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1. Introduction

We analyse the existence question for essential laminations in 3-manifolds. The
purpose of the article is to prove that there are infinitely many closed hyperbolic 3-
manifolds which do not admit essential laminations. This gives a definitive negative
answer to a fundamental question posed by Gabai and Oertel when they introduced
essential laminations in [Ga-Oe], see also [Ga4], [Ga5]. The proof is obtained by
analysing certain group actions on trees and showing that certain 3-manifold groups
only have trivial actions on trees. There are corollaries concerning the existence
question for Reebless foliations and pseudo-Anosov flows.

This article deals with the topological structure of 3-manifolds. Two dimensional
manifolds are extremely well behaved in the sense that the universal cover is always
either the plane or the sphere (for closed manifolds), the fundamental group deter-
mines the manifold and many other important properties. Similarly for a 3-manifold
one asks: When is the universal cover R

3? When does the fundamental group deter-
mine the manifold? Are homotopic homeomorphisms always isotopic? An obvious
necessary condition is that the manifold be irreducible, that is, every embedded sphere
bounds a ball. As for 2-manifolds, the existence of a compact codimension one object
which is topologically good is extremely useful. A properly embedded 2-sided sur-
face not S

2, D
2 is incompressible if it injects in the fundamental group level [He]. A

compact, irreducible manifold with an incompressible surface is called Haken. Fun-
damental work of Haken [Hak1], [Hak2] and Waldhausen [Wa] shows that Haken
manifolds have fantastic properties, answering in the positive the 3 questions above.

But how common are Haken 3-manifolds, that is, how common are incompressible
surfaces amongst irreducible 3-manifolds? In some sense they are not very common.
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Recall that Dehn surgery along an orientation preserving simple closed curve δ is the
process of removing a tubular neighborhood N(δ) (a solid torus) and glueing back
by a homeomorphism of the boundary – which is a two dimensional torus T1 [Rol],
[Bu-Zi]. The surgered manifold is completely determined by which simple closed
curve in T1 becomes the new meridian, that is, which curve of T1 is glued to the null
homotopic curve in the boundary of N(δ). Hence this is parametrized by a pair of
relatively prime integers (q, p), corresponding to the description of simple closed
curves in T1. When viewed this way, the set of relatively prime (q, p) is the Dehn
surgery space – a subset of Z

2 ⊂ R
2. The same can be done iterating the process

doing Dehn surgery on links [He], [Rol], [Bu-Zi]. Notice that all closed, orientable
3-manifolds can be obtained from S

3 by some Dehn surgery on an appropriate link in
S

3 [Rol]. So one can interpret how common a property is by verifying how many of
the Dehn surgered manifolds have that property. Along these lines some of the many
results on incompressible surfaces are: If K is a two bridge knot in S

3 then almost
all Dehn surgeries on K yield manifolds without incompressible surfaces [Ha-Th].
The same is true for any knot K in a manifold M so that M − K does not have
any closed incompressible surfaces [Hat1]. Notice that there are also results on the
other direction: for example Oertel [Oe] proved that for many star links in S

3, then
any non trivial Dehn surgery yields a manifold with incompressible surfaces. There
are similar results for Montesinos knots [Ha-Oe]. Basically a lot of it depends on
whether the complement has closed incompressible surfaces or not. In many cases
the complement does not have such surfaces, yielding the non existence results for
most Dehn surgered manifolds.

This amongst other reasons led to the concept of an essential lamination as intro-
duced by Gabai and Oertel in the seminal paper [Ga-Oe] of the late 80s. A lamination
is a foliation of a closed subset of the manifold. Roughly a lamination in a closed
3-manifold is essential if it has no sphere leaves, no tori leaves bounding solid tori,
the complement of the lamination is irreducible and the leaves in the boundary of
the complement are incompressible and end incompressible in their respective com-
plementary components [Ga-Oe]. Gabai and Oertel proved the fundamental result
that essential laminations have far reaching and deep consequences: the manifold M

is irreducible, its universal cover is R
3, leaves of the lamination inject in the funda-

mental group level, efficient closed transversals are not null homotopic; and there are
other consequences [Ga-Ka3]. In addition manifolds with genuine essential lamina-
tions satisfy the weak hyperbolization conjecture [Ga-Ka4]: either there is a Z ⊕ Z

subgroup of the fundamental group or the fundamental group is Gromov hyperbolic
[Gr], [Gh-Ha]. Genuine means that not all complementary regions are I -bundles, or
equivalently it is not just a blow up of a foliation. Brittenham also proved properties
concerning homotopy equivalences for manifolds with essential laminations [Br2].

In addition essential laminations are extremely common: For example if K is a non
trivial knot in S

3 then off of at most two lines and a couple of points in Dehn surgery
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space, the surgered manifold contains an essential lamination. This is obtained as
follows: first Gabai constructed a Reebless foliation F in (S3 − N(K)) which is
transverse to the boundary [Ga1], [Ga2], [Ga3]. Reebless means it does not have a
Reeb component: a foliation of the solid torus with the boundary being a leaf, all
other leaves are planes spiralling to the boundary [Re], [No]. Then results of Mosher,
Gabai [Mo2] show that either there is an incompressible torus transverse to F or there
is an essential lamination in S

3 −N(K) with solid torus complementary regions. This
lamination remains essential off of at most two lines in Dehn surgery space [Mo2]
– see more on solid torus complementary regions later. Also Brittenham produced
examples of essential laminations which remain essential after all non trivial Dehn
surgeries [Br3], [Br4]. Roberts has also obtained many important existence results
concerning alternating knots in the sphere [Ro1], [De-Ro] (partly jointly with Delman)
and punctured surface bundles [Ro2], [Ro3].

So successful was the search for essential laminations that at first one might
wonder whether all manifolds that can (irreducible, with infinite fundamental group),
in fact do admit essential laminations. Given that an incompressible torus is an
essential lamination, the Geometrization conjecture [Th2] suggests that one should
only have to analyse Seifert fibered spaces and hyperbolic manifolds [Sc], [Th2]. The
Geometrization conjecture may well have been proved at this point: after this article
was written Perelman announced a proof of this conjecture [Pe1], [Pe2] – this is being
very carefully scrutinized by the experts at this point.

The situation for Seifert fibered spaces has been completely resolved: Britten-
ham produced examples of Seifert fibered spaces which are irreducible, have infinite
fundamental group, universal cover R

3, but which do not have essential laminations
[Br1]. Naimi [Na], using work of Bieri, Neumann and Strebel [BNS], completely
determined which Seifert fibered manifolds admit essential laminations.

For hyperbolic 3-manifolds there were two fundamental open questions:
1) (Thurston) Does every closed hyperbolic 3-manifold admit a Reebless foliation?
2) (Gabai-Oertel [Ga-Oe], see also [Ga4], [Ga5]) Does every closed hyperbolic

3-manifold admit an essential lamination?
In 2001 question 1) was answered in the negative by Roberts, Shareshian and

Stein [RSS] who produced infinitely many counterexamples. The goal of this article
is to answer question 2) in the negative. We now proceed to describe the examples.

Basically one starts with a torus bundle M over the circle and then performs
Dehn surgery on a particular closed curve. Let φ be the monodromy of the fibration
associated to a 2 by 2 integer matrix A, so that A is hyperbolic. Let R be a fiber which is
a torus. There are two foliations in R which are invariant under the monodromy φ, the
stable and unstable foliations. The suspension flow in M induces two foliations in M

with leaves being planes, annuli and Möebius bands. Suppose there is a Möebius band
leaf. Blow up that leaf, producing a lamination λ with a solid torus complementary
component with closure a solid torus with core δ and with some curves η removed from
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the boundary. The curves η are called the degeneracy locus of the complementary
region of the lamination [Ga-Ka1]. One can think of η as lying in the boundary of
N(δ), which is a two dimensional torus. Let (1, 0) be the curve in ∂N(δ) which
bounds the fiber in M − N(δ). Under an appropriate choice for the curve (0, 1) of
∂N(δ) then η is represented by (1, 2). Do Dehn surgery along δ. If ξ is the new
meridian (the Dehn surgery slope), then results of essential laminations [Ga-Oe],
[Ga-Ka1] show that the lamination λ remains essential in the Dehn surgery manifold
Mξ if the intersection number of ξ and η is at least 2 in absolute value. If ξ is
described as (q, p) then this is equivalent to |p − 2q| ≥ 2. Therefore the open cases
for essential laminations are |p − 2q| ≤ 1.

For simplicity of notation we omit the explicit dependence of M on φ. It is always
understood that M depends on the particular φ.

In a beautiful and fundamental result, Hatcher [Hat2], showed that if p < q then
the Dehn surgery manifold Mξ = Mp/q has a Reebless foliation. This is done via an
explicit construction involving train tracks and branched surfaces. In 2001 Roberts,
Shareshian and Stein considered a particular type of monodromy, namely generated
by the matrix

A =
[

m −1
1 0

]
, m ≤ −3.

The eigenvalues of A are negative. Consider the point (0, 0) in R
2 and its pro-

jection O to the fibering torus R. Let δ be the closed orbit of the suspension flow
through O. Because the eigenvalues are negative, the leaf of the stable foliation
through O is a Möebius band. When it is blown open into an annulus the degeneracy
locus is (1, 2) as described above. In a groundbreaking work, Roberts, Shareshian
and Stein [RSS] considered Dehn surgery on these manifolds and proved a wonderful
result: if p is odd, m is odd and p ≥ q then Mp/q does not admit Reebless foliations.
In this article we consider a subclass of these manifolds and prove that they do not
admit essential laminations:

Main Theorem. Let M be a torus bundle over the circle with monodromy induced by
the matrix A above. Let δ be the orbit of the suspension flow coming from the origin
and M(q,p) = Mp/q be the manifold obtained by (q, p) Dehn surgery on δ. Here
(1, 0) bounds the fiber in (M − N(δ)) and (1, 2) is the degeneracy locus. If m ≤ −4
and |p − 2q| = 1, then the manifold Mp/q does not admit essential laminations.

The manifold (M − δ) is atoroidal [Th4], [Bl-Ca] and fibers over the circle with
fiber a punctured torus. By Thurston’s hyperbolization theorem in the fibering case
(M − δ) has a complete hyperbolic structure of finite volume [Th3]. By Thurston’s
Dehn surgery theorem Mp/q is hyperbolic for almost all p/q [Th1]. Therefore:

Corollary. There are infinitely many closed, hyperbolic 3-manifolds which do not
admit essential laminations.
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Another immediate corollary is:

Corollary. If m ≤ −4 and |p − 2q| = 1, then the manifolds Mp/q above do not
admit Reebless foliations.

About half of this result has already been established by Roberts, Shareshian and
Stein [RSS], namely the situation when m is odd. See more on m odd later on.
Another consequence is:

Corollary. If m ≤ −4 and |p − 2q| = 1 then Mp/q does not admit pseudo-Anosov
flows.

For basic definitions and properties of pseudo-Anosov flows consult [Mo1], [Mo2].
This result provides infinitely many hyperbolic manifolds without pseudo-Anosov
flows. We stress that Calegari and Dunfield [Ca-Du] previously obtained conditions
implying manifolds do not admit pseudo-Anosov flows and showed for example that
the Weeks manifold does not admit pseudo-Anosov flows.

We remark that Dehn surgery on torus bundles over the circle has been widely
studied, for example: a) Which surgered manifolds have incompressible surfaces
[Fl-Ha], [CJR]; b) virtual homology [Bk1], [Bk2]; c) geometrization [Jo], [Th1],
[Th2], [Th3], [Th4].

Finally we remark that there are algorithms to decide these existence questions.
Namely Jaco and Oertel [Ja-Oe] produced an algorithm to decide whether a 3-
manifold has an incompressible surface. Recently Agol and Li [Ag-Li] did the same
for essential laminations. These are theoretical algorithms and so far for laminations
there are no manifolds which can be shown not to have essential laminations using
the algorithm.

The proof of the main theorem is as follows: assume there is an essential lamina-
tion in Mp/q . This produces a non trivial action of the fundamental group of Mp/q in
a tree (see preliminaries section). We then show that there cannot be any such action.

We stress that the results in this article provide the first and so far the only known
examples of hyperbolic manifolds without essential laminations of any kind.

The results of this article mean that the search for structures more general than
essential laminations, but still useful takes an added relevance. One idea previously
proposed by Gabai [Ga5] is that of a loosesse lamination. We will have more com-
ments on that in the final remarks section.

The article is organized as follows: in the next section we describe how an essential
lamination produces a non trivial group action on a tree. We also give background
material on group actions on trees and produce an explicit presentation of the group
which will be analysed: this is the fundamental group of the Dehn surgered punctured
torus bundle. In Section 3 we present the outline of the proof of the main theorem.
The proof is done by contradiction assuming there is a non trivial action of the group
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on a tree. The analysis is done in a case by case analysis depending on how certain
individual elements of the group may act on the tree. The outline is fairly explicit
and presents clearly what is done in much more detail in Sections 4 through 7. Since
the arguments in Sections 5, 6, and 7 are extremely involved, the outline also serves
as a good reference source while one reads these later sections. In Section 4 we deal
with the case that the tree is the real line. This is very simple, but even here some
fundamental ideas come up. In Sections 5, 6 and 7 we analyse 3 cases of the proof
depending on whether certain generators of the group act freely on the tree or not. In
each case the arguments little by little produce a structure on the tree, which turns out
to be incompatible with the action. These sections complete the proof of the main
theorem. In the final section we mention recent activity in this area and also comment
on open problems for future analysis.

We are very thankful to Rachel Roberts who introduced the idea of considering
group actions in the foliations case and other ideas. We also thank the referee for
very good suggestions concerning the organization of this article.

2. Preliminaries

The proof of the main theorem is done by looking at group actions on trees. For
simplicity first consider the case of a Reebless foliation F [No]. Novikov proved
that leaves of a Reebless foliation are incompressible and transversals to the foliation
are never homotopic rel endpoints into a leaf [No]. Hence the lift to the universal
cover F̃ is a foliation by planes or spheres and its leaf space is a simply connected
1-dimensional manifold, which may not be Hausdorff. The fundamental group of
the manifold acts on this object. Roberts et al analysed group actions on simply
connected non Hausdorff 1-manifolds (and also on trees) and they ruled out the
existence of Reebless foliations [RSS] in a class of manifolds. Notice that the leaf
space of the lifted foliation F̃ is an orientable object and it makes sense to talk about
orientation preserving homeomorphisms.

Now consider essential laminations. Let λ be an essential lamination on a 3-
manifold N . The results of Gabai and Oertel [Ga-Oe] imply that the lift λ̃ to the
universal cover is a lamination by planes in Ñ . We will modify λ if necessary to
eventually obtain a group action on a tree which is roughly the leaf space of the lifted
lamination λ̃. First, if there are any leaves of λ which are isolated on both sides,
then blow each of them into an I -bundle of leaves – this needs to be done at most
countably many times. Now λ̃ is a lamination by planes with no leaves isolated on
both sides [Ga-Oe].

Suppose L is a leaf of λ̃ which is non separated from another leaf F , that is,
there are Li leaves of λ̃ with Li converging to both L and F . We do not want that
L is not separated from some other leaf in the other side (the one not containing F ).
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If that happens, blow up L into an I -bundle of leaves. This can also be achieved
by a blow up in λ. Since there are at most countably many leaves non separated
from some other leaf, we can get rid of leaves non separated from leaves on both
sides. If needed use blow ups so that non separated leaves of λ̃ are not boundary
leaves of a complementary region of λ̃ (on the opposite side). After all these possible
modifications assume this is the original lamination λ.

Now define a set T∗ whose elements are: closures of complementary components
of λ̃ and also leaves of λ̃ which are non isolated on both sides. Then T∗ is an order tree
[Ga-Ka2], [Ro-St2], also called a non Hausdorff tree [Fe]. The fundamental group
π1(N) naturally acts on T∗. We now modify T∗ to produce an actual tree. If e is
any point of T∗ which is non separated from another point e′, then collapse all points
non separated from e together with e. This is not problematic since no such e is non
separated on more than one side and e also does not come from a complementary
region of λ̃. The collapsed object is now an actual tree T and the action of π1(N)

on T∗ induces a natural action of π1(N) on T . In our proof we will let N be the Dehn
surgery manifold Mp/q and we will analyse group actions of G = π1(Mp/q) on an
arbitrary tree T .

Since we will be looking at group actions on trees we now describe some basic
material about actions on trees. First of all let us stress that the trees here are only
topological trees. There is no well-defined metric in the tree which is invariant under
the action. The arguments are entirely topological. The reader should be aware that
the term tree in this article differs from some other sources – where a tree may mean
a simplicial tree or an R-tree (both of which are metric trees and actions preserve the
metric).

Notation. In the arguments of this article, group elements act on the right.

Definition 2.1. A group action on a tree T is nontrivial if no point of T is fixed by
all elements of the group.

A lot of results on group actions on trees are to rule out non trivial group actions
[Cu-Vo].

Given point a, b on a tree T let

(a, b) = {c ∈ T | c separates a from b}.
If a = b, then (a, b) is empty, otherwise it is an open segment. Let [a, b] be the union
of (a, b) and {a, b}. Then [a, b] is always a closed segment.

One fundamental concept here is the following:

Definition 2.2 (bridge). If x is a point of a tree T not contained in a connected set B,
then there is a unique embedded path [x, y] from x to B. This path has (x, y)∩B = ∅
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and either y is in B or y is an accumulation point of B. We say that [x, y] is the
bridge from x to B. Also we say that x bridges to B in y or that x bridges to y in B –
whether y is in B or not.

For example if T is the reals and B = (0, 1), x = 2, then the bridge from x to B is
[2, 1]. Notice that for trees, connected and pathwise connected are equivalent. One
common use of bridges will be: if x is not in a properly embedded line l (for example
an axis as defined below) let [x, y] be the bridge from x to l. The crucial property of
the bridge is that given x and B, the bridge is unique. In various situations this will
force some useful equalities of points. Another fundamental concept is:

Definition 2.3 (axis). Suppose that g is a homeomorphism acting freely on a tree T .
Then g has an axis Ag , a properly embedded line in T , invariant under g and g acts
by translations on Ag .

This is classical. Here y is in Ag if and only if yg is in (y, yg2), that is yg separates
y from yg2. Then it is easy to see that the axis must be the union of [ygi, ygi+1] where
i ∈ Z [Ba1], [Fe]. To obtain an element in Ag consider any x ∈ T . If xg ∈ (x, xg2)

we are done. Else there is a unique

y ∈ [x, xg] ∩ [x, xg2] ∩ [xg, xg2].
y is the basis of the tripod with corners x, xg, xg2 [Gr], [Gh-Ha]. A simple analysis
of cases using free action yields y is in the axis of g.

Another simple but fundamental concept for us is:

Definition 2.4 (local axis). Suppose l is a line in a tree T where a homeomorphism
g acts by translation. Then l is a local axis for g and is denoted by LAg . The local
axis may not be unique, the context specifies which one we refer to.

For example if g acts in R by xg = 2x, then R+, R− are both local axes of g

with accumulation point x = 0. Another characterization of local axis: x is in a local
axis of g if and only if xg separates x from xg2 (same definition as for axis except
requiring that g acts freely in that case). Another characterization: suppose xg is not
x and let U be the component of T − {x} containing xg. Then x is in a local axis of
g if and only if Ug ⊂ U.

Let x be a point in a tree T . A prong at x is a non degenerate segment I of T

so that x is one of the endpoints of I . Two prongs at x are equivalent if they share
a subprong at x. Associated to a subprong I at x there is a unique component U of
T − {x} containing I − {x}.
Notation. If x, y, z are elements in a tree we will write x ≺ y ≺ z if y separates
x from z, or y is in (x, z). We say that x, y, z (in this order) are aligned. Also
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x ≺ y � z if one also allows y = z and so on. Notice that this is invariant under
homeomorphism of the tree.

The following simple results will be very useful:

Lemma 2.5. Let x be a point in a tree T . Then two prongs I1, I2 at x are equivalent
if and only if the associated complementary components U1, U2 are the same.

Proof. If I1, I2 are equivalent, there is y in I1 − {x} also in I2. Then clearly y ∈ U1
and y ∈ U2, so U1 = U2. Conversely suppose U1 = U2. If I1 is not equivalent
to I2, then I1 ∩ I2 = {x} because T is a tree and it also follows that x separates I1
from I2. This would imply U1, U2 disjoint, contradiction. �

Lemma 2.6. Let T be a tree and η a homeomorphism so that there are two points
x, y of T so that x ≺ xη ≺ y ≺ yη or x ≺ y ≺ xη ≺ yη. Then x and y are in a
local axis of η.

