations.

For hyperbolic 3-manifolds there were two fundamental open questions:

1) (Thurston) Does every closed hyperbolic 3-manifold admit a Reebless foliation?

2) (Gabai-Oertel [Ga-Oe], see also [Ga4], [GaS]) Does every closed hyperbolic
3-manifold admit an essential lamination?

In 2001 question 1) was answered in the negative by Roberts, Shareshian and
Stein [RSS] who produced infinitely many counterexamples. The goal of this article
is to answer question 2) in the negative. We now proceed to describe the examples.

Basically one starts with a torus bundle M over the circle and then performs
Dehn surgery on a particular closed curve. Let ¢ be the monodromy of the fibration
associated to a2 by 2 integer matrix A, so that A is hyperbolic. Let R be a fiber which is
atorus. There are two foliations in R which are invariant under the monodromy ¢, the
stable and unstable foliations. The suspension flow in M induces two foliations in M
with leaves being planes, annuli and Moebius bands. Suppose there is a Méebius band
leaf. Blow up that leaf, producing a lamination A with a solid torus complementary
component with closure a solid torus with core § and with some curves  removed from
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the boundary. The curves n are called the degeneracy locus of the complementary
region of the lamination [Ga-Kal]. One can think of 1 as lying in the boundary of
N (§), which is a two dimensional torus. Let (1, 0) be the curve in d N (6) which
bounds the fiber in M — N (§). Under an appropriate choice for the curve (0, 1) of
dN (8) then 7 is represented by (1, 2). Do Dehn surgery along §. If & is the new
meridian (the Dehn surgery slope), then results of essential laminations [Ga-Oe],
[Ga-Kal] show that the lamination A remains essential in the Dehn surgery manifold
Mg if the intersection number of £ and 7 is at least 2 in absolute value. If £ is
described as (g, p) then this is equivalent to | p — 2¢q| > 2. Therefore the open cases
for essential laminations are |p — 2¢q| < 1.

For simplicity of notation we omit the explicit dependence of M on ¢. Itis always
understood that M depends on the particular ¢.

In a beautiful and fundamental result, Hatcher [Hat2], showed that if p < ¢ then
the Dehn surgery manifold Mg = M), has a Reebless foliation. This is done via an
explicit construction involving train tracks and branched surfaces. In 2001 Roberts,
Shareshian and Stein considered a particular type of monodromy, namely generated

by the matrix
m —1
A= |: 1 0 ], m < =3,

The eigenvalues of A are negative. Consider the point (0, 0) in R? and its pro-
jection O to the fibering torus R. Let § be the closed orbit of the suspension flow
through O. Because the eigenvalues are negative, the leaf of the stable foliation
through O is a Moebius band. When it is blown open into an annulus the degeneracy
locus is (1, 2) as described above. In a groundbreaking work, Roberts, Shareshian
and Stein [RSS] considered Dehn surgery on these manifolds and proved a wonderful
result: if p is odd, m is odd and p > q then M), /, does not admit Reebless foliations.
In this article we consider a subclass of these manifolds and prove that they do not
admit essential laminations:

Main Theorem. Let M be a torus bundle over the circle with monodromy induced by
the matrix A above. Let § be the orbit of the suspension flow coming from the origin
and M,y = My, be the manifold obtained by (q, p) Dehn surgery on §. Here
(1, 0) bounds the fiber in (M — N (8)) and (1, 2) is the degeneracy locus. If m < —4
and |p — 2q| = 1, then the manifold M), does not admit essential laminations.

The manifold (M — §) is atoroidal [Th4], [BIl-Ca] and fibers over the circle with
fiber a punctured torus. By Thurston’s hyperbolization theorem in the fibering case
(M — §) has a complete hyperbolic structure of finite volume [Th3]. By Thurston’s
Dehn surgery theorem M),/ is hyperbolic for almost all p/q [Thl1]. Therefore:

Corollary. There are infinitely many closed, hyperbolic 3-manifolds which do not
admit essential laminations.
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Another immediate corollary is:

Corollary. If m < —4 and |p — 2q| = 1, then the manifolds My, above do not
admit Reebless foliations.

About half of this result has already been established by Roberts, Shareshian and
Stein [RSS], namely the situation when m is odd. See more on m odd later on.
Another consequence is:

Corollary. If m < —4 and |p — 2q| = 1 then M), does not admit pseudo-Anosov
Sflows.

For basic definitions and properties of pseudo-Anosov flows consult [Mo1], [Mo2].
This result provides infinitely many hyperbolic manifolds without pseudo-Anosov
flows. We stress that Calegari and Dunfield [Ca-Du] previously obtained conditions
implying manifolds do not admit pseudo-Anosov flows and showed for example that
the Weeks manifold does not admit pseudo-Anosov flows.

We remark that Dehn surgery on torus bundles over the circle has been widely
studied, for example: a) Which surgered manifolds have incompressible surfaces
[FI-Ha], [CJR]; b) virtual homology [Bk1], [Bk2]; c) geometrization [Jo], [Thl],
[Th2], [Th3], [Th4].

Finally we remark that there are algorithms to decide these existence questions.
Namely Jaco and Oertel [Ja-Oe] produced an algorithm to decide whether a 3-
manifold has an incompressible surface. Recently Agol and Li [Ag-Li] did the same
for essential laminations. These are theoretical algorithms and so far for laminations
there are no manifolds which can be shown not to have essential laminations using
the algorithm.

The proof of the main theorem is as follows: assume there is an essential lamina-
tion in M}, /,. This produces a non trivial action of the fundamental group of M, /, in
a tree (see preliminaries section). We then show that there cannot be any such action.

We stress that the results in this article provide the first and so far the only known
examples of hyperbolic manifolds without essential laminations of any kind.

The results of this article mean that the search for structures more general than
essential laminations, but still useful takes an added relevance. One idea previously
proposed by Gabai [Ga5] is that of a loosesse lamination. We will have more com-
ments on that in the final remarks section.

The article is organized as follows: in the next section we describe how an essential
lamination produces a non trivial group action on a tree. We also give background
material on group actions on trees and produce an explicit presentation of the group
which will be analysed: this is the fundamental group of the Dehn surgered punctured
torus bundle. In Section 3 we present the outline of the proof of the main theorem.
The proof is done by contradiction assuming there is a non trivial action of the group
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on a tree. The analysis is done in a case by case analysis depending on how certain
individual elements of the group may act on the tree. The outline is fairly explicit
and presents clearly what is done in much more detail in Sections 4 through 7. Since
the arguments in Sections 5, 6, and 7 are extremely involved, the outline also serves
as a good reference source while one reads these later sections. In Section 4 we deal
with the case that the tree is the real line. This is very simple, but even here some
fundamental ideas come up. In Sections 5, 6 and 7 we analyse 3 cases of the proof
depending on whether certain generators of the group act freely on the tree or not. In
each case the arguments little by little produce a structure on the tree, which turns out
to be incompatible with the action. These sections complete the proof of the main
theorem. In the final section we mention recent activity in this area and also comment
on open problems for future analysis.

We are very thankful to Rachel Roberts who introduced the idea of considering
group actions in the foliations case and other ideas. We also thank the referee for
very good suggestions concerning the organization of this article.

2. Preliminaries

The proof of the main theorem is done by looking at group actions on trees. For
simplicity first consider the case of a Reebless foliation ¥ [No]. Novikov proved
that leaves of a Reebless foliation are incompressible and transversals to the foliation
are never homotopic rel endpoints into a leaf [No]. Hence the lift to the universal
cover ¥ is a foliation by planes or spheres and its leaf space is a simply connected
1-dimensional manifold, which may not be Hausdorff. The fundamental group of
the manifold acts on this object. Roberts et al analysed group actions on simply
connected non Hausdorff 1-manifolds (and also on trees) and they ruled out the
existence of Reebless foliatigns [RSS] in a class of manifolds. Notice that the leaf
space of the lifted foliation ¥ is an orientable object and it makes sense to talk about
orientation preserving homeomorphisms.

Now consider essential laminations. Let A be an essential lamination on a 3-
manifold N. The results of Gabai and Oertel [Ga-Oe] imply that the lift A to the
universal cover is a lamination by planes in N. We will modify A if necessary to
eventually obtain a group action on a tree which is roughly the leaf space of the lifted
lamination X. First, if there are any leaves of A which are isolated on both sides,
then blow each of them into an 7-bundle of leaves — this needs to be done at most
countably many times. Now 7. is a lamination by planes with no leaves isolated on
both sides [Ga-Oe].

Suppose L is a leaf of A which is non separated from another leaf F, that is,
there are L; leaves of A with L; converging to both L and F. We do not want that
L is not separated from some other leaf in the other side (the one not containing F).
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If that happens, blow up L into an /-bundle of leaves. This can also be achieved
by a blow up in A. Since there are at most countably many leaves non separated
from some other leaf, we can get rid of leaves non separated from leaves on both
sides. If needed use blow ups so that non separated leaves of A are not boundary
leaves of a complementary region of A (on the opposite side). After all these possible
modifications assume this is the original lamination A.

Now define a set T, whose elements are: closures of complementary components
of A and also leaves of A which are non isolated on both sides. Then Ty is an order tree
[Ga-Ka2], [Ro-St2], also called a non Hausdorff tree [Fe]. The fundamental group
1 (N) naturally acts on T,. We now modify 7} to produce an actual tree. If e is
any point of T, which is non separated from another point ¢’, then collapse all points
non separated from e together with e. This is not problematic since no such e is non
separated on more than one side and e also does not come from a complementary
region of A. The collapsed object is now an actual tree T and the action of 71 (N)
on T, induces a natural action of 771 (N) on T'. In our proof we will let N be the Dehn
surgery manifold M)/, and we will analyse group actions of § = m{(M,,,) on an
arbitrary tree T'.

Since we will be looking at group actions on trees we now describe some basic
material about actions on trees. First of all let us stress that the trees here are only
topological trees. There is no well-defined metric in the tree which is invariant under
the action. The arguments are entirely topological. The reader should be aware that
the term tree in this article differs from some other sources — where a tree may mean
a simplicial tree or an R-tree (both of which are metric trees and actions preserve the
metric).

Notation. In the arguments of this article, group elements act on the right.

Definition 2.1. A group action on a tree T is nontrivial if no point of 7 is fixed by
all elements of the group.

A lot of results on group actions on trees are to rule out non trivial group actions
[Cu-Vo].
Given point a, b on a tree T let

(a,b) = {c € T | ¢ separates a from b}.

If a = b, then (a, b) is empty, otherwise it is an open segment. Let [a, b] be the union
of (a, b) and {a, b}. Then [a, b] is always a closed segment.
One fundamental concept here is the following:

Definition 2.2 (bridge). If x is a point of a tree T not contained in a connected set B,
then there is a unique embedded path [x, y] from x to B. This path has (x, y)NB =@
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and either y is in B or y is an accumulation point of B. We say that [x, y] is the
bridge from x to B. Also we say that x bridges to B in y or that x bridges to y in B —
whether y is in B or not.

For example if T is the reals and B = (0, 1), x = 2, then the bridge from x to B is
[2, 1]. Notice that for trees, connected and pathwise connected are equivalent. One
common use of bridges will be: if x is not in a properly embedded line / (for example
an axis as defined below) let [x, y] be the bridge from x to /. The crucial property of
the bridge is that given x and B, the bridge is unigue. In various situations this will
force some useful equalities of points. Another fundamental concept is:

Definition 2.3 (axis). Suppose that g is a homeomorphism acting freely on a tree T'.
Then g has an axis g, a properly embedded line in 7', invariant under g and g acts
by translations on .

This s classical. Here y isin 4 if and only if ygisin (y, yg?), thatis yg separates
y from yg?. Then itis easy to see that the axis must be the union of [yg’, yg'*!] where
i € Z [Bal], [Fe]. To obtain an element in 4, consider any x € T. If xg € (x, xgz)
we are done. Else there is a unique

y € [x, xg] N [x, xg*1 N [xg, xg*].

y is the basis of the tripod with corners x, xg, xg? [Gr], [Gh-Ha]. A simple analysis
of cases using free action yields y is in the axis of g.
Another simple but fundamental concept for us is:

Definition 2.4 (local axis). Suppose [ is a line in a tree 7 where a homeomorphism
g acts by translation. Then [ is a local axis for g and is denoted by L. The local
axis may not be unique, the context specifies which one we refer to.

For example if g acts in R by xg = 2x, then Ry, R_ are both local axes of g
with accumulation point x = 0. Another characterization of local axis: x is in a local
axis of g if and only if xg separates x from xg2 (same definition as for axis except
requiring that g acts freely in that case). Another characterization: suppose xg is not
x and let U be the component of 7 — {x} containing xg. Then x is in a local axis of
g ifand only if Ug C U.

Let x be a point in a tree T. A prong at x is a non degenerate segment / of T
so that x is one of the endpoints of /. Two prongs at x are equivalent if they share
a subprong at x. Associated to a subprong / at x there is a unique component U of
T — {x} containing I — {x}.

Notation. If x, y, z are elements in a tree we will write x < y < z if y separates
x from z, or y is in (x, z). We say that x, y, z (in this order) are aligned. Also
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x < y =< zif one also allows y = z and so on. Notice that this is invariant under
homeomorphism of the tree.

The following simple results will be very useful:

Lemma 2.5. Let x be a point in a tree T. Then two prongs I, I at x are equivalent
if and only if the associated complementary components U1, U, are the same.

Proof. If 11, I, are equivalent, there is y in I1 — {x} also in /5. Then clearly y € U,
and y € Uy, so U1 = Uy. Conversely suppose U; = U,. If 7 is not equivalent
to I, then I1 N I = {x} because T is a tree and it also follows that x separates I
from I». This would imply U, U disjoint, contradiction. O

Lemma 2.6. Let T be a tree and n a homeomorphism so that there are two points
x,yof T sothatx < xn <y <ynorx <y <xn < yn. Then x and y are in a
local axis of .

Proof. We do the proof for the first situation, the other being very similar. Let U
be the component of 7 — {x} containing xn. Using x < xn < Yy this is also the
component of 7 — {x} containing y. Apply 7, then U is taken to the component of
T — {xn} containing yn. Then Un is contained in U and x is in a local axis. Apply
n~! to y to get y is in a local axis as well. We stress the two local axes produced in
this way a priori may not be the same: there may be a fixed pointof nin (x, y). O

Global fixed points. Here we consider the case that an essential lamination A on N
would produce a trivial group action on a tree 7.

Recall the notion of efficient transversal to a lamination: let  be a transversal to a
lamination A. Then 7 is efficient [Ga-Oe] if for any subarc ng with both endpoints in
leaves of A and interior disjoint from A, then ng is not homotopic rel endpoints into a
leaf of A. Gabai and Oertel showed that if A is essential then any efficient transversal
cannot be homotoped rel endpoints into a leaf of 1. Also closed efficient transversals
are not null homotopic.

Lemma 2.7. If A is an essential lamination in N then the associated group action of
m1(N) on atree T as described above has no global fixed point and therefore is non
trivial.

Proof. Suppose on the contrary that a point x of T is left invariant by the whole
group. Look at the preimage of x in the possibly non Hausdorff tree 7. There are 3
options:

1. x comes from a non singular, Hausdorff leaf E of . Then E is left invariant
by the whole group 71 (V).
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2. x comes from the closure R of a complementary region of A in the universal
cover. Then R is left invariant by the whole group. In this case let £ be a boundary
leaf of R.

3. Finally x may come from a non Hausdorff leaf E. Then the orbit of E under
71 (N) consists only of the non separated leaves from E.

By construction of the tree T above, these 3 cases are mutually g(clusive. It
follows that in any of the 3 options there is at least one component B of N — E which
does not contain any translate of £. In option 1) any component will do, in option 2)
choose the component not containing R — E and in option 3) choose the component
not containing leaves non separated from E.

Let A = (E) where 7 : N — N is the universal covering map. Suppose first
that A is not compact. Then it limits on some leaves of A and there is a laminated box
where A intersects it in at least 3 leaves and the box intersects an efficient transversal
to 1. Lifting to NV so that the middle leaf is E then the other 2 leaves are not E (efficient
transversal) and one of them is contained in B producing a covering translate of E
in B, contradiction. The same is of course true if A intersects an efficient closed
transversal.

Now A is compact. If A is non separating, then it intersects a closed transversal
(transverse to A, not necessarily to 1) associated to g in m1(N) only once. Same
proof yields either Eg or Eg~! in B, done.

Finally suppose that A is separating. Then C = 7 (B U E) is a compact submani-
fold of N which has A as its unique boundary component. For any g in 771 (C) then
Eg is contained in B U E, so by hypothesis it must be E and therefore 711 (A) surjects
in w1 (C). As A is essential then 71 (A) also injects in 71 (C) [Ga-Oe], so w1(A) is
isomorphic to 1 (C). As C is irreducible [Ga-Oe], then Theorem 10.5 of Hempel
[He] implies that C is homeomorphic to A x I with A corresponding to A x {0}.
This contradicts the fact that A is the only boundary component of C. This finishes
the proof of the lemma. O

Remark. Notice that leaves of essential laminations may not intersect a closed
transversal. For example this occurs for separating incompressible surfaces. It also
occurs for leaves of Reebless foliations which have a separating leaf (which necessar-
ily must be a torus or Klein bottle) — there are many examples of these. So Reebless
foliations which are also essential laminations need not be taut foliations!

