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A fixed point theorem for deformation spaces of G-trees

Matt Clay

Abstract. For a finitely generated free group F,, of rank at least 2, any finite subgroup of
Out(F,) can be realized as a group of automorphisms of a graph with fundamental group F,.
This result, known as Out(F;) realization, was proved by Zimmermann, Culler and Khramtsov.
This theorem is comparable to Nielsen realization as proved by Kerckhoff: for a closed surface
with negative Euler characteristic, any finite subgroup of the mapping class group can be realized
as a group of isometries of a hyperbolic surface. Both of these theorems have restatements in
terms of fixed points of actions on spaces naturally associated to Out(F},) and the mapping class
group respectively. For a nonnegative integer n we define a class of groups (GVP(n)) and prove
a similar statement for their outer automorphism groups.
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Let X be a closed surface with negative Euler characteristic. The mapping class group
MCG(X) acts on Teichmiiller space Tx, the space of hyperbolic metrics on X. A
stabilizer in this action is an isometry group of some hyperbolic metric on X. Such
groups must be finite. It is theorem of Kerckoff [14], known as Nielsen realization,
that any finite subgroup of MC4(X) can be realized as a group of isometries for some
hyperbolic metric on X. Therefore the finite subgroups of MC§(X) are exactly the
subgroups with fixed points in 7. In a similar manner, for a finitely generated free
group F, of rank n > 2, the outer automorphism group Out(F},) acts on Culler and
Vogtmann’s Outer space X, [7]. A stabilizer in this action is an isometry group of
a some metric graph with fundamental group F,. It is a theorem of Zimmermann
[21], Culler [5] and Khramtsov [15], known as Out(F,) realization, that any finite
subgroup of Out(F},) can be realized as a group of isometries of some metric graph
with fundamental group F;. Thus as for MC4(X) and T, the finite subgroups of
Out(F,) are exactly those subgroups with a fixed point in X,.

For a nonnegative integer n we introduce a class of groups denoted GVP(n),
and prove a similar realization statement for their outer automorphism groups. In
other words, for every group G € GVP(n), there is a naturally associated space on
which Out(G) acts and we are able to determine that certain subgroups of Out(G)
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related to stabilizers have a fixed point. For n = 0, 1 we show that any group that
is commensurable to a subgroup of a stabilizer actually fixes a point (Corollary 4.2).
The class GVP(0) is the class of virtually finitely generated free groups of rank at
least 2, thus our result is a generalization of Out(F},) realization. In general, we are
only able to show that subgroups of Out(G) commensurable to polycyclic subgroups
of stabilizers fix a point.

We define GVPy(n) as the class of groups that act on locally finite simplicial
trees without an invariant point or line, such that the edge stabilizers are virtually
polycyclic subgroups of Hirsch length n. The subset of groups in GVPy(n) where
this action is irreducible and cocompact is denoted GVP(n). In the first section for
any finitely generated group G we describe topological spaces D on which certain
subgroups of Out(G) act. These spaces are contractible in most cases. In particular,
for G € GVP(n) we describe a contractible topological space D¢ on which the full
group Out(G) acts. Our main theorem regarding this action is analogous to Nielsen
realization and Out(F;,) realization.

Main Theorem. Suppose G € GVP(n) and K is a polycyclic subgroup of Out(G)
that fixes a point in Dg. If H is a subgroup of Out(G) commensurable with K,
then H fixes a point in Dg.

The proof of the above is similar to the proof for finite subgroups of Out(F;,).
We review how to prove Out(F}) realization. Starting with a finite subgroup K of
Out(F;,), lift this to the subgroup K in Aut(Fy). Then K is virtually free, hence K
acts cocompactly on a simplicial tree 7" with finite stabilizers by Stallings’ theorem
[20]. This induces a cocompact free action of F,, € K on T'. Thus the finite group
K = K/ F, acts on the quotient graph 7'/ F,,, which represents a point in Outer space.
Hence this point is fixed by K.

We seek to mimic this proof. The ingredient we will need is an analog to Stallings’
theorem, i.e. we need to know when can we raise a splitting of a finite index subgroup
to the whole group. For the special case we consider, this question has an answer
due to Dunwoody and Roller [8]. We then show that any group that contains a finite
index subgroup in GVP(n) is in fact itself in GVP(n). Finally, if G € GVP(n) and
K is a polycyclic subgroup of Out(G) that stabilizes a point in D¢, we show that K,
the lift of K to Aut(G), is in GVP(n’) for some n’, inducing an action of G. Thus we
can proceed as above for Out(F},).