Proof. We do the proof for the first situation, the other being very similar. Let U
be the component of T − {x} containing xη. Using x ≺ xη ≺ y this is also the
component of T − {x} containing y. Apply η, then U is taken to the component of
T − {xη} containing yη. Then Uη is contained in U and x is in a local axis. Apply
η−1 to y to get y is in a local axis as well. We stress the two local axes produced in
this way a priori may not be the same: there may be a fixed point of η in (x, y). �

Global fixed points. Here we consider the case that an essential lamination λ on N

would produce a trivial group action on a tree T .
Recall the notion of efficient transversal to a lamination: let η be a transversal to a

lamination λ. Then η is efficient [Ga-Oe] if for any subarc η0 with both endpoints in
leaves of λ and interior disjoint from λ, then η0 is not homotopic rel endpoints into a
leaf of λ. Gabai and Oertel showed that if λ is essential then any efficient transversal
cannot be homotoped rel endpoints into a leaf of λ. Also closed efficient transversals
are not null homotopic.

Lemma 2.7. If λ is an essential lamination in N then the associated group action of
π1(N) on a tree T as described above has no global fixed point and therefore is non
trivial.

Proof. Suppose on the contrary that a point x of T is left invariant by the whole
group. Look at the preimage of x in the possibly non Hausdorff tree T∗. There are 3
options:

1. x comes from a non singular, Hausdorff leaf E of λ̃. Then E is left invariant
by the whole group π1(N).
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2. x comes from the closure R of a complementary region of λ̃ in the universal
cover. Then R is left invariant by the whole group. In this case let E be a boundary
leaf of R.

3. Finally x may come from a non Hausdorff leaf E. Then the orbit of E under
π1(N) consists only of the non separated leaves from E.

By construction of the tree T above, these 3 cases are mutually exclusive. It
follows that in any of the 3 options there is at least one component B of Ñ −E which
does not contain any translate of E. In option 1) any component will do, in option 2)
choose the component not containing R − E and in option 3) choose the component
not containing leaves non separated from E.

Let A = π(E) where π : Ñ → N is the universal covering map. Suppose first
that A is not compact. Then it limits on some leaves of λ and there is a laminated box
where A intersects it in at least 3 leaves and the box intersects an efficient transversal
to λ. Lifting to Ñ so that the middle leaf is E then the other 2 leaves are not E (efficient
transversal) and one of them is contained in B producing a covering translate of E

in B, contradiction. The same is of course true if A intersects an efficient closed
transversal.

Now A is compact. If A is non separating, then it intersects a closed transversal
(transverse to A, not necessarily to λ) associated to g in π1(N) only once. Same
proof yields either Eg or Eg−1 in B, done.

Finally suppose that A is separating. Then C = π(B ∪E) is a compact submani-
fold of N which has A as its unique boundary component. For any g in π1(C) then
Eg is contained in B ∪E, so by hypothesis it must be E and therefore π1(A) surjects
in π1(C). As λ is essential then π1(A) also injects in π1(C) [Ga-Oe], so π1(A) is
isomorphic to π1(C). As C is irreducible [Ga-Oe], then Theorem 10.5 of Hempel
[He] implies that C is homeomorphic to A × I with A corresponding to A × {0}.
This contradicts the fact that A is the only boundary component of C. This finishes
the proof of the lemma. �

Remark. Notice that leaves of essential laminations may not intersect a closed
transversal. For example this occurs for separating incompressible surfaces. It also
occurs for leaves of Reebless foliations which have a separating leaf (which necessar-
ily must be a torus or Klein bottle) – there are many examples of these. So Reebless
foliations which are also essential laminations need not be taut foliations!

The group. We now produce an explicit presentation of the group which will be
analysed. The group is the fundamental group of the Dehn surgery manifold Mp/q .
Start with M the torus bundle over the circle with monodromy induced by

A =
[
m −1
1 0

]
where m ≤ −3.
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For notational simplicity the dependence of M on A is omitted. The original
fibering torus is denoted by T 2. The eigenvalues of A are

m ± √
m2 − 4

2

which are both negative and the matrix is hyperbolic. The eigenvector directions
produce two linear foliations in R

2 with irrational slope which are invariant under A.
They induce two foliations in the torus T 2. Since A is integral it induces a homeo-
morphism φ of T 2, which leaves the foliations invariant. Let O in T 2 be the image of
the origin of R

2. Let M be the suspension of φ and let F be (say) the suspension of
the stable foliation of T 2. Then F has leaves which are planes, annuli and Möebius
bands. Identify T 2 with a fiber in M and let δ be the orbit through O, which is a
closed orbit intersecting T 2 once. Since the eigenvalues of A are negative, the stable
leaf containing δ is a Möbius band. We do Dehn surgery on δ. We first determine the
fundamental group of M − N(δ). To do that let

D = N(δ) ∩ T 2 (a disk), V = T 2 − D (a punctured torus).

Choose a basis for the homology of ∂N(δ) = T1, which is also a torus. Let (1, 0) be
the curve in T1 bounding the fiber V of M − N(δ). Blow up the leaf of F through δ.
It blows to a single annulus and the complementary region is a solid torus with core δ.
The completion of the complementary region is a solid torus with a closed curve in the
boundary removed. The removed curve is the degeneracy locus of the complementary
component [Ga-Ka1]. Since the leaf of F was a Möbius band, the degeneracy locus
intersects the curve (1, 0) twice. Choose the curve (0, 1) so that the degeneracy
locus is the curve (1, 2) in this basis. After the blow up, the foliation F becomes a
lamination λ with a single complementary region, which is a solid torus.

Let now Mp/q be the manifold obtained from M by doing (q, p) Dehn surgery
on δ. By results about essential laminations, the lamination λ remains essential in
Mp/q if |p − 2q| ≥ 2 [Ga-Oe], [Ga-Ka1]. Let γ be the curve (1, 0) in T1 and τ be
the curve (0, 1). The degeneracy locus is a curve associated to γ τ 2. Notice there
are two tori here: one which is a fiber of the original fibration (here denoted by T 2),
another which is the boundary of N(δ) (here denoted by T1). The Dehn surgery
coefficients refer to T1.

Suppose the disk D above is a round disk of radius ε sufficiently small. The
universal abelian cover of T 2 − D is the plane with disks of radius ε around integer
lattice points removed. Let E be the one around the origin. We pick 4 points in ∂E:

a = (−ε, 0), b = (0, −ε), c = (ε, 0) and d = (0, ε),

see Figure 1 (a). Let a′ be the image of a under A, etc., see Figure 1 (b).
The image of ∂E under A is an ellipse which can be deformed back to ∂E, see

Figure 1 (b). Notice b′, d ′ are in the x axis and d ′ = a.
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Let the image of a in T 2 − D be the basepoint of the fundamental group of
M − N(δ) for simplicity still denoted by a and likewise for b, c, d. Let l be an arc
along the image of ∂E under A, going counterclockwise from d ′ to a′.

a

b

c

d

(c)

b′

d ′

c′

(a)

a′
(b)

τ−1ατ

α

β

τ−1βτ

Figure 1. Computing the fundamental group of M − N(δ).

We pick a basis for π1(T
2 − D): Let α = ac ∗ l1 (see Figure 1 (c) where the

arc ac ⊂ ∂E is traversed in the counterclockwise direction and l1 is parametrized as
{(t, 0) | ε ≤ t ≤ 1 − ε}. Here ∗ denotes concatenation of arcs, where ac is traversed
first and then l1. Let also

β = adclo ∗ l2 ∗ baclo,

where l2 is parametrized as {(0, t) | ε ≤ t ≤ 1 − ε}, and the subscript “clo” means
the arcs are traversed clockwise in ∂E. We identify α and β with their images in
T2 − D, so they generate the fundamental group of T2 − D. It is easy to see that the
curve

γ = [α, β] = α ∗ β ∗ α−1 ∗ β−1

is just a counterclockwise turn around ∂E. Then

τ−1ατ = l ∗ a′c′ ∗ l′1 ∗ l−1,

where l was defined above. The composition l ∗ a′c′ is roughly one counterclockwise
turn around ∂E so it is the curve γ . The straight arc l′1 goes from c′ = (mε, ε) to
(m(1 − ε), 1 − ε) - roughly going one step up and |m| steps to the left. This together
with l−1 can be isotoped to βαm (where we are identifying α, β with the appropriate
covering translates). We conclude that τ−1ατ = γβαm. Similarly

τ−1βτ = l ∗ a′d ′
clo ∗ l′2 ∗ b′a′

clo ∗ l−1.

Here l′2 is a straight path from (ε, 0) to (1 − ε, 0). So in the same way it is easy to
see that τ−1βτ = α−1. Notice that α, τ generate π1(M − N(δ)). Hence

π1(M − N(δ)) = {α, τ | τ−1ατ = γβαm, τ−1βτ = α−1, γ = [α, β]}.
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After (q, p) Dehn surgery on δ we obtain qγ +pτ is the new meridian or τpγ q = 1.
Hence we obtain

The Group:

G = π1(Mp/q) = {α, τ | τ−1ατ = γβαm, τ−1βτ = α−1, γ = [α, β], τpγ q = 1}.
This group G with this presentation will be fixed throughout the proof. In the

proof we will use the relations above and the following variations of these relations
extensively:

τ−1βτ = α−1, τατ−1 = β−1,

τ−1ατ = γβαm = αβαm−1 = ατα−1τ−1αm−1,

ατ = τγβαm = ταβαm−1,

αβ = γβα, or ατα−1τ−1 = τγ α−1τ−1α.

From the above it follows that αm−1 = τ−1β1−mτ hence τ−1ατ = αβαm−1 =
αβτ−1β1−m. This is equivalent to α−1τ−1αβm−1 = βτ−1 and therefore we have
τα−1τ−1αβm−1 = τβτ−1 or

τβτ−1 = βαβm−1 = γ −1αβm.

These and circular variations of these will be used throughout the article.
Since q, p are relatively prime there are e, f in Z with ep + f q = 1. Let

κ = τf γ −e. Then κ is a generator of the Z subgroup of G generated by τ , γ and
τ = κq , γ = κ−p.

3. Outline of the proof

As described above, the fundamental group of Mp/q with presentation G is generated
by two elements α and τ . Actions of a homeomorphism on a tree are easy to under-
stand: either there is a fixed point or in the free case there is an invariant axis. The
proof of the main theorem is split into cases as to whether the generators above act
freely. There are 3 main cases to consider (when τ acts freely it does not matter the
behavior of α). The proof subdivides into various subcases. Invariably the analysis
goes like this: apply a certain relation in the group to a well chosen point. One
side of the relation implies the image of the point is in a certain region of the tree
while the other side of the relation implies it is in a different region – contradiction!
Homeomorphisms with fixed points may have local axes. This is extremely useful in
a variety of cases.

A crucial difference from the case of foliations is that in the case of laminations
the tree does not have a group invariant orientation in general. Hence orientation
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dependent arguments cannot be used. This was very important and widely used in
[RSS]. In order to stay in the orientation preserving world they restricted to p, m

odd, which ensures the orientation hypothesis. Under these conditions on p, q (with
p ≥ q also) they ruled out the existence of Reebless foliations [RSS].

Since we do not have an orientation here, the condition m odd does not play a role,
which allows us to consider m even as well. In addition if |p − 2q| ≥ 2 there is an
essential lamination in the surgered manifold, so the exact condition |p−2q| = 1 has
to appear in the analysis of the laminations case. Notice that |p − 2q| = 1 obviously
implies that p is odd.

On the other hand there are many examples with p even so that Mp/q has a
Reebless foliation – for example p = 4, q = 1 or p = 8, q = 3 (this has p > q!).
So when p is even, then to rule out Reebless foliations, some further conditions on
p, q are necessary.

Except for ruling out trivial actions, the proof here is done entirely in the tree –
we never go back to the original non Hausdorff tree. For the sake of completeness
we state this result from which the main theorem is an easy corollary:

Theorem. Let Mp/q be the manifold described above. If m ≤ −4 and |p − 2q| = 1,
then every action of π1(Mp/q) on a tree is trivial.

Given the presentation of G above, the proof of the main theorem is broken into
four cases:

• Case R. R-covered case.

• Case A. τ acts freely.

• Case B. α acts freely, τ has a fixed point.

• Case C. α and τ have fixed points.

If a homeomorphism μ acts freely on a tree, let Aμ be its axis. If μ has a local
axis, we denote it by LAμ. Unlike a true axis, a homeomorphism may have more
than one local axis. The context will make it clear which one is being considered.
Assume by way of contradiction that G acts non trivially on a tree T .

Case R. The R-covered case is simple. Given that p is odd, this implies that τ is
orientation preserving in R. The case α orientation preserving is simple. The other
case (which implies m is even) leads to p > 3q which for our purposes is enough.
It also leads us to move away from orientation preserving arguments. Orientation
preserving arguments were fundamental in the foliations analysis but in general cannot
be used in the laminations case. We note that there is an easy non trivial linear action
on R when p = 4, q = 1. Notice that in this case p is even.

Case A. This implies that κ = τf γ −e also acts freely and Aκ = Aτ . We analyse how
Aκ intersects Aκα and other translates (here Aκα is the image of Aκ under α). Let
u = αβ. One uses the relation αβ = γβα to analyse how Aκ intersects Aκu which
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breaks down into various cases as to whether this intersection is empty, a single point
or a segment. One particularly tricky case needs the condition m �= −3.

Case B. Let z be a fixed point of τ . First suppose that z is not in the axis Aα of α.
Suppose there is no fixed point of τ between z and Aα . Here let U be the component
of T − {z} containing Aα . The case Uτ �= U is easy to deal with. It follows that
Uτ = U producing a local axis LAτ of τ which is contained in U and has one limit
point in z. The proof breaks down as to whether LAτ intersects Aα or not. Empty
intersections are easy to deal with, the other case being trickier.

Then suppose z is in Aα . We remark this is a crucial case, because this is likely
what happens for the essential laminations we know to exist when |p − 2q| ≥ 2.
These come from the original stable lamination on the fibering manifold (a torus
bundle over S

1). In that manifold, α acted freely and τ had a fixed point in Aα . After
the surgery α would still have at least a local axis, which contains a fixed point of τ .
So one knows the exact condition |p − 2q| = 1 will have to be used here!

In this case consider U1 the component of T − {z} containing zα and U2 the
one containing zα−1. It is easy to show that U1τ is not U1 and that U1τ is in fact
equal to U2. When U1τ

−1 = U2 then one produces a contradiction just using that
p is odd. The case U1τ

−1 �= U2 or U2τ �= U1 is much more interesting. Here the
exact condition |p − 2q| = 1 is used to show it would imply U1τ = U1 which was
disallowed at the beginning. This actually has connections with the topology of the
situation, see detailed explanation in Section 6. This is a crucial part of the proof.
One very tricky issue is that a priori z is only a fixed point of τ and not of γ – part of
the proof is ruling this out.

Case C. Generally an axis is good because it gives information about where points
go. The case of fixed points is trickier and one many times searches for a local axis.

Here let s be a fixed point of κ and w a fixed point of α so that there is no fixed
point of either in (s, w). Notice there may be fixed points of τ in (s, w)! Let W be the
component of T − {s} containing w and V the component of T − {w} containing s.
The first part of the proof shows that Wτ = W and Vα = V. This situation has
moderately involved arguments. This immediately produces a local axis LAα of α

contained in V and with one limit point w. One does not have yet a local axis for τ

because we do not know a priori that τ has no fixed points in (s, w). Some technical
complications ensue.

One then shows that sα, sα−1 are in W . Let z be the fixed point of τ in [s, w)

which is closest to w – z could be s. Using the previous results, we show that the
component U of T − {z} containing w is invariant under τ . Now this produces a
local axis LAτ of τ in U with ideal point z and some further properties. One then
shows that w is not in LAτ and z is not in LAα .

We are now in familiar ground. If LAα ∩ LAτ has at most one point, then it is
easy. When LAα ∩LAτ has more than one point we use arguments done in case B –
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this part of the arguments in case B is done in more generality using local axis (rather
than axis as needed in case B) and can be used in case C as well. This finishes the
proof of case C. This finally yields the proof of the main theorem. �

The arguments in this article are very involved. One possibility to read the article
and get a quick grasp of the proof is to first analyse the R-covered proof. Then go
to the proof of case B.2 – α acts freely and τ has a fixed point in the axis of α – this
case admits essential laminations if |p − 2q| ≥ 2 and the topology can be detected.
Then read the proof of τ acts freely and the other proofs.

We note that Z actions on non Hausdorff trees had been previously analysed in
[Fe] and [Ro-St1], [Ro-St2], with consequences for pseudo-Anosov flows [Fe] and
Seifert fibered spaces [Ro-St1], [Ro-St2].

There is a large literature of group actions on trees which were brought to the
forefront by Serre’s fundamental monograph [Se]. The analysis usually involves a
metric which is invariant under the actions [Mo-Sh1], [Mo-Sh2], [Mo-Sh3] or actions
on simplicial trees [Se]. We stress that the tree involved in here is not simplicial and
it is not presented in general with a group invariant metric – unless there is a holon-
omy invariant transverse measure of full support in the lamination, e.g when there
is an incompressible surface. So the proof is entirely topological and in that sense
elementary. The topology of the manifold, particularly the condition |p − 2q| = 1
plays a crucial role. Notice that in the foliations case there is a pseudo-metric ly-
ing in the background which is used from time to time to deal with some critical
cases in [RSS]. The pseudometric distance between two points measures how many
jumps between non separated points are necessary to go from one point to the other.
This pseudometric was analysed and used previously by Barbot in [Ba1], [Ba2] with
consequences for foliations. In the laminations case, such a pseudo-metric does not
seem to give useful information, because in some sense the singularities or prongs
also allows one to “change” direction – there is much more flexibility.

4. Case R: the R-covered case

For the remainder of the article we consider the manifold Mp/q as described in
Section 2 with fundamental group G. The goal is to show it does not admit an essential
lamination. Suppose then on the contrary that there is an essential lamination λ on
Mp/q . Let T be the associated tree with non trivial action of G on it. Notice that since
α, τ generate G, no point of T is fixed by both α and τ .

The conditions on the parameters are |p − 2q| = 1 and m ≤ −4. They will not
be used in full force for all the arguments. Many times all we need is p ≥ q or p odd
or m negative or none of these. The proof is done by subdividing into subcases and
showing each subcase is impossible leading to various contradictions.
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In this section we assume that T is homeomorphic to the real numbers and study
non trivial actions of G in R. Notice that since γ is a commutator, it is an orientation
preserving homeomorphism of R. As τpγ q = id, τp is also orientation preserving.

We use the relations from the group presentation of G or variations thereof.
Suppose first the action is orientation preserving on R:

Case R.1. α, τ are orientation preserving.
As β = τατ−1 then β also is orientation preserving and so is the whole group G.

We subdivide into subcases:

Case R.1.1. τ has a fixed point x.
Then xα is not x. Orient R so that xα > x. As γ is orientation preserving then

xγ = x. Then applying γ τβαm = ατ to x:

xγ τβαm = xατ > xτ = x

which uses τ orientation preserving. Hence xβαm > x or xβ > xα−m > x (as
−m > 0). Hence xβ−1 < x. But also

xβ−1 = xτατ−1 = xατ−1 > xτ−1 = x.

This is a contradiction, ruling out this case.

Case R.1.2. τ acts freely, α has a fixed point x.
Assume τ is increasing in R. As τ = κq and q is (always) positive then κ is

increasing. Here use xατ = xτ = xγ τβαm. Hence xτα−m = xγ τβ. As xτ > x

then xτα−m > x. Hence xγ τ > xβ−1. Use γ = κ−p and γ τ = κq−p. As q ≤ p

then q − p ≤ 0 and γ τ is monotone decreasing or constant. Hence

xβ−1 < xγ τ ≤ x.

One fact that will be used in a lot of arguments is that under the condition p ≥ q when
γ, τ act freely and xτ > x then xγ ≤ xτ−1. Notice that xτ−1β = xα−1τ−1 = xτ−1.
On the other hand

xβ = xαβ = xγβα ≤ xτ−1βα = xτ−1α < xα = x,

leading to the contradiction that both xβ and xβ−1 are < x.
Notice a lot of these arguments are using orientation preserving homeomorphisms.

Case R.1.3. τ acts freely increasing in R and α acts freely, also increasing in R.
Take any x in R. Then xατ > x so xγ τβαm > x. So xγ τβ > xα−m > x. Since

xγ τ ≤ x this implies xβ > x. On the other hand,

xβ = xτα−1τ−1 < xττ−1 = x,

contradiction.
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Case R.1.4. τ acts freely and increasing in R, α acts freely and decreasing in R.
This implies zα−1 > z for all z in R. For any x in R, xβ = xτα−1τ−1 >

xττ−1 = x. Also xτ−1ατ < x for all x. Hence

xαβαm−1 = xτ−1ατ < x,

for all x. Hence xαβ < xαα−m < xα for all x (−m > 0). But this contradicts
(xα)β > xα because β is increasing everywhere as proved above.

This finishes the analysis of T homeomorphic to R and orientation preserving
action.

We now deal with orientation reversing cases. The general case of τ orientation
reversing is hard, so we use one of the hypothesis to discard it as follows: τp = γ −q

is orientation preserving as γ always is. We are mainly interested in |p − 2q| = 1,
which implies p odd and if p is odd and τp orientation preserving then τ is also
orientation preserving. We now deal with the case α orientation reversing.