The group. We now produce an explicit presentation of the group which will be
analysed. The group is the fundamental group of the Dehn surgery manifold M, ;.
Start with M the torus bundle over the circle with monodromy induced by

m —1
A:[1 0] where m < —3.
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For notational simplicity the dependence of M on A is omitted. The original
fibering torus is denoted by T2. The eigenvalues of A are

m =+ vm? —4
2

which are both negative and the matrix is hyperbolic. The eigenvector directions
produce two linear foliations in R? with irrational slope which are invariant under A.
They induce two foliations in the torus T2. Since A is integral it induces a homeo-
morphism ¢ of T2, which leaves the foliations invariant. Let O in 72 be the image of
the origin of R?. Let M be the suspension of ¢ and let ¥ be (say) the suspension of
the stable foliation of 72. Then F has leaves which are planes, annuli and Mdoebius
bands. Identify T2 with a fiber in M and let § be the orbit through O, which is a
closed orbit intersecting 7' once. Since the eigenvalues of A are negative, the stable
leaf containing § is a Mobius band. We do Dehn surgery on §. We first determine the
fundamental group of M — N (§). To do that let

D=N(@)N T2 (adisk), V = T2-D (a punctured torus).

Choose a basis for the homology of d N(6) = T, which is also a torus. Let (1, 0) be
the curve in 77 bounding the fiber V of M — N (8). Blow up the leaf of ¥ through §.
It blows to a single annulus and the complementary region is a solid torus with core é.
The completion of the complementary region is a solid torus with a closed curve in the
boundary removed. The removed curve is the degeneracy locus of the complementary
component [Ga-Kal]. Since the leaf of ¥ was a Mdbius band, the degeneracy locus
intersects the curve (1,0) twice. Choose the curve (0, 1) so that the degeneracy
locus is the curve (1, 2) in this basis. After the blow up, the foliation & becomes a
lamination A with a single complementary region, which is a solid torus.

Let now M), be the manifold obtained from M by doing (g, p) Dehn surgery
on §. By results about essential laminations, the lamination A remains essential in
M, if |p — 2q| > 2 [Ga-Oe], [Ga-Kal]. Let y be the curve (1,0) in 77 and 7 be
the curve (0, 1). The degeneracy locus is a curve associated to y 2. Notice there
are two tori here: one which is a fiber of the original fibration (here denoted by T'2),
another which is the boundary of N(§) (here denoted by 77). The Dehn surgery
coefficients refer to 77.

Suppose the disk D above is a round disk of radius ¢ sufficiently small. The
universal abelian cover of T2 — D is the plane with disks of radius & around integer
lattice points removed. Let E be the one around the origin. We pick 4 points in 0 E:

a=(—¢&0), b=(0,—e), c=1(E0 and d=1(0,¢),

see Figure 1 (a). Let a’ be the image of a under A, etc., see Figure 1 (b).
The image of d E under A is an ellipse which can be deformed back to dE, see
Figure 1 (b). Notice #’, d" are in the x axis and d’ = a.
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Let the image of a in T2 — D be the basepoint of the fundamental group of
M — N(8) for simplicity still denoted by a and likewise for b, ¢, d. Let [ be an arc
along the image of 9 E under A, going counterclockwise from d’ to a’.

d

Figure 1. Computing the fundamental group of M — N (§).

We pick a basis for 711(T2 — D): Let o = ac * [ (see Figure 1 (c) where the
arc ac C JE is traversed in the counterclockwise direction and /; is parametrized as
{(t,0) | ¢ <t <1 —¢}. Here * denotes concatenation of arcs, where ac is traversed
first and then /;. Let also

B =adco * I * bag,

where [, is parametrized as {(0,¢) | ¢ <t < 1 — &}, and the subscript “clo” means
the arcs are traversed clockwise in d E. We identify o and 8 with their images in
T, — D, so they generate the fundamental group of 75 — D. It is easy to see that the
curve

y=[oc,,6]=ot>x<,8*ofl *,371
is just a counterclockwise turn around d E. Then

t lar =1 % a'c I * -1,
where [ was defined above. The composition  * a’c’ is roughly one counterclockwise
turn around 9 E so it is the curve y. The straight arc /] goes from ¢’ = (mse, ¢) to
(m(1 —¢), 1 — &) - roughly going one step up and |m| steps to the left. This together
with I~ can be isotoped to Ba™ (where we are identifying «, 8 with the appropriate
covering translates). We conclude that 7~ ot = yBa™. Similarly

tT Bt =1 xdd o x Iy * bdge x 171

Here [} is a straight path from (¢, 0) to (1 — &, 0). So in the same way it is easy to
see that 7:_1,31 = o~ . Notice that &, T generate w1 (M — N(8)). Hence

MM —=N@) ={o, 7|t et =ypa™, v ' Br=a"', y =[a, B}
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After (¢, p) Dehn surgery on § we obtain gy + pt is the new meridian or t7y9 = 1.
Hence we obtain

The Group:
G=mMpg) ={a. 7|t et =ypa”, t7'pr ="', y = Bl. TPy =1}.

This group § with this presentation will be fixed throughout the proof. In the
proof we will use the relations above and the following variations of these relations
extensively:

rflﬂr = ofl, tar ! = ,3*1,

1_.—1_m—1

-1 =aTto T o ,

7ot = yBa™ = afa™ !

a1t = tyfa™ = tafa !,

af =yBa, or ata 't =1yalr 70

From the above it follows that «”~! = 771811 hence t~'at = afa™ ! =

aft~!B1=™  This is equivalent to o't 'ap™! = Br~! and therefore we have
ra lt a1 = B L or

T,B‘L'_l — ,301/3’”_1 — ]/_1()[,3"1.

These and circular variations of these will be used throughout the article.

Since g, p are relatively prime there are e, f in Z with ep + fg = 1. Let
k = t/y~¢. Then k is a generator of the Z subgroup of § generated by 7, y and
t=«k4,y =k""P.

3. Outline of the proof

As described above, the fundamental group of M), ,, with presentation § is generated
by two elements « and 7. Actions of a homeomorphism on a tree are easy to under-
stand: either there is a fixed point or in the free case there is an invariant axis. The
proof of the main theorem is split into cases as to whether the generators above act
freely. There are 3 main cases to consider (when t acts freely it does not matter the
behavior of «). The proof subdivides into various subcases. Invariably the analysis
goes like this: apply a certain relation in the group to a well chosen point. One
side of the relation implies the image of the point is in a certain region of the tree
while the other side of the relation implies it is in a different region — contradiction!
Homeomorphisms with fixed points may have local axes. This is extremely useful in
a variety of cases.

A crucial difference from the case of foliations is that in the case of laminations
the tree does not have a group invariant orientation in general. Hence orientation
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dependent arguments cannot be used. This was very important and widely used in
[RSS]. In order to stay in the orientation preserving world they restricted to p, m
odd, which ensures the orientation hypothesis. Under these conditions on p, g (with
p > q also) they ruled out the existence of Reebless foliations [RSS].

Since we do not have an orientation here, the condition m odd does not play arole,
which allows us to consider m even as well. In addition if |p — 2¢g| > 2 there is an
essential lamination in the surgered manifold, so the exact condition |p —2¢g| = 1 has
to appear in the analysis of the laminations case. Notice that |p —2¢g| = 1 obviously
implies that p is odd.

On the other hand there are many examples with p even so that M), has a
Reebless foliation — for example p =4, g = 1 or p = 8, g = 3 (this has p > ¢g!).
So when p is even, then to rule out Reebless foliations, some further conditions on
D, q are necessary.

Except for ruling out trivial actions, the proof here is done entirely in the tree —
we never go back to the original non Hausdorff tree. For the sake of completeness
we state this result from which the main theorem is an easy corollary:

Theorem. Let M), be the manifold described above. If m < —4 and |p — 2q| = 1,
then every action of my(Mp/4) on a tree is trivial.

Given the presentation of § above, the proof of the main theorem is broken into
four cases:

» Case R. R-covered case.
e Case A. 1 acts freely.
» Case B. « acts freely, t has a fixed point.

» Case C. o and 7 have fixed points.

If a homeomorphism u acts freely on a tree, let 4, be its axis. If u has a local
axis, we denote it by L+,. Unlike a true axis, a homeomorphism may have more
than one local axis. The context will make it clear which one is being considered.
Assume by way of contradiction that § acts non trivially on a tree 7.

Case R. The R-covered case is simple. Given that p is odd, this implies that 7 is
orientation preserving in R. The case « orientation preserving is simple. The other
case (which implies m is even) leads to p > 3g which for our purposes is enough.
It also leads us to move away from orientation preserving arguments. Orientation
preserving arguments were fundamental in the foliations analysis but in general cannot
be used in the laminations case. We note that there is an easy non trivial linear action
on R when p = 4, g = 1. Notice that in this case p is even.

Case A. This implies that k = 7/y ¢ also acts freely and A, = .. We analyse how
A, intersects 4, o and other translates (here 4, « is the image of 4, under o). Let
u = af. One uses the relation ¢ = yBo to analyse how +4, intersects A, u which
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breaks down into various cases as to whether this intersection is empty, a single point
or a segment. One particularly tricky case needs the condition m 7#= —3.

Case B. Let z be a fixed point of 7. First suppose that z is not in the axis 4, of «.
Suppose there is no fixed point of 7 between z and 4. Here let U be the component
of T — {z} containing +4,. The case Ut # U is easy to deal with. It follows that
Ut = U producing a local axis LA of T which is contained in U and has one limit
point in z. The proof breaks down as to whether L+ intersects 4, or not. Empty
intersections are easy to deal with, the other case being trickier.

Then suppose 7 is in #A,. We remark this is a crucial case, because this is likely
what happens for the essential laminations we know to exist when |p — 2g| > 2.
These come from the original stable lamination on the fibering manifold (a torus
bundle over S'). In that manifold, « acted freely and t had a fixed point in . After
the surgery o would still have at least a local axis, which contains a fixed point of 7.
So one knows the exact condition |p — 2¢g| = 1 will have to be used here!

In this case consider U the component of T — {z} containing zor and U the
one containing za~ b Ttis easy to show that U7 is not U; and that U7 is in fact
equal to Uy. When U 7~ ! = U, then one produces a contradiction just using that
p is odd. The case Uz} # Uy or Ut # Uj is much more interesting. Here the
exact condition |p — 2¢g| = 1 is used to show it would imply U ;7 = U; which was
disallowed at the beginning. This actually has connections with the topology of the
situation, see detailed explanation in Section 6. This is a crucial part of the proof.
One very tricky issue is that a priori z is only a fixed point of 7 and not of y — part of
the proof is ruling this out.

Case C. Generally an axis is good because it gives information about where points
go. The case of fixed points is trickier and one many times searches for a local axis.

Here let s be a fixed point of ¥ and w a fixed point of « so that there is no fixed
point of either in (s, w). Notice there may be fixed points of 7 in (s, w)! Let W be the
component of T — {s} containing w and 'V the component of T — {w} containing s.
The first part of the proof shows that Wz = W and Vo = V. This situation has
moderately involved arguments. This immediately produces a local axis £, of o
contained in 'V and with one limit point w. One does not have yet a local axis for t
because we do not know a priori that T has no fixed points in (s, w). Some technical
complications ensue.

One then shows that s, s are in 'W. Let z be the fixed point of 7 in [s, w)
which is closest to w — z could be s. Using the previous results, we show that the
component U of T — {z} containing w is invariant under r. Now this produces a
local axis £+, of T in U with ideal point z and some further properties. One then
shows that w is not in LA; and z is not in LA,

We are now in familiar ground. If LA, N LA, has at most one point, then it is
easy. When LA, N LA, has more than one point we use arguments done in case B —

1
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this part of the arguments in case B is done in more generality using local axis (rather
than axis as needed in case B) and can be used in case C as well. This finishes the
proof of case C. This finally yields the proof of the main theorem. O

The arguments in this article are very involved. One possibility to read the article
and get a quick grasp of the proof is to first analyse the R-covered proof. Then go
to the proof of case B.2 — « acts freely and 7 has a fixed point in the axis of « — this
case admits essential laminations if |p — 2¢g| > 2 and the topology can be detected.
Then read the proof of t acts freely and the other proofs.

We note that Z actions on non Hausdorff trees had been previously analysed in
[Fe] and [Ro-St1], [Ro-St2], with consequences for pseudo-Anosov flows [Fe] and
Seifert fibered spaces [Ro-St1], [Ro-St2].

There is a large literature of group actions on trees which were brought to the
forefront by Serre’s fundamental monograph [Se]. The analysis usually involves a
metric which is invariant under the actions [Mo-Sh1], [Mo-Sh2], [Mo-Sh3] or actions
on simplicial trees [Se]. We stress that the tree involved in here is not simplicial and
it is not presented in general with a group invariant metric — unless there is a holon-
omy invariant transverse measure of full support in the lamination, e.g when there
is an incompressible surface. So the proof is entirely topological and in that sense
elementary. The topology of the manifold, particularly the condition |p — 2¢g| =1
plays a crucial role. Notice that in the foliations case there is a pseudo-metric ly-
ing in the background which is used from time to time to deal with some critical
cases in [RSS]. The pseudometric distance between two points measures how many
jumps between non separated points are necessary to go from one point to the other.
This pseudometric was analysed and used previously by Barbot in [Bal], [Ba2] with
consequences for foliations. In the laminations case, such a pseudo-metric does not
seem to give useful information, because in some sense the singularities or prongs
also allows one to “change” direction — there is much more flexibility.

4. Case R: the R-covered case

For the remainder of the article we consider the manifold M)/, as described in
Section 2 with fundamental group §. The goal is to show it does not admit an essential
lamination. Suppose then on the contrary that there is an essential lamination A on
M. Let T be the associated tree with non trivial action of § on it. Notice that since
a, T generate §, no point of 7 is fixed by both « and 7.

The conditions on the parameters are |p — 2g| = 1 and m < —4. They will not
be used in full force for all the arguments. Many times all we need is p > ¢ or p odd
or m negative or none of these. The proof is done by subdividing into subcases and
showing each subcase is impossible leading to various contradictions.
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In this section we assume that 7' is homeomorphic to the real numbers and study
non trivial actions of § in R. Notice that since y is a commutator, it is an orientation
preserving homeomorphism of R. As t”y4 = id, t? is also orientation preserving.

We use the relations from the group presentation of § or variations thereof.

Suppose first the action is orientation preserving on R:

Case R.1. «, 7 are orientation preserving.
As B = tat~! then B also is orientation preserving and so is the whole group §.
We subdivide into subcases:

Case R.1.1. 7 has a fixed point x.
Then x« is not x. Orient R so that xa > x. As y is orientation preserving then
xy = x. Then applying y ta™ = at to x:
xytBa™ = xat > x1 =x
m

which uses 7 orientation preserving. Hence xBa™ > x or x > xa~
—m > 0). Hence xB~! < x. But also

> x (as

1 1 -1

xﬂ_lzxrat_ =Xt > XT = X.

This is a contradiction, ruling out this case.

Case R.1.2. 7 acts freely, « has a fixed point x.

Assume 7 is increasing in R. As 7 = «? and g is (always) positive then « is
increasing. Here use xat = xt = xytBa™. Hence xtaa™ = xytB. Asxt > x
then xta™ > x. Hence xyt > xf~!. Usey =« Pand yt =«9 7. Asq < p
then ¢ — p < 0 and y T is monotone decreasing or constant. Hence

x,B_l <xyt <ux.

One fact that will be used in a lot of arguments is that under the condition p > g when
y, tactfreelyandxt > xthenxy < xt~!. Noticethatxt ! = xa 't~ = xr 1.

On the other hand

xB =xaff =xyPa < xr_l,Boz =xt o < xa =,

leading to the contradiction that both x8 and xB~!are < x.
Notice a lot of these arguments are using orientation preserving homeomorphisms.

Case R.1.3. 7 acts freely increasing in R and « acts freely, also increasing in R.
Take any x in R. Then xat > x soxytfa™ > x. Soxyt8 > xa™™ > x. Since

xy T < x this implies x > x. On the other hand,
xB = xra lt7l < xrel = X,

contradiction.



264 S. R. Fenley CMH

Case R.1.4. 7 acts freely and increasing in R, « acts freely and decreasing in R.
This implies za~' > z for all z in R. For any x in R, x8 = xta”lt7! >
xtt ! = x. Also xt~

Iyt < x for all x. Hence

xefa" ' =xt7\ar < x,

for all x. Hence xaf < xao™™ < xa« for all x (—m > 0). But this contradicts

(xa)B > xa because S is increasing everywhere as proved above.
This finishes the analysis of T homeomorphic to R and orientation preserving
action.

We now deal with orientation reversing cases. The general case of T orientation
reversing is hard, so we use one of the hypothesis to discard it as follows: ¥ =y~
is orientation preserving as y always is. We are mainly interested in |p — 2¢g| = 1,
which implies p odd and if p is odd and 77 orientation preserving then t is also
orientation preserving. We now deal with the case « orientation reversing.

Case R.2. « orientation reversing, T orientation preserving.

Let x be the unique fixed point of o. As xt # x, assume xt > x. As « is
conjugate to 8, then S also reverses orientation. Then 7~ 'at = yBa™ implies that
a™ is orientation preserving. Equivalently, m is even.

As T = k9 and ¢ > 0, this implies « is increasing in x. Notice that xt ! is the
unique fixed point of 8. The subcases depend on the relative position of xta and
xt~!. Notice that xt > x, 0 xTa < xa = x.

Case R.2.1. xta < x7~ L.

Then xtat~! = xp~1 < xv~2. Notice

xtyBa™ = xat =x1 > x

m

soxtyB > xa~ ™ = x. This is because o ~™ is orientation preserving. As 8 reverses

orientation, then

Xty < x,B_l <xt?
orxt3y < x. As 3 =37 and y = k9, then x«x397P < x. As k is increasing in x
then 3¢ — p < 0 or p > 3¢. Arguments such as this will be used in various parts of
the proof. Since in the end we want p = 2¢g &+ 1 we can discard this case.

Remark. What we really wanted was to rule out this case without using p = 2g £ 1,
but we were unable to do that. Our partial results (without using p = 2¢g + 1) show
that xta® > xta sox < xta? < xt. Also there is a fixed point of o between xt
and x72 and o? acts expandingly (away from x) in some point. Something similar is
also true in the following case.