Case R.2. α orientation reversing, τ orientation preserving.
Let x be the unique fixed point of α. As xτ �= x, assume xτ > x. As α is

conjugate to β, then β also reverses orientation. Then τ−1ατ = γβαm implies that
αm is orientation preserving. Equivalently, m is even.

As τ = κq and q > 0, this implies κ is increasing in x. Notice that xτ−1 is the
unique fixed point of β. The subcases depend on the relative position of xτα and
xτ−1. Notice that xτ > x, so xτα < xα = x.

Case R.2.1. xτα < xτ−1.
Then xτατ−1 = xβ−1 < xτ−2. Notice

xτγβαm = xατ = xτ > x

so xτγβ > xα−m = x. This is because α−m is orientation preserving. As β reverses
orientation, then

xτγ < xβ−1 < xτ−2

or xτ 3γ < x. As τ 3 = κ3q and γ = κ−q , then xκ3q−p < x. As κ is increasing in x

then 3q − p < 0 or p > 3q. Arguments such as this will be used in various parts of
the proof. Since in the end we want p = 2q ± 1 we can discard this case.

Remark. What we really wanted was to rule out this case without using p = 2q ± 1,
but we were unable to do that. Our partial results (without using p = 2q ± 1) show
that xτα3 > xτα so x < xτα2 < xτ . Also there is a fixed point of α2 between xτ

and xτ 2 and α2 acts expandingly (away from x) in some point. Something similar is
also true in the following case.

Case R.2.2. xτα > xτ−1.
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First notice that xβ−1 < xτ−1. Use

(xτ)τγβαm = (xτ)ατ > xτ−1τ = x

so xτ 2γβ > xα−m = x (m even) and

xτ 2γ < xβ−1 < xτ−1.

We conclude as in the previous case that xτ 3γ < x or p > 3q, also disallowed.
The reader may think we just got lucky to get p > 3q as we have the hypothesis

p = 2q ± 1. The remaining case explains why this has happened.

Case R.2.3. xτα = xτ−1.
This case is much more interesting. First

xατ = xταβαm−1.

Since xτα = xτ−1 this is left invariant by β, so the right side is xτααm−1 = xταm

equal to xτ . Since m is even, αm preserves orientation, therefore xτα2 = xτ . Also
xτα = xτα−1 = xτ−1. Now notice that

xτγβαm = xατ = xτ, so xτγ = xτα−mβ−1,

or xτγ = xτβ−1. Now we show that xτ 2α = xτ−2. To show this use xβ−1τ =
xτα = xτ−1, hence xβ−1 = xτ−2. Use

τ−2βτ 2 = τ−1α−1τ = α1−mβ−1α−1

applied to x:
xτ−2βτ 2 = xα1−mβ−1α−1

or xβ−1βτ 2 = xβ−1α−1 so
xτ 2 = xτ−2α−1.

Then
xτ−2 = xτ 2α = (xτ)τα = xτβ−1τ = xτγ τ

or
xγ τ 4 = x.

As seen before this implies p = 4q or p = 4, q = 1. This is disallowed by p being
odd.

We remark that in this case the group in fact acts non trivially in R. For instance
let

xα = −x, xτ = x + 1.

It is easy to check they satisfy the equations if m is even!
It may be true that this is the only possibility and when xτα �= xτ−1 we get a

perturbation of this, namely that p is close to 4q and in fact p > 3q.
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5. Case A: τ acts freely

In this section we consider the case that τ acts freely in T . This implies that κq acts
freely in the tree, and therefore κ itself acts freely. In addition the axes are the same
Aκ = Aτ . Here we will use the relation αβ = γβα in the following form, defining
an element u of G:

u = αβ = ατα−1τ−1 = γβα = γ τα−1τ−1α.

We will consider the intersections Aκ ∩ Aκα and Aκ ∩ Aκu. The axis Aκ is home-
omorphic to the real numbers. Put an order < in Aκ so that x < xτ for any x in Aκ .
This induces an order <α in Aκα so that x < y in Aκ if and only if xα <α yα in
Aκα and similarly put order <u in Aκu so that x < y in Aκ if and only if xu <u yu

in Aκu.

Case A.1. Aκα ∩ Aκ has at most one point.
If the intersection is a single point x, let y = x as well.
If they are disjoint, there is a single point x in Aκ bridging to Aκα. For instance

x is the unique point so that there is a path from x to Aκα intersecting Aκ only in x.
Another way to characterize x, it is the only point so that x separates the rest of Aκ

from Aκα. In other words the components of T − {x} containing Aκα and the rest
of Aκ are all disjoint. In the same way there is a single y in Aκα which is the closest
to Aκ . Then [x, y] is a path from Aκ to Aκα so that (x, y) does not intersect either
Aκ or Aκα – this is an equivalent way to get the segment [x, y]. This path [x, y] is
called the bridge from Aκ to Aκα. This extended notion of bridges will also be used
in the article. It is invariant by homeomorphisms of the tree. The bridge between
connected sets is also unique.

We now use the relation above. The proof is very similar to ping pong lemma
arguments. Since Aκ is invariant under γ and τ , the right side says that Aκu =
Aκα−1τ−1α.

The bridge from Aκ to Aκα is [x, y] - degenerate [x, x] when they intersect in
a point. Therefore the bridge from Aκα−1 to Aκ is [xα−1, yα−1], see Figure 2 (a).
Then the bridge from Aκα−1τ−1 to Aκ is [xα−1τ−1, yα−1τ−1]. This implies that

the bridge from Aκα−1τ−1α to Aκα is [xα−1τ−1α, yα−1τ−1α].
Notice that yα−1τ−1 is not yα−1. Therefore yα−1τ−1α is not y, but yα−1τ−1α is
in Aκα as yα−1τ−1 is in Aκ . It now follows that

the bridge from Aκu = Aκα−1τ−1α to Aκ is [xα−1τ−1α, x].
On the other hand use that Aκu = Aκατα−1τ−1. The bridge from Aκατ to Aκ is
[yτ, xτ ], see Figure 2 (b). The bridge from Aκατα−1 to Aκα−1 is [yτα−1, xτα−1]
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Figure 2. The case Aκ ∩ Aκα = ∅. The same arguments can be used for intersection a single
point. (a) Using Aκu = Aκα−1τ−1α. (b) Using Aκu = Aκατα−1τ−1.

and the bridge from Aκα−1 to Aκ is [xα−1, yα−1]. Since xα−1 is not equal to xτα−1

then the bridge from Aκατα−1 to Aκ is [yτα−1, yα−1]. Finally

the bridge from Aκu to Aκ is [yτα−1τ−1, yα−1τ−1].
Since the bridge from Aκu to Aκ is uniquely defined this implies

yα−1τ−1 = x, yτα−1τ−1 = xα−1τ−1α.

So y = xτα and

xα−1τ−1α = xτατα−1τ−1, or xα−1τ−1ατα = xτατ.

Use τ−1ατ = αβαm−1, so

α−1τ−1ατα = α−1αβαm−1α = βαm = γ −1τ−1ατ,

so xγ −1τ−1ατ = xτατ , or xγ −1τ−1 = xτ . This implies xγ τ 2 = x and as seen
before implies p = 2q. This is disallowed by p odd.

We now consider intersections with more than one point.

Case A.2. Aκ ∩ Aκα = [x, y]. Here x is not equal to y and x < y in Aκ . We
include some ideal point cases: x could −∞ and y could be +∞, in which case
the intersection is a ray in Aκ . On the other hand we can never have Aκ = Aκα.
Otherwise α, τ leave Aκ invariant, so the whole group does. But Aκ is homeomorphic
to R – this was disallowed by no actions on R.
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Since the intersection is a non trivial interval one considers separately whether
the orders <, <α agree on the intersection.

Case A.2.1. The orders < and <α agree on Aκ ∩ Aκα.
It is easy to check that this is equivalent to xα−1 < yα−1 in Aκ , by applying α

to the pair xα−1, yα−1 both of which are in Aκ .
We now consider Aκu (with u = αβ as in case A.1). We first use Aκu =

Aκα−1τ−1α (see case A.1). Notice that

Aκ ∩ Aκα−1 = [xα−1, yα−1] so Aκα−1τ−1 ∩ Aκ = [xα−1τ−1, yα−1τ−1],
in the correct order. Hence

Aκu ∩ Aκα = [xα−1τ−1α, yα−1τ−1α].
In addition xα−1τ−1α <α yα−1τ−1α.

Notice that xα−1τ−1 < xα−1 in Aκ , hence xα−1τ−1α <α x in Aκα. Also
yα−1τ−1α <α y in Aκα. Given this there are 3 options:

1) If yα−1τ−1α <α x in Aκα then Aκu ∩ Aκ = ∅ and the bridge from Aκ to
Aκu is [x, yα−1τ−1α], Figure 3 (a).

2) If yα−1τ−1α >α x in Aκα then yα−1τ−1α is in (x, y) and Aκu ∩ Aκ =
[x, yα−1τ−1α]. In addition the orders < and <u agree on Aκ ∩Aκα, see Figure 3 (b).

3) If yα−1τ−1α = x, then Aκu ∩ Aκ = [z, x]. In addition if z is not x then the
orders < and <u disagree on Aκ ∩ Aκu, see Figure 3 (c). In this case both x and y

are finite. The last option can occur because Aκu can enter Aκ in x but rather than
going up, it will go into the opposite direction – the one containing xτ−1.

Notice that the 3 options are mutually exclusive. We now consider Aκu =
Aκατα−1τ−1. Use

Aκu ∩ Aκ = (Aκατ ∩ Aκα)α−1τ−1.

Here Aκατ ∩ Aκ = [xτ, yτ ]. So whether Aκατα−1 and Aκ intersect, depends on
the relative positions of xτ and y. Notice that xτ > x in Aκ .

1′) If xτ > y in Aκ then Aκατ ∩ Aκα = ∅, so Aκατα−1 ∩ Aκ = ∅. Therefore
Aκu ∩ Aκ = ∅ and the bridge from Aκ to Aκu is [yα−1τ−1, xτα−1τ−1], see Fig-
ure 4 (a). Notice the bridge from Aκατ to Aκα is [xτ, y], so bridge from Aκατα−1

to Aκ is [xτα−1, yα−1]. Here x, y finite.
2′) If xτ < y in Aκ then Aκατ ∩Aκα = [xτ, y], then Aκ ∩Aκu is [xτα−1τ−1,

yα−1τ−1] (the first term smaller in Aκ ), and the orders < and <u agree on Aκ ∩Aκu,
see Figure 4 (b).

3′) If xτ = y, then Aκατ ∩ Aκα = [y, v]. Notice we may have v �= y. So
Aκu ∩ Aκ = [yα−1τ−1, w], where w = vα−1τ−1. Here x and y are finite and
if w is not equal to xτα−1τ−1, then the orders < and <u disagree on Aκ ∩ Aκu.
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Figure 3. Evaluating Aκu ∩ Aκ , using Aκu = Aκα−1τ−1α, (a) yα−1τ−1α <α x,
(b) yα−1τ−1α >α x, (c) yα−1τ−1α = x.

Notice that order in Aκατ goes from v to y, so the increasing order <u in Aκu from
w = vα−1τ−1 to yα−1τ−1, see Figure 4 (c).

Notice that again all 3 cases are mutually exclusive. Therefore we can match the
2 pairs of 3 possibilities to get 3 mutually exclusive cases:

I. yα−1τ−1α <α x in Aκα or xτ > y in Aκ and Aκ ∩ Aκu = ∅. In this case

[x, yα−1τ−1α] = [yα−1τ−1, xτα−1τ−1].
II. yα−1τ−1α >α x in Aκα or xτ < y in Aκ and

Aκ ∩ Aκu = [x, yα−1τ−1α] = [xτα−1τ−1, yα−1τ−1].
III. yα−1τ−1α = x or xτ = y. Then

Aκ ∩ Aκu = [z, x] = [yα−1τ−1, w].
If z is not x then the orders < and <u disagree on Aκ ∩ Aκu.

We now deal with each situation separately.

Situation II. Here xτα = xτ and xτ is in (x, y). Let U1 (respectively U2) be the
component of T − {xτ } containing y (respectively x). Here [x, y] = Aκ ∩ Aκα,
xτ is in the interior of [x, y] and then the orders <, <α agree on [x, y]. Notice that
yα >α xτα = xτ and yα is in Aκα so yα is in U1. It follows that the prongs [xτ, y],
[xτ, yα] are equivalent. By Lemma 2.5, U1α = U1. In the same way xα−1 is in U2
and U2α = U2. This situation is disallowed by the following lemma.
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Figure 4. Using Aκu = Aκατα−1τ−1, (a) xτ > y, (b) xτ < y, (c) xτ = y.

Lemma 5.1. Suppose that L is a local axis for κ and r is a point in L with rα = r .
Suppose that U1 (U2 respectively) is the component of T − {r} containing rτ (rτ−1

respectively). Then at least one of U1 or U2 is not invariant under α.

Proof. On the contrary suppose that Uiα = Ui for i = 1, 2. We will arrive at a
contradiction. Let Vi = Uiτ

−1. Then the conjugation of β with α−1 by τ implies
that Viβ = Vi , i = 1, 2. Use

rτ−1ατ = rγβαm.

Since p ≥ q, then rγ ≤ rτ−1 in L (with τ increasing in L) and so rγβ is in
V2 ∪ {rτ−1} contained in U2. Therefore rγβαm is in U2. Consequently

rτ−1ατ ∈ U2 and rτ−1α ∈ U2τ
−1 = V2. (∗)

On the other hand rγ ∈ V2 ∪ {rτ−1}, so

rβα−1 = rγβ ∈ V2 ∪ {rτ−1},
so rτ−1 is in [rβα−1, r). Apply α to obtain

rτ−1α ∈ [rβ, r). (∗∗)

Now

rβ = rτα−1τ−1 and rτ ∈ U1 ⇒ rτα−1 ∈ U1 ⇒ rβ = rτα−1τ−1 ∈ V1.
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As r is also in V1, it follows from (∗∗) that rτ−1α is also in V1. This contradicts (∗)

above and finishes the proof of the lemma. �

Remark. Later on, in the proof of Lemma 7.3 we prove that this is actually true if
L is only a local axis for τ , as opposed to being a local axis for κ . The proof is more
involved and the stronger result is needed for case C.

Situation III. Here Aκu ∩ Aκ = [z, x] with z ≤ x in Aκ . Then

Aκuτ ∩ Aκ = Aκατα−1 ∩ Aκ = [zτ, xτ ] = [zτ, y].
Hence Aκατ ∩ Aκα = [zτα, yα] and y = zτα ≤α yα in Aκα – this is the crucial
fact, see Figure 5. Now

xγ −1α = xβαβ−1 = xτα−1τ−1αβ−1

= yα−1τ−1αβ−1 = xβ−1 = xτατ−1 = yατ−1.

Here the bridge of yα to Aκ is [yα, y] (which a priori could be the single point y).
So the bridge from yατ−1 to Aκ is [yατ−1, yτ−1] = [yατ−1, x]. On the other hand
y ≤ xγ −1 in Aκ (using p ≥ q), so yα ≤α xγ −1α in Aκα. It follows that the bridge
from xγ −1α to Aκ is [xγ −1α, y]. By the above formulas, xγ −1 = yατ−1, so this
would imply x = y, contradiction.

Aκu

Aκu

Aκα

Aκα

Aκατ

Aκατ
Aκ

xτ = y

yτ

yα

yατ−1

xγ −1α

x

z

Figure 5. Situation III leading to a contradiction.

Situation I. Surprisingly this is the most difficult case. Here

yα−1τ−1α <α x in Aκα, xτ > y in Aκ ,

x = yα−1τ−1, yα−1τ−1α = xτα−1τ−1.
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As yα−1τ−1α <α x in Aκα then yα−1τ−1α is not in Aκ . Also

xα = (yα−1τ−1)α = xτα−1τ−1 = xβ,

so xα = xβ – this is a crucial fact in this proof. The bridge from xα to Aκ is [xα, x].
Notice also that

xα−1τ−1α <α yα−1τ−1α <α x in Aκα,

so the bridge from xα−1τ−1α to Aκ is [xα−1τ−1α, x]. It follows that

the bridge from xατ−1ατ to Aκ is [xα−1τ−1ατ, xτ ] = [xα−1τ−1ατ, yα−1].
Now

xα−1τ−1ατ = (xα−1)αβαm−1 = xβαm−1 = xααm−1 = xαm.

Here xα ≺ x ≺ y ≺ yα−1 – they are aligned. It follows from Lemma 2.6 that x, xα

are in a local axis LAα for α, similarly y is also in a local axis. Since y is in [xαm, x],
then also y, yα−1 are in LAα . In the same way (LAα)τ−1 = LAβ is a local axis
for β and xβ, x, xτ−1 are in LAβ . Now

xβ = xτα−1τ−1 = xα, so xατ = xτα−1 = yα−2.

Apply αβαm−1 = τ−1ατ to yα−1:

(yα−1)αβαm−1 = yβαm−1 = (yα−1)τ−1ατ = (xτ)τ−1ατ = xατ = yα−2.

The conclusion is yβ = yα−m−1 and it is in LAα . Now y is not in LAβ and the bridge
from y to LAβ is [y, x], so the bridge from yβ to LAβ is [yβ, xβ] = [yα−m−1, xα].
Therefore LAα and LAβ split away from each other in xα = xβ, or

LAα ∩ LAβ = [x, xα] = [x, xβ].
The homeomorphism τ conjugates the action of α−1 in LAα to the action of β in
LAβ (see Figure 6). Now apply ατα−m = τγβ to x:

(xατ)α−m = (yα−2)α−m = yα−2−m = xτγβ.

As xα is in LAβ , then xατ is in LAα and it follows that xτγβ is in LAα . If
xτγ ≤ xτ−1 in Aκ , then the bridge from xτγ to LAβ is [xτγ, xτ−1] and so the
bridge from xτγβ to LAβ is [xτγβ, xτ−1β]. But xτ−1β = xα−1τ−1 and

xα−1τ−1 < yα−1τ−1 = x in Aκ .

This would imply xτγβ is not in LAα , contradiction. Hence xγ τ ≥ xτ−1 in Aκ .
Notice

xβ−1 = xτατ−1 = yτ−1 ∈ (xτ−1, x).
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Figure 6. Situation I, the hard case.

If xτγ is in [xτ−1, xβ−1) then xτγβ is in [xτ−1β, x) and not in LAα either, con-
tradiction again. Therefore xτγ is in [xβ−1, x]. The case xτγ = x can only occur
when p = q = 1. This case can also be ruled out by a further argument, but as we
are mainly interested in |p − 2q| = 1 we assume here that p > q. Then xτγ is in
[xβ−1, x) and xτγβ is in [x, xβ). We conclude that

yα−2−m ∈ [x, xα).

Claim. yτγβ is in LAα .
If yτγ ≥ x in Aκ , then x ≤ yτγ ≤ y in Aκ . So yτγβ is in [xβ, yβ] or

yτγβ ∈ [xα, yα−m−1] ⊂ LAα.

Notice xτγβ ∈ LAα . If on the other hand yτγ < x in Aκ , then xτγ < yτγ < x

in Aκ , and
yτγβ ∈ (xτγβ, xβ) = (xτγβ, xα) ⊂ LAα

and again yτγβ is in LAα .
Therefore the claim is proved.

It now follows that yτγβαm = yατ is in LAα . Here yα is in LAα and yα <α y

in LAα . If yα >α x in LAα , then yα is in Aκ and yα > x in Aκ as well. Then
yατ > xτ = yα−1 in Aκ and yατ is not in LAα contradiction.

Therefore yα ≤α x in LAα and so yα is in [x, xα). But yα−2−m ∈ [x, xα).
Since y is in a local axis for α it follows that

yα = yα−2−m, or m = −3.
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Since we are assuming m < −3 this rules out this case as well.
This finishes the analysis of situation I and completes the analysis of the situation

that orders < and <α agree on Aκ ∩ Aκα. This ends case A.2.1.

Case A.2.2. The orders < and <α disagree on Aκ ∩ Aκα.
Notice this is equivalent to yα−1 < xα−1 in Aκ . Again use u = ατα−1τ−1 =

γ τα−1τ−1α. Then

Aκu ∩ Aκ = (Aκατα−1 ∩ Aκ)τ−1 = (Aκατ ∩ Aκα)α−1τ−1.

There are the following possibilities:
1) If xτ > y in Aκ , then Aκατ ∩ Aκα is empty and the bridge from Aκατ

to Aκα is [xτ, y]. Therefore Aκu ∩ Aκ = ∅ and the bridge from Aκu to Aκ is
[xτα−1τ−1, yα−1τ−1], see Figure 7 (a). Notice that

Aκα−1τ−1 ∩ Aκu = (Aκ ∩ Aκατ)α−1τ−1 = [xτ, yτ ]α−1τ−1.