Case R.2.2. xta > xt~ L.
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First notice that x~' < xt~!. Use

(x)TyBa™ = (xT)at > x1 't =x

m

so xt2yB > xa~™ = x (m even) and

xtzy < xﬂ_l <xt L

We conclude as in the previous case that xt3y < x or p > 3¢, also disallowed.
The reader may think we just got lucky to get p > 3¢g as we have the hypothesis

p = 2q £ 1. The remaining case explains why this has happened.

Case R.2.3. xta = xt .

This case is much more interesting. First

xat = xtafa™ L.

Since xta = x7 ! this is left invariant by f, so the right side is xtaa” ! = xTa™
equal to x7. Since m is even, o’ preserves orientation, therefore xta> = x7. Also

xta = xta~ ! = xt~!. Now notice that
xtyfa™ = xat = x1, so xty =xta "B,

or xTy = xtB~ 1. Now we show that xt2a = x7 2. To show this use x 't =
xta =xt ), hence x~! = xt 2. Use
12802 =t la e = o g 1!
applied to x:
xt 2Bt = xa! g e !

orxB~ B2 = xB~la" ! s0

xt?=xt2a"l
Then
xt 2 =xt’a = xt)Ta = xtﬁ_lr =XTYT
or
JC)/‘L’4 = x.

As seen before this implies p = 4qg or p = 4, g = 1. This is disallowed by p being
odd.
We remark that in this case the group in fact acts non trivially in R. For instance
let
xo=—x, xt=x++1.

It is easy to check they satisfy the equations if m is even!
It may be true that this is the only possibility and when xto # x7~
perturbation of this, namely that p is close to 4¢g and in fact p > 3q.

I we get a
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5. Case A: T acts freely

In this section we consider the case that t acts freely in 7. This implies that x4 acts
freely in the tree, and therefore « itself acts freely. In addition the axes are the same
A, = 7. Here we will use the relation ¢ = y B« in the following form, defining
an element u of §:

1 1_—-1

u=apf =arta_ = yBoa =yta T a.

We will consider the intersections A, N A« and A, N A,u. The axis 4, is home-
omorphic to the real numbers. Put an order < in 4, so that x < x7 for any x in .
This induces an order <, in A, so that x < y in A, if and only if xa <4 yo in
Ao and similarly put order <,, in #A,u so that x < y in A, if and only if xu <, yu
in Au.

Case A.1. A,x N A, has at most one point.

If the intersection is a single point x, let y = x as well.

If they are disjoint, there is a single point x in #, bridging to 4, «. For instance
x is the unique point so that there is a path from x to A« intersecting 4, only in x.
Another way to characterize x, it is the only point so that x separates the rest of A,
from A,«. In other words the components of T — {x} containing A, « and the rest
of A, are all disjoint. In the same way there is a single y in A, o« which is the closest
to 4. Then [x, y] is a path from A, to A, so that (x, y) does not intersect either
A or Ao — this is an equivalent way to get the segment [x, y]. This path [x, y] is
called the bridge from 4, to 4A,a. This extended notion of bridges will also be used
in the article. It is invariant by homeomorphisms of the tree. The bridge between
connected sets is also unique.

We now use the relation above. The proof is very similar to ping pong lemma
arguments. Since #A, is invariant under y and 7, the right side says that A,u =
Aot g,

The bridge from A, to A, o is [x, y] - degenerate [x, x] when they intersect in
a point. Therefore the bridge from A to A, is [xal, yail], see Figure 2 (a).

Then the bridge from At to Ay is [xa Tl ya’lrfl]. This implies that
=1y, yoflrfl

the bridge from eA),(oflrfloc to Ao 1S [xo o].

Notice that yo~'t~! is not ya~!. Therefore yo~!'7~la is not y, but yo~ 't o is

in Ao as yo 't is in sA,. It now follows that

1

the bridge from A, u = Aca 1t o to A is [xe lt e, x].

On the other hand use that A,u = Acata 't~!. The bridge from A,at to A, is
[y, x7], see Figure 2 (b). The bridge from Acata ! to Aca ! is [yra_l, xta ]
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Ay AT

At XT ¢ yT

Figure 2. The case A, N A,a = . The same arguments can be used for intersection a single
point. (a) Using A,u = Aca e, (b) Using A, u = Acata el

1 1

and the bridge from A1 to Ay s [xa !, ya’l]. Since xa~ " isnotequal to xTa ™
then the bridge from Acata ! to A, is [yra’l, yoz’l]. Finally

the bridge from A,u to A, is [yra_lr_l,yoz_lt_l].

Since the bridge from A, u to 4, is uniquely defined this implies

1_—1 1_—1 _lf_l

yo T =x, YyYra T =X o.
Soy =xto and
xa lt7 o = xtozrcx_lr_l, or xa 't lata = xtar.
Use 7 lat = a,Bozm_l, SO
a 't lata = laBa o = Ba™ =y lar,
soxy 't lar = xtar, or xy~'t~! = x7. This implies xyT? = x and as seen

before implies p = 2¢. This is disallowed by p odd.

We now consider intersections with more than one point.

Case A.2. A, N Ao = [x,y]. Here x is not equal to y and x < y in A,. We
include some ideal point cases: x could —oo and y could be 400, in which case
the intersection is a ray in #4,. On the other hand we can never have A, = A, .
Otherwise «, T leave A, invariant, so the whole group does. But +4, is homeomorphic
to R — this was disallowed by no actions on R.
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Since the intersection is a non trivial interval one considers separately whether
the orders <, <, agree on the intersection.

Case A.2.1. The orders < and <, agree on A, N A,«.

It is easy to check that this is equivalent to xa ™! < ya~
to the pair xa !, ya‘l both of which are in A,.

We now consider +A,u (with u = «of as in case A.1). We first use A,u =
Aco 't o (see case A.1). Notice that

Uin A, by applying o

A N A = [xa™ !, ya’l] SO A,{a’lr’l N A, = [xoz’lt’l, ya’lr’l],

in the correct order. Hence

1 1_-1

Acu N Ao = [xcfl'f o,y T ol

In addition xa 't~ la <4 ya~lr 7 la.

Notice that xa~ 77! < xa~! in A,, hence xa 't o <4, x in A,a. Also
ya 't a <4 y in Aa. Given this there are 3 options:

1) If ya’lt’la <q X in Ao then Au N A, = @ and the bridge from A, to
Aeu is [x, yoz_l'c_loz], Figure 3 (a).

2) If ya‘lr_loz >, X in A« then yoz_lt_loz is in (x, y) and Au N A, =
[x, ycx‘lt_la]. In addition the orders < and <,, agree on A, NA,«, see Figure 3 (b).

3) If yoflrfloz = x, then A,u N A, = [z, x]. In addition if z is not x then the
orders < and <, disagree on A, N A,u, see Figure 3 (c). In this case both x and y
are finite. The last option can occur because #,u can enter 4, in x but rather than
going up, it will go into the opposite direction — the one containing x7 .

Notice that the 3 options are mutually exclusive. We now consider A,u =
Acatalr71 Use

At N Ay = (Acat N Aca)a 71

Here A,at N A, = [x7, yTr]. So whether Acoata ! and A, intersect, depends on
the relative positions of xt and y. Notice that x7 > x in A,.

1) If xt > y in A, then Acat N A = 3, so Acata~! N A = @. Therefore
Au N A, = () and the bridge from A, to A, u is [yoz_lr_l, xta~ 71, see Fig-
ure 4 (a). Notice the bridge from A, a1 to A, is [x7, y], so bridge from Acata!
to oA, is [xTa !, ya’l]. Here x, y finite.

2)If xT < yin A, then Aot NAco = [xT, y], then A N A is [xta 't
ya_l 7~ 1] (the first term smaller in 4, ), and the orders < and <, agree on oA, N, u,
see Figure 4 (b).

3) If xt = y, then A,at N A = [y, v]. Notice we may have v # y. So
Aeu N A, = [yoe’lr’l, w], where w = va~!'t~!. Here x and y are finite and
if w is not equal to xta~ 77!, then the orders < and <, disagree on A, N A, u.
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A

Ao (b)

Ayl

Figure 3.  Evaluating A,u N A, using Au = Ao
(b) yoc_lr_loc >4 X, (C) y(x—lr_la = x.

Notice that order in 4, at goes from v to y, so the increasing order <, in A, u from
w=va 't to ya~lz7!, see Figure 4 (c).

Notice that again all 3 cases are mutually exclusive. Therefore we can match the
2 pairs of 3 possibilities to get 3 mutually exclusive cases:

L ya’l‘c’la <q X in A o or xt > yin A, and A, N Au = @. In this case

1

[x, ya~ r_la] = [ya_lf_l,xtoz_lt_l].

II. ya‘lr_la >4 X in Ao Or XT < yin A, and

1

Ay N Au =[x, yOl_l‘L'_IOl] =[xt~ 1:_1, yoz_lr_l].

II. yo~ 't~ ' = x orxt = y. Then
A N A =[z,x] = [ycx_l'c_l, w].
If z is not x then the orders < and <, disagree on A, N A, u.
We now deal with each situation separately.

Situation II. Here xtw = xt and x7 isin (x, y). Let U (respectively U,) be the
component of 7 — {xt} containing y (respectively x). Here [x, y] = A, N A,
X7 is in the interior of [x, y] and then the orders <, <, agree on [x, y]. Notice that
ya >4 xto = xt and ya isin A, so yo is in U;p. It follows that the prongs [x T, y],
[x7, ya] are equivalent. By Lemma 2.5, Ujoe = U;. In the same way xa~lisin Uy
and Ura = Uy. This situation is disallowed by the following lemma.
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A Aot
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Figure 4. Using A,u = Acata it @) xT > y,(b)xt <y, (c)xt =y.

Lemma 5.1. Suppose that L is a local axis for k and r is a point in £ withra = r.
Suppose that U (U respectively) is the component of T — {r} containing rt (rt !

respectively). Then at least one of U1 or Uy is not invariant under «o.

Proof. On the contrary suppose that U;o = U; fori = 1,2. We will arrive at a
contradiction. Let V; = U;t~!. Then the conjugation of 8 with «~! by 7 implies

that V;8 =V;,i = 1,2. Use

rt ot = ryBa™.

Since p > g, then ry < rr~!in £ (with 7 increasing in «£) and so ryp is in

V> U {rr~!} contained in U,. Therefore ryBa™ is in U,. Consequently

rt lar € U, and rt o € ‘uzrfl =V,.

On the other hand ry € V, U {rt™1}, so

rBal =ryB e VvoUfrrT),

1

sort lisin [rBa”!, r). Apply « to obtain

rt o e [rB, r).
Now

rB=rra”!

(%)

(k%)

t landrr € U = rra”l e Uy = rB = rra vl € V.
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As r is also in 'V, it follows from (xx) that 77 '« is also in V;. This contradicts (x)
above and finishes the proof of the lemma. O

Remark. Later on, in the proof of Lemma 7.3 we prove that this is actually true if
L is only a local axis for 7, as opposed to being a local axis for «. The proof is more
involved and the stronger result is needed for case C.

Situation III. Here A, u N A, = [z, x] with z < x in A,. Then
AUt N A = Aeata” ' N A = [z7, xT] = [27, y].

Hence A a1t N Ao = [zTa, ya] and y = zTa <4 yo in Ao — this is the crucial
fact, see Figure 5. Now

xy_la = xﬁaﬂ_l = xroe_lf_loe,B_l

1 1

=ya lt7 o = xp7 = xrar ! = yar Tl

Here the bridge of y« to A, is [ya, y] (which a priori could be the single point y).
So the bridge from yot ! to A, is [yat ™!, yr~!] = [yar ™!, x]. On the other hand
y < xy~lin A, (using p > @), so ya <q xy " 'a in Aa. It follows that the bridge
from xy ~la to A is [xy a, y]. By the above formulas, xy ~! = yat~!, so this
would imply x = y, contradiction.

XT =1y ¢

yT o/
ya

]

Al

Figure 5. Situation III leading to a contradiction.

Situation I. Surprisingly this is the most difficult case. Here

yoz_lr_loz <g X In Aga, XT > yin A,

X = yoflrfl, yoflr*loc =xta 't7L
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1.—1 1.—1

As ya~'T o <o X in Ao then yo™ 77« is not in A,. Also

xa = (ya_lt_l)oz =xra lz7l = xB,

so xa = xB —this is a crucial fact in this proof. The bridge from x« to A, is [xc, x].
Notice also that

xa 'ty <u ya_lr_la <g X In A,

so the bridge from xa 't o to A, is [xa 't a, x]. Tt follows that

1 1

the bridge from xot™ ot to A, is xa 't ot x1] = [xa 't e, yoc_l].

Now

1_-1

xa 't lar = (xa " Hapa ! m

m=l — xaa™ ! = xa™.

m—1 _ X,BOZ
Here xa < x < y < ya~! —they are aligned. It follows from Lemma 2.6 that x, xo
are in a local axis £ A, for o, similarly y is also in a local axis. Since y isin [xa™, x],
then also y, yoF1 are in LA,. In the same way (LT = LAg is a local axis
for # and xB, x, xt ! are in LAg. Now

xf =xta"'t7! = xa, so xat =xta”! = ya 2.

Apply afo ' =t et to ya I

(ya Hapa™ ' = ya" ! = (yaHr 7 lat = (x)t et = xat = ya 2.

—m—1

The conclusionis y8 = ya anditisin Ly. Now yisnotin £ g and the bridge
from y to LAg is [y, x], so the bridge from yB to LAg is [yB, xB] = [ya "1 xal.
Therefore £ A, and LAg split away from each other in xa = x8, or

LAy NLAg =[x, xa] =[x, xB].

The homeomorphism © conjugates the action of « ™! in L4, to the action of A in
LAg (see Figure 6). Now apply ata™ = tyf to x:

m m 2—

(xat)a™ = (ya D)o = ya 27" = xTyB.

As xa is in LAg, then xat is in LA, and it follows that xTy B is in LA, If

xty < x7 1 in A, then the bridge from xty to LAg is [xTy, x7~!] and so the
bridge from xtyp to LAg is [xTYp, xt1B]. Butxt~!g = xa~ 't~ ! and

xa 't < yot_lv:_1 =x in A.

This would imply x7y 8 is not in £, contradiction. Hence xyt > xt~! in A,.

Notice

1 1

x,Bfl =xtat = yrfl € (xTt™,x).



Vol. 82 (2007) Laminar free hyperbolic 3-manifolds 273

xa ltlar = xa™

LAy
XT =y

y yafmfl LAa
i o —1_—1
xa T o
A
yailffla D&A’/g
=xa =xf
e
xz~ ! —
LAg

A

Figure 6. Situation I, the hard case.

If xty isin [xt !, xﬁ_l) then xtyp is in [xr_lﬂ, x) and not in LA, either, con-
tradiction again. Therefore x7y is in [x8~!, x]. The case xty = x can only occur
when p = ¢ = 1. This case can also be ruled out by a further argument, but as we
are mainly interested in |p — 2¢g| = 1 we assume here that p > ¢. Then xty is in
[xB~!, x) and xtyB is in [x, xB). We conclude that

ya 2" € [x, xa).

Claim. ytyBisin LA,.
If yty > x in A, then x < yty < y in A,. So ytyf isin [xf, yB] or

yTyB € [xa, ya "] € LA,

Notice xtyf € LA,. If on the other hand yty < x in A, then x1y < y1y < X
in A,, and

ytyB € (xtyB, xB) = (xtyP, xa) C LAy

and again yty B is in £LAy.
Therefore the claim is proved.

It now follows that ytyBa’™ = yat isin LA,. Here yo isin LA, and yo <o y
in LAy. If yo >4 x in LAy, then ya is in A, and ya > x in A, as well. Then
yat > x7 = yo~ ! in s, and yat is not in £, contradiction.

Therefore yo <y x in LAy and so yo is in [x, xe). But yoz_z_’” € [x,xa).
Since y is in a local axis for « it follows that

ya =ya 2 or m = —3.
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Since we are assuming m < —3 this rules out this case as well.
This finishes the analysis of situation I and completes the analysis of the situation
that orders < and <, agree on 4, N A,«. This ends case A.2.1.

Case A.2.2. The orders < and <, disagree on 4, N A, .
Notice this is equivalent to yo~' < xa~!in #4,. Again use u = ata™ 't~ ! =
yta 't~ la. Then

At N Ay = (Aeata™ N AT = (Acar N A 77

There are the following possibilities:

1) If xt > y in Ay, then Aot N A is empty and the bridge from Aot
to A« is [x7, y]. Therefore A,u N A, = @ and the bridge from A, u to A, is
[xta~ 71, yoz_1 7717, see Figure 7 (a). Notice that

AKoz_lr_l N Acu = (A N AKozr)a_lr_l = [xT, yt]oz_lr_].

Figure 7. The orientation reversing situation, (a) xt > y, (b) x7 < y, (¢) xT = y.

2) If xt < y in Ay, then Aot N A = [xT, y]. Hence
c;é‘e,(onoz_l NA, = [yoz_l,xrcx_l],

where the first endpoint is smaller than the second in +4,. Finally

A N A = [yoflrfl, xroflrfl]

and the orders <, <, agree on A,u N A,, see Figure 7 (b), because ycx‘1 < xa~!

in /4, and their images under u satisfy yroa "'t <, xta ™'t in A,u.
3)Finallyif xt = y, then A atNAx = [y, v], where v <, yin A,a. Itfollows
that the intersection Acata ! N A, = [va™!, yoz_l], the first point precedes in A .
And then
Aeu N A = [voflrfl, yoflrfl] = [z, yofl'fl].
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Here if  is not ya~!7~! then < and <,, disagree on A,u N A, because yr~la~! <

vt laVin A,.

Now use Acu N A, = (Aa 't N A Da. Here A N A, =
[ya~!, xa~!] the first term precedes in . Again there are 3 possibilities

1N Ifxa 't7! < ya~!in A, then A~ 't~ ' NoA~! = @ and the bridge from
Aca 7 to Al is [xa Tl ya’l]. Hence A,u N A, = @ and the bridge
from A, u to A, is [xa 't la, v], see Figure 8 (a).

I xa™ 't > ya~lin A, then A 't N A = [ya~ !, xa 7]
and hence

Al N Ay = [xa_lt_la, y]

and the orders < and <, agree on A, N, U, because x < y in Ay andxe 't o <,

yoc_lr_loz in A, u, see Figure 8 (b).

I Ifxa~ 't = ya ! then A 't NAa ™! = [¢, yo~']and A uNA, =
[v, z] where z = ca. If z is not equal to y, then the orders < and <, disagree on
At N Ay

1
o't o .-
y L Aol A A
—1_— -l -1
xa~le=la Ao xe ot | -
y yoz_1 "ﬂ Aca™!

—1_-1
A ya_l‘[_l "&[ xa—lr1 ) v
Ay :ya_l
X .- Ao
N ya~lelg ya~lg-1 K
'A’KD[ \
y
A AK(171T71
K —1_—1 At

(a) x qy_\A (C)
‘ (b)

Figure 8. Using A,u = Acata it (@) xa 7! < ya‘l, ®) xa 7! > ya_],

) xalz7l = ya’l.

Notice that both pairs of the three alternatives are all mutually exclusive. We
match them and obtain three possible situations:

1.—1

L xt > yin A xa 't7! < ya~! in A, and

Acu N A =0, [ya_lt_l, xra_l‘c_l] = [y, xa_lt_la].
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1.—-1

II. xt <yin A, xa”'77° > yoz_1 in A,

Au N A = [ya_lt_l,xtoz_lr_l] = [xa_lr_loz, v]

and the orders < and <, agree on A, u N A,.

1 1

I xt =y, xa 't~ = ya~! and

AN e =y, z] =1, ya 7.
If z is not y then the orders <, <, disagree on A, u N A,.

We analyse each case in turn:

1.—-1 -1

Situation II. Here xt < y, xa™'t7"' > yo™ " and

y= xta 't yoz_lt_1 =xa 't

1 1

Suppose first that [ yo ™ ,xa N[x, y] = 0. Since yt = xta~ !, then [yo™ ,xa~ 1]
is contained in the set of points > y in A,.
In addition ya is in A, — A, and y <, ya. Hence y isin (ya ™!, ya), producing

alocal axis L, of & which contains y. Now use 7" lat = ara~ !t~ 1o~ applied

to xa L

xa 't et = xalara e e = xra e e

1 1.—1

Substitute xta~'t~! = y in the last term and xa~ o = ya~'t7! in the first

term to get

T

(yOl_l‘L'_l)‘L’ — ya—l — y(xm—l

or y = ya'. This is impossible because y is in a local axis of « and m is not zero.

From now on in situation II suppose that [ya~!, xa~!] N [x, y] is not empty.

Since xta~! = yr > yin A, then xa=! > xta™! > y in A,. It follows that
ya~l < yin A,.

Suppose first that yo™ are all in A, which
is a line. In addition [x, y]oz_1 is a subset of A, and yo™' < y < xa~!in A, and
x < yin 4A,. It follows that there is » in [yoz_l, y] N [x, y] which is fixed by «.
Either » is equal to y or r < y in #A,. Let U (respectively U;) be the component of
T — {r} containing rt (respectively r7~!). Since

1 1

< yin #4,. Here x, yoc_l, Yy, xa
1

xa~ ' e Uy, x € Uy then Ui = Us.

If r < yin A, then also we have Uy = U;. Otherwise Ura = Uz which is
another component of 7 — {r} which is not U, U,. We will rule out this case, but
the result will be used later on as well, so we state it in more generality:
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Lemma 5.2. Let LA, be a local axis for k. Let v in LA, which is fixed by a. Let
U1 (respectively Uy) be the component of T — {r} containing rt (respectively rt=").
Then U« is not Uy and Ura is not Uj.

Proof. The proof is as follows: suppose that either Uj¢ = Uy or Upx = U; and
arrive at a contradiction.

First assume that U« = U;. Either Ura = U or Upw is another component
Uz of T — {u}.

Let V; = U7~ !. Since VB = Vita v = U te! # V1, we have that
V1B is contained in U,. Therefore B is in U, and ra™ ! is in Ura™ L. Also

rt ot = rapa™ ! = rpa .

1 1

Asrt—! € Uy then rt—la is in Urar, which is either U; or U3. Therefore rt™'at
iseitherin Ut C Uj orin U3, again a subset of U;. So rt—lat € U;. Therefore
Ura™~ 1 N U; # @. But both are components of 7 — {r}, because ra = r, so it
follows that they are equal. As U> = U« then

‘ul()l(xm71 =Uy, or U™ =U;, U™ = Uz, Uza™ = Uz if needed.

In case r # y this immediately implies m even.
Now use rtyBa™ = rat = rt € Uj. Therefore rryB € U™ = U;. It
follows that
re b < < rtyB;

recall this means r separates 77! from rtyS. Applying ! one gets

rt b < r,B_1 <rTy. ()

Userf~! =rratr™!:

1

rte U = rrta € Uy, r,B*l —rra 7l € V.

As rt~! is an accumulation point of V,, equation (x) above implies that 7ty is in
Vyorrty < rr~!in #A,, which immediately implies p > 2q.

As in the R-covered case, look at rra. If rta is not in Vs, then rrat ¢ U,, and
hence

rrat = rt))t et = rtH)yBa” ¢ U, and rtyB & Us.

V<r=<rt?yBandre’y <~V <rt™ ' Asrp™! = rrat™! € Vs, then

Sort™
2 2 —1
rtcy € Vo, SOrty < rt - in A,

As seen before this implies p > 3¢, which is disallowed and finishes this case.



278 S. R. Fenley CMH

Ifrta € Vathenrf~! e Vor~l. By (x) re™! < B! < r1y, so

1

rty €\t = riy < r72 in Ay

As seen before this also implies p > 3¢, contradiction.
This finishes the analysis of the case Ujo = U».

Now suppose that U = U;. If Ui = Uy, then this is taken care by the
previous situation. So now assume Ui = U3 which is not U or U,. As before
assume V; = U, 71

Here use r7~lat = rafa™ ! = rra= 't~ 1o, First

1

= Uy = rt o € oo =U; = rt ot e U;.

On the other hand

rte U = rra) € ‘L(]a_l =U = rra ! € ‘uzr_l C U

= rra lt e € Upa™ .

From which we conclude that U™ 1 = U; = Usa.
Now use 7~ 'at = ryBa™. The left side is in U; = Urx. Then

ryB e Uja ™ = ‘Uzotfl =U3 C V.

Sory e Vi~ = Uit g7 = Ujar = Vs.

The fact that Ura~! is not U implies that V; 8 is not V1, hence V,f is contained
in Up. We know that ry is < rt—Vin LA so it is either in V, or is equal to rt— L
Hence ryg is either rt—! or is in 'V, — in either case it is in Uos. Finally ryBa™ is
in U™ which must be U;. But then Ura™ = U™ !, contradiction.

This finishes the analysis of the case Ura = U; and so finishes the proof of

Lemma 5.2. O

This finishes the analysis of situation II.

1.—-1

Situation I. In this case xa 't~! < yo~!in A, and y < x7 in 4. In addition

yT = yofl, xa 't e = xra e ()

1 1 1

= yT in A, (orientation reversing case) so xo 1> yin Ay.
Uin 4, so one concludes

Here xa™" > yo™
Therefore xa~'t7! € (y, ya™"). Also x7 < yr = ya~

xa_l'[—l, xt € (y, yoz_l).

1 1 1

=yr,onehasy < yo= ' <xa” ,s0yx <y <x
I <y < yaand y is in a local axis £ sy

On the other hand since yo™
and yo is in A, — A, . It follows that yo™
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for . This implies that the translates [ye!, ya'*!) are all disjoint (as i varies in Z).
Use the relation t~'at = ata~ 't~ 1o~ in the form

ot lgral ™ = 17!

applied to x to get
(xa 't \a)ra! ™" = xTa e (k%)

Now apply the second equality of (x) to both sides of () to get

ra 't Hhra! ™ =xa 't or x)a" = (xa" 't Ha.
But xt € (y,ya™!), so xta™ € (y,ya"Ha™™. Similarly xa 't la is in
(y, ya~Da. Since they are equal then —m = 1 or m = —1, impossible.

1 1

Situation ITL. Here x7 = y, xa~'t~! = ya~! and

Acu N e = [y, z] = [t, ya 'z

and if t # y, then <, <, disagree on A, u N A,.
Notice that y < z = ya "'t ' so y < ya™!

Also yt < ya~!in A,. Now

1

in A, and yo~ " is in A, — Ao

y < yof1 <xa ! = x< y < ya, all points in A, o.
Hence ya <4 y in A and yo is in Ao — A,. Hence y is in (ya_l, ya) and
there is a local axis Lo, of @ with y in LA,. Consider the relation tlar =
afa™ 1. Substitute B = ta~'t~! and rearrange the terms to get o't =
ta 't~ la”~1=1. Now apply it to x:

y= xa 't la = xra e e e

or yra!™ = ya~!lt7!. Now yt € [y, ya~ '], so yt is in LA, and

yra! ™ e [ya! ™", ya ]

’

so ytar' ™ is not in .. But ya ~'t 7! is in 4, contradiction.

This finishes the analysis of A, u N A, = [x, y] with x not equal y. Consequently
this finishes the analysis of Case A, 7 acts freely, which we now proved cannot happen.

6. Case B: 7 has a fixed point, « acts freely

Here « has an (actual) axis + and so does 8 with axis Ag = Ay L. Let Fix(t) be
the set of fixed points of t. As usual there are various possibilities. This case is very
interesting because the topology of the manifold M/, will play a key role.
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Recall that if x is a point not in a connected set B of the tree 7', then the segment
[x, u] is the bridge from x to B if the subsegment [x, ) does not intersect B and if
u is either in B or is an accumulation point of B. Again the important fact is that the
bridge from x to B is unique: it is the only embedded path from x to B because T is
atree. As in case A this will be explored here. If u is in B we say that x bridges to u
in B.

We say that a point a is an ideal point of a local axis [ if a is not in / but is an
accumulation point of /. Obviously this implies that [ is not properly embedded in T
in the side accumulating to a.

There are two main cases depending on whether Fix(7) intersects +, or not.

Case B.1. Fix(t) N A, = 0.

Then « also has a fixed point s. Choose s with sk = s and s closest to 4, that
is, the bridge [s, c] from s to 4, has no other fixed point of x. Let z in [s, c] fixed by
7 and closest to A, that is, the bridge [z, ¢] from z to +, has no other fixed point
of t besides z. A priori we do not know whether z is equal to s or not. Let U be the
component of 7" — {z} containing .

Then g is a subset of Ut and z bridges to ct~! in Ag.

Case B.1.1. Suppose Ut #= U.

Then Ut~ # U as well. Apply at = taBa™ ! to z: the point z bridges to ¢ in
Aq, SO zoe bridges to co in Ay. As cao is not ¢ then za is in U, so zat is in U, see
Figure 9 (a). On the other hand zTa = zor is in U and hence z separates it from Ag.
It follows that zar also bridges to ct ! in A g- Then

zaff = zTtaB bridges to ct™ '8 in Ag and ct B #* ct™!, so zraB e Ut~

Therefore ztaB bridges to ¢ in Ay, so ztafa™ ! bridges to ca™ ! in A,. This
implies zTaBa™~! is in U, impossible since it is equal to zat € UT.

We conclude that Ut = U, which will be assumed from now on in this proof.

Choose a prong n at z which is a subset of [z, c]. This prong is associated to the
component U of T — {z}, hence the prong nt also is associated to the component
U = Ut and n N 7 is not just z. Let e be another point in the intersection. Then
et ™!, e are both in  and et ™! is not equal e — by choice of z as the fixed point of
T in [z, c] closest to .. So either e is in [z, eT) or et is in [z, ¢). In the first case
(say) apply 7 to get et is in [z, er?) and it now follows that e < et < et?. The same
alignment of points happens in the second case. We conclude that there is a local axis
LA for T, with e in the local axis.

This construction of a local axis is crucial in case B and also in case C of the
proof.

Conclusion. If Ut = U and there is no fixed point of 7 in (z, w], then there is a
local axis L+ of T contained in U with one ideal point z.
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LA

drt 9

dr—!

@) Ap (b)

Figure 9. (a) The case Ut # U, (b) the case LA, N Ay = 0.

Case B.1.2. Suppose that LA, N Ay is at most one point.

Let [d, c] be the bridge from LA, to Ay —here d = c if LA, N A, is a single
point. We do the proof for LA N A, = @, the case of single point intersection being
entirely similar. Once more we use

2t ot = zat = zaBa L.

Here za bridges to ca in A, and bridges to ct~! in A g see Figure 9 (b). Therefore
zaf brides to ct !B in g and so zaf bridges to ¢ in +y. Therefore zafa™ !
bridges to ca” ! in Ay.

On the other hand notice that zo bridges to d in LA, and so za T bridges to dt in
L A; and consequently zat bridges to ¢ in #A,. This contradicts the equality above.
This finishes the proof of case B.1.2.

We conclude that LA; N A, is more than one point. Since +4, is properly
embedded in 7 and z is not in 4, then there is a in LA, N A, closest to z. From
now on in case B.1 let LA; N A, = [a, b], with a # z and a closest to z. By an
abuse of notation b can be 400, meaning the intersection is a ray in L. Put an
order < in LA, sothata < b in LA;. Also let <, be the order in A, witha <, b.

From now on in case B.1 the proof will depend on whether Uy is equal to U
or not. The arguments here are also very similar to what will be needed for case C,
therefore we will make the arguments in more generality so that they can be used in
case C, namely when o has a fixed point but has a local axis with certain properties.
We first specify the conditions under which the analysis works.

Conditions. Consider two conditions:

Condition F. 7 has a fixed point z, « acts freely and z is not in the axis #A,. Let Ay
be in the component U of T — {z}. There is a fixed point s of « so that s is either z
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or z separates s from +A,. Let [s, c] be the bridge from s to 4. Then (s, c] has no
fixed point of « and (z, c] has no fixed point of . Also Ut = U and there is a local
axis LA, of T in U with ideal point z. Finally LA; N A, = [a, b] where a # z and
aisin (z, b).

Notation. Given u, v distinctin T let T, (v) be the component of T — {u} containing v.

Condition N. 7 has a fixed point z; k has a fixed point s and « has a fixed point w so
that (s, w) has no fixed point of either « or «. In addition either z = s or z € (s, w)
and (z, w) has no fixed point of t. In addition let U be T, (w) and 'V be Ty,(z). Then
Ut = U and Vo = V. There is a local axis LA, of T in U with one ideal point
z and a local axis L, of o in 'V with ideal point w. The intersection of L4, and
LA, is [a, b] where a is the closest point to z and b can be 400 in LA;.

Here condition F is for free action of o (which is used here) and condition N is for
non free action of « (which is used in Case C). In either case the order <, in £,
corresponds to a <, b. This implies the orders <, <, coincide in the intersection.
Beware that here the order <, here is in L, and not in (A )« as in case A.

Caution. An axis is also a local axis. For the sake of simplicity and to use it for case
C, we will use the notation L4, even in the case of « acting freely for the rest of the
proof of case B.1. In case B.2, we will return to use the notation -4, for the axis of «.

Case B.1.3. Uy # U.

Claim. Under these conditions Uy N U is empty.

Recall that 90U = z and zt = z. Notice we do not know a priori that zy = z.
If zy = z then y permutes the components of T — {z} so one has Uy N U = 0.
Suppose then that zy is not z. Recall that there is a fixed point s of k¥ with z € [s, w]
—maybe s = z. If zy # z, then

[s,z] N [s, zy] = [s, t] with ¢ € [s, z), hence ¢ € (z, zy).

In particular z is not equal to s. Notice ¢ may be equal to 5. Here z separates U from
s, hence z separates U from ¢. Also zy separates Uy from s, hence zy separates Uy
from ¢. It follows that ¢ separates U from Uy and U N Uy = @. Also z separates
U from Uy and so does zy. This proves the claim.

Situation I. Suppose aa <4 a in LA,.

Situation I.1. Suppose aa™! >, b in LA, see Figure 10 (a).
This implies that ac is not in LA, see Figure 10 (a). This also implies b is finite.
Notice that
e e =By = za ey

The point z bridges to LA, in a. Hence zt7'a™! = za~! bridges to Loy in

aa™L, s0 za7Visin U and za~ !t is also in U, which is invariant under 7. Since
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Figure 10. The case LAy, N LA = [a,b]: (a) Case aa <4 a, b <q aa~ !, (b) Case

b=at =aa"1, (c) Case at > b.

Uy N U = @, then

za”"ta ¢ U and it bridges to LA, ina = za ™t bridges to Lo, in ao”!
and hence bridges to LA, in b. But za™" bridges to LA, in ac™" so bridges to
LA ina. So zaa~ ™1 bridges to LA, in at. This implies at = b and also that 7 is
increasing in (LA, <).

In addition

LAg = (LA)T " 50 LA N LA =[ar™,a]l =[ar!, br7]

and af~' = bat~!is not in LA, and bridges to LA, in at~'. So this point bridges
to LA ina and af~la~! bridges to LA, in ac~'. Asaresult af~ a1 is in U.
Also aa~! bridges to LA, in b = atr. Hence it bridges to LAg in a. This
implies that aa~!B~! bridges to LAg in ap~! so again aa~!p~! is in U. Now
(@B 'a™l)y = aa='B~!. Which implies Uy N U is not empty. This contradicts
the above claim.
Situation I.1 cannot happen.

Situation I.2. Suppose aa™! <, b in LAq.
Similarly to the arguments in situation 1.1, zo™
U so

17 isin U, so za ™ rw is not in

1

zo Mo bridgesto LAy in a, zo ™t bridgesto LAy in ao” .