Aκ AκAκ

xα−1τ−1
xα−1τ−1

yα−1τ−1

yα−1τ−1

Aκu

Aκu
Aκu xτα−1τ−1

xτα−1τ−1
yτα−1τ−1

yτα−1τ−1

Aκα−1τ−1

Aκα−1τ−1
Aκα−1τ−1 Aκατ

Aκατ

Aκα

Aκα

yτ

y = xτ

x

(a) (b) (c)

v

Figure 7. The orientation reversing situation, (a) xτ > y, (b) xτ < y, (c) xτ = y.

2) If xτ < y in Aκ , then Aκατ ∩ Aκα = [xτ, y]. Hence

Aκατα−1 ∩ Aκ = [yα−1, xτα−1],
where the first endpoint is smaller than the second in Aκ . Finally

Aκu ∩ Aκ = [yα−1τ−1, xτα−1τ−1]
and the orders <, <u agree on Aκu ∩ Aκ , see Figure 7 (b), because yα−1 < xα−1

in Aκ and their images under u satisfy yτα−1τ−1 <u xτα−1τ−1 in Aκu.
3) Finally if xτ = y, then Aκατ∩Aκα = [y, v], where v ≤α y in Aκα. It follows

that the intersection Aκατα−1 ∩Aκ = [vα−1, yα−1], the first point precedes in Aκ .
And then

Aκu ∩ Aκ = [vα−1τ−1, yα−1τ−1] = [t, yα−1τ−1].
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Here if t is not yα−1τ−1 then < and <u disagree on Aκu∩Aκ , because yτ−1α−1 ≤
vτ−1α−1 in Aκ .

Now use Aκu ∩ Aκ = (Aκα−1τ−1 ∩ Aκα−1)α. Here Aκα−1 ∩ Aκ =
[yα−1, xα−1] the first term precedes in Aκ . Again there are 3 possibilities

1′) If xα−1τ−1 < yα−1 in Aκ then Aκα−1τ−1 ∩Aκα−1 = ∅ and the bridge from
Aκα−1τ−1 to Aκα−1 is [xα−1τ−1, yα−1]. Hence Aκu ∩ Aκ = ∅ and the bridge
from Aκu to Aκ is [xα−1τ−1α, y], see Figure 8 (a).

2′) If xα−1τ−1 > yα−1 in Aκ , then Aκα−1τ−1 ∩ Aκα−1 = [yα−1, xα−1τ−1]
and hence

Aκu ∩ Aκ = [xα−1τ−1α, y]
and the orders < and <u agree on Aκ ∩Aκu, because x < y in Aκ and xα−1τ−1α <u

yα−1τ−1α in Aκu, see Figure 8 (b).
3′) If xα−1τ−1 = yα−1, then Aκα−1τ−1∩Aκα−1 = [c, yα−1] and Aκu∩Aκ =

[y, z] where z = cα. If z is not equal to y, then the orders < and <u disagree on
Aκu ∩ Aκ .

x

x

y

y
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Aκu
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yα−1τ−1α
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Figure 8. Using Aκu = Aκατα−1τ−1: (a) xα−1τ−1 < yα−1, (b) xα−1τ−1 > yα−1,
(c) xα−1τ−1 = yα−1.

Notice that both pairs of the three alternatives are all mutually exclusive. We
match them and obtain three possible situations:

I. xτ > y in Aκ , xα−1τ−1 < yα−1 in Aκ and

Aκu ∩ Aκ = ∅, [yα−1τ−1, xτα−1τ−1] = [y, xα−1τ−1α].
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II. xτ < y in Aκ , xα−1τ−1 > yα−1 in Aκ ,

Aκu ∩ Aκ = [yα−1τ−1, xτα−1τ−1] = [xα−1τ−1α, y]
and the orders < and <u agree on Aκu ∩ Aκ .

III. xτ = y, xα−1τ−1 = yα−1 and

Aκu ∩ Aκ = [y, z] = [t, yα−1τ−1].
If z is not y then the orders <, <u disagree on Aκu ∩ Aκ .

We analyse each case in turn:

Situation II. Here xτ < y, xα−1τ−1 > yα−1 and

y = xτα−1τ−1, yα−1τ−1 = xα−1τ−1α.

Suppose first that [yα−1, xα−1]∩[x, y] = ∅. Since yτ = xτα−1, then [yα−1, xα−1]
is contained in the set of points > y in Aκ .

In addition yα is in Aκα−Aκ and y <α yα. Hence y is in (yα−1, yα), producing
a local axis LAα of α which contains y. Now use τ−1ατ = ατα−1τ−1αm−1 applied
to xα−1:

xα−1τ−1ατ = xα−1ατα−1τ−1αm−1 = xτα−1τ−1αm−1.

Substitute xτα−1τ−1 = y in the last term and xα−1τ−1α = yα−1τ−1 in the first
term to get

(yα−1τ−1)τ = yα−1 = yαm−1

or y = yαm. This is impossible because y is in a local axis of α and m is not zero.

From now on in situation II suppose that [yα−1, xα−1] ∩ [x, y] is not empty.
Since xτα−1 = yτ > y in Aκ , then xα−1 > xτα−1 > y in Aκ . It follows that
yα−1 ≤ y in Aκ .

Suppose first that yα−1 < y in Aκ . Here x, yα−1, y, xα−1 are all in Aκ which
is a line. In addition [x, y]α−1 is a subset of Aκ and yα−1 < y < xα−1 in Aκ and
x < y in Aκ . It follows that there is r in [yα−1, y] ∩ [x, y] which is fixed by α.
Either r is equal to y or r < y in Aκ . Let U1 (respectively U2) be the component of
T − {r} containing rτ (respectively rτ−1). Since

xα−1 ∈ U1, x ∈ U2 then U1α = U2.

If r < y in Aκ then also we have U2α = U1. Otherwise U2α = U3 which is
another component of T − {r} which is not U1, U2. We will rule out this case, but
the result will be used later on as well, so we state it in more generality:
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Lemma 5.2. Let LAτ be a local axis for κ . Let r in LAτ which is fixed by α. Let
U1 (respectively U2) be the component of T −{r} containing rτ (respectively rτ−1).
Then U1α is not U2 and U2α is not U1.

Proof. The proof is as follows: suppose that either U1α = U2 or U2α = U1 and
arrive at a contradiction.

First assume that U1α = U2. Either U2α = U1 or U2α is another component
U3 of T − {u}.

Let Vi = Uiτ
−1. Since V1β = V1τα−1τ−1 = U1α

−1τ−1 �= V1, we have that
V1β is contained in U2. Therefore rβ is in U2 and rβαm−1 is in U2α

m−1. Also

rτ−1ατ = rαβαm−1 = rβαm−1.

As rτ−1 ∈ U2 then rτ−1α is in U2α, which is either U1 or U3. Therefore rτ−1ατ

is either in U1τ ⊂ U1 or in U3τ , again a subset of U1. So rτ−1ατ ∈ U1. Therefore
U2α

m−1 ∩ U1 �= ∅. But both are components of T − {r}, because rα = r , so it
follows that they are equal. As U2 = U1α then

U1ααm−1 = U1, or U1α
m = U1, U2α

m = U2, U3α
m = U3 if needed.

In case r �= y this immediately implies m even.
Now use rτγβαm = rατ = rτ ∈ U1. Therefore rτγβ ∈ U1α

m = U1. It
follows that

rτ−1 ≺ r ≺ rτγβ;
recall this means r separates rτ−1 from rτγβ. Applying β−1 one gets

rτ−1 ≺ rβ−1 ≺ rτγ. (∗)

Use rβ−1 = rτατ−1:

rτ ∈ U1 ⇒ rτα ∈ U2, rβ−1 = rτα−1τ−1 ∈ V2.

As rτ−1 is an accumulation point of V2, equation (∗) above implies that rτγ is in
V2 or rτγ < rτ−1 in Aκ , which immediately implies p > 2q.

As in the R-covered case, look at rτα. If rτα is not in V2, then rτατ �∈ U2, and
hence

rτατ = (rτ 2)τ−1ατ = (rτ 2)γβαm �∈ U2 and rτγβ �∈ U2.

So rτ−1 ≺ r � rτ 2γβ and rτ 2γ � rβ−1 ≺ rτ−1. As rβ−1 = rτατ−1 ∈ V2, then

rτ 2γ ∈ V2, so rτ 2γ < rτ−1 in Aκ .

As seen before this implies p > 3q, which is disallowed and finishes this case.
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If rτα ∈ V2 then rβ−1 ∈ V2τ
−1. By (∗) rτ−1 ≺ rβ−1 ≺ rτγ , so

rτγ ∈ V2τ
−1 ⇒ rτγ < rτ−2 in Aκ .

As seen before this also implies p > 3q, contradiction.
This finishes the analysis of the case U1α = U2.

Now suppose that U2α = U1. If U1α = U2, then this is taken care by the
previous situation. So now assume U1α = U3 which is not U1 or U2. As before
assume Vi = Uiτ

−1.
Here use rτ−1ατ = rαβαm−1 = rτα−1τ−1αm−1. First

rτ−1 ∈ U2 ⇒ rτ−1α ∈ U2α = U1 ⇒ rτ−1ατ ∈ U1.

On the other hand

rτ ∈ U1 ⇒ rτα−1 ∈ U1α
−1 = U2 ⇒ rτα−1τ−1 ∈ U2τ

−1 ⊂ U2

⇒ rτα−1τ−1αm−1 ∈ U2α
m−1.

From which we conclude that U2α
m−1 = U1 = U2α.

Now use rτ−1ατ = rγβαm. The left side is in U1 = U2α. Then

rγβ ∈ U1α
−m = U2α

−1 = U3 ⊂ V1.

So rγ ∈ V1β
−1 = U1τ

−1β−1 = U1ατ = V3.
The fact that U2α

−1 is not U1 implies that V2β is not V1, hence V2β is contained
in U2. We know that rγ is ≤ rτ−1 in LAτ so it is either in V2 or is equal to rτ−1.
Hence rγβ is either rτ−1 or is in V2β – in either case it is in U2. Finally rγβαm is
in U2α

m which must be U1. But then U2α
m = U2α

m−1, contradiction.
This finishes the analysis of the case U2α = U1 and so finishes the proof of

Lemma 5.2. �

This finishes the analysis of situation II.

Situation I. In this case xα−1τ−1 < yα−1 in Aκ and y < xτ in Aκ . In addition

yτ = yα−1, xα−1τ−1α = xτα−1τ−1. (∗)

Here xα−1 > yα−1 = yτ in Aκ (orientation reversing case) so xα−1τ−1 > y in Aκ .
Therefore xα−1τ−1 ∈ (y, yα−1). Also xτ < yτ = yα−1 in Aκ , so one concludes

xα−1τ−1, xτ ∈ (y, yα−1).

On the other hand since yα−1 = yτ , one has y ≺ yα−1 ≺ xα−1, so yα ≺ y ≺ x

and yα is in Aκα −Aκ . It follows that yα−1 ≺ y ≺ yα and y is in a local axis LAα
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for α. This implies that the translates [yαi, yαi+1) are all disjoint (as i varies in Z).
Use the relation τ−1ατ = ατα−1τ−1αm−1 in the form

α−1τ−1ατα1−m = τα−1τ−1

applied to x to get
(xα−1τ−1α)τα1−m = xτα−1τ−1. (∗∗)

Now apply the second equality of (∗) to both sides of (∗∗) to get

(xτα−1τ−1)τα1−m = xα−1τ−1α or (xτ)α−m = (xα−1τ−1)α.

But xτ ∈ (y, yα−1), so xτα−m ∈ (y, yα−1)α−m. Similarly xα−1τ−1α is in
(y, yα−1)α. Since they are equal then −m = 1 or m = −1, impossible.

Situation III. Here xτ = y, xα−1τ−1 = yα−1 and

Aκu ∩ Aκ = [y, z] = [t, yα−1τ−1]
and if t �= y, then <, <u disagree on Aκu ∩ Aκ .

Notice that y ≤ z = yα−1τ−1 so y < yα−1 in Aκ , and yα−1 is in Aκ − Aκα.
Also yτ ≤ yα−1 in Aκ . Now

y ≺ yα−1 ≺ xα−1 ⇒ x ≺ y ≺ yα, all points in Aκα.

Hence yα <α y in Aκα and yα is in Aκα − Aκ . Hence y is in (yα−1, yα) and
there is a local axis LAα of α with y in LAα . Consider the relation τ−1ατ =
αβαm−1. Substitute β = τα−1τ−1 and rearrange the terms to get α−1τ−1α =
τα−1τ−1αm−1τ−1. Now apply it to x:

y = xα−1τ−1α = xτα−1τ−1αm−1τ−1,

or yτα1−m = yα−1τ−1. Now yτ ∈ [y, yα−1], so yτ is in LAα and

yτα1−m ∈ [yα1−m, yα−m],
so yτα1−m is not in Aκ . But yα−1τ−1 is in Aκ , contradiction.

This finishes the analysis of Aκu∩Aκ = [x, y] with x not equal y. Consequently
this finishes the analysis of CaseA, τ acts freely, which we now proved cannot happen.

6. Case B: τ has a fixed point, α acts freely

Here α has an (actual) axis Aα and so does β with axis Aβ = Aατ−1. Let Fix(τ ) be
the set of fixed points of τ . As usual there are various possibilities. This case is very
interesting because the topology of the manifold Mp/q will play a key role.
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Recall that if x is a point not in a connected set B of the tree T , then the segment
[x, u] is the bridge from x to B if the subsegment [x, u) does not intersect B and if
u is either in B or is an accumulation point of B. Again the important fact is that the
bridge from x to B is unique: it is the only embedded path from x to B because T is
a tree. As in case A this will be explored here. If u is in B we say that x bridges to u

in B.
We say that a point a is an ideal point of a local axis l if a is not in l but is an

accumulation point of l. Obviously this implies that l is not properly embedded in T

in the side accumulating to a.
There are two main cases depending on whether Fix(τ ) intersects Aα or not.

Case B.1. Fix(τ ) ∩ Aα = ∅.
Then κ also has a fixed point s. Choose s with sκ = s and s closest to Aα , that

is, the bridge [s, c] from s to Aα has no other fixed point of κ . Let z in [s, c] fixed by
τ and closest to Aα , that is, the bridge [z, c] from z to Aα has no other fixed point
of τ besides z. A priori we do not know whether z is equal to s or not. Let U be the
component of T − {z} containing Aα .

Then Aβ is a subset of Uτ and z bridges to cτ−1 in Aβ .

Case B.1.1. Suppose Uτ �= U.
Then Uτ−1 �= U as well. Apply ατ = ταβαm−1 to z: the point z bridges to c in

Aα , so zα bridges to cα in Aα . As cα is not c then zα is in U, so zατ is in Uτ , see
Figure 9 (a). On the other hand zτα = zα is in U and hence z separates it from Aβ .
It follows that zα also bridges to cτ−1 in Aβ . Then

zαβ = zταβ bridges to cτ−1β in Aβ and cτ−1β �= cτ−1, so zταβ ∈ Uτ−1.

Therefore zταβ bridges to c in Aα , so zταβαm−1 bridges to cαm−1 in Aα . This
implies zταβαm−1 is in U, impossible since it is equal to zατ ∈ Uτ .

We conclude that Uτ = U, which will be assumed from now on in this proof.
Choose a prong η at z which is a subset of [z, c]. This prong is associated to the

component U of T − {z}, hence the prong ητ also is associated to the component
U = Uτ and η ∩ ητ is not just z. Let e be another point in the intersection. Then
eτ−1, e are both in η and eτ−1 is not equal e – by choice of z as the fixed point of
τ in [z, c] closest to Aα . So either e is in [z, eτ ) or eτ is in [z, e). In the first case
(say) apply τ to get eτ is in [z, eτ 2) and it now follows that e ≺ eτ ≺ eτ 2. The same
alignment of points happens in the second case. We conclude that there is a local axis
LAτ for τ , with e in the local axis.

This construction of a local axis is crucial in case B and also in case C of the
proof.

Conclusion. If Uτ = U and there is no fixed point of τ in (z, w], then there is a
local axis LAτ of τ contained in U with one ideal point z.
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Figure 9. (a) The case Uτ �= U, (b) the case LAτ ∩ Aα = ∅.

Case B.1.2. Suppose that LAτ ∩ Aα is at most one point.
Let [d, c] be the bridge from LAτ to Aα – here d = c if LAτ ∩ Aα is a single

point. We do the proof for LAτ ∩Aα = ∅, the case of single point intersection being
entirely similar. Once more we use

zτ−1ατ = zατ = zαβαm−1.

Here zα bridges to cα in Aα and bridges to cτ−1 in Aβ , see Figure 9 (b). Therefore
zαβ brides to cτ−1β in Aβ and so zαβ bridges to c in Aα . Therefore zαβαm−1

bridges to cαm−1 in Aα .
On the other hand notice that zα bridges to d in LAτ and so zατ bridges to dτ in

LAτ and consequently zατ bridges to c in Aα . This contradicts the equality above.
This finishes the proof of case B.1.2.

We conclude that LAτ ∩ Aα is more than one point. Since Aα is properly
embedded in T and z is not in Aα then there is a in LAτ ∩ Aα closest to z. From
now on in case B.1 let LAτ ∩ Aα = [a, b], with a �= z and a closest to z. By an
abuse of notation b can be +∞, meaning the intersection is a ray in LAτ . Put an
order < in LAτ so that a < b in LAτ . Also let <α be the order in Aα with a <α b.

From now on in case B.1 the proof will depend on whether Uγ is equal to U
or not. The arguments here are also very similar to what will be needed for case C,
therefore we will make the arguments in more generality so that they can be used in
case C, namely when α has a fixed point but has a local axis with certain properties.
We first specify the conditions under which the analysis works.

Conditions. Consider two conditions:

Condition F. τ has a fixed point z, α acts freely and z is not in the axis Aα . Let Aα

be in the component U of T − {z}. There is a fixed point s of κ so that s is either z
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or z separates s from Aα . Let [s, c] be the bridge from s to Aα . Then (s, c] has no
fixed point of κ and (z, c] has no fixed point of τ . Also Uτ = U and there is a local
axis LAτ of τ in U with ideal point z. Finally LAτ ∩Aα = [a, b] where a �= z and
a is in (z, b).

Notation. Given u, v distinct in T let Tu(v) be the component of T −{u} containing v.

Condition N. τ has a fixed point z; κ has a fixed point s and α has a fixed point w so
that (s, w) has no fixed point of either κ or α. In addition either z = s or z ∈ (s, w)

and (z, w) has no fixed point of τ . In addition let U be Tz(w) and V be Tw(z). Then
Uτ = U and Vα = V. There is a local axis LAτ of τ in U with one ideal point
z and a local axis LAα of α in V with ideal point w. The intersection of LAα and
LAτ is [a, b] where a is the closest point to z and b can be +∞ in LAτ .

Here condition F is for free action of α (which is used here) and condition N is for
non free action of α (which is used in Case C). In either case the order <α in LAα

corresponds to a <α b. This implies the orders <, <α coincide in the intersection.
Beware that here the order <α here is in LAα and not in (Aτ )α as in case A.

Caution. An axis is also a local axis. For the sake of simplicity and to use it for case
C, we will use the notation LAα even in the case of α acting freely for the rest of the
proof of case B.1. In case B.2, we will return to use the notation Aα for the axis of α.

Case B.1.3. Uγ �= U.

Claim. Under these conditions Uγ ∩ U is empty.
Recall that ∂U = z and zτ = z. Notice we do not know a priori that zγ = z.

If zγ = z then γ permutes the components of T − {z} so one has Uγ ∩ U = ∅.
Suppose then that zγ is not z. Recall that there is a fixed point s of κ with z ∈ [s, w]
– maybe s = z. If zγ �= z, then

[s, z] ∩ [s, zγ ] = [s, t] with t ∈ [s, z), hence t ∈ (z, zγ ).

In particular z is not equal to s. Notice t may be equal to s. Here z separates U from
s, hence z separates U from t . Also zγ separates Uγ from s, hence zγ separates Uγ

from t . It follows that t separates U from Uγ and U ∩ Uγ = ∅. Also z separates
U from Uγ and so does zγ . This proves the claim.

Situation I. Suppose aα <α a in LAα .

Situation I.1. Suppose aα−1 >α b in LAα , see Figure 10 (a).
This implies that aα is not in LAτ , see Figure 10 (a). This also implies b is finite.

Notice that
zτ−1α−1τ = zα−mβ−1γ −1 = zα−mτατ−1γ −1.

The point z bridges to LAα in a. Hence zτ−1α−1 = zα−1 bridges to LAα in
aα−1, so zα−1 is in U and zα−1τ is also in U, which is invariant under τ . Since
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Figure 10. The case LAα ∩ LAτ = [a, b]: (a) Case aα <α a, b <α aα−1, (b) Case
b = aτ = aα−1, (c) Case aτ > b.

Uγ ∩ U = ∅, then

zα−mτα �∈ U and it bridges to LAα in a ⇒ zα−mτ bridges to LAα in aα−1

and hence bridges to LAτ in b. But zα−m bridges to LAα in aα−m so bridges to
LAτ in a. So zα−mτ bridges to LAτ in aτ . This implies aτ = b and also that τ is
increasing in (LAτ , <).

In addition

LAβ = (LAα)τ−1 so LAβ ∩ LAτ = [aτ−1, a] = [aτ−1, bτ−1]
and aβ−1 = bατ−1 is not in LAτ and bridges to LAτ in aτ−1. So this point bridges
to LAα in a and aβ−1α−1 bridges to LAα in aα−1. As a result aβ−1α−1 is in U.

Also aα−1 bridges to LAτ in b = aτ . Hence it bridges to LAβ in a. This
implies that aα−1β−1 bridges to LAβ in aβ−1 so again aα−1β−1 is in U. Now
(aβ−1α−1)γ = aα−1β−1. Which implies Uγ ∩ U is not empty. This contradicts
the above claim.

Situation I.1 cannot happen.

Situation I.2. Suppose aα−1 ≤α b in LAα .
Similarly to the arguments in situation I.1, zα−1τ is in U, so zα−mτα is not in

U so

zα−mτα bridges to LAα in a, zα−mτ bridges to LAα in aα−1.

Also aα−1 ≤α b in LAα , hence aα−1 is in LAτ and aα−1 ≤ b in LAτ as well. On
the other hand zα−m bridges to LAτ in a so zα−mτ bridges to LAτ in aτ . From
this it follows that aτ ≥ aα−1 in LAτ . In particular τ is increasing in (LAτ , <).
There are two possibilities:
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The first possibility is that aα−1 �= b. In this case zα−mτ bridges to LAα in
aα−1 which is in the interior of [a, b], hence this point also bridges to LAτ in aα−1.
It follows that

aτ = aα−1 ⇒ aβ−1 = aτ−1 bridges to LAα in a.

Then aβ−1α−1 bridges to LAα in aα−1 so is in U. As before consider aα−1β−1.
Here aα−1 is either in LAβ or bridges to LAβ in bτ−1 (the top intersection of
LAβ with LAτ ). If aα−1 is in LAβ then aα−1β−1 is in LAβ so in U, as above
contradiction. If it bridges to LAβ in bτ−1 then aα−1β−1 bridges to LAβ in
bτ−1β−1 = bατ−1. Since in this case

bα > a in LAτ , then bατ−1 > aτ−1 in LAτ ⇒ aα−1β−1 ∈ U,

again a contradiction.

The second possibility is that aα−1 = b. Here we have to split further into two
options:

Recall that aτ ≥ aα−1 in LAτ . First consider the case that aτ = aα−1, see
Figure 10 (b). We have the equalities aβ−1 = aτατ−1 = aτ−1. Use

(aαm)τ−1α−1τ = aαmα−mβ−1γ −1 = aβ−1γ −1 = aτ−1γ −1 �∈ U.

Hence aαmτ−1α−1 is not in U and bridges to LAα in a, aαmτ−1 bridges to LAα

in aα. But

aαm ∈ LAα ⇒ aαmτ−1 ∈ LAβ ⇒ LAα ∩ LAβ = [a, aα],
see Figure 10 (b). Now evaluate γ −1 = βαβ−1α−1 on aτ−1:

(aτ−1)γ −1 = (aβ−1)βαβ−1α−1 = aαβ−1α−1.

Notice that aα is in LAβ so aαβ−1 is in LAβ . Either aαβ−1 is in LAα and then
aαβα−1 is in LAα ⊂ U (contradiction) or

aαβ−1 �∈ LAα so bridges to LAα in a and aαβα−1 bridges to LAα in aα−1

and again this point is in U. In either case Uγ ∩ U �= ∅, contradiction.
The last option of the second possibility aα−1 = b is that aτ > b = aα−1 in

LAτ . Then

bτ−1 = aτ−1β < a in LAτ ⇒ LAα ∩ LAβ = ∅,

see Figure 10 (c). Here use ατ = ταβαm−1 applied to z: The point zα bridges to a in
LAτ and zατ bridges to aτ in LAτ . Since aτ > b, then zατ bridges to b = aα−1

in LAα .
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On the other hand zα bridges to bτ−1 in LAβ hence zαβ bridges to bτ−1β in
LAβ , hence to a in LAα . Finally zαβαm−1 bridges to aαm−1 in LAα . Since m is
not 0 this is a contradiction.

We conclude that situation I cannot happen.

Situation II. aα−1 <α a in LAα .

Situation II.1. aα−m is not in LAτ . Here use

zα−1τ = zτ−1α−1τ = zα−mτατ−1γ −1

is in U, so zα−mτα is not in U. It bridges to LAα in a, hence zα−mτ bridges to
LAα in aα−1 and hence bridges to LAτ in a. On the other hand zα−m bridges to
LAα in aα−m, so bridges to LAτ in b. It follows that zα−mτ bridges to LAτ in bτ

which then must be a. So a < aτ−1 in LAτ and τ is decreasing in (LAτ , <).
Notice LAβ∩LAτ is equal to [aτ−1, bτ−1] and this intersects LAα in aτ−1 = b.
Suppose first that aα is not aτ−1 = b. Here

aβ−1 bridges to LAβ in aτ−1β−1, so bridges to LAα in aτ−1.

Then aβ−1α−1 bridges to LAα in aτ−1α−1 �= a. It follows that aβ−1α−1 is in U.
On the other hand aα−1 bridges to LAβ in aτ−1 = b, so aα−1β−1 bridges to

LAβ in bβ−1 which is not b and it follows that aα−1β−1 is also in U. As seen before
this implies Uγ ∩ U is not empty, contradiction.

The second option in situation II.1 is that aα = aτ−1, see Figure 11 (a).
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Figure 11. Case aα−1 <α a in LAα : (a) Picture when aα−m �∈ LAτ , aα = aτ−1. (b) Picture
when aα−m ∈ LAτ , aτ−1β �∈ LAα .

Apply α−mβ−1γ −1 = τ−1α−1τ to aαm. The left side becomes aβ−1γ −1. Here

aβ−1 ∈ U ⇒ aβ−1γ −1 �∈ U ⇒ aαmτ−1α−1 �∈ U



286 S. R. Fenley CMH

and bridges to LAα in a. It follows that aαmτ−1 bridges to LAα in aα = aτ−1 = b.
But aαm is in LAα , so aαmτ−1 is in LAβ . Consequently LAα ∩LAβ = aτ−1 = b,
see Figure 11 (a).

The point aβ−1 is in U, hence

aβ−1γ −1 = aαβ−1α−1 = aτ−1β−1α−1 = aτ−2α−1

is not in U. Moreover, also aβ−1γ −1 is not equal to z, since otherwise some point
near aβ−1 in U will have image under γ in U, which is disallowed. Then

z ∈ (a, aτ−2α−1) ⇒ zα ∈ (aα, aτ−2) = (aτ−1, aτ−2) ⇒ zατ ∈ (a, aτ−1).

In particular zατ is in LAα and zατα1−m is in LAα as well. This point is equal to
zαβ.

On the other hand

zα ∈ (aτ−1, aτ−2) = (aτ−1, aτ−1β−1) ⇒ zαβ ∈ (aτ−1, aτ−1β).

But then zαβ is not in LAα , contradiction.
This finishes the analysis of situation II.1, aα−m is not in LAτ .

Situation II.2. aα−m is in LAτ .
In particular aα is in (a, b]. Here zα−mβ−1γ −1 = zτ−1α−1τ is in U. As usual

this implies zα−mτα is not in U and bridges to LAα in a and zα−mτ bridges to LAα

in aα−1, see Figure 11 (b); so zα−mτ bridges to LAτ in a. So

zα−m bridges to LAτ in aτ−1 ⇒ aτ−1 > a in LAτ

and again τ is decreasing in (LAτ , <). Notice zα−m bridges to LAα in aα−m. If
aα−m <α b in LAα , then zα−m also bridges to LAτ in aα−m and aα−m = aτ−1.
If

aα−m = b then zα−m bridges to LAτ in a point ≥ aα−m,

that is, aτ−1 ≥ aα−m in LAτ . In any case aα−m ≤ aτ−1 in LAτ and aα < aτ−1

in LAτ .
Now compute aγ = aαβα−1β−1. Here aα is in [a, aτ−1] and bridges to LAβ

in aτ−1. Hence aαβ bridges to LAβ in aτ−1β. There are two options: First if
aτ−1β is not in LAα , then aαβ bridges to a point v in LAα and v ∈ (a, aτ−1β) –
see Figure 11 (b). Here v could be in LAτ . Also v ≥ aα−m in LAα . Then

aαβα−1 bridges to a point vα−1 in LAα ⇒ it bridges a point c in LAβ ,

where aτ−1β does not separate c from LAτ . It follows that aγ = aαβα−1β−1

bridges to a point in LAβ which is not aτ−1, hence aγ is in U, contradiction.
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Figure 12. Analysing zα−1 ∈ K: (a) Picture when aτ ∈ [z, a). (b) Picture when aτ−1 ∈ [z, a).

The second option here is that aτ−1β is in LAα . Here aτ−1 is in LAα . Then
consider aτ−1α−1 which is in LAα and hence in U. Then

(aτ−1α−1)αβα−1 = aτ−1βα−1

is in LAα and aτ−1βα−1 <α aτ−1β in LAα . Therefore

aτ−1βα−1 bridges to a point in LAβ contained in (bτ−1, aτ−1β).

Apply β−1 – the resulting point bridges to a point in LAβ which is not aτ−1, hence
(aτ−1α−1)γ is in U, again a contradiction.

This finishes the analysis of situation II. Hence this finishes the analysis of case
B.1.3, Uγ is not equal to U.

Case B.1.4. Suppose Uγ = U.
Since the boundary ∂U in T is the point z this implies that zγ = z. Since LAτ

is a prong at z it follows that (LAτ )γ ∩ LAτ is not empty. Choose cγ in this
intersection. So c, cγ are disjoint and in LAτ . It follows that z, c, cγ are aligned
(the particular order is not important) and c is in a local axis of γ . But cγ −q = cτp

is also in LAτ and it follows easily that the local axis is contained in and therefore
equal to the local axis LAτ of τ so γ, τ and hence κ leave LAτ invariant. This sort
of argument will be used from time to time from now on.

Here the ideal would be to apply the proof of case A, where τ acted freely and Aτ

was invariant by γ and τ . We already have LAτ invariant under γ and τ , however
LAτ is not properly embedded in T - at least in the z direction. In order to apply the
proof of case A, we analyse the relative positions of (LAτ )α, (LAτ )ατ and so on.
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In particular for that analysis to work we must have (LAτ )α contained in U and so
on. So first we do preparation work, showing all images of the local axis are in U
and then we can apply the proof of case A.

For simplicity of notation in case B.1.4 we do the following: K will denote the
local axis LAτ which is contained in U and has an ideal point z. Again as we want
to use this in section C as well, we will consider a local axis LAα for α. The key
result is the following:

Lemma 6.1. We have Kα ⊂ U, Kα−1 ⊂ U and Kατα−1 ⊂ U.

Proof. The proof will be done considering each problem in turn. When the problems
do not occur we show after the lemma that we can use the proof of case A to deal
with case B.1.4. We treat each problem in turn:

Problem 1. Is Kα ⊂ U?
Suppose not. Then as aα is in LAα contained in U there is t in K with tα = z

or zα−1 is in K , see Figure 13 (a). Here z bridges to a in LAα so zα−1 bridges to
aα−1 in LAα . So zα−1 can only be in K if b is in (z, zα−1) and aα−1 = b. In
particular aα <α a in LAα .

There are two possibilities depending on whether τ is expanding away from z or
not:

First suppose aτ is in [z, a), see Figure 12 (a). As zα bridges to a in K then zατ

bridges to aτ in K and bridges to a in LAα . Then zατα−m bridges to aα−m in
LAα . The point zατα−m is equal to zβ (because zγ = z) and bridges to a in K so
bridges to aτ−1 in LAβ . But z also bridges to aτ−1 in LAβ , contradiction.

The second option is aτ > a in K , see Figure 12 (b). Here zβ−1 bridges to
aτ−1β−1 in LAβ and so to a in LAα . Hence

zβ−1α−1 bridges to aα−1 in LAα ⇒ zβ−1α−1 ∈ U.

On the other hand zα−1β−1 = zα−1τατ−1. Here

zα−1τ ∈ K ⇒ zα−1 ∈ (z, zα−1τ) ⇒ zα−1τα �∈ U ⇒ zα−1β−1 �∈ U.

But zβ−1α−1γ = zα−1β−1, leading to Uγ �= U, contradiction to case B.1.3.

So we obtain zα−1 ∈ U is impossible. Hence Kα ⊂ U. This shows that
Problem 1 does not occur.

If Kα intersects K in at most one point we can use the analysis of Case A.1 to
disallow it. To use that notice that K is a local axis for κ and Kα has to bridge to a
point x in K and not to z.

So assume from now on in case B.1.4 that K ∩ Kα is more than one point.
Suppose for a moment thatKα is contained inK . Apply τ−1ατα−m = γ τα−1τ−1

to K . If Kα is not equal to K then the right side is strictly contained in K and the
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left side strictly contains it. Impossible. So the only possibility is that Kα = K . But
that implies that K is left invariant by the whole group and this reduces to case R – the
tree is R. We conclude that Kα ⊂ K cannot happen. In the same way Kα−1 ⊂ K
cannot happen either.

Consider first the situation that

K ∩ Kα = (z, t]; then T K , Kα share a ray.

As before t could be +∞ in LAτ . The orientations in K and Kα may agree or
not. If the orientations agree then zα = z. This implies that z is a global fixed point,
impossible by non trivial action.

Suppose then that the orientations in K and Kα disagree. If (z, t) = LAτ then
there is a fixed point r of α in LAτ = K . Let U1 (respectively U2) be the component
of T −{r} containing rτ (respectively rτ−1). The condition Kα∩K = (z, t) implies
that U1α = U2. This is now disallowed by Lemma 5.2, notice that LAτ is a local
axis for κ .

Finally suppose that t is finite. Notice that Kα ⊂ K is disallowed. If tα is
in LAτ then the orientation hypothesis produces a fixed point r of α in (z, t]. In
addition with U1, U2 defined above then U1α = U2 and this is again disallowed by
Lemma 5.2. The remaining case to be analysed here is that tα is not in LAτ . In any
case since there is a ray in LAτ not limiting on z whose image under α limits on z,
it follows that LAτ has another limit point v. Then vα = z. Also vκ = v.

Now compute vτ−1ατ = vαβαm−1. The left side is vτ−1ατ = vατ = zτ = z.
The right side is

vαβαm−1 = vατα−1τ−1αm = zα−1τ−1αm−1 = vαm−1,

or z = zαm−2. But this case implies that z bridges to t in LAα and so this cannot
happen. That is, we cannot have Kα ∩ K = (z, t].

Suppose now that K has a ray l (not limiting to z) so that lα ⊂ LAτ and the
orientations disagreeing. Then LAτ has another limit point v (with vκ = v) and vα

is in (z, t) (the difference here is that we are assuming vα is not z). As above we have
tα is not in K and α has a local axis with t in it. Also tα−1 is in K and closer to v

than t is. Use
vτ−1ατα−m = vγ τα−1τ−1.

The left side is vατα−m and the right side is vα−1τ−1. This shows that τ expands
from z to v in K and tα−1τ−1 = t . Now use tτ−1α−1τ−1ατ = tα−1τ−1αm−1. The
right side is tαm−1. We analyse the left side. Then tτ−1 is in (z, t) and tτ−1α−1 is in
(tα−1, z) (which is a subset of K). Apply τ−1 to get a point in K which is in (t, v).
Then apply α to get a point that bridges to K in a point o in (z, t]. Finally apply τ to
get a point that is contained in (z, vα−1). This cannot be tαm−1.
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We conclude this cannot happen. This analysis shows that LAα ∩ LAτ has a
point t which is the closest to z.

Given these facts we now consider the general situation that K has another limit
point v. As seen above vκ = v. Suppose first that v is in LAα . Here we split into
cases: if α acts freely then v is a fixed point of τ in the axis of α and this falls under
case B.2 which we will consider latter. Consider then the case that α does not act
freely. Let w be a fixed point of α which is a limit point of Aα . Choose w so that
(w, v) has no fixed point of α (as v is in LAα) and also no fixed point of τ or γ .
Also Tw(v) is invariant under α and Tv(w) is invariant under τ . Then v in LAα is
disallowed by Lemma 7.4 (notice we do not need to use Lemma 7.2, because in this
situation we have vκ = v).

It follows that v has the same properties as z. In any case one obtains that

Kα ∩ K = [t, r], t �= r, t closest to z

and if K is not properly embedded in the other direction then r is an actual point
in K . Then Kατ ∩ K = [tτ, rτ ]. So the intersections are the same as occurred in
case A so far.

Problem 2. Is Kα−1 ⊂ U?
This is similar to problem 1. As before if Kα−1 not contained in U, then z ∈

Kα−1 and zα ∈ K . Recall that LAα ∩ K = [a, b]. This can only happen if
b ∈ (z, zα), aα = b and aα−1 <α a in LAα .

First suppose that aτ−1 ∈ [z, a]. Then

aτ−1α ∈ [zα, aα] = [b, zα] ⇒ aτ−1α ∈ K ⇒ aτ−1ατ ∈ K

and this last point bridges to b in LAα . Then aτ−1ατα−m = aγβ bridges to bα−m

in LAα . But

bα−m <α b in LAα ⇒ aγβ bridges to bτ−1 = a in LAβ .

On the other hand aγ ∈ [z, aτ−1] and bridges to aτ−1 in LAβ , so aγβ bridges to
aτ−1β in LAβ . Since aτ−1β is a point in LAβ −K it is not equal to bτ−1, leading
to a contradiction.

The second option is aτ−1 > a in K . Here use

zβ−1 = zατ−1 ∈ K, zα ∈ (z, zβ−1) ⇒ zβ−1α−1 �∈ U.

On the other hand zα−1 bridges to aα−1 in LAα so bridges to aτ−1 in LAβ . So
zα−1β−1 bridges to aτ−1β−1 in LAβ and is in U. As above this is a contradiction.

We conclude that Problem 2 does not occur.
After some analysis as in problem 1, this implies that

Kα−1 ∩ K = [t ′, r ′], with t ′ �= r ′, t ′ �= z
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and if K not properly embedded on the other side then r ′ has to be finite in K .
Then clearly Kα−1τ−1 ⊂ U and intersects K in a segment.
The last problem is the following:

Problem 3. Does Kατα−1 ⊂ U?
Suppose not, that is, Kατα−1 �⊂ U. We have to be careful here. First a prelimi-

nary claim:

Claim. z ∈ Kατα−1.
If this is not true then Kατα−1 ∩ U = ∅. Notice that

Kατ ∩ LAα �= ∅ ⇒ Kατα−1 ∩ LAα �= ∅ and Kατα−1 ∩ U �= ∅,

contrary to assumption here.
So consider Kατ ∩ LAα = ∅. Also here Kατ ∩ K is a non trivial segment.

If Kατ bridges to a in LAα then Kατα−1 is contained in U and we are done. It
follows that Kατ has to bridge to b in LAα and hence zα has to be in the this bridge.
But then zα is in K , which was disallowed in problem 2. This proves the claim.

We now analyse what happens when

z ∈ Kατα−1 so zτ−1 = z ∈ Kαβ and zβ−1α−1 ∈ K.

Also zβ−1α−1γ = zα−1β−1 is in K as well.

Situation I. aα−1 <α a in LAα .

Situation I.1. aτ < a in K .
Here zα−1 bridges to aα−1 in LAα , so it bridges to aτ−1 in LAβ . Also

zα−1β−1 ∈ K and aτ−1 ≺ a ≺ aα−1 ≺ zα−1.

As β−1 moves points up along K , it follows that zα−1β−1 > b in K and aτ−1β−1 =
bτ−1. Here aα−1 ∈ [aτ−1, zα−1], see Figure 13 (a). Then

aτ−1β−1 = bτ−1 ≺ aβ−1 ≺ aα−1β−1 = v1 ≺ zα−1β−1 = v2

and all are in K . Also aβ−1 ∈ (b, aα−1β−1) ⊂ K and zβ−1 bridges to K in aβ−1

so bridges to LAα in b. Then zβ−1α−1 = v2γ
−1 ∈ K bridges to a in LAα and

aβ−1α−1 = v1γ
−1 is in (zβ−1α−1, a), see Figure 13 (a). Then

zβ−1α−1 ≺ aβ−1α−1 ≺ aα−1β−1 ≺ zα−1β−1,

all points in K . This contradicts the fact that γ acts as a translation in K .

Situation I.2. aτ > a in K .
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Figure 13. Situation aα−1 <α a in LAα : (a) Picture when aτ < a in K . (b) Picture when
aτ−1 < a in K .