Also aa™! <4 bin LAy, hence ao ™! isin LA, and aa™' < b in Lo, as well. On
the other hand zor ™ bridges to LA, in a so za~™t bridges to LA, in at. From
this it follows that at > ae™! in LA;. In particular 7 is increasing in (LA, <).
There are two possibilities:
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The first possibility is that aa~! 3 b. In this case za ™7 bridges to LA in
aa~1 which is in the interior of [a, b], hence this point also bridges to LA in aa~ L.

It follows that

at =aa”' = ap™' =ar”! bridgesto LA, in a.
Then af~'a~! bridges to LA, in aa™" sois in U. As before consider aa ™' 7.
Here aa™! is either in LAg or bridges to LAg in br~! (the top intersection of
LAg with LoA7). If aa™! is in LAg then aa~! 7! is in LoAg so in U, as above
contradiction. If it bridges to J£LAg in bt~! then aa™'B~! bridges to LAg in
bt~'p~! = bat~!. Since in this case

boa > a in LA, then bat ' >ar™! in LA = aoe_l,B_l e U,

again a contradiction.

The second possibility is that ae~! = b. Here we have to split further into two
options:

Recall that at > aa~! in LA,. First consider the case that at = aa™!, see
Figure 10 (b). We have the equalities af~' = atat™! = ar~!. Use

(@™t et =aama "By =ap Ty =y 2 UL
Hence aa” 1~ 'a~! is not in U and bridges to LAy in a, ac™ ! bridges to LAy
in ax. But

ad™ € LAy, = ad"tT € LA > LAy N LAg = [a,aal,

see Figure 10 (b). Now evaluate y ~! = afla™! onatr™!:

@r Yy ' =@ HBap e = aep e

Notice that aa is in LAg SO aaf~!isin LAg. Either aaf~!isin LA, and then
aafa!isin LA, C U (contradiction) or

aaf~! & LA, sobridges to LAy ina and aafa”! bridges to LA, in aa™!

and again this point is in U. In either case Uy N U # @, contradiction.
The last option of the second possibility aa™! = b is that at > b = aa~! in
LA;. Then

br'=at7'B <a in LA, = LAy N LA =0,

see Figure 10 (c). Here use ot = taBa™ ! applied to z: The point zo bridges to a in
LA, and zat bridges to at in LA,. Since at > b, then zat bridges to b = aar™!
in LAgy.
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On the other hand za bridges to bt~ in £LAg hence zaf bridges to bt~ !g in
LAg, hence to a in LA,. Finally zafa ! bridges to aa™ ! in LA,. Since m is
not O this is a contradiction.

We conclude that situation I cannot happen.

Situation IL. aa~! <, a in LA,.

Situation II.1. ao™™ is not in L+A,. Here use

ot =zt e e = za Mty !

isin U, so za "t is not in U. It bridges to LA, in a, hence za ™™t bridges to

L Aq in aa™! and hence bridges to LA, in a. On the other hand zo ™™ bridges to

LAy inaa™, so bridges to LA, in b. It follows that za ™" 7 bridges to LA, in bt

which then must be a. Soa < at~! in LA, and 7 is decreasing in (LA, <).
Notice L AgNLA; is equal to [at 1, br—!]and thisintersects LAy inat 1 = b.
Suppose first that aa is not at~! = b. Here

ap~! bridges to LAg in at~'B~1, sobridgesto LA, in at” !l

Then af~'a~! bridges to LAy inatla™! # a. It follows that af~ o~ is in U.

On the other hand aa~! bridges to LAg in at™! = b, so aa~' B! bridges to
LAginbf ~! which is not b and it follows that ac~! =1 is also in U. As seen before
this implies Uy N U is not empty, contradiction.

The second option in situation II.1 is that aa = at~!, see Figure 11 (a).

LAr

BCAlg
LA
-1 -1 71/ ! ‘1771/3 LA
bt =at™ B 1 v B
. -
o LAy
_1 aa™My acp
b=ar ' =aa 2B LAy
aa™t~1 ao ¢
zaT
a a
o LA
) /t . 5 * Loy
ao” ¢ za Mt
M
SN (b)

at” ‘o (a)

Figure 11. Case aa~! <4 ain LAy: (a) Picture when aocr™ & LA, aa = at~L. (b) Picture
when aa™™ € LA, at™ B & LAy

Apply a B~ 1y~ = t71a~ 17 to aa™. The left side becomes af~'y~!. Here

apleU = a7y ' ¢ U = ad™t a7 ¢ U
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and bridges to £ in a. It follows that aa™ v~ ! bridges to LA inao = at™' = b.
Butaa™ isin LA, soaa™t~!isin Lg. Consequently £ Ay NLAg =ar~! =b,
see Figure 11 (a).

The point ¢f~! is in U, hence

a,Bflyfl = aaﬂflofl = arflﬁflofl =at 2a”!

is not in U. Moreover, also af~'y ! is not equal to z, since otherwise some point
near aff —1in U will have image under y in U, which is disallowed. Then

Z € (a, at_za_l) = € (aa,at‘z) = (at_l,at_z) = zart € (a,at_l).

1—

In particular zot is in LAy and zata ~™ is in LA, as well. This point is equal to

zaf.
On the other hand

7o € (ar_l,at_z) = (af‘l,ar_lﬂ_l) = zaf € (af_l,ar_lﬁ).

But then za8 is not in LA, contradiction.
This finishes the analysis of situation II.1, ax ™" is not in LA<.

Situation IL.2. aa™"™ isin LoA;.

In particular ae is in (a, b]. Here za ™~y =1 =zt~ la~ !z is in U. As usual
this implies zo ~" ta is not in U and bridges to LA, ina and zoe ™™ T bridges to oL A,
inaa™1, see Figure 11 (b); so za~ ™t bridges to LA in a. So

1

'S gt !> a in LA,

za~™ bridgesto LA, in at”

and again t is decreasing in (L, <). Notice za~" bridges to LAy in aa™™. If

aa™™ <4 bin LAy, then za™"™ also bridges to LA, in aa™ and aa™" = at~ L.
If

aa™™ = b then zaa™™ bridges to LA, inapoint > aa™ ",

that is, at~! > aa™ in LA;. In any case ao~ " < at Vin LA, and aw < at !

in LAz,

Now compute ay = aafa~'f~!. Here aw is in [a, ar '] and bridges to LoAg
in at~!. Hence aap bridges to LAg in at~'B. There are two options: First if
at~ !B is not in £ A, then aaB bridges to a point v in LA, and v € (a,at™'p) —
see Figure 11 (b). Here v could be in LA;. Also v > aa™ in LA,. Then

aafa™! bridges to a point va~! in LA, = itbridgesa point c in LAg,

where at ! does not separate ¢ from LA;. It follows that ay = aafa~!p~!
bridges to a point in £ Ag which is not at~!, hence ay is in U, contradiction.



Vol. 82 (2007) Laminar free hyperbolic 3-manifolds 287

x K
_1 a1t
za” e
b -1 B LAg za~! zﬂflofl
=aua
V /. LoAg
at 1 /
—1
/ta b
a 9 e LAy /toflia
" a LAy
za zata” ™ =z
1/&3 ar~ g1
at at— ——I—
(a) H\ B!
ot z
< ) /\' zoflﬂfl (b)
za e

Figure 12. Analysing za~! € X: (a) Picture when at € [z, a). (b) Picture whenat~! € [z, a).

The second option here is that at_l,B is in LAy. Here at ! is in LA. Then
consider at —'a~! which is in £, and hence in U. Then

(at_la_l)aﬁa_l = af_lﬂcx_l
is in LA, and a1,"1,BoFl <a ar’l,B in LA,. Therefore
at~'Ba~! bridges to a point in LAg contained in (bt~ ar™1p).

Apply B! — the resulting point bridges to a point in £ A g which is not at~!, hence
(at'a Dy isin U, again a contradiction.

This finishes the analysis of situation II. Hence this finishes the analysis of case
B.1.3, Uy is not equal to U.

Case B.1.4. Suppose Uy = U.

Since the boundary 0U in T is the point z this implies that zy = z. Since LA
is a prong at z it follows that (LA7)y N LA, is not empty. Choose cy in this
intersection. So ¢, cy are disjoint and in LA;. It follows that z, ¢, ¢y are aligned
(the particular order is not important) and c is in a local axis of y. But cy ™ = ct?
is also in LA, and it follows easily that the local axis is contained in and therefore
equal to the local axis LA, of T so ¥, T and hence « leave LA invariant. This sort
of argument will be used from time to time from now on.

Here the ideal would be to apply the proof of case A, where 7 acted freely and 4,
was invariant by y and t. We already have L+ invariant under y and t, however
LA, is not properly embedded in T - at least in the z direction. In order to apply the
proof of case A, we analyse the relative positions of (LA ), (LA7)xT and so on.
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In particular for that analysis to work we must have (L)« contained in U and so
on. So first we do preparation work, showing all images of the local axis are in U
and then we can apply the proof of case A.

For simplicity of notation in case B.1.4 we do the following: X will denote the
local axis £+, which is contained in U and has an ideal point z. Again as we want
to use this in section C as well, we will consider a local axis £, for «. The key
result is the following:

Lemma 6.1. We have KXo C U, Ko~ ! ¢ U and Kata™' Cc U.

Proof. The proof will be done considering each problem in turn. When the problems
do not occur we show after the lemma that we can use the proof of case A to deal
with case B.1.4. We treat each problem in turn:

Problem 1. Is KXo C U?

Suppose not. Then as aa is in LA, contained in U there is ¢ in K with ta = z
or za~! is in X, see Figure 13 (a). Here z bridges to a in LA, so za~! bridges to
ac™ ' in LA,. So za™! can only be in KX if b is in (z, za V) andae™! = b. In
particular ao < a in LA,.

There are two possibilities depending on whether 7 is expanding away from z or
not:

First suppose at is in [z, a), see Figure 12 (a). As za bridges to a in X then zat
bridges to at in K and bridges to a in LA,. Then zata™™ bridges to aa™ in
LAy. The point zata™ is equal to z8 (because zy = z) and bridges to a in X so
bridges to at~! in LAg. But z also bridges to at~! in L g, contradiction.

The second option is at > a in X, see Figure 12 (b). Here z8~! bridges to
at™'p~Vin LAg and so to a in LA,. Hence

2B a~! bridgesto aa™! in LA, = B el e U.
On the other hand za~!'f~! = za~'ratr~!. Here
wlteX = ale@t) = waltagU = a7 'p7 2 UL

But z8 o~y = zailﬂ’l, leading to Uy # U, contradiction to case B.1.3.

So we obtain za~! € U is impossible. Hence Ka C U. This shows that

Problem 1 does not occur.

If K« intersects K in at most one point we can use the analysis of Case A.1 to
disallow it. To use that notice that J is a local axis for x and K« has to bridge to a
point x in X and not to z.

So assume from now on in case B.1.4 that X N K« is more than one point.

Suppose for amoment that K« is contained in K. Apply t~lata™ = yra~lz 7!
to K. If K« is not equal to X then the right side is strictly contained in X and the
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left side strictly contains it. Impossible. So the only possibility is that KXo = K. But
that implies that J is left invariant by the whole group and this reduces to case R —the
tree is R. We conclude that X« C K cannot happen. In the same way Ko~ C X
cannot happen either.

Consider first the situation that

K N Ka = (z,t]; then TK, Ka share a ray.

As before ¢ could be 400 in LA;. The orientations in K and Ko may agree or
not. If the orientations agree then zow = z. This implies that z is a global fixed point,
impossible by non trivial action.

Suppose then that the orientations in KX and Ko« disagree. If (z, 1) = LA, then
there is a fixed pointr of o in LA, = K. Let U (respectively U,) be the component
of T —{r} containing r 7 (respectively rt~1). The condition KXeeNK = (z, t) implies
that Ui = U». This is now disallowed by Lemma 5.2, notice that LA, is a local
axis for «.

Finally suppose that ¢ is finite. Notice that Ko C K is disallowed. If ro is
in LA, then the orientation hypothesis produces a fixed point r of « in (z,¢]. In
addition with U, U, defined above then U = U, and this is again disallowed by
Lemma 5.2. The remaining case to be analysed here is that t« is not in LsA;. In any
case since there is a ray in £+, not limiting on z whose image under « limits on z,
it follows that L+, has another limit point v. Then va = z. Also vk = v.

Now compute vt~ et = vafa™ . The left side is vt~ lat = vat = 77 = z.
The right side is

m—1 1_—1_m —lt—lam—lz m—1

vafo =vata T o =zId Vo ,
or z = za~2. But this case implies that z bridges to 7 in L, and so this cannot
happen. That is, we cannot have Ko N K = (z, t].

Suppose now that J has a ray [ (not limiting to z) so that la C L+, and the
orientations disagreeing. Then £+, has another limit point v (with vk = v) and v
isin (z, t) (the difference here is that we are assuming v is not z). As above we have
to is not in K and « has a local axis with 7 in it. Also o~ is in X and closer to v
than 7 is. Use

-1

vt lata "

= vyta_lt_l.

The left side is vata ™ and the right side is va~!z~!. This shows that T expands

fromztovin K andta~!t7! = 1. Nowuse tt~la~ !t~ lar = ta~ 't~ 1a” 1. The
right side is 7o~ !. We analyse the left side. Then rt~'isin (z,#) and 1t~ 'e ! isin
(ta~ ', z) (which is a subset of X). Apply ! to get a point in KX which is in (¢, v).
Then apply o to get a point that bridges to X in a point o in (z, ¢]. Finally apply 7 to
get a point that is contained in (z, va~!). This cannot be a1
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We conclude this cannot happen. This analysis shows that LA, N LA, has a
point ¢ which is the closest to z.

Given these facts we now consider the general situation that X has another limit
point v. As seen above vk = v. Suppose first that v is in LA,. Here we split into
cases: if « acts freely then v is a fixed point of t in the axis of « and this falls under
case B.2 which we will consider latter. Consider then the case that o does not act
freely. Let w be a fixed point of @ which is a limit point of 4A,. Choose w so that
(w, v) has no fixed point of « (as v is in L#A,) and also no fixed point of 7 or y.
Also Ty, (v) is invariant under o and T, (w) is invariant under t. Then v in LAy i
disallowed by Lemma 7.4 (notice we do not need to use Lemma 7.2, because in this
situation we have vk = v).

It follows that v has the same properties as z. In any case one obtains that
KaNXK =[t,r], tF#r, t closestto z

and if KX is not properly embedded in the other direction then r is an actual point
in K. Then KXot N K = [tt, rt]. So the intersections are the same as occurred in
case A so far.

Problem 2. Is Ko ~! c U?

This is similar to problem 1. As before if K a~! not contained in U, then z €
Ka~! and za € K. Recall that LA, N K = [a,b]. This can only happen if
b e (z,za), ae = b and aae™ <, a in LA,.

First suppose that at~! € [z, a]. Then

at 'a e [za,aa) =[b,za] = at'ae X = arlate X

1 m m

and this last point bridges to b in LA,. Then at™ 'ata™

in LAy. But

= ayp bridges to bar™

ba™" <4 b in LA, = ayp bridgesto bt~! =ain LoAg.

On the other hand ay € [z, at~'] and bridges to at ™! in LAg, so ayf bridges to
at~!'Bin LAg. Since at~ !B is a point in LAg — K itis not equal to br~!, leading
to a contradiction.

1

The second option is at™" > a in K. Here use

B l=zat e X, zacz,z87) = g lal U

On the other hand za~! bridges to aa™! in LA, so bridges to at~! in LAg. So
za~' ! bridges toat !~ in LAg and is in U. As above this is a contradiction.
We conclude that Problem 2 does not occur.
After some analysis as in problem 1, this implies that

Ko 'nK =1[r,r], with ' £, 1 #z
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and if K not properly embedded on the other side then ' has to be finite in K.
Then clearly Ko ~'t~! € U and intersects X in a segment.
The last problem is the following:

Problem 3. Does Kata™! c U?
Suppose not, that is, Kata~! ¢ U. We have to be careful here. First a prelimi-
nary claim:
Claim. z € Kata™'.
If this is not true then Kata~' N U = @. Notice that

Kat N Loy #0 = Kata ' NLoA, # 0 and Kata™ NU # 0,

contrary to assumption here.

So consider Kot N LA, = @. Also here Kat N K is a non trivial segment.
If Kot bridges to a in L, then Kata~! is contained in U and we are done. It
follows that Kot has to bridge to b in L4, and hence zo has to be in the this bridge.
But then z« is in &, which was disallowed in problem 2. This proves the claim.

We now analyse what happens when
zeKata™! so z17' =z € Kap and 870! € K.
Also z8 o~y = za~ 187! isin X as well.
Situation I. ao~! <, a in LA,.

Situation L.1. at < ain X.
Here za~! bridges to aa ™! in LAy, so it bridges to at ! in LAg. Also

za_lﬂ_l eX and at ' <a<aa"! <za7 .
As B! moves points up along X, it follows that zo~ !~ > bin K andat~'~! =

bt~ Here ae™! € [at™!, za~ ], see Figure 13 (a). Then
ar_l,B_l =br ! < a,B_l < aoz_lﬁ_l = < za_l,B_l =1y

and all are in K. Also af~! € (b,aa"'87") C X and z~! bridges to X in af~!
so bridges to LAy in b. Then z8~ ™! = vy~ € X bridges to a in LA, and
ap~la! = vy~ lisin (zf7'a"!, a), see Figure 13 (a). Then

B o <ap o <ae B <227 BT,
all points in K. This contradicts the fact that y acts as a translation in X.

Situation I.2. at > a in XK.
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Figure 13. Situation ao™!

at™! <ain X.

< a in LAy: (a) Picture when at < a in K. (b) Picture when

Here za~! bridges to a in K, see Figure 13(b). If @ > br~! in X then za~!
bridges to a point ¢ >g bt Vin LAg, SO

za~ g1 bridges to LAg inapoint >g bt~ '8! and za7'p7! ¢ X,
1

contradiction. Hence a < bt~! in K and za~! bridges to a in LAg so za~!f~
bridges to af~! in LAg and as za~ g~V isin X then

za '8V > b7l in X and af~' = bt~ or ata =b.

Now
ap~ ' =br7! s0o ae =ar” 't <apf~ 't = b,

in particular ac is in K. Also z8 bridges to a in LAy and so does z. But zBx = za
and zo bridges to ax in LA,. Since ax < b, then za, zaf bridge to ax in LA, as
well.

If aa < bt~!in X then za, zaf bridge to aa in LAg, impossible — they have to
bridge to distinct points in LAg. If

bt le (a,aa) = za, zof bridge to bt~ ! in LAg,

again contradiction. Therefore aa = bt ~! or aat = b. Now

1

acta 't =ba~ 't = a, so ay =aa" 'L
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Notice that ay € [z, at™']. But aa ™! bridges to a in LAg, s0 aa~'p~! bridges to
ap~ ' =br~lin LAg and ac~ '8~ cannot be ay, contradiction.

This finishes the analysis of situation 1.

The remaining options are extremely similar and have shortened proofs.

Situation II. aa <4 a in LA,.

Situation IL1. at~! < ain X.

This is as situation .1 above. Here z8~! bridges to a in £, so z8~'a~! bridges
to aa~! in LAy and aa~! = b. Tt follows that

1 1

b<atla ' <ar 187 la7 < 287!,

all points in JX.
On the other handat o~ ! € (b, (ar‘l)ﬁ_la_l) Cc XK. Thepointzoz_1 bridges
to (at ™"~ in K. It follows that

a7 <@t He B < arHp e < 287 e
all points in K. As before this contradicts the fact that y acts as a translation in X.

Situation I1.2. a7t < ain XK.
This is very much like situation I.2. Here z,B_l bridges to at lin XK. Ifat=' > b
in K, then

7B~ 'a~! bridges to a point >4 bin LA, = zB8 la"! & X,
contradiction. Hence
at™ ' <bin X, z867'a ' > b in X and at™'a”' =b or a = bar.
In addition,
za, z bridge to LAg in at™! = zBa = zap, zp bridge to LAg in at~'B,

and similarly to situation 1.2, this impliesat ~! = b ora = bra. Then baf = b and
by =ba~'B~!. But by > br~!in X and ba~! bridges to b in LAg, SO ba=1p~!
bridges to b~ = ar~!in £LAg and cannot be equal to bt~

This contradiction shows that problem 3 cannot occur. This finishes the proof of
Lemma 6.1. O

It follows from Lemma 6.1 that Xata™' C U, so Kaf C U as is KyBa. So
all of the sets X, Ko, Kat, Kata™, Xep, Ka™, Ke 't~!and Ka 't o
(whichis Ko = K y‘loz,B = K «ap) are contained in U and none has z as an ideal
point. If K has another ideal point v, then v has the same properties as z and the
same situation occurs with respect to this other ideal point.
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Given these facts, an analysis exactly as in case A.2 can be applied here. That
analysis then shows that case B.1.4 is not possible.

Hence case B.1.4 is disallowed. This also finishes the proof of case B.1.

For case B.2 we return to the study of « acting freely using the axis .

Case B.2. Fix(t) N Ay # 0.

This is the key case of the proof for essential laminations. In this case the topology
will be important, in particular, the exact condition |p — 2g| = 1 will be used in a
crucial manner. Let z € Fix(t) N Ay. Let U (respectively Uy) be the component
of T — {z} containing za (respectively zar~!). A priori we do not know whether z is
also a fixed point of y. In some subcases, the tricky part will be in fact to show that
Yy =2z.

Case B.2.1. U 7t = U;.
Notice that U« is contained in U . Here use zat = zryBa™ = zypa™.

€U = zate U = zata " e U™ C U = zyB e U;.

So zyta~!t~!is in U; and then zya~! isin U or zy is in Uj. In particular

7 < zoe < zy, see Figure 14 (a). We stress that in this case zy is not equal to z!

1

/l\ Uy 700 ¢
at ‘\ zﬁ_la_ly a1 Y zaf
i ,_.J_.
t 4
o
B 282
ZOl‘L’_l <
Z o 1
zat o=l =87 1a7! za™ |
Us e zafa™ T = zat
Za—l Z()tm—l
a b
. (@) . )
Figure 14. Case B: (a) Picture when U;t = U;. (b) Picture when Ut™! = U, and

[z,zB8]1N [z, za] = [z, 1] .

Use now zat = zafa” ! = zata 't~ la™ L,

ata!™ e U = zata 't e U = zataTl e U, = zat € Uja.

1 1

In particular 7z < zoe < zot and 7z < zoT™ < zo and so zwT ™~ a e za™l,2). In

other words

1 —1 1 -1

0T =ZzToT o = zﬂflofl € (ch1

,2).
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1 1

Then z8 "o~ isin Uy so z8 e~y isin Upy. Notice z8~! = zrat™
with zew € U, zaer ! also in U;.

Recall that zy # z. If Uy C U this implies that z is in a local axis for y con-
tradicting zy? = zt~? = z. Therefore Uy is not contained in U and consequently
U,y is contained in U1 and so zy separates U,y from z. Hence

=0T

za separates Upy from z and B la"ly € Uay.

1 1 -1

But z,B*Ia*ly = zailﬁfl = za 'rat™!. Now za separates z from zo™ 'tat
which is in Usy. Apply t: zat separates z from za~ ' ra. Then

1

at € U = zoa ta € U = L = Uy and a e ulr—l = U;.

But this contradicts zaz~! is in U,. This is an impossible case.
We conclude that U1t # U;.

Case B.2.2. Uit # Us.
Then zat is not in U,, which implies zata is in Uy, or zaB € U; and
zate 't is in U;. By assumption zat ¢ Ui, hence zata~! € U, and

1z-1 1 This would imply Urt™! = U or Ut = Uy, so the

1—-m

ot T e Ut .
assumption is incompatible.
We conclude that U7 = Us.

Case B.2.3. U 7! = Us.

This is a very interesting case. Here we only use the fact that p is odd.

First consider z8 = ztalt7! = za7'v~! which is in Upt~! = U;. Then
za, zB are in the component U1, hence [z, z], [z, zB] share a subprong. Suppose

first that

[z, zB1N [z, za] = [z, t], t # za, 2B, thatis za & [z, zB], 28 € [z, zo]

see Figure 14 (b). Notice that 8 has a local axis through zz~! = z. Hence z8 is in

(z, zB?) and zap bridges to ¢ in A,. Also zaBfa™ ! bridges to Ay in o~ which
is a point in (za™, za™ 1), But

1_-1 1_-1

ml—zar = za vt ez z0) = B=za" 't €[z, z0),

zafo
contradiction.
So either z8 € [z, za] or z& € [z, zB].

Situation I. z« isin [z, zB].
Use z81 = zta )l = za7!. As za isin [z, zB], then zat € [z, zB7] = [z, za~ 1]
and zata! ™" € [za™™, za!™"]. But

zatal ™ =zt lgral™m = zaB, so zaf € [za ™, zal™M] C Ay
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We stress that zaf € . Here z87! < z < za, hence z < z8 < zaB. It follows that
zB € Aq and zB € [z,zaB] = zaBa~! e [za™™ !, za™™].
We want zy = z or zaf = zBa. We first analyse the other two possibilities.

Situation L1. zafa™! > z8 in A,.
Then z8 < zafa™! < zaB, soz < zy < za, or zy € (z,za), so zy € Uj.
Clearly zBa € A,. Here zaf > zBa in A. Then

z < zfa < zaf allin A, = z,B_l < zﬂaﬁ_l < za and z,B_loz_l < zy‘l < z.
But z8~! = zat~! € Uy, hence zﬁ’la’l isin Up. Now zy € Uy, z)/*l € Uy,
therefore z is in a local axis for y, hence zy? # z, contradiction.

Situation L.2. Suppose zaf <, zBa.
Then
r<zafal <z8 = 7l <zy <z

As z87! = zat~!is in Uy, then zy is in Us.
Now zaf <4 zBa. If Ag contains elements in A, above zaB, thatis, Ag N Ay D
[z,1) witht >4 zaB and ¢t <4 zBa, then

i<za<tp M <zBap™! = z<ipla <L

Here 18~ 'a~! bridges to e >4 zafa™! >, zin Ay. S0t e~ isin A, and 7y ~!

is in U and not in U»,.

On the other hand if Ag escapes A, in zaf, then zBaB~! bridges to Ag in
zat, hence bridges to ¢ in za as za € (z,zaf). Hence zBaf~! ¢ Usa and
zBapla! = zy~! bridges to A, in z and zy ~! is not in U,. In any case zy ~! is
not in U, and zy is in Uy so z separates zy from zy ~! and z is in a local axis for y,
impossible.

We conclude that za8 = zB« or that zy = z.

Situation L.3. zy = z.
Then y leaves invariant the set of components of 7 — {z}. Recall that U;7~! =
Uy and Ut = Uy in situation I. Use z8 o™y = za~'p~!. The left side is

zrottilofly = zou:fla*ly.

1 1

zae U = zat e ‘u]t_l # Uy, sozat™ ale U, and zat™ a_ly € Uay.

On the other hand the right side is za ™ 'rar !

ol e U,

1 1

= zalre Uyt = Uy, zaa~ 't € Uy and za™ rat ! € ‘ulr*l = Us.
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So Uy N Uy # B. Since y now preserves the set of components of T — {z} it
follows that Ury = Uz and U1y = Urty = Uayt = Uzt = U;i. Now we use p
odd and t?y? = id:

U = Uyyic? = Ut? = ‘ulrp(m"dz) = Urr.
This contradicts U1t 7% U and finishes the analysis of situation 1.

Situation II. z8 € [z, zo].

This is very similar to the previous case if we think of it in the appropriate way.
The trick here is to switch the roles of « and 8, which can be done. Notice first that
2B € Uy and 287! = zrar™! = zar ™! is in U». So the component of T — {z}
containing z8 (respectively z8~!) is the component U; (respectively Uy). First
rewrite the relations as

rat ' =871 Bl =y lap™ = Bapm .
As zB isin [z, za] then zB7 ! isin [zt 7!, zat '] = [z, z87']. So
2Bt BT = BT IBNT = B e (BT, B T Ag.
As zB € [z, za], then zBw is in [za, zaz] and
za € [z, z2pal C [z, 281 7™ C Ap.

Therefore za is in Ag and similarly zaB, zBa are in Ag.

From this point on the proof is entirely similar to the analysis in situation I:
consider whether zaf <g zBa, zaBf >g zBa, or zaf = zBa, with completely
analogous proofs.

Therefore this case is disallowed. This finishes the analysis of the case B.2.3,
Urt = Uj.

Case B.24. Uit = Uo, Uit~ # WUs.
This is the most interesting case which relates to the topology in a crucial way.
Use z8 'a~ly = za='B~1. Theright side is ztat " la™'y = zat la"'y.

1

e U = at e ‘u]r_l U = zat~ ale U,.

Hence z8~ 'a~'y isin U»y. On the other hand zaa~ '~ = zalrar™!:
alt e Ut # Uy = za o € U = o lrar7 !l € ulr—l #= Us.
We conclude that

Uy N u]r—l @, or Uity N ‘L(]t_l # 0. (%)



298 S. R. Fenley CMH

What we actually want is that these two sets are equal. A priori we have to be careful
because y may not preserve the set of components of T — {z}, or equivalently we
may have zy # z. So we first deal with this case. We will need the following useful
lemma:

Lemma 6.2. Let n be a homeomorphism of a tree V so that n" has a fixed point c,
where n is not 0. Then there is a fixed point of n in [c, cn].

Proof. Consider cn?. If cn? is in [c, cn] and not equal to cn, then 7 sends [c, cn] into
itself and has a fixed point there, done. If ¢7 is in (¢, cn?) then ¢ is in a local axis
of 1 and ¢n™ is not ¢, impossible. If ¢ is in (cn, ¢n?), then n~! sends [cn, ¢n?] into
itself (into [c, cn]) producing a fixed point there, done.

We can now assume cn2 bridges to [c, c¢n] in a point r which is in (c, cn), see
Figure 15 (a). If rn = r we are done. Assume rn # r. Then rn is in [cn, cn?l.

c c
r i ar moen?
L ———
,
rn2 C7]4
i
(@) o o} ®

cn

Figure 15. (a) rn € [r, cnl, (b) rn € (r, en?l.

Suppose first that 71 is in [r, cn], see Figure 15 (a). Then rnz is in [rn, cr]2] SO
either [rn, r] is contained in its image under 7 or vice versa. As seen above there is
a fixed point of 5 in [r, rn].

Suppose now that r7 is in (r, cn?] see Figure 15(b). Hence ¢ < r < rn and
cn < rn < rn®. Thenr € (cn, rn) and rn € (r, rn?), so r is in a local axis for 7.
This implies that ¢n’ # ¢ for any nonzero ¢ in Z, contradiction. This finishes the
proof. O

‘We are back to case B.2.4.

Situation L. zy # z.

Suppose first that zy € Us. Notice Urt 7# U and also # U,. Since zy? = z,
the previous lemma shows that there is ¢ in [z, zy] fixed by y so ¢ is in U,. This
implies

Uty C U = ‘L(lrzy C Up, or Uity C U;.

But by (x) Uity N Uit~" # @, which now implies Ujt~' N U; # @. This is
impossible and rules out this case.
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The second possibility is that zy € Uj. Here Uy C Up so Uity C Uy. As
Uity N Uyt ! # () then Ut~ N U, # (J, also impossible.

The final option is zy & U1 U Uz, zy € U3z (which may be U, or not). Here
there is y fixed by y with y € Us. Here first use

Uy C U3, or Uity C U3z = ‘ulr_l N U3z # ¥ and ‘Lllr_l = Us.

Also
Uy C Uz = Uity C Ust.

By (%), U1t 'NU3T # Por Uyt~ = Usr. Then U3 = Ustor Ut~ = UjT72,
so U1t = U1, which is impossible. This rules out this final option.
‘We conclude that:

Situation II. zy = z.

This is a crucial case. In fact there is an essential lamination in M, whenever
|p —2¢| > 2 and this essential lamination may satisfy these properties: 7 has a fixed
point, @ has an axis (or at least a local axis) which contains the fixed point of . See
more below. So here is a part of the proof where the specific condition |p —2g| =1
needs to be used. See remark below on the topological significance of this condition.

Here is the proof. As zy = z, y permutes components of T — {z}. So Uity N
Uit~ # @ implies

Uity = ‘ulr_l or ‘L(lyrz = U;.
We now compute
U = Uitly? = Uyl 22y = U (yr)icP 20 = U P24,

When |p — 2g| = 1 then either U; = U Tt or U = Uit~!. So in either case
U1 = Ujt! But this contradicts that we proved in case B.2.1 that U7 is not equal
to U;. This is a contradiction showing that case B.2.4 cannot happen. This is quite
straightforward, but it needed all the previous steps.

This finishes the proof of case B: Fix(tr) # 0, Fix(«x) = 0.

Remark. We now analyse the topology of this situation. Consider the original stable
foliation in the torus bundle over the circle (the manifold M). After blow up of the leaf
through §, this produces a lamination A in M — N (§). The solid torus complementary
component of A1 has degeneracy locus (1, 2), which corresponds to y 72. This means
the y 72 is a curve in the boundary leaf of the complementary component and it also
preserves the “outer”" side of this complementary component. Now do p/g Dehn
filling on M — N (8) and look at the tree T produced. The leaf through § collapses to
a fixed point z of T (and y too). Usually neither t nor y preserves the complementary
components of z, but the above fact about the degeneracy locus means that y 7>
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does preserve these components — if U; is one such component of 7 — {z} then
Uiyt? = Uy After (¢, p) Dehn surgery, the leaf space T of the lamination has a
singularity at z with exactly |p — 2¢| prongs. The transformation t rotates by one in
the set of prongs, hence 7724 preserves each of the prongs. This is also detected by
y 12 preserving the set of prongs and 7y being null homotopic. All is well when
|p — 2q| > 2, because we have 2 or more prongs and the lamination is essential and
the action is very nice. However when |p — 2g| = 1 there is only one prong and
the lamination is not essential. It is amazing that this sort of difficulty can still be
detected on the level of group action on trees. Notice that this is exactly what the
proof shows that U1t = U1, which must happen if there is only one prong.

7. Case C: o has a fixed point and 7 has a fixed point

Let s in Fix(k), w in Fix () with (s, w] N Fix(k) = @ and [s, w) N Fix(«) = @. The
following notation will be very useful in this section. Given u # v in T recall that

T, (v) = {component of T — {u} containing v}.

Let
W=Ty(w), V=T,(~).

This notation for ‘W, 'V will be used throughout this section. First in this section
we will try to prove that ‘W is invariant under T and 'V is invariant under «. This
will produce local axes for o and (eventually) for t and we will see how the 2 axes
interact.

Case C.1. Suppose Wt # W.
Notice that Wt is a component of T — {s} as st = sy = s.

Case C.1.1. Suppose w € [s, sa].
This is equivalent to Va # V. Notice s # w. Here saff = sBa, and sfa =
sa 't 1a, so
so”! gV = salew = salttewr ! cy
= sa ltTlaeVaCcW = sBaeW.

I7=1 Here

On the other hand s = sata™
se €VaCW = sate WrCV = sat lalevalcw

and saB isin ‘Wr. These two facts together imply W = ‘W, contrary to assumption.
Conclusion: if Wt # W, then Vo = V.
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Case C.1.2. sa! & [s, w], sa & [s, w].

This implies sa, sa~ ! are in ‘W. For otherwise if sa is not in W, then s is in
(w, sa] and so s~ ! is in [w, s]. In this case sa ! bridges to [s, w] in a point r with
r € (s, w) —the important fact is that r is not one of the endpoints which would occur
if s« ! is notin ‘W or V. Then

re(w,s)N (w,sa_l) = ra e (w, sa_l).