Here zα−1 bridges to a in K , see Figure 13 (b). If a ≥ bτ−1 in K then zα−1

bridges to a point t ≥β bτ−1 in LAβ , so

zα−1β−1 bridges to LAβ in a point ≥β bτ−1β−1 and zα−1β−1 �∈ K ,

contradiction. Hence a < bτ−1 in K and zα−1 bridges to a in LAβ so zα−1β−1

bridges to aβ−1 in LAβ and as zα−1β−1 is in K then

zα−1β−1 > bτ−1 in K and aβ−1 = bτ−1 or aτα = b.

Now
aβ−1 = bτ−1 so aα = aτ−1β−1τ < aβ−1τ = b,

in particular aα is in K . Also zβ bridges to a in LAα and so does z. But zβα = zαβ

and zα bridges to aα in LAα . Since aα < b, then zα, zαβ bridge to aα in LAτ as
well.

If aα < bτ−1 in K then zα, zαβ bridge to aα in LAβ , impossible – they have to
bridge to distinct points in LAβ . If

bτ−1 ∈ (a, aα) ⇒ zα, zαβ bridge to bτ−1 in LAβ ,

again contradiction. Therefore aα = bτ−1 or aατ = b. Now

aατα−1τ−1 = bα−1τ−1 = a, so aγ = aα−1β−1.



Vol. 82 (2007) Laminar free hyperbolic 3-manifolds 293

Notice that aγ ∈ [z, aτ−1]. But aα−1 bridges to a in LAβ , so aα−1β−1 bridges to
aβ−1 = bτ−1 in LAβ and aα−1β−1 cannot be aγ , contradiction.

This finishes the analysis of situation I.
The remaining options are extremely similar and have shortened proofs.

Situation II. aα <α a in LAα .

Situation II.1. aτ−1 < a in K .
This is as situation I.1 above. Here zβ−1 bridges to a in LAα , so zβ−1α−1 bridges

to aα−1 in LAα and aα−1 = b. It follows that

b ≺ aτ−1α−1 ≺ aτ−1β−1α−1 ≺ zβ−1α−1,

all points in K .
On the other hand aτ−1α−1 ∈ (b, (aτ−1)β−1α−1) ⊂ K . The point zα−1 bridges

to (aτ−1)α−1 in K . It follows that

zα−1β−1 ≺ (aτ−1)α−1β−1 ≺ (aτ−1)β−1α−1 ≺ zβ−1α−1,

all points in K . As before this contradicts the fact that γ acts as a translation in K .

Situation II.2. aτ < a in K .
This is very much like situation I.2. Here zβ−1 bridges to aτ−1 in K . If aτ−1 ≥ b

in K , then

zβ−1α−1 bridges to a point >α b in LAα ⇒ zβ−1α−1 �∈ K ,

contradiction. Hence

aτ−1 < b in K , zβ−1α−1 > b in K and aτ−1α−1 = b or a = bατ .

In addition,

zα, z bridge to LAβ in aτ−1 ⇒ zβα = zαβ, zβ bridge to LAβ in aτ−1β,

and similarly to situation I.2, this implies aτ−1β = b or a = bτα. Then bαβ = b and
bγ = bα−1β−1. But bγ ≥ bτ−1 in K and bα−1 bridges to b in LAβ , so bα−1β−1

bridges to bβ−1 = aτ−1 in LAβ and cannot be equal to bτ−1.
This contradiction shows that problem 3 cannot occur. This finishes the proof of

Lemma 6.1. �

It follows from Lemma 6.1 that Kατα−1 ⊂ U, so Kαβ ⊂ U as is Kγβα. So
all of the sets K , Kα, Kατ , Kατα−1, Kαβ, Kα−1, Kα−1τ−1 and Kα−1τ−1α

(which is Kβα = Kγ −1αβ = Kαβ) are contained in U and none has z as an ideal
point. If K has another ideal point v, then v has the same properties as z and the
same situation occurs with respect to this other ideal point.
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Given these facts, an analysis exactly as in case A.2 can be applied here. That
analysis then shows that case B.1.4 is not possible.

Hence case B.1.4 is disallowed. This also finishes the proof of case B.1.
For case B.2 we return to the study of α acting freely using the axis Aα .

Case B.2. Fix(τ ) ∩ Aα �= ∅.
This is the key case of the proof for essential laminations. In this case the topology

will be important, in particular, the exact condition |p − 2q| = 1 will be used in a
crucial manner. Let z ∈ Fix(τ ) ∩ Aα . Let U1 (respectively U2) be the component
of T − {z} containing zα (respectively zα−1). A priori we do not know whether z is
also a fixed point of γ . In some subcases, the tricky part will be in fact to show that
zγ = z.

Case B.2.1. U1τ = U1.
Notice that U1α is contained in U1. Here use zατ = zτγβαm = zγβαm.

zα ∈ U1 ⇒ zατ ∈ U1 ⇒ zατα−m ∈ U1α
−m ⊂ U1 ⇒ zγβ ∈ U1.

So zγ τα−1τ−1 is in U1 and then zγ α−1 is in U1 or zγ is in U1α. In particular
z ≺ zα ≺ zγ , see Figure 14 (a). We stress that in this case zγ is not equal to z!

U1

U2

zα

zα
zβ

zγ

zα−1

zα−1

zατ−1

zατ−1α−1 = zβ−1α−1

zβ−1α−1γ

AαAα

zα−1τ−1 zαβ

t

z

z

zατ

zαm

zαm−1

zβ2

zαβαm−1 = zατ

(a) (b)

Figure 14. Case B: (a) Picture when U1τ = U1. (b) Picture when U1τ
−1 = U2 and

[z, zβ] ∩ [z, zα] = [z, t] .

Use now zατ = zαβαm−1 = zατα−1τ−1αm−1.

zατα1−m ∈ U1 ⇒ zατα−1τ−1 ∈ U1 ⇒ zατα−1 ∈ U1 ⇒ zατ ∈ U1α.

In particular z ≺ zα ≺ zατ and z ≺ zατ−1 ≺ zα and so zατ−1α−1 ∈ (zα−1, z). In
other words

zατ−1α−1 = zτατ−1α−1 = zβ−1α−1 ∈ (zα−1, z).
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Then zβ−1α−1 is in U2 so zβ−1α−1γ is in U2γ . Notice zβ−1 = zτατ−1 = zατ−1

with zα ∈ U1, zατ−1 also in U1.
Recall that zγ �= z. If U1γ ⊂ U1 this implies that z is in a local axis for γ con-

tradicting zγ q = zτ−p = z. Therefore U1γ is not contained in U1 and consequently
U2γ is contained in U1 and so zγ separates U2γ from z. Hence

zα separates U2γ from z and zβ−1α−1γ ∈ U2γ .

But zβ−1α−1γ = zα−1β−1 = zα−1τατ−1. Now zα separates z from zα−1τατ−1

which is in U2γ . Apply τ : zατ separates z from zα−1τα. Then

zατ ∈ U1α ⇒ zα−1τα ∈ U1α ⇒ zα−1τ ∈ U1 and zα−1 ∈ U1τ
−1 = U1.

But this contradicts zα−1 is in U2. This is an impossible case.
We conclude that U1τ �= U1.

Case B.2.2. U1τ �= U2.
Then zατ is not in U2, which implies zατα1−m is in U1, or zαβ ∈ U1 and

zατα−1τ−1 is in U1. By assumption zατ �∈ U1, hence zατα−1 ∈ U2 and
zατα−1τ−1 ∈ U2τ

−1. This would imply U2τ
−1 = U1 or U1τ = U2, so the

assumption is incompatible.
We conclude that U1τ = U2.

Case B.2.3. U1τ
−1 = U2.

This is a very interesting case. Here we only use the fact that p is odd.
First consider zβ = zτα−1τ−1 = zα−1τ−1 which is in U2τ

−1 = U1. Then
zα, zβ are in the component U1, hence [z, zα], [z, zβ] share a subprong. Suppose
first that

[z, zβ] ∩ [z, zα] = [z, t], t �= zα, zβ, that is zα �∈ [z, zβ], zβ �∈ [z, zα]
see Figure 14 (b). Notice that β has a local axis through zτ−1 = z. Hence zβ is in
(z, zβ2) and zαβ bridges to t in Aα . Also zαβαm−1 bridges to Aα in tαm−1 which
is a point in (zαm, zαm−1). But

zαβαm−1 = zατ ⇒ zα−1τ−1 ∈ [z, zα) ⇒ zβ = zα−1τ−1 ∈ [z, zα),

contradiction.
So either zβ ∈ [z, zα] or zα ∈ [z, zβ].

Situation I. zα is in [z, zβ].
Use zβτ = zτα−1 = zα−1. As zα is in [z, zβ], then zατ ∈ [z, zβτ ] = [z, zα−1]

and zατα1−m ∈ [zα−m, zα1−m]. But

zατα1−m = zτ−1ατα1−m = zαβ, so zαβ ∈ [zα−m, zα1−m] ⊂ Aα .
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We stress that zαβ ∈ Aα . Here zβ−1 ≺ z ≺ zα, hence z ≺ zβ ≺ zαβ. It follows that

zβ ∈ Aα and zβ ∈ [z, zαβ] ⇒ zαβα−1 ∈ [zα−m−1, zα−m].
We want zγ = z or zαβ = zβα. We first analyse the other two possibilities.

Situation I.1. zαβα−1 > zβ in Aα .
Then zβ ≺ zαβα−1 ≺ zαβ, so z ≺ zγ ≺ zα, or zγ ∈ (z, zα), so zγ ∈ U1.

Clearly zβα ∈ Aα . Here zαβ > zβα in Aα . Then

z ≺ zβα ≺ zαβ all in Aα ⇒ zβ−1 ≺ zβαβ−1 ≺ zα and zβ−1α−1 ≺ zγ −1 ≺ z.

But zβ−1 = zατ−1 ∈ U2, hence zβ−1α−1 is in U2. Now zγ ∈ U1, zγ −1 ∈ U2,
therefore z is in a local axis for γ , hence zγ q �= z, contradiction.

Situation I.2. Suppose zαβ <α zβα.
Then

z ≺ zαβα−1 ≺ zβ ⇒ zβ−1 ≺ zγ ≺ z.

As zβ−1 = zατ−1 is in U2, then zγ is in U2.
Now zαβ <α zβα. If Aβ contains elements in Aα above zαβ, that is, Aβ ∩Aα ⊃

[z, t) with t >α zαβ and t <α zβα, then

z ≺ zα ≺ tβ−1 ≺ zβαβ−1 ⇒ z ≺ tβ−1α−1 ≺ zγ −1.

Here tβ−1α−1 bridges to e >α zαβα−1 >α z in Aα . So tβ−1α−1 is in Aα and zγ −1

is in U1 and not in U2.
On the other hand if Aβ escapes Aα in zαβ, then zβαβ−1 bridges to Aβ in

zα, hence bridges to Aα in zα as zα ∈ (z, zαβ). Hence zβαβ−1 �∈ U2α and
zβαβ−1α−1 = zγ −1 bridges to Aα in z and zγ −1 is not in U2. In any case zγ −1 is
not in U2 and zγ is in U2 so z separates zγ from zγ −1 and z is in a local axis for γ ,
impossible.

We conclude that zαβ = zβα or that zγ = z.

Situation I.3. zγ = z.
Then γ leaves invariant the set of components of T − {z}. Recall that U1τ

−1 =
U2 and U1τ = U2 in situation I. Use zβ−1α−1γ = zα−1β−1. The left side is
zτατ−1α−1γ = zατ−1α−1γ .

zα ∈ U1 ⇒ zατ−1 ∈ U1τ
−1 �= U1, so zατ−1α−1 ∈ U2 and zατ−1α−1γ ∈ U2γ.

On the other hand the right side is zα−1τατ−1:

zα−1 ∈ U2

⇒ zα−1τ ∈ U2τ = U1, zα−1τα ∈ U1 and zα−1τατ−1 ∈ U1τ
−1 = U2.
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So U2γ ∩ U2 �= ∅. Since γ now preserves the set of components of T − {z} it
follows that U2γ = U2 and U1γ = U2τγ = U2γ τ = U2τ = U1. Now we use p

odd and τpγ q = id:

U1 = U1γ
qτp = U1τ

p = U1τ
p(mod 2) = U1τ.

This contradicts U1τ �= U1 and finishes the analysis of situation I.

Situation II. zβ ∈ [z, zα].
This is very similar to the previous case if we think of it in the appropriate way.

The trick here is to switch the roles of α and β, which can be done. Notice first that
zβ ∈ U1 and zβ−1 = zτατ−1 = zατ−1 is in U2. So the component of T − {z}
containing zβ (respectively zβ−1) is the component U1 (respectively U2). First
rewrite the relations as

τατ−1 = β−1, τβτ−1 = γ −1αβm = βαβm−1.

As zβ is in [z, zα] then zβτ−1 is in [zτ−1, zατ−1] = [z, zβ−1]. So

zτβτ−1β1−m = zβτ−1β1−m = zβα ∈ [zβ−m, zβ1−m] ⊂ Aβ.

As zβ ∈ [z, zα], then zβα is in [zα, zα2] and

zα ∈ [z, zβα] ⊂ [z, zβ1−m] ⊂ Aβ.

Therefore zα is in Aβ and similarly zαβ, zβα are in Aβ .
From this point on the proof is entirely similar to the analysis in situation I:

consider whether zαβ <β zβα, zαβ >β zβα, or zαβ = zβα, with completely
analogous proofs.

Therefore this case is disallowed. This finishes the analysis of the case B.2.3,
U2τ = U1.

Case B.2.4. U1τ = U2, U1τ
−1 �= U2.

This is the most interesting case which relates to the topology in a crucial way.
Use zβ−1α−1γ = zα−1β−1. The right side is zτατ−1α−1γ = zατ−1α−1γ .

zα ∈ U1 ⇒ zατ−1 ∈ U1τ
−1 �= U1 ⇒ zατ−1α−1 ∈ U2.

Hence zβ−1α−1γ is in U2γ . On the other hand zα−1β−1 = zα−1τατ−1:

zα−1τ ∈ U2τ �= U2 ⇒ zα−1τα ∈ U1 ⇒ zα−1τατ−1 ∈ U1τ
−1 �= U2.

We conclude that

U2γ ∩ U1τ
−1 �= ∅, or U1τγ ∩ U1τ

−1 �= ∅. (∗)
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What we actually want is that these two sets are equal. A priori we have to be careful
because γ may not preserve the set of components of T − {z}, or equivalently we
may have zγ �= z. So we first deal with this case. We will need the following useful
lemma:

Lemma 6.2. Let η be a homeomorphism of a tree V so that ηn has a fixed point c,
where n is not 0. Then there is a fixed point of η in [c, cη].

Proof. Consider cη2. If cη2 is in [c, cη] and not equal to cη, then η sends [c, cη] into
itself and has a fixed point there, done. If cη is in (c, cη2) then c is in a local axis
of η and cηn is not c, impossible. If c is in (cη, cη2), then η−1 sends [cη, cη2] into
itself (into [c, cη]) producing a fixed point there, done.

We can now assume cη2 bridges to [c, cη] in a point r which is in (c, cη), see
Figure 15 (a). If rη = r we are done. Assume rη �= r . Then rη is in [cη, cη2].

cc

rr

rη

rη cη2cη2

rη2

rη2

cηcη

cη4

cη3(a) (b)

Figure 15. (a) rη ∈ [r, cη], (b) rη ∈ (r, cη2].

Suppose first that rη is in [r, cη], see Figure 15 (a). Then rη2 is in [rη, cη2] so
either [rη, r] is contained in its image under η or vice versa. As seen above there is
a fixed point of η in [r, rη].

Suppose now that rη is in (r, cη2] see Figure 15 (b). Hence c ≺ r ≺ rη and
cη ≺ rη ≺ rη2. Then r ∈ (cη, rη) and rη ∈ (r, rη2), so r is in a local axis for η.
This implies that cηt �= c for any nonzero t in Z, contradiction. This finishes the
proof. �

We are back to case B.2.4.

Situation I. zγ �= z.
Suppose first that zγ ∈ U2. Notice U2τ �= U1 and also �= U2. Since zγ q = z,

the previous lemma shows that there is c in [z, zγ ] fixed by γ so c is in U2. This
implies

U2τγ ⊂ U2 ⇒ U1τ
2γ ⊂ U2, or U1τγ ⊂ U1.

But by (∗) U1τγ ∩ U1τ
−1 �= ∅, which now implies U1τ

−1 ∩ U1 �= ∅. This is
impossible and rules out this case.
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The second possibility is that zγ ∈ U1. Here U2γ ⊂ U1 so U1τγ ⊂ U1. As
U1τγ ∩ U1τ

−1 �= ∅ then U1τ
−1 ∩ U1 �= ∅, also impossible.

The final option is zγ �∈ U1 ∪ U2, zγ ∈ U3 (which may be U2τ or not). Here
there is y fixed by γ with y ∈ U3. Here first use

U2γ ⊂ U3, or U1τγ ⊂ U3 ⇒ U1τ
−1 ∩ U3 �= ∅ and U1τ

−1 = U3.

Also
U1γ ⊂ U3 ⇒ U1τγ ⊂ U3τ.

By (∗), U1τ
−1∩U3τ �= ∅ or U1τ

−1 = U3τ . Then U3 = U3τ or U1τ
−1 = U1τ

−2,
so U1τ = U1, which is impossible. This rules out this final option.

We conclude that:

Situation II. zγ = z.
This is a crucial case. In fact there is an essential lamination in Mp/q whenever

|p − 2q| ≥ 2 and this essential lamination may satisfy these properties: τ has a fixed
point, α has an axis (or at least a local axis) which contains the fixed point of τ . See
more below. So here is a part of the proof where the specific condition |p − 2q| = 1
needs to be used. See remark below on the topological significance of this condition.

Here is the proof. As zγ = z, γ permutes components of T − {z}. So U1τγ ∩
U1τ

−1 �= ∅ implies

U1τγ = U1τ
−1 or U1γ τ 2 = U1.

We now compute

U1 = U1τ
pγ q = U1τ

p−2qτ 2qγ q = U1(γ τ 2)qτp−2q = U1τ
p−2q .

When |p − 2q| = 1 then either U1 = U1τ or U1 = U1τ
−1. So in either case

U1 = U1τ ! But this contradicts that we proved in case B.2.1 that U1τ is not equal
to U1. This is a contradiction showing that case B.2.4 cannot happen. This is quite
straightforward, but it needed all the previous steps.

This finishes the proof of case B: Fix(τ ) �= ∅, Fix(α) = ∅.

Remark. We now analyse the topology of this situation. Consider the original stable
foliation in the torus bundle over the circle (the manifold M). After blow up of the leaf
through δ, this produces a lamination λ1 in M−N(δ). The solid torus complementary
component of λ1 has degeneracy locus (1, 2), which corresponds to γ τ 2. This means
the γ τ 2 is a curve in the boundary leaf of the complementary component and it also
preserves the “outer" side of this complementary component. Now do p/q Dehn
filling on M − N(δ) and look at the tree T produced. The leaf through δ collapses to
a fixed point z of τ (and γ too). Usually neither τ nor γ preserves the complementary
components of z, but the above fact about the degeneracy locus means that γ τ 2
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does preserve these components – if U1 is one such component of T − {z} then
U1γ τ 2 = U1 After (q, p) Dehn surgery, the leaf space T of the lamination has a
singularity at z with exactly |p − 2q| prongs. The transformation τ rotates by one in
the set of prongs, hence τp−2q preserves each of the prongs. This is also detected by
γ τ 2 preserving the set of prongs and τpγ q being null homotopic. All is well when
|p − 2q| ≥ 2, because we have 2 or more prongs and the lamination is essential and
the action is very nice. However when |p − 2q| = 1 there is only one prong and
the lamination is not essential. It is amazing that this sort of difficulty can still be
detected on the level of group action on trees. Notice that this is exactly what the
proof shows that U1τ = U1, which must happen if there is only one prong.

7. Case C: α has a fixed point and τ has a fixed point

Let s in Fix(κ), w in Fix(α) with (s, w] ∩ Fix(κ) = ∅ and [s, w) ∩ Fix(α) = ∅. The
following notation will be very useful in this section. Given u �= v in T recall that

Tu(v) = {component of T − {u} containing v}.
Let

W = Ts(w), V = Tw(s).

This notation for W , V will be used throughout this section. First in this section
we will try to prove that W is invariant under τ and V is invariant under α. This
will produce local axes for α and (eventually) for τ and we will see how the 2 axes
interact.

Case C.1. Suppose Wτ �= W .
Notice that Wτ is a component of T − {s} as sτ = sγ = s.

Case C.1.1. Suppose w ∈ [s, sα].
This is equivalent to Vα �= V. Notice sα �= w. Here sαβ = sβα, and sβα =

sα−1τ−1α, so

sα−1 �∈ V ⇒ sα−1 ∈ W ⇒ sα−1τ−1 ∈ Wτ−1 ⊂ V

⇒ sα−1τ−1α ∈ Vα ⊂ W ⇒ sβα ∈ W .