Notice ra~! is not equal tor. If ra—Visin (r, sa~ 1), then sa 2 bridges to [r, sa 1]

in ra~!, hence sa~2 bridges to [s, w] in . The same happens for all sa” with n
negative. If on the other hand ra~lisin (w, r) then so 2 bridges to ra~Vin [s, w]
and sa” bridges to [s, w] in ra™*! for all n negative. Notice that ra” are all in
(w,r) C (w,s). The important conclusion is that under the hypothesis so, sa!
both not in [s, w] then any sa” bridges to [s, w] in a point in the interior of [s, w],
Hence all sa” are in ‘W and V.

Use st~ lat = syBa™. Here s isin W, so st isin Wr. Also s =sa™ 't
isin Wr—! and bridges to s in [s, w]. Hence sBa™ bridges to s in [sa™, w]. But
sa™ is in ‘W and bridges to [s, w] in a point in the interior of (s, w). This implies
sBa™ is in ‘W, contradiction.

This case is impossible.

1.—1

Case C.1.3. Suppose s« € [s, w].
This implies for instance that Wa ¢ ‘W and Ty (wt g~ C Ty(wr ™).

Case C.1.3.1. Suppose sa~! € Wr.
Then sf~! = sarlisin (s, wr™!) € Wr~!. Also sa™! = sBa~!8~!. Here
sp=sa 't lisin W.
In this case suppose first that 58 is not in V. Then
w e [wr‘l,s,B] and wﬁ_l € [wt_l,s] = w,B_loz_1 € Wr,

1

as s~ is in Wr. This implies that w8~ 'a~!is in Wry. Notice w8~ 'a~! is not s.

On the other hand

wﬁ_la_]y = wa_l,B_] = wﬁ_l isin 'wr~l.
Notice if wB~! = s, then

wpla = wply =gyl =5 = wp !,

contradiction because s is not fixed by «.
Collecting all of this together: wB~la~ 'y isin Wry. Butwgla=ly = ws~! e
‘Wr~!. Hence

Wty = Wr~! or Wr?y = W, impossible when |p —2¢g| =1,

as in case B.2.3.
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The second option in case C.1.3.1 is that s € V. Recall that sa~!77! = 58 is
in ‘W. Notice that

LAg = (LAG)T ! hasa segment [wr~!, s]c W=l u{s}

and then it goes into ‘W, as sg is in ‘W. Then either s8 =t € (w, s) or s8 bridges to
[w,s]int € (w, s), so bridges to ¢ in LA. In either case s,BoF1 bridges to ta~!
in LAy oris ta~!. If o' is in [w, s), then sBa~! bridges to ra~! in LsAg, see
Figure 16 (a). Here ra~!isin [wr ™!, s8). If

s € [ta~!, w] then sBa~! bridgesto L#Ag in r, with r € [s, wr~!].
This depends for instance on whether Wt = Wt~ ! ornot. In any case sBa ! bridges
to LAg in a point in [wr~!, sB). It follows that sBa~' B! bridges to a point y in
LAg with y in [wt™!, s), thatis, sBa~ !~ is in Wr~!. Then

sa”! e wr, sﬂa‘lﬂ_l = soz_ly ewr ! = Wry = wr,

contradiction when |p — 2¢g| = 1.
This shows that case C.1.3.1 cannot occur.

amat /sﬂ .

sﬂ71

/. sﬁa_l wr—] s
ta”!

rta

rt

sﬂoﬁlﬁ*l (b)
— o lp! e
sﬂ_l ] rtef sapf = spa
Lap | @ ’

Figure 16. (a) Case C.1.3.1, (b) Case C.1.3.2.

Case C.1.3.2. so—!is notin Wr.

Here s = sa~ 't~ ! is not in 'W. Also s8~! = sat™

Wz~ It follows that

1'is not in ‘W and is in

LAg N [w,s] = {s},
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so sa bridges to LAg in s and saf = sBa bridges to LAg in sB. Hence [s, sB] C
(sa, sBa) and there is a fixed point 7 of « in (s, s8), see Figure 16 (b). It also implies
that

sa”l e [s,r] and sa”l e T;(sp) = Ts(sP)t,

because s = sa 17! and sa! is in Tj (sB), see Figure 16 (b). Also 7 contracts

[s, s8] towards [s, sa~1]. Now apply taf = atal™ tor: rraf = rralm.
As sBt = sa landr € (s, sB), then

rt € (s, sa_l) = rra € (s,sa) = rraf € (s, saB) C T,(sp).

As rraisin (s, sa~!) € T, (s) and T, (s)a = T, (s). This implies rral™ is also in
T, (s). Therefore r separates rra! ™" from rraf, contradiction.

This shows that case C.1.3, s« € [s, w] cannot occur. Finally consider:

Case C.1.4. Suppose sa—l e [s, w].
This implies that Wae=! ¢ ‘W and (Wt~ c (Wr™!).

Case C.1.4.1. Suppose s &€ Wr 1.

This case is very similar to case C.1.3.2. Here s8 € T, (wt ') which is not equal
to either 7 (sa) or Ty (sa_l). Hence s bridges to LA, in s and sfo = saf bridges
to LA, in sa. Hence

sB < s <sa < saf

and there is a fixed point r of 8 in (s, sa). Then sB~! e (s,r) C (s, sa). Now use

Br 1= =t 1B applied to r: re ' = re 71 Ba. As sar™! = 587! then
re b e (s, 587 so rtTIBYT e (r, BT C Th(s).
On the other hand r7~! B« is in (sa, sBa) C Tp(sa). As T, (sax) # T,(s), this is a

contradiction, ruling out this case.

Case C.1.4.2. saisin Wl
This is similar to case C.1.3.1. Suppose first that Wt —! = Wr. Then sat™! =
sp~ 1 isin W. Also WA~ is contained in ‘W. It follows that

sofl,B_1 € W and soc_l,B_ly_1 = s,B_loF1 ew.

Hence Wy = W, W2 = W, leading to contradiction when p is odd.

Suppose now that Wt ~! # Wr. Then s € Wr~! and sat~! = 587! is not in
W. Also s~ isin Wr=2. So sg~! bridges to s in LA, and s~ 'a~! bridges to
sa~!in LA, implying s8~ o~ isin W.

Also s~ e~y = sa=!B~!. Here sa~! bridges to s in LAg, sa~1g~! bridges
tosB~!in LAg. But

sBlewr™? = sa”lplewr? = wy=we2

As in case B.2.4 this is impossible when |p — 2¢g| = 1.
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This finishes the analysis of case C.1.4, sa—l e [s, w].

We conclude that case C.1, Wt # ‘W is impossible. This implies Wt = ‘W. We
stress that this does not yet produce a local axis of T in ‘W, because we may have
other fixed points of 7 in (s, w).

Case C.2. Suppose that Vo #= V.
Here we will use sat = spa™ = safa’ ! many times.

Case C.2.1. Suppose wr, wt ! are not in [s, w].

The bridge from wt to [s, w] is [wt, t], where ¢ is in (s, w). Since sa ¢ V, then
sat bridges to ¢ in [s, w], so st is in V. Hence seta™ is in Va~"". This point is
equal to s = s~ !t~!. In the same way sa~! is not in 'V and bridges to [s, w] in
w. Tt follows that s 17! bridges to a point 7 in [s, w], where r is in (s, w), hence
sB € V. Therefore Vo™ = V.

On the other hand

sat = safa ! = sara v L,

The point saT isin V and bridges to 7 in [s, w]. So sata ™! isin Va~! and bridges to

win [s, w] sosata 1t~} bridges to r in [s, w] (r as above) and as a result this point
is in V. Hence saBa™ ! is in Vo™~ ! and Va™ = Va™ !, contradicting Voo # V.

Case C.2.2. wr! e [s, w].

Here V1! is contained in V.

The condition implies that w is in a local axis L+, of T (this case will be ruled
out, we only establish the existence of a local axis of  in ‘W later). Beware that s may
not be a limit point of L. Putan order < in LA; soc < din LA, ifs <c <d-
the order decreases as points get closer to s.

Case C.2.2.1. wt € Vo, wt ¢ Va~!, see Figure 17 (a).

Here Vot C Voa.

The conditions imply in particular that Va # Va~'. Here sat € Va, so
spa™ € Va. Also sa~! bridges to LA, in w so sf = sa~ 7! bridges to LA, in
wt L. Tt follows that sg is in 'V and sBa™ is in Va™. Hence Vo = Va.

On the other hand sat = safa™~!. Use saff = sata~'t~!. Here

sat € Va = sata 'eV = sata lt7lev.

Finally safa™!isin Va™~!. So Va™~! = Va and V = Va, again contradicting
the assumption in this case.

Case C.2.2.2. Suppose wt is not in Vo and wt is not in Vo~ !.
Then wt is in R another component of 7 — {w}. Then sat is in K. Now



Vol. 82 (2007) Laminar free hyperbolic 3-manifolds 305
sBa™ = sa~ 't~ la™. But

wt ¢ Va~! = sa~! bridgesto LA, in w

= sa~'t~! bridgesto LA, in wr!

and sB is in V. Therefore sBa™ € Vo™ = R. Notice Ra~! # R because
R =Va" and Va~! # V. Use

m—1

sat = safo =sata 't ¢! and sata”! € Ra! # R.

Hence sato ™! bridges to LA, in a point < w in LA, (it is in [s, w]) and saB
bridges to LA in a point < wt ! in LA;. Hence

sap €V = sapa™ e Vo™l = V" = V",

contradiction. Notice that here it doesn’t matter whether Vo = Va~! or not.

s s
1 wp™!
wr—1 - oso 71 wr—! $————o saf
o 50
w sata”! w
sa:/
wt sp KY%4
ST
wTt
J wr el = wﬂ_la_l
s (a)

so (b)

Figure 17. (a) Case C.2.2.1, (b) Case C.2.2.3.

Case C.2.2.3. wt isin Vo~ !, see Figure 17 (b).
This implies Vo~ 't is a subset of Va~!.

Use sat = spa™ = sa~ 't la™ = safa!. Here

1

sa €V = sat € Ty(wr) =Va ' = sata” ! € Va2 # Va~l,

so it bridges to a point r in LA, with r < w in LA,. Hence saf is in V and
sefa™ isin Vo™ !, Hence Vo™~ ! = Va~! or Vo™ = V.
On the other hand sat = sBa™ isin Va~!, so

sa 't =B isin Vo 7" = va~l.
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1.-1

Then sp bridges to a point > w in LA;. But s8 = sa~'t~!, so sa~! bridges to a
point > wt in LA, which implies wtr € (w, s ). It follows that wta € (w, §)
and w,B_1 = wrtar Visin (wr~ !, s) and soisin ‘W and in V.

The following arguments use the strategy of case R.2:

Now wB~la~'y = wpisin (s, w) C ‘W and therefore

w,B_loz_l =wr a7t isin (soz_l, w) C Vol

Since sy = s, this implies that Wy = ‘W and wB'a~! is in a local axis for y
and hence so is w. Because 7 = y~7 and the local axis for y and t intersect
in w, it follows that these two axis are equal. In particular (LA;)y = LA, and
wB laly = wp™!, wBla~! are in LA,.

Since wrta = wﬁ_lt, then wta is in LoA;. If wra < wr~! in LA, then
wp™! = wrat™! < wr?in LA;. Also wr, wp e~ ! are in LA, and wr <
wB'a~! in LA,. Hence

wry < wﬂ_la_ly = wﬂ_l <wr 2 in LA, = p > 3q,

contradiction to |p — 2q| = 1.
If wra > wt~!in LA, then wrar ! = wﬂfl € (wr2, wr~"). Here use

1

(WTZ))/,BOlm = wWTaT € Tw(u)‘[) = Vo~ = w‘fzyﬂ c va—l’

because Vo™ = V. Therefore w2y bridges to v in LA; with v > w in LA,.
Hence wr?y < wp™! in LA, and as wp™' < wr~! we also obtain p > 3¢,
contradiction.

This rules out the case C.2.2.3 and hence finishes the analysis of case C.2.2,

wt~! € [s, w]. The next case is:

Case C.2.3. wrt € [s, w].
This implies that VT C V. The case is similar to case C.2.2.

Case C.23.1. wr ' e Vo !, wr™! ¢ Va.
This implies that Va~'t~! ¢ Va~l.
Here wr o isin V, wr et isin V so waBa ' = wha™ ! isin V. Also

1 1 1

wta ' e Vo' = w=wra 't eVaT! = wpa" ! € Va"?

which must be equal to V.
On the other hand sat = sBa”™. Here s € Vo and bridges to w in LA, SO
sat bridges to wt in LA, and sat € V. Also

sp=sa 't e Vva~! and sBa™ € Vo

It follows that Vo™ ~! = Va™~2, contradiction to V # Va.
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Case C.2.3.2. wr™!' ¢ Vo=, wr™! ¢ Va.

Use sat = spa’™ = safa’ !, In this case the point sa brides to w in LA, and
sat € V. Alsosa~! bridges to w in LA, and s = sa~ !t~ bridges wt ™! in LA,
SO

sB isin R =Ty(wr™") # Vo, Va~! = spa™ € Ra™ = V.

So in particular R # Ra.

On the other hand sata™' € Va~! and bridges to w in LA; so saf =
sata~ 7! bridges to wr™! in LA, and is in R. Then safa™ ! € Ra" ! =
Va~!. This would imply 'V = Va~!, contradiction.

The final case in C.2.3 is:

1

Case C.2.3.3. wr~! € Va.
Let [sa, r] be the bridge from s« to LA, with 7 in LA;. Then r > w in LA;.
Here we have to subdivide.

Situation L. 7 is in (w, wt™!).
Then st bridges to LA, inrt € (w, wr) and st € V. Hence

1

sata” ' ¢V = sata 't =saB € Va = safa" ! € Vo' = V = Va™.

On the other hand sBa™ = sa~'t~'a™. Here sa~'t7! is in Va so sfa’ is in

Va1 implying Va™ = Va™*! again a contradiction.

Situation IL. » = wr .

Here sat bridges to LA, in w hence st € Va and sat € V. So sat is in R,
another component of 7 — {w}. Also

sa 'V = sp=sa” v e Va = spa™ € Va"t! = R =7vVa"t!

On the other hand sefa™ ™! € Va™*!, so sap € Va?. Now Va? # Va so
Va1 is contained in V. Hence sata~! = saft is in V. This would imply sa is
in Va, contradiction to the first conclusion in this case.

Situation IIL. wr~! < r in LoA;.
This is a little more tricky. Here sat € Va. Also

wﬂ_l =wrar' € Va C W.

Now use wﬁ’la’l = wt 'a~'r. Here

I~ e (w, s)

L—wrla™lr e (s, wt) C W.

wr e (w,sa) = wr~

= wﬂflof
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So wB~'a~! and wB™! are both in ‘W, with the implication as in case C.2.2.3 that
Wy = W and y leaves LA, invariant. As w8 'a™! and wp™' = wrar~! are in
LA then wrw is in LA, as well.

The proof is now analogous to previous arguments. If

1

w<wr ! <wre = wr <wr?<wrar”! = w,B_l.

But
w,B_la_]y = w,B_l and w,B_loz_1 € (s, wr)

implies as before that p > 3¢, contradiction. Same arguments show that wr~! =

wta implies p > 3q.
On the other hand if w < wrte < wr™!, then wr™!' < wrar™' = wp~! <
wt ™2 all in LA;. Here sat € Va. Now spa” = sa~ 't~ 1a™. Also

1

sa ' gV = sa 't e Va = sBa™ € Vo™ = Va = Vo™ orV = Va™.
Now use wr?ypa™ = wrat. Here

wt < wrtat < w in LA = wrtat €V, wrzy,B eVa " =V.

Sowt?y < wp~! < wr™! < w, implying again p > 3¢, contradiction.

This finishes the analysis of case C.2.3, wt € [s, w] and so proves that the case
Vo # 'V cannot occur. From now on in case C assume:

Case C.3. Wr = Wand Va = V.

Since there is no other fixed point of « in (s, w), this immediately implies there
is a local axis £, of « contained in 'V with w as an ideal point of L 4A,. We stress
that at this point we do not yet have an axis for 7, because there may be other fixed
points of T in (s, w).

1

Lemma 7.1. so, sa~ ' € W, so s, sa~! are not in [s, w).

Proof. Suppose first that sa is not in ‘W. Then
sa”l e (s,w)ycw = sa 't e we = w.

So 58 € W and bridges to [s, w] in a point r which is in (s, w]. Then sga™ bridges
to [s, w] in ra™ and sBa™ is in ‘W. Therefore st is in ‘W and s« is in Wr—! = W,
contradiction.

On the other hand suppose that sa~! ¢ W. Then sa € (s, w]. Also s =
sa1t! & ‘W, so bridges to [s, w] in s. Then sB8a™ bridges to [sa™, x] in sa™.
Since sa™ ¢ ‘W this implies sfa”™ ¢ W, therefore sat ¢ W. But then s« is not in
‘W, contradiction. This finishes the proof. O
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We conclude that sa, sa~! are in W N V. Let sa bridge to r in [s, w], hence

r e (s,w)andsa”! bridges to [s, w] in a point ¢ also in (s, w).
Let z be the fixed point of  in [s, w] which is closest to w. Then z may be equal
to s, but is not w. Let U = T,(w). One important goal is to prove that Ut = U.

Lemma 7.2. Let U = T,(w). Then Ut = U. If 7 # s then zy, wy € W, and z«,
za”! ¢ (2, w).

Proof. If z = s then U = ‘W and the result follows from case C.1. For the rest of
the proof of the lemma assume that s # z.

We first analyse the possibility that zy € W. As « fixes s then zy~
If zy = z, then zk = z, contradiction.

Suppose that zy or zy ~!isin [s, z). Thenas sy = s, it follows that z is in a local
axis for y and zy9 # z, contradiction to z fixed by t. Hence zy, zy ! & [s, z].

Let [zy, r] be the bridge from zy to [s, z]. Notice that r is in (s, z), because
zy,zy ! are not in [s, w]. Then

I ¢ W also.

rels,zlNls,zy] = ry_1 e s, z].

Ifry =r,thenrt? =ry=7 =r. But([s, z])t = [s, 2], so this would imply r7 = r.
Together these imply rk = r, contradiction to s the fixed point of « in [s, w] which
is closest to w.

We conclude that ry # r. But as sy = s, this implies that r is in a local axis
LA, of y. Compute ry"?, n € Z. Assume without loss of generality that ry"9
moves away from s as n — +o0o. Then

ry"™ =rt7™" ¢ [s,w], foralln,and ry"? — c € (s,z] as n — +o0.

Hence ¢y = ¢ and also ¢t = ¢, contradiction.

This contradiction shows that zy € W is impossible. Notice that if zy is not in
W, then zy separates Wy from s and hence from ‘W. It follows that Wy N'W = @,
so wy ¢ W. This proves one assertion of Lemma 7.2.

We now consider where zar and zaz~! are. The proof of case C.2 shows that they
are both in V. Remember that for the rest of the proof s # z.

Situation I. Suppose first that zo € (z, w).

Use ot = tyBa™, applied to z. Here za is in U so zat is in Ut. Suppose first
that zo~! is not in Uzr. Then zat bridges to LA, in a point in [z, w] and hence
a = zato ™ bridges to LA, in a point in [z, w] and a is in U. Here

m 1

ata ™ =zyB=zya 't = zyaTl e Ur £ U
Again zya~! bridges to £ A, in a point in [z, w] and it follows that zy is in U, hence

zy € W contradicting Wy N'W = (4.
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Figure 18. (a) Situation I, (b) Situation III.

The remaining possibility is Ut = T,(za~'), so in particular Ut # U, see
Figure 18 (a). Consider wt™'a~!7. The point wz ! is not in U, hence it bridges
to LA, in a point not in (z, w]. Therefore wro~! bridges to LA, in a point not in
(za™!', w], sowralisin Tz(zafl) = Urt. Hence

wr el e = wp a7 isin UT? £ Ur, Ti(s).
Notice that

(T;(s))t = T;(s), since st =, so T,(s) # ur.

In particular wB ™ 'a~! isin ‘W and also bridges to L4, in a point which is in [z, w].

Then wpB ™! bridges to LA, in a point which is in [zer, w] so in particular wB ™! is in
U c ‘W. But then wp~'a~! and wa ™! are both in U, contradicting Wy N'W = @.
This finishes the analysis of possibility za € (z, w).

Situation II. Suppose za ™! € (z, w).

Consider first the case when za € Ut~ !, that is T,(zat) = T,(wr~!). This is
very similar to situation I, second part. Since zo is not in U, this in particular implies
Ut # U. Here wt ¢ U, hence it bridges to LA, in a point which is not in (z, w].
It follows that wta bridges to LA, in a point which is not in (za, w]. This implies
that wra is in T} (zo) = T (wt™"). Hence

w,B_1 = wratr ! isin Tz(w‘c_z) # T, (s), Tz(w'l:_l).

The first fact means that wB ™! is in ‘W. The second fact means that wp ™! is not in
T.(za), hence wB ™! bridges to L 4 in a point contained in [z, w]. Hence wB '™}
bridges to LA, in a point contained in [z ™!, w] and is in W. As wp~la"ly =
wpB~!, this would imply Wy = ‘W, again contradiction. Hence this cannot occur.
Now we know ze is not in T (wz~!). The point z8 = za~ 't~ !isin T (wt ™),
hence it bridges to LA, in a point contained in [z, w]. It follows that zBa™ bridges
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to LAy in a point contained in [za™, w]. But

1 1

w"eU = pameU = zy lareU or zy 'w e T(wr™h

and bridges to £, in a point in [z, w]. It follows that zy ! bridges to £ A, in a
point in [za~1, w], hence z)/*l € U C W, impossible.

We conclude that situation II cannot occur. This proves the last 2 assertions of
the Lemma 7.2. It also implies that the following situation must occur:

Situation IIL. za ¢ (z, w), za~! & (z, w), see Figure 18 (b).

What is left to prove of Lemma 7.2 is that Ut = U. So suppose that Ut #= U.

Here zo ™! bridges to [z, w] in a point  which is in (z, w). Also z« bridges to ¢
in [z, w] with ¢ also in (z, w).

The point wy is not in ‘W, so itis in T;(s) and bridges to [wr!, z] in z. Hence
wyp bridges to [wr~!, z8] in zB. But z8 = za~ 't~ ! bridges to [z, wt '] inrr L.
Then wy g bridges to [z, w] in z (this uses Ut # U!). Then

wyBa’™ bridges to [z, w] inapointin (z, w) so wyBa™ € U.

On the other hand wz ! bridges to [z, w] in z so wt o bridges to [z, w] in a
point in (z, w) and wt e is in U. Then wt 't is in Uz. Of course this implies
Ut = U, contrary to assumption.

So in any case we conclude that Ut = U. This finishes the proof of Lemma 7.2.

O

This lemma is very useful. Since there is no fixed point of 7 in (z, w) and
T.(w)t = T;(w) it follows that there is a local axis £ of T containedin U = T, (w)
with an ideal point z.

Lemma 7.3. w is not in L A;.

Proof. Suppose not, that is, w € LA;. Notice that L is a local axis for T and w
is a fixed point of .

1 is not

Claim. At least one of the components of T — {w} containing wt, wr~
invariant under «.

We first prove the claim. Suppose the claim is not true. If LA, is also a local axis
for k, that is (LA;)k = LA, then we can apply Lemma 5.1 and prove the claim.
Suppose then that ¥ does not leave LA, invariant or equivalently (L#;)y is not
equal to LoA,. If LA, were an axis for 7 (as opposed to a local axis), then t would
act freely and so would « and x would leave L4, invariant, contrary to assumption.
It follows that L4 is not properly embedded and has limit points in 7. In the same

way « does not act freely and it has a fixed point r. Then r bridges to LA in a
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point v. Here 7 = r bridges to vt in L, hence vt = v and v is a limit point of
LA.

Let s be the point of [p, v] which is closest to v and fixed by «. It might be that
s = v. Let € = T;(w), which contains £L4;. First we show that Cy is not equal
to C. Suppose by way of contradiction that Cy = C. First consider the case that
s = v. Then € = T,(w) and

Cy =€, Ct = C implies Ck = C,

and consequently « has a local axis in 7, (w). As seen before this axis must be equal
to LA, which was dealt with before. Suppose then that s, v are distinct. Let 7 in
[s, v] be the closest point to v which is fixed by y. Then

ttP =ty ¥ =r and ([s,v])T = [s, v] imply tt =¢.

Therefore tk = t and by the defining property of s then ¢ = s. It follows that y fixes
no point in (s, v]. Then if Cy = C it follows that y has a local axis L, in C with
ideal point 5. But again ([s, v])y? = [s, v] and (s, v] intersecting LA, implies the
existence of a fixed point of y in (s, v], contradiction.

We conclude that Cy is distinct from € and consequently it is disjoint from C as
we wished to prove. We continue the proof of the claim. Let

Uy =Ty (wr), Uy =Ty(wr ).

The assumption of the claim is that U;a = U; fori = 1, 2. There are two options:

Option 1: v is a forward limit point. Suppose v as above is the limit of wt” with
n — +00.

In this case v is in U. Notice that U, C € and U; is not contained in C, but
since Cy N C is empty it follows that Cy is contained in U;. Here we use

1

wr Yyt lar = wr Ty lar = we B

Vinvariantand wt ~'isin U,. Hence wr‘lﬂamisin Ura™ = Us.
2y~lisin €y C U;. Therefore

Now S leaves wt ™~
On the other hand wt 2 is in C so wt~

1 1

wr‘zy_ o isin U; and wt‘zy_ at isin Uit C Uj.

This is a contradiction and cannot happen.
Option 2: v is a backward limit point. Suppose that v as above is the limit of wz”
with n — —oo0.

In this case v is in U;. Notice that U; C C and U3 is not contained in C but Cy
is contained in U,. We use wat = wryBa™. First wat is wt which is in U . We
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now consider the right side. Here wt isin U; C € so wty isin Cy C Ut~ !. The
set Uo7 ~! is invariant under 8. Therefore

wtyB isin Urt~! € U» and wryBa™ isin Ura™ C Us.

This contradicts that wa T is in Uq.
These two options show at least one of Ui # U; or U # U» has to hold.
This proves the claim. We now continue the proof of Lemma 7.3.

Situation I. wr~! € (z, w).

Here V = Ty (z) = T, (wt ™) is invariant under o. By the claim above the set
R = Ty, (wt) is not invariant under «. Notice that R« is not equal to 'V either.

Use wat = wt = wrafa™ . Here

WTeR = wiaeRa#V = wrtat € RT C R

= c=wrata ' € Ra~! #* R.
So ¢ bridges to w in LA, and then wrata~'t~! = wrap bridges to wr ! in LA,
and is then in V. Finally wtaﬂam_l isin Va™~! = V. This is not R, contradiction.

Situation II. wt € (z, w).

Here V = T, (wt) = T, (z) is invariant under «. In this case let R = T, (wz 1),
which is not invariant under . Use wt~'at = waBa™ . Then wr~!isin R, so
wt e is not in R or 'V and bridges to w in L. Then wr~'at bridges to wt in
LA, and is in V. It follows that

—1 1-m 1_-1

wTt aTto =woef =wh =wrta ‘T isin V.
Hence wra ™! is in V. This implies
wie ' <wrt<w = wr<wrta<w = w<wtar | = w,B_1 <wr L

In particular wB ™! is in R and wp~'a~!is in Ra~! which is not equal to V. Also
wBla™! = wrla~ 7. Here wr~'a~!is in Ra~! and bridges to w in LA, and
sowt lal7 bridges to wt in LA, and soisin V. As 'V is not equal to Ra~! this
is a contradiction.

We conclude that situation II cannot happen either. This finishes the proof of the

lemma. U
Now we know that w is not in JLA;.

Lemma 7.4. 7z is not in L A,.
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Proof. Suppose not, that is, 7 € LAg. This implies that either za or za™! is in
(z, w). Then Lemma 7.2 implies that s = z.
Suppose first that za € (z, w]. So za™' ¢ T.(w) = U. Use zat = zBa"™ As

za € U, then zat is in U also. Then

1y-1 ¢ U = zP bridgesto [z, w]inz

za '¢U = za~
and zBa™ bridges to [za™, w] D [z, w] in za™. It follows that zBa™ is not in U,
contradiction.

Suppose now that za~! is in [z, w]. Then za~!'t~! = zB is in U and bridges
to [z, w] in a point ¢ which is not z. Then zB«™ bridges to [z, w] in ta™ and zBa™
is in U. On the other hand z« is not in U and so zat is not in U either. This is a
contradiction.

This finishes the proof of the lemma. o

1 1

Summary in case C.3. So far we have proved: suppose that woe = w, sk = s, no
fixed points of ¥ or « in (s, w). Let z € [s, w), the closest to w with zt = z. Then

(T;(w)t =T (w), (Tw(2)a =Ty (2).

If LA, LA are the corresponding local axes of T and « then 7 & LAy, w € LAL.

Case C.3.0. Suppose that LA, N LA, has at most one point.

This is simple. Let [c, d] be the bridge from LA, to LA,, Where ¢ = d if the
intersection is one point. First notice that ¢ is a point in L+, and not a limit point.
The reason is: if ¢ is equal to z then z is a limit point of L4, hence it is fixed by
« contradiction to no global fixed point. Suppose that ¢ were another limit point of
LA As LA N LA, IS at most one point, this would imply that ¢ separates w
from z and contradicts the fact that z is the closest fixed point of t to w. This shows
that ¢ is an actual point of L+, and similarly d is actual point of £ A, .

We do the proof for ¢ # d, the other is very similar. Use 2t lat = zaBa
The right side is zat. Here zo bridges to L+, in do, hence bridges to LA, in c.
So zat bridges to LA in cT.

Hence zat bridges to LA, in d so zata”! bridges to LAy in do~ ' and to LA,
in c. Sozata~'t™! = zap bridges to LA, in ¢! hence to LA, in d. Finally
zafa ! bridges to LA, in da™~! hence to LA, in c. Since ¢ # ct this is a
contradiction.

m—1

Case C.3.1. Now assume LAy N LA, has more than one point. We will use the
analysis done in case B.

If Uy is not equal U then we use the proof of case B.1.3 — which was also done
for the case of local axis of «. This disallows this case.
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The remaining case is that Uy is equal to U. As explained in case B.1.4 this
implies y leaves LA, invariant. Here we consider the intersection 8 = LA, NLA ;.
First notice that z is not in B as z is not in LA,. Also it was shown in case C.3.0
that z is not a limit point of 8. If LA is not properly embedded on the other side
let v be the other ideal point of LA;. Then

vt =v, (TyW)a =Tyw), (T(w)r =T (w).

Also (w, v) has no fixed points of . Suppose that v is in LA,. Then (w, v) also has
no fixed points of «. But then v has the same properties as z and this case is ruled out
by Lemma 7.4. It follows that v is not in L A,. So if LA has another ideal point v,
then B is [r, #] with ¢ an actual point in L A;.

Now we can apply the analysis of case B.1.4 which was also done for @ with a
local axis. The analysis rules out this situation.

This shows that case C.3.1 cannot happen either.

This finishes the proof of the main theorem.

8. Remarks

Recent activities. There has been a flurry of activity in this area recently. We describe
the results in more detail here and how they relate to the results in this article.

Calegari and Dunfield [Ca-Du] approached the existence problem for foliations,
laminations and pseudo-Anosov flows from a different point of view. Following ideas
and results of Thurston [ThS], [Th6] concerning the universal circle for foliations
they showed that a wide class of essential laminations also possess a universal circle.
One consequence is that tight essential laminations with torus guts (see [Ca-Du]
for detailed definitions) have universal circles. Tight means the lifted lamination
to the universal cover has Hausdorff leaf space. Hence the fundamental groups
act on the circle. Under certain conditions related to orderability of a finite index
subgroup, then the action lifts to a non trivial action in R and they obtain nonexistence
results for these types of laminations. For example they can show that the Weeks
manifold does not have Reebless foliations, pseudo-Anosov flows or general tight
essential laminations. The results on manifolds (eg the Weeks manifold) are computer
assisted and so far there are computer capability restrictions to extending them to
other manifolds. In addition these results use heavily the tight hypothesis, except for
pseudo-Anosov flows.

A more recent article is that of Jinha Jun [Ju] who used the techniques of Roberts,
Shareshian and Stein to analyse Dehn surgery on the (—2, 3, 7) pretzel knot in S>. He
proved that there are infinitely many hyperbolic Dehn surgeries on this knot, which
yield manifolds without Reebless foliations.
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Another more recent result (October 2003) is from Kronheimer, Mrowka, Ozvath
and Szabo [KMOS]. This result is part of a very wide program to use techniques of
analysis, symplectic and contact geometry to analyse 3 and 4-manifolds. Results of
Eliashberg and Thurston [EI-Th] allow one to perturb a Reebless foliation to a tight
contact structure. Using this the above authors show that infinitely many hyperbolic
manifolds do not have Reebless foliations [KMOS]. In particular there are infinitely
many Dehn surgeries on the (—2, 3, 7) pretzel knot which satisfy this. The techniques
are extremely complicated and it is yet unclear whether they can be extended to study
essential laminations.

The tools and arguments in this article are more closely associated to those in
[RSS], in that both look at group actions on simply connected 1-dimensional spaces.
However, as we explained before there are 2 critical differences: the lack of transverse
orientability for general essential laminations and the lack of a useful group invariant
pseudo-metric in the leaf space, both of which were extremely useful in [RSS].

Open questions. There are a lot of interesting questions still open. First we discuss
some internal questions about the proofs in this article. The proof of the R-covered
case uses p > 3q for « orientation reversing. It would be useful to get a more general
proof — for instance showing that p must be equal to 4 or that p has to be even.
We obtained some preliminary results, but not conclusive. The same argument and
condition p > 3¢ are then used in various places of the article so it would be very
good to discover a more general proof.

Also the best possible result for the manifolds M)/, described in this article
would be the following: If p > ¢, p odd, m < —4 then the only possible essential
laminations are those coming from either stable or unstable lamination in the original
manifold M — these remain essential whenever |p — 2q| > 2. One way to interpret
such a goal is a rigidity result— all laminations in this manifold have to be of this type.
Notice that Brittenham’s results for Seifert fibered spaces [Br1] are of this form. Also
Hatcher and Thurston’s results for surgery on 2-bridge links [Ha-Th] are along these
lines.

Now on for more general goals: How far can the methods of this article be
generalized? Can they be used whenever M is a punctured torus bundle over S! with
Anosov monodromy and degeneracy locus (1, 2)? Probably a mixture of topological
methods and group action methods needs to be used. How about surface bundles,
where the surface has higher genus? What about other degeneracy locus as discovered
by Gabai—Kazez [Ga-Kal]?

Since essential laminations do not exist in every closed hyperbolic 3-manifold,
one looks for useful generalizations. One possible idea was introduced by Gabai in
[GaS]: alamination X in M, compact, orientable, irreducible is loosesse if X satisfies:

0) A has no sphere leaves, and
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1) for any leaf L of A, the homomorphism 71 (L) — w1 (M) induced by inclusion is
injective, and for any closed complementary region V', the homomorphism 71 (V) —
11 (M) induced by inclusion is injective.

Gabai [Ga5] conjectureg that under these conditions with M closed, then X is
a product lamination and M is homeomorphic to R3. One test case is the class of
manifolds M), studied in this article. When |p — 2g| = 1 the lamination coming
from the stable lamination has monogons. The leaves are either planes or have Z
fundamental group. The complementary region is a solid torus. Then in order to
check for the loosesse conditions one only needs to understand if leaves inject in the
fundamental group level.

Another direction involves general group actions on trees. When does a group acts
non trivially on a tree? Perhaps there are theoretical characterizations of when such
an action exists. Here we are in some sense dealing with one dimensional dynamics,
because a tree is a one dimensional object.
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