On the other hand sαβ = sατα−1τ−1. Here

sα ∈ Vα ⊂ W ⇒ sατ ∈ Wτ ⊂ V ⇒ sατ−1α−1 ∈ Vα−1 ⊂ W

and sαβ is in Wτ . These two facts together imply W = Wτ , contrary to assumption.
Conclusion: if Wτ �= W , then Vα = V.
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Case C.1.2. sα−1 �∈ [s, w], sα �∈ [s, w].
This implies sα, sα−1 are in W . For otherwise if sα is not in W , then s is in

(w, sα] and so sα−1 is in [w, s]. In this case sα−1 bridges to [s, w] in a point r with
r ∈ (s, w) – the important fact is that r is not one of the endpoints which would occur
if sα−1 is not in W or V. Then

r ∈ (w, s) ∩ (w, sα−1) ⇒ rα−1 ∈ (w, sα−1).

Notice rα−1 is not equal to r . If rα−1 is in (r, sα−1), then sα−2 bridges to [r, sα−1]
in rα−1, hence sα−2 bridges to [s, w] in r . The same happens for all sαn with n

negative. If on the other hand rα−1 is in (w, r) then sα−2 bridges to rα−1 in [s, w]
and sαn bridges to [s, w] in rαn+1 for all n negative. Notice that rαn are all in
(w, r) ⊂ (w, s). The important conclusion is that under the hypothesis sα, sα−1

both not in [s, w] then any sαn bridges to [s, w] in a point in the interior of [s, w],
Hence all sαn are in W and V.

Use sτ−1ατ = sγβαm. Here sα is in W , so sατ is in Wτ . Also sβ = sα−1τ−1

is in Wτ−1 and bridges to s in [s, w]. Hence sβαm bridges to sαm in [sαm, w]. But
sαm is in W and bridges to [s, w] in a point in the interior of (s, w). This implies
sβαm is in W , contradiction.

This case is impossible.

Case C.1.3. Suppose sα ∈ [s, w].
This implies for instance that Wα ⊂ W and Ts(wτ−1)β−1 ⊂ Ts(wτ−1).

Case C.1.3.1. Suppose sα−1 ∈ Wτ .
Then sβ−1 = sατ−1 is in (s, wτ−1) ⊂ Wτ−1. Also sα−1 = sβα−1β−1. Here

sβ = sα−1τ−1 is in W .
In this case suppose first that sβ is not in V. Then

w ∈ [wτ−1, sβ] and wβ−1 ∈ [wτ−1, s] ⇒ wβ−1α−1 ∈ Wτ,

as sα−1 is in Wτ . This implies that wβ−1α−1 is in Wτγ . Notice wβ−1α−1 is not s.
On the other hand

wβ−1α−1γ = wα−1β−1 = wβ−1 is in Wτ−1.

Notice if wβ−1 = s, then

wβ−1α−1 = wβ−1γ −1 = sγ −1 = s = wβ−1,

contradiction because s is not fixed by α.
Collecting all of this together: wβ−1α−1γ is in Wτγ . But wβ−1α−1γ = wβ−1 ∈

Wτ−1. Hence

Wτγ = Wτ−1 or Wτ 2γ = W , impossible when |p − 2q| = 1,

as in case B.2.3.



302 S. R. Fenley CMH

The second option in case C.1.3.1 is that sβ ∈ V. Recall that sα−1τ−1 = sβ is
in W . Notice that

LAβ = (LAα)τ−1 has a segment [wτ−1, s] ⊂ Wτ−1 ∪ {s}
and then it goes into W , as sβ is in W . Then either sβ = t ∈ (w, s) or sβ bridges to
[w, s] in t ∈ (w, s), so bridges to t in LAα . In either case sβα−1 bridges to tα−1

in LAα or is tα−1. If tα−1 is in [w, s), then sβα−1 bridges to tα−1 in LAβ , see
Figure 16 (a). Here tα−1 is in [wτ−1, sβ). If

s ∈ [tα−1, w] then sβα−1 bridges to LAβ in r , with r ∈ [s, wτ−1].
This depends for instance on whether Wτ = Wτ−1 or not. In any case sβα−1 bridges
to LAβ in a point in [wτ−1, sβ). It follows that sβα−1β−1 bridges to a point y in
LAβ with y in [wτ−1, s), that is, sβα−1β−1 is in Wτ−1. Then

sα−1 ∈ Wτ, sβα−1β−1 = sα−1γ ∈ Wτ−1 ⇒ Wτγ = Wτ−1,

contradiction when |p − 2q| = 1.
This shows that case C.1.3.1 cannot occur.

LAα

LAβ

sα

sα

sα−1
sα−1

sβ

sβ

sβ−1

sβ−1

ww

wτ−1

wτ−1

τ

τ

t

s

s

r
sβα−1β−1

sβα−1

tα−1β−1

tα−1

rτα

rταβ sαβ = sβα

(a)

(b)

rτ

Figure 16. (a) Case C.1.3.1, (b) Case C.1.3.2.

Case C.1.3.2. sα−1 is not in Wτ .
Here sβ = sα−1τ−1 is not in W . Also sβ−1 = sατ−1 is not in W and is in

Wτ−1. It follows that

LAβ ∩ [w, s] = {s},
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so sα bridges to LAβ in s and sαβ = sβα bridges to LAβ in sβ. Hence [s, sβ] ⊂
(sα, sβα) and there is a fixed point r of α in (s, sβ), see Figure 16 (b). It also implies
that

sα−1 ∈ [s, r] and sα−1 ∈ Ts(sβ) = Ts(sβ)τ,

because sβ = sα−1τ−1 and sα1 is in Ts(sβ), see Figure 16 (b). Also τ contracts
[s, sβ] towards [s, sα−1]. Now apply ταβ = ατα1−m to r: rταβ = rτα1−m.

As sβτ = sα−1 and r ∈ (s, sβ), then

rτ ∈ (s, sα−1) ⇒ rτα ∈ (s, sα) ⇒ rταβ ∈ (sβ, sαβ) ⊂ Tr(sβ).

As rτα is in (s, sα−1) ⊂ Tr(s) and Tr(s)α = Tr(s). This implies rτα1−m is also in
Tr(s). Therefore r separates rτα1−m from rταβ, contradiction.

This shows that case C.1.3, sα ∈ [s, w] cannot occur. Finally consider:

Case C.1.4. Suppose sα−1 ∈ [s, w].
This implies that Wα−1 ⊂ W and (Wτ−1)β ⊂ (Wτ−1).

Case C.1.4.1. Suppose sα �∈ Wτ−1.
This case is very similar to case C.1.3.2. Here sβ ∈ Ts(wτ−1) which is not equal

to either Ts(sα) or Ts(sα
−1). Hence sβ bridges to LAα in s and sβα = sαβ bridges

to LAα in sα. Hence
sβ ≺ s ≺ sα ≺ sαβ

and there is a fixed point r of β in (s, sα). Then sβ−1 ∈ (s, r) ⊂ (s, sα). Now use
βτ−1β1−m = τ−1βα applied to r: rτ−1β1−m = rτ−1βα. As sατ−1 = sβ−1 then

rτ−1 ∈ (s, sβ−1) so rτ−1β1−m ∈ (r, sβ1−m) ⊂ Tr(s).

On the other hand rτ−1βα is in (sα, sβα) ⊂ Tr(sα). As Tr(sα) �= Tr(s), this is a
contradiction, ruling out this case.

Case C.1.4.2. sα is in Wτ−1.
This is similar to case C.1.3.1. Suppose first that Wτ−1 = Wτ . Then sατ−1 =

sβ−1 is in W . Also Wβ−1 is contained in W . It follows that

sα−1β−1 ∈ W and sα−1β−1γ −1 = sβ−1α−1 ∈ W .

Hence Wγ = W , Wτ 2 = W , leading to contradiction when p is odd.
Suppose now that Wτ−1 �= Wτ . Then sα ∈ Wτ−1 and sατ−1 = sβ−1 is not in

W . Also sβ−1 is in Wτ−2. So sβ−1 bridges to s in LAα and sβ−1α−1 bridges to
sα−1 in LAα implying sβ−1α−1 is in W .

Also sβ−1α−1γ = sα−1β−1. Here sα−1 bridges to s in LAβ , sα−1β−1 bridges
to sβ−1 in LAβ . But

sβ−1 ∈ Wτ−2 ⇒ sα−1β−1 ∈ Wτ−2 ⇒ Wγ = Wτ−2.

As in case B.2.4 this is impossible when |p − 2q| = 1.
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This finishes the analysis of case C.1.4, sα−1 ∈ [s, w].
We conclude that case C.1, Wτ �= W is impossible. This implies Wτ = W . We

stress that this does not yet produce a local axis of τ in W , because we may have
other fixed points of τ in (s, w).

Case C.2. Suppose that Vα �= V.
Here we will use sατ = sβαm = sαβαm−1 many times.

Case C.2.1. Suppose wτ, wτ−1 are not in [s, w].
The bridge from wτ to [s, w] is [wτ, t], where t is in (s, w). Since sα �∈ V, then

sατ bridges to t in [s, w], so sατ is in V. Hence sατα−m is in Vα−m. This point is
equal to sβ = sα−1τ−1. In the same way sα−1 is not in V and bridges to [s, w] in
w. It follows that sα−1τ−1 bridges to a point r in [s, w], where r is in (s, w), hence
sβ ∈ V. Therefore Vαm = V.

On the other hand

sατ = sαβαm−1 = sατα−1τ−1αm−1.

The point sατ is in V and bridges to t in [s, w]. So sατα−1 is in Vα−1 and bridges to
w in [s, w] so sατα−1τ−1 bridges to r in [s, w] (r as above) and as a result this point
is in V. Hence sαβαm−1 is in Vαm−1 and Vαm = Vαm−1, contradicting Vα �= V.

Case C.2.2. wτ−1 ∈ [s, w].
Here Vτ−1 is contained in V.
The condition implies that w is in a local axis LAτ of τ (this case will be ruled

out, we only establish the existence of a local axis of τ in W later). Beware that s may
not be a limit point of LAτ . Put an order < in LAτ so c < d in LAτ if s ≺ c ≺ d –
the order decreases as points get closer to s.

Case C.2.2.1. wτ ∈ Vα, wτ �∈ Vα−1, see Figure 17 (a).
Here Vατ ⊂ Vα.
The conditions imply in particular that Vα �= Vα−1. Here sατ ∈ Vα, so

sβαm ∈ Vα. Also sα−1 bridges to LAτ in w so sβ = sα−1τ−1 bridges to LAτ in
wτ−1. It follows that sβ is in V and sβαm is in Vαm. Hence Vαm = Vα.

On the other hand sατ = sαβαm−1. Use sαβ = sατα−1τ−1. Here

sατ ∈ Vα ⇒ sατα−1 ∈ V ⇒ sατα−1τ−1 ∈ V.

Finally sαβαm−1 is in Vαm−1. So Vαm−1 = Vα and V = Vα, again contradicting
the assumption in this case.

Case C.2.2.2. Suppose wτ is not in Vα and wτ is not in Vα−1.
Then wτ is in R another component of T − {w}. Then sατ is in R. Now
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sβαm = sα−1τ−1αm. But

wτ �∈ Vα−1 ⇒ sα−1 bridges to LAτ in w

⇒ sα−1τ−1 bridges to LAτ in wτ−1

and sβ is in V. Therefore sβαm ∈ Vαm = R. Notice Rα−1 �= R because
R = Vαm and Vα−1 �= V. Use

sατ = sαβαm−1 = sατα−1τ−1αm−1 and sατα−1 ∈ Rα−1 �= R.

Hence sατα−1 bridges to LAτ in a point ≤ w in LAτ (it is in [s, w]) and sαβ

bridges to LAτ in a point ≤ wτ−1 in LAτ . Hence

sαβ ∈ V ⇒ sαβαm−1 ∈ Vαm−1 ⇒ Vαm = Vαm−1,

contradiction. Notice that here it doesn’t matter whether Vα = Vα−1 or not.

ss

wτ−1wτ−1

wτ

wτ

wβ−1

sα

sα

sατ

sατ

sα−1

sα−1
w w

sα−1τ−1

sατα−1

sβ

sαβ

wτ−1α−1τ = wβ−1α−1

(b)
(a)

Figure 17. (a) Case C.2.2.1, (b) Case C.2.2.3.

Case C.2.2.3. wτ is in Vα−1, see Figure 17 (b).
This implies Vα−1τ is a subset of Vα−1.
Use sατ = sβαm = sα−1τ−1αm = sαβαm−1. Here

sα �∈ V ⇒ sατ ∈ Tw(wτ) = Vα−1 ⇒ sατα−1 ∈ Vα−2 �= Vα−1,

so it bridges to a point r in LAτ with r ≤ w in LAτ . Hence sαβ is in V and
sαβαm−1 is in Vαm−1. Hence Vαm−1 = Vα−1 or Vαm = V.

On the other hand sατ = sβαm is in Vα−1, so

sα−1τ−1 = sβ is in Vα−1−m = Vα−1.
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Then sβ bridges to a point > w in LAτ . But sβ = sα−1τ−1, so sα−1 bridges to a
point > wτ in LAτ , which implies wτ ∈ (w, sα−1). It follows that wτα ∈ (w, s)

and wβ−1 = wτατ−1 is in (wτ−1, s) and so is in W and in V.
The following arguments use the strategy of case R.2:
Now wβ−1α−1γ = wβ−1 is in (s, w) ⊂ W and therefore

wβ−1α−1 = wτ−1α−1τ is in (sα−1, w) ⊂ Vα−1.

Since sγ = s, this implies that Wγ = W and wβ−1α−1 is in a local axis for γ

and hence so is w. Because τp = γ −q and the local axis for γ and τ intersect
in w, it follows that these two axis are equal. In particular (LAτ )γ = LAτ and
wβ−1α−1γ = wβ−1, wβ−1α−1 are in LAτ .

Since wτα = wβ−1τ , then wτα is in LAτ . If wτα ≤ wτ−1 in LAτ then
wβ−1 = wτατ−1 ≤ wτ−2 in LAτ . Also wτ, wβ−1α−1 are in LAτ and wτ <

wβ−1α−1 in LAτ . Hence

wτγ < wβ−1α−1γ = wβ−1 ≤ wτ−2 in LAτ ⇒ p > 3q,

contradiction to |p − 2q| = 1.
If wτα > wτ−1 in LAτ then wτατ−1 = wβ−1 ∈ (wτ−2, wτ−1). Here use

(wτ 2)γβαm = wτατ ∈ Tw(wτ) = Vα−1 ⇒ wτ 2γβ ∈ Vα−1,

because Vαm = V. Therefore wτ 2γβ bridges to v in LAτ with v > w in LAτ .
Hence wτ 2γ < wβ−1 in LAτ and as wβ−1 < wτ−1 we also obtain p > 3q,
contradiction.

This rules out the case C.2.2.3 and hence finishes the analysis of case C.2.2,
wτ−1 ∈ [s, w]. The next case is:

Case C.2.3. wτ ∈ [s, w].
This implies that Vτ ⊂ V. The case is similar to case C.2.2.

Case C.2.3.1. wτ−1 ∈ Vα−1, wτ−1 �∈ Vα.
This implies that Vα−1τ−1 ⊂ Vα−1.
Here wτ−1α is in V, wτ−1ατ is in V so wαβαm−1 = wβαm−1 is in V. Also

wτα−1 ∈ Vα−1 ⇒ wβ = wτα−1τ−1 ∈ Vα−1 ⇒ wβαm−1 ∈ Vαm−2

which must be equal to V.
On the other hand sατ = sβαm. Here sα ∈ Vα and bridges to w in LAτ , so

sατ bridges to wτ in LAτ and sατ ∈ V. Also

sβ = sα−1τ−1 ∈ Vα−1 and sβαm ∈ Vαm−1.

It follows that Vαm−1 = Vαm−2, contradiction to V �= Vα.
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Case C.2.3.2. wτ−1 �∈ Vα−1, wτ−1 �∈ Vα.
Use sατ = sβαm = sαβαm−1. In this case the point sα brides to w in LAτ and

sατ ∈ V. Also sα−1 bridges to w in LAτ and sβ = sα−1τ−1 bridges wτ−1 in LAτ

so
sβ is in R = Tw(wτ−1) �= Vα, Vα−1 ⇒ sβαm ∈ Rαm = V.

So in particular R �= Rα.
On the other hand sατα−1 ∈ Vα−1 and bridges to w in LAτ so sαβ =

sατα−1τ−1 bridges to wτ−1 in LAτ and is in R. Then sαβαm−1 ∈ Rαm−1 =
Vα−1. This would imply V = Vα−1, contradiction.

The final case in C.2.3 is:

Case C.2.3.3. wτ−1 ∈ Vα.
Let [sα, r] be the bridge from sα to LAτ with r in LAτ . Then r > w in LAτ .

Here we have to subdivide.

Situation I. r is in (w, wτ−1).
Then sατ bridges to LAτ in rτ ∈ (w, wτ) and sατ ∈ V. Hence

sατα−1 �∈ V ⇒ sατα−1τ−1 = sαβ ∈ Vα ⇒ sαβαm−1 ∈ Vαm ⇒ V = Vαm.

On the other hand sβαm = sα−1τ−1αm. Here sα−1τ−1 is in Vα so sβαm is in
Vαm+1, implying Vαm = Vαm+1 again a contradiction.

Situation II. r = wτ−1.
Here sατ bridges to LAτ in w hence sατ �∈ Vα and sατ �∈ V. So sατ is in R,

another component of T − {w}. Also

sα−1 �∈ V ⇒ sβ = sα−1τ−1 ∈ Vα ⇒ sβαm ∈ Vαm+1 ⇒ R = Vαm+1.

On the other hand sαβαm−1 ∈ Vαm+1, so sαβ ∈ Vα2. Now Vα2 �= Vα so
Vα2τ is contained in V. Hence sατα−1 = sαβτ is in V. This would imply sατ is
in Vα, contradiction to the first conclusion in this case.

Situation III. wτ−1 < r in LAτ .
This is a little more tricky. Here sατ ∈ Vα. Also

wβ−1 = wτατ−1 ∈ Vα ⊂ W .

Now use wβ−1α−1 = wτ−1α−1τ . Here

wτ−1 ∈ (w, sα) ⇒ wτ−1α−1 ∈ (w, s)

⇒ wβ−1α−1 = wτ−1α−1τ ∈ (s, wτ) ⊂ W .
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So wβ−1α−1 and wβ−1 are both in W , with the implication as in case C.2.2.3 that
Wγ = W and γ leaves LAτ invariant. As wβ−1α−1 and wβ−1 = wτατ−1 are in
LAτ then wτα is in LAτ as well.

The proof is now analogous to previous arguments. If

w ≺ wτ−1 ≺ wτα ⇒ wτ−1 ≺ wτ−2 ≺ wτατ−1 = wβ−1.

But
wβ−1α−1γ = wβ−1 and wβ−1α−1 ∈ (s, wτ)

implies as before that p > 3q, contradiction. Same arguments show that wτ−1 =
wτα implies p ≥ 3q.

On the other hand if w ≺ wτα ≺ wτ−1, then wτ−1 ≺ wτατ−1 = wβ−1 ≺
wτ−2 all in LAτ . Here sατ ∈ Vα. Now sβαm = sα−1τ−1αm. Also

sα−1 �∈ V ⇒ sα−1τ−1 ∈ Vα ⇒ sβαm ∈ Vαm+1 ⇒ Vα = Vαm+1 or V = Vαm.

Now use wτ 2γβαm = wτατ . Here

wτ ≺ wτατ ≺ w in LAτ ⇒ wτατ ∈ V, wτ 2γβ ∈ Vα−m = V.

So wτ 2γ ≺ wβ−1 ≺ wτ−1 ≺ w, implying again p > 3q, contradiction.
This finishes the analysis of case C.2.3, wτ ∈ [s, w] and so proves that the case

Vα �= V cannot occur. From now on in case C assume:

Case C.3. Wτ = W and Vα = V.
Since there is no other fixed point of α in (s, w), this immediately implies there

is a local axis LAα of α contained in V with w as an ideal point of LAα . We stress
that at this point we do not yet have an axis for τ , because there may be other fixed
points of τ in (s, w).

Lemma 7.1. sα, sα−1 ∈ W , so sα, sα−1 are not in [s, w).

Proof. Suppose first that sα is not in W . Then

sα−1 ∈ (s, w) ⊂ W ⇒ sα−1τ−1 ∈ Wτ = W .

So sβ ∈ W and bridges to [s, w] in a point r which is in (s, w]. Then sβαm bridges
to [s, w] in rαm and sβαm is in W . Therefore sατ is in W and sα is in Wτ−1 = W ,
contradiction.

On the other hand suppose that sα−1 �∈ W . Then sα ∈ (s, w]. Also sβ =
sα−1τ−1 �∈ W , so bridges to [s, w] in s. Then sβαm bridges to [sαm, x] in sαm.
Since sαm �∈ W this implies sβαm �∈ W , therefore sατ �∈ W . But then sα is not in
W , contradiction. This finishes the proof. �
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We conclude that sα, sα−1 are in W ∩ V. Let sα bridge to r in [s, w], hence
r ∈ (s, w) and sα−1 bridges to [s, w] in a point t also in (s, w).

Let z be the fixed point of τ in [s, w] which is closest to w. Then z may be equal
to s, but is not w. Let U = Tz(w). One important goal is to prove that Uτ = U.

Lemma 7.2. Let U = Tz(w). Then Uτ = U. If z �= s then zγ, wγ �∈ W , and zα,
zα−1 �∈ (z, w).

Proof. If z = s then U = W and the result follows from case C.1. For the rest of
the proof of the lemma assume that s �= z.

We first analyse the possibility that zγ ∈ W . As κ fixes s then zγ −1 ∈ W also.
If zγ = z, then zκ = z, contradiction.

Suppose that zγ or zγ −1 is in [s, z). Then as sγ = s, it follows that z is in a local
axis for γ and zγ q �= z, contradiction to z fixed by τ . Hence zγ, zγ −1 �∈ [s, z].

Let [zγ, r] be the bridge from zγ to [s, z]. Notice that r is in (s, z), because
zγ, zγ −1 are not in [s, w]. Then

r ∈ [s, z] ∩ [s, zγ ] ⇒ rγ −1 ∈ [s, z].
If rγ = r , then rτp = rγ −q = r . But ([s, z])τ = [s, z], so this would imply rτ = r .
Together these imply rκ = r , contradiction to s the fixed point of κ in [s, w] which
is closest to w.

We conclude that rγ �= r . But as sγ = s, this implies that r is in a local axis
LAγ of γ . Compute rγ nq , n ∈ Z. Assume without loss of generality that rγ nq

moves away from s as n → +∞. Then

rγ nq = rτ−np ∈ [s, w], for all n, and rγ nq → c ∈ (s, z] as n → +∞.

Hence cγ = c and also cτ = c, contradiction.
This contradiction shows that zγ ∈ W is impossible. Notice that if zγ is not in

W , then zγ separates Wγ from s and hence from W . It follows that Wγ ∩ W = ∅,
so wγ �∈ W . This proves one assertion of Lemma 7.2.

We now consider where zα and zα−1 are. The proof of case C.2 shows that they
are both in V. Remember that for the rest of the proof s �= z.

Situation I. Suppose first that zα ∈ (z, w).
Use ατ = τγβαm, applied to z. Here zα is in U so zατ is in Uτ . Suppose first

that zα−1 is not in Uτ . Then zατ bridges to LAα in a point in [z, w] and hence
a = zατα−m bridges to LAα in a point in [zα−m, w] and a is in U. Here

zατα−m = zγβ = zγ α−1τ−1 ⇒ zγ α−1 ∈ Uτ �= U.

Again zγ α−1 bridges to LAα in a point in [z, w] and it follows that zγ is in U, hence
zγ ∈ W contradicting Wγ ∩ W = ∅.
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Figure 18. (a) Situation I, (b) Situation III.

The remaining possibility is Uτ = Tz(zα
−1), so in particular Uτ �= U, see

Figure 18 (a). Consider wτ−1α−1τ . The point wτ−1 is not in U, hence it bridges
to LAα in a point not in (z, w]. Therefore wτα−1 bridges to LAα in a point not in
(zα−1, w], so wτα−1 is in Tz(zα

−1) = Uτ . Hence

wτ−1α−1τ = wβ−1α−1 is in Uτ 2 �= Uτ, Tz(s).

Notice that

(Tz(s))τ = Tz(s), since sτ = s, so Tz(s) �= Uτ 2.

In particular wβ−1α−1 is in W and also bridges to LAα in a point which is in [z, w].
Then wβ−1 bridges to LAα in a point which is in [zα, w] so in particular wβ−1 is in
U ⊂ W . But then wβ−1α−1 and wα−1 are both in U, contradicting Wγ ∩ W = ∅.

This finishes the analysis of possibility zα ∈ (z, w).

Situation II. Suppose zα−1 ∈ (z, w).
Consider first the case when zα ∈ Uτ−1, that is Tz(zα) = Tz(wτ−1). This is

very similar to situation I, second part. Since zα is not in U, this in particular implies
Uτ �= U. Here wτ �∈ U, hence it bridges to LAα in a point which is not in (z, w].
It follows that wτα bridges to LAα in a point which is not in (zα, w]. This implies
that wτα is in Tz(zα) = Tz(wτ−1). Hence

wβ−1 = wτατ−1 is in Tz(wτ−2) �= Tz(s), Tz(wτ−1).

The first fact means that wβ−1 is in W . The second fact means that wβ−1 is not in
Tz(zα), hence wβ−1 bridges to LAα in a point contained in [z, w]. Hence wβ−1α−1

bridges to LAα in a point contained in [zα−1, w] and is in W . As wβ−1α−1γ =
wβ−1, this would imply Wγ = W , again contradiction. Hence this cannot occur.

Now we know zα is not in Tz(wτ−1). The point zβ = zα−1τ−1 is in Tz(wτ−1),
hence it bridges to LAα in a point contained in [z, w]. It follows that zβαm bridges
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to LAα in a point contained in [zαm, w]. But

zαm ∈ U ⇒ zβαm ∈ U ⇒ zγ −1ατ ∈ U or zγ −1α ∈ Tz(wτ−1)

and bridges to LAα in a point in [z, w]. It follows that zγ −1 bridges to LAα in a
point in [zα−1, w], hence zγ −1 ∈ U ⊂ W , impossible.

We conclude that situation II cannot occur. This proves the last 2 assertions of
the Lemma 7.2. It also implies that the following situation must occur:

Situation III. zα �∈ (z, w), zα−1 �∈ (z, w), see Figure 18 (b).
What is left to prove of Lemma 7.2 is that Uτ = U. So suppose that Uτ �= U.
Here zα−1 bridges to [z, w] in a point r which is in (z, w). Also zα bridges to t

in [z, w] with t also in (z, w).
The point wγ is not in W , so it is in Tz(s) and bridges to [wτ−1, z] in z. Hence

wγβ bridges to [wτ−1, zβ] in zβ. But zβ = zα−1τ−1 bridges to [z, wτ−1] in rτ−1.
Then wγβ bridges to [z, w] in z (this uses Uτ �= U!). Then

wγβαm bridges to [z, w] in a point in (z, w) so wγβαm ∈ U.

On the other hand wτ−1 bridges to [z, w] in z so wτ−1α bridges to [z, w] in a
point in (z, w) and wτ−1α is in U. Then wτ−1ατ is in Uτ . Of course this implies
Uτ = U, contrary to assumption.

So in any case we conclude that Uτ = U. This finishes the proof of Lemma 7.2.
�

This lemma is very useful. Since there is no fixed point of τ in (z, w) and
Tz(w)τ = Tz(w) it follows that there is a local axis LAτ of τ contained in U = Tz(w)

with an ideal point z.

Lemma 7.3. w is not in LAτ .

Proof. Suppose not, that is, w ∈ LAτ . Notice that LAτ is a local axis for τ and w

is a fixed point of α.

Claim. At least one of the components of T − {w} containing wτ, wτ−1 is not
invariant under α.

We first prove the claim. Suppose the claim is not true. If LAτ is also a local axis
for κ , that is (LAτ )κ = LAτ then we can apply Lemma 5.1 and prove the claim.
Suppose then that κ does not leave LAτ invariant or equivalently (LAτ )γ is not
equal to LAτ . If LAτ were an axis for τ (as opposed to a local axis), then τ would
act freely and so would κ and κ would leave LAτ invariant, contrary to assumption.
It follows that LAτ is not properly embedded and has limit points in T . In the same
way κ does not act freely and it has a fixed point r . Then r bridges to LAτ in a
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point v. Here rτ = r bridges to vτ in LAτ , hence vτ = v and v is a limit point of
LAτ .

Let s be the point of [p, v] which is closest to v and fixed by κ . It might be that
s = v. Let C = Ts(w), which contains LAτ . First we show that Cγ is not equal
to C. Suppose by way of contradiction that Cγ = C. First consider the case that
s = v. Then C = Tv(w) and

Cγ = C, Cτ = C implies Cκ = C,

and consequently κ has a local axis in Tv(w). As seen before this axis must be equal
to LAτ , which was dealt with before. Suppose then that s, v are distinct. Let t in
[s, v] be the closest point to v which is fixed by γ . Then

tτp = tγ −q = t and ([s, v])τ = [s, v] imply tτ = t.

Therefore tκ = t and by the defining property of s then t = s. It follows that γ fixes
no point in (s, v]. Then if Cγ = C it follows that γ has a local axis LAγ in C with
ideal point s. But again ([s, v])γ q = [s, v] and (s, v] intersecting LAγ implies the
existence of a fixed point of γ in (s, v], contradiction.

We conclude that Cγ is distinct from C and consequently it is disjoint from C as
we wished to prove. We continue the proof of the claim. Let

U1 = Tw(wτ), U2 = Tw(wτ−1).

The assumption of the claim is that Uiα = Ui for i = 1, 2. There are two options:

Option 1: v is a forward limit point. Suppose v as above is the limit of wτn with
n → +∞.

In this case v is in U1. Notice that U2 ⊂ C and U1 is not contained in C, but
since Cγ ∩ C is empty it follows that Cγ is contained in U1. Here we use

(wτ−1)γ −1τ−1ατ = wτ−2γ −1ατ = wτ−1βαm.

Nowβ leaveswτ−1 invariant andwτ−1 is inU2. Hencewτ−1βαm is inU2α
m = U2.

On the other hand wτ−2 is in C so wτ−2γ −1 is in Cγ ⊂ U1. Therefore

wτ−2γ −1α is in U1 and wτ−2γ −1ατ is in U1τ ⊂ U1.

This is a contradiction and cannot happen.

Option 2: v is a backward limit point. Suppose that v as above is the limit of wτn

with n → −∞.
In this case v is in U2. Notice that U1 ⊂ C and U2 is not contained in C but Cγ

is contained in U2. We use wατ = wτγβαm. First wατ is wτ which is in U1. We
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now consider the right side. Here wτ is in U1 ⊂ C so wτγ is in Cγ ⊂ U2τ
−1. The

set U2τ
−1 is invariant under β. Therefore

wτγβ is in U2τ
−1 ⊂ U2 and wτγβαm is in U2α

m ⊂ U2.

This contradicts that wατ is in U1.
These two options show at least one of U1α �= U1 or U2α �= U2 has to hold.
This proves the claim. We now continue the proof of Lemma 7.3.

Situation I. wτ−1 ∈ (z, w).
Here V = Tw(z) = Tw(wτ−1) is invariant under α. By the claim above the set

R = Tw(wτ) is not invariant under α. Notice that Rα is not equal to V either.
Use wατ = wτ = wταβαm−1. Here

wτ ∈ R ⇒ wτα ∈ Rα �= V ⇒ wτατ ∈ Rτ ⊂ R

⇒ c = wτατα−1 ∈ Rα−1 �= R.

So c bridges to w in LAτ and then wτατα−1τ−1 = wταβ bridges to wτ−1 in LAτ

and is then in V. Finally wταβαm−1 is in Vαm−1 = V. This is not R, contradiction.

Situation II. wτ ∈ (z, w).
Here V = Tw(wτ) = Tw(z) is invariant under α. In this case let R = Tw(wτ−1),

which is not invariant under α. Use wτ−1ατ = wαβαm−1. Then wτ−1 is in R, so
wτ−1α is not in R or V and bridges to w in LAτ . Then wτ−1ατ bridges to wτ in
LAτ and is in V. It follows that

wτ−1ατα1−m = wαβ = wβ = wτα−1τ−1 is in V.

Hence wτα−1 is in Vτ . This implies

wτα−1 ≺ wτ ≺ w ⇒ wτ ≺ wτα ≺ w ⇒ w ≺ wτατ−1 = wβ−1 ≺ wτ−1.

In particular wβ−1 is in R and wβ−1α−1 is in Rα−1 which is not equal to V. Also
wβ−1α−1 = wτ−1α−1τ . Here wτ−1α−1 is in Rα−1 and bridges to w in LAτ and
so wτ−1α−1τ bridges to wτ in LAτ and so is in V. As V is not equal to Rα−1, this
is a contradiction.

We conclude that situation II cannot happen either. This finishes the proof of the
lemma. �

Now we know that w is not in LAτ .

Lemma 7.4. z is not in LAα .
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Proof. Suppose not, that is, z ∈ LAα . This implies that either zα or zα−1 is in
(z, w). Then Lemma 7.2 implies that s = z.

Suppose first that zα ∈ (z, w]. So zα−1 �∈ Tz(w) = U. Use zατ = zβαm As
zα ∈ U, then zατ is in U also. Then

zα−1 �∈ U ⇒ zα−1τ−1 �∈ U ⇒ zβ bridges to [z, w] in z

and zβαm bridges to [zαm, w] ⊃ [z, w] in zαm. It follows that zβαm is not in U,
contradiction.

Suppose now that zα−1 is in [z, w]. Then zα−1τ−1 = zβ is in U and bridges
to [z, w] in a point t which is not z. Then zβαm bridges to [z, w] in tαm and zβαm

is in U. On the other hand zα is not in U and so zατ is not in U either. This is a
contradiction.

This finishes the proof of the lemma. �

Summary in case C.3. So far we have proved: suppose that wα = w, sκ = s, no
fixed points of κ or α in (s, w). Let z ∈ [s, w), the closest to w with zτ = z. Then

(Tz(w))τ = Tz(w), (Tw(z))α = Tw(z).

If LAτ , LAα are the corresponding local axes of τ and α then z �∈ LAα , w �∈ LAτ .

Case C.3.0. Suppose that LAα ∩ LAτ has at most one point.
This is simple. Let [c, d] be the bridge from LAτ to LAα , where c = d if the

intersection is one point. First notice that c is a point in LAτ and not a limit point.
The reason is: if c is equal to z then z is a limit point of LAα , hence it is fixed by
α contradiction to no global fixed point. Suppose that c were another limit point of
LAτ . As LAτ ∩ LAα is at most one point, this would imply that c separates w

from z and contradicts the fact that z is the closest fixed point of τ to w. This shows
that c is an actual point of LAτ and similarly d is actual point of LAα .

We do the proof for c �= d, the other is very similar. Use zτ−1ατ = zαβαm−1.
The right side is zατ . Here zα bridges to LAα in dα, hence bridges to LAτ in c.
So zατ bridges to LAτ in cτ .

Hence zατ bridges to LAα in d so zατα−1 bridges to LAα in dα−1 and to LAτ

in c. So zατα−1τ−1 = zαβ bridges to LAτ in cτ−1 hence to LAα in d. Finally
zαβαm−1 bridges to LAα in dαm−1 hence to LAτ in c. Since c �= cτ this is a
contradiction.

Case C.3.1. Now assume LAα ∩ LAτ has more than one point. We will use the
analysis done in case B.

If Uγ is not equal U then we use the proof of case B.1.3 – which was also done
for the case of local axis of α. This disallows this case.
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The remaining case is that Uγ is equal to U. As explained in case B.1.4 this
implies γ leaves LAτ invariant. Here we consider the intersection B = LAα∩LAτ .
First notice that z is not in B as z is not in LAα . Also it was shown in case C.3.0
that z is not a limit point of B. If LAτ is not properly embedded on the other side
let v be the other ideal point of LAτ . Then

vτ = v, (Tw(v))α = Tw(v), (Tv(w))τ = Tv(w).

Also (w, v) has no fixed points of τ . Suppose that v is in LAα . Then (w, v) also has
no fixed points of α. But then v has the same properties as z and this case is ruled out
by Lemma 7.4. It follows that v is not in LAα . So if LAτ has another ideal point v,
then B is [r, t] with t an actual point in LAτ .

Now we can apply the analysis of case B.1.4 which was also done for α with a
local axis. The analysis rules out this situation.

This shows that case C.3.1 cannot happen either.
This finishes the proof of the main theorem.

8. Remarks

Recent activities. There has been a flurry of activity in this area recently. We describe
the results in more detail here and how they relate to the results in this article.

Calegari and Dunfield [Ca-Du] approached the existence problem for foliations,
laminations and pseudo-Anosov flows from a different point of view. Following ideas
and results of Thurston [Th5], [Th6] concerning the universal circle for foliations
they showed that a wide class of essential laminations also possess a universal circle.
One consequence is that tight essential laminations with torus guts (see [Ca-Du]
for detailed definitions) have universal circles. Tight means the lifted lamination
to the universal cover has Hausdorff leaf space. Hence the fundamental groups
act on the circle. Under certain conditions related to orderability of a finite index
subgroup, then the action lifts to a non trivial action in R and they obtain nonexistence
results for these types of laminations. For example they can show that the Weeks
manifold does not have Reebless foliations, pseudo-Anosov flows or general tight
essential laminations. The results on manifolds (eg the Weeks manifold) are computer
assisted and so far there are computer capability restrictions to extending them to
other manifolds. In addition these results use heavily the tight hypothesis, except for
pseudo-Anosov flows.

A more recent article is that of Jinha Jun [Ju] who used the techniques of Roberts,
Shareshian and Stein to analyse Dehn surgery on the (−2, 3, 7) pretzel knot in S

3. He
proved that there are infinitely many hyperbolic Dehn surgeries on this knot, which
yield manifolds without Reebless foliations.
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Another more recent result (October 2003) is from Kronheimer, Mrowka, Ozvath
and Szabo [KMOS]. This result is part of a very wide program to use techniques of
analysis, symplectic and contact geometry to analyse 3 and 4-manifolds. Results of
Eliashberg and Thurston [El-Th] allow one to perturb a Reebless foliation to a tight
contact structure. Using this the above authors show that infinitely many hyperbolic
manifolds do not have Reebless foliations [KMOS]. In particular there are infinitely
many Dehn surgeries on the (−2, 3, 7) pretzel knot which satisfy this. The techniques
are extremely complicated and it is yet unclear whether they can be extended to study
essential laminations.

The tools and arguments in this article are more closely associated to those in
[RSS], in that both look at group actions on simply connected 1-dimensional spaces.
However, as we explained before there are 2 critical differences: the lack of transverse
orientability for general essential laminations and the lack of a useful group invariant
pseudo-metric in the leaf space, both of which were extremely useful in [RSS].

Open questions. There are a lot of interesting questions still open. First we discuss
some internal questions about the proofs in this article. The proof of the R-covered
case uses p > 3q for α orientation reversing. It would be useful to get a more general
proof – for instance showing that p must be equal to 4 or that p has to be even.
We obtained some preliminary results, but not conclusive. The same argument and
condition p > 3q are then used in various places of the article so it would be very
good to discover a more general proof.

Also the best possible result for the manifolds Mp/q described in this article
would be the following: If p ≥ q, p odd, m ≤ −4 then the only possible essential
laminations are those coming from either stable or unstable lamination in the original
manifold M – these remain essential whenever |p − 2q| ≥ 2. One way to interpret
such a goal is a rigidity result– all laminations in this manifold have to be of this type.
Notice that Brittenham’s results for Seifert fibered spaces [Br1] are of this form. Also
Hatcher and Thurston’s results for surgery on 2-bridge links [Ha-Th] are along these
lines.

Now on for more general goals: How far can the methods of this article be
generalized? Can they be used whenever M is a punctured torus bundle over S1 with
Anosov monodromy and degeneracy locus (1, 2)? Probably a mixture of topological
methods and group action methods needs to be used. How about surface bundles,
where the surface has higher genus? What about other degeneracy locus as discovered
by Gabai–Kazez [Ga-Ka1]?

Since essential laminations do not exist in every closed hyperbolic 3-manifold,
one looks for useful generalizations. One possible idea was introduced by Gabai in
[Ga5]: a lamination λ in M , compact, orientable, irreducible is loosesse if λ satisfies:

0) λ has no sphere leaves, and
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1) for any leaf L of λ, the homomorphism π1(L) → π1(M) induced by inclusion is
injective, and for any closed complementary region V , the homomorphism π1(V ) →
π1(M) induced by inclusion is injective.

Gabai [Ga5] conjectured that under these conditions with M closed, then λ̃ is
a product lamination and M̃ is homeomorphic to R

3. One test case is the class of
manifolds Mp/q studied in this article. When |p − 2q| = 1 the lamination coming
from the stable lamination has monogons. The leaves are either planes or have Z

fundamental group. The complementary region is a solid torus. Then in order to
check for the loosesse conditions one only needs to understand if leaves inject in the
fundamental group level.

Another direction involves general group actions on trees. When does a group acts
non trivially on a tree? Perhaps there are theoretical characterizations of when such
an action exists. Here we are in some sense dealing with one dimensional dynamics,
because a tree is a one dimensional object.
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