Originally, we were only concerned only with a proof of realization for generalized
Baumslag—Solitar (GBS) groups, the torsion-free groups in GVP(1). However, in
doing so it became necessary to prove some statements in greater generality, which
provided a proof for any GVP(n)-group.
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1. Deformation spaces of G-trees

For a finitely generated group G, a G-tree is a metric simplicial tree on which G
acts by isometries. We say two G-trees T and T’ are equivalent if there is a G-
equivariant isometry between then. When we speak of a G-tree we will always mean
the equivalence class of the G-tree. A subgroup is an elliptic subgroup of T if it
fixes a point in 7. Given a G-tree there are two moves one can perform to the tree
that do not change whether subgroups of G are elliptic. These moves correspond to
the isomorphism A = A x¢ C and are called collapse and expansion. For a detailed
description of the moves see [10]. In [10] Forester proves the converse, namely if two
cocompact G-trees have the same elliptic subgroups, then there is a finite sequence
of collapses and expansions (called an elementary deformation) transforming one
G-tree to the other.

We let X denote a maximal set of G-trees which are related by an elementary
deformation. By the theorem of Forester mentioned above, an equivalent definition
is as the set of all G-trees that have the same elliptic subgroups as some fixed G-tree.
This set X is called an unnormalized deformation space. We will always assume that
the G-trees are minimal and irreducible and that G acts without inversions.

There is an action of RT on X by scaling, the quotient is called a deformation
space and denoted . We [4] and independently Guirardel and Levitt [12], [13] have
shown that for a finitely generated group, if the actions in O are irreducible and there
is areduced G-tree with finitely generated vertex stabilizers, then & is contractible.
The topology for the preceding statement is the axes topology induced from the
embedding D — RP® where C is the set of all conjugacy classes of elements in G,
or equivalently the Gromov—Hausdorff topology. See [4] for details.

In general, the space D is acted on only by a subgroup of Out(G), where the
action is precomposition. This subgroup is the subgroup of Out(G) that permutes the
conjugacy classes of elliptic subgroups associated to D.

If G € GVP(n) then there is alocally finite G-tree T where all of the stabilizers are
virtually polycyclic subgroups of Hirsch length n. We will show in the next section
(Lemma 2.1) that the set of elliptic subgroups for this action is invariant under all
automorphisms of G. Hence the deformation space containing 7 is invariant under
Out(G). We denote this space as Dg. Notice that if G = F},, then D¢ = X,,, Culler
and Vogtmann’s Outer space.
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2. Virtually polycyclic groups and the class of GVP (n)-groups

A group G which admits a filtration {1} = Gog<G1<---<G, = G with G;_1 normal
in G; and G;/G;_ cyclic is called polycyclic. The Hirsch length, denoted h G, of
a polycyclic group G is the number of infinite cyclic factors in the above filtration.
This is an invariant of G. If G is polycyclic and H is any finite index subgroup then
hH = hG. Infact, if H is a subgroup of G, then h H < h G with equality if and
only if H has finite index in G. This allows us to define the Hirsch length of a group
which contains a polycyclic group as a finite index subgroup. Such groups are called
virtually polycyclic. These groups are also referred to as polycyclic-by-finite groups
in the literature. Note thatif | - K — G — H — 1 is a short exact sequence
then H and K are virtually polycyclic if and only if G is. In this case, the Hirsch
lengths satisfyhG =h H +h K.

As mentioned in the introduction, originally the main theorem was only intended
for generalized Baumslag—Solitar groups. A group G is a generalized Baumslag—
Solitar (GBS)) group if there is a cocompact G-tree where the stabilizer of any point
is isomorphic to Z. As the only Z subgroups of Z are necessarily of finite index, this
G-tree must necessarily be locally finite. Equivalently, G is a GBS group if it admits
a graph of groups decomposition where all of the edge groups and vertex groups are
isomorphic to Z. Hence the nonelementary GBS groups (i.e. G # Z, Z @ Z or the
Klein-bottle group) are the torsion-free groups in GVP(1).

Such groups were first studied by Kropholler [16], where it is shown that GBS
groups are the only finitely generated groups of cohomological dimension two that
contain an infinite cyclic subgroup which intersects each of its conjugates in a finite in-
dex subgroup. Itis clear that for a GBS group any vertex group in the above mentioned
graph of groups decomposition satisfies this condition. Forester’s Lemma 2.5 in [11]
(a generalization of which appears as Lemma 2.1 below) implies that when the action
does not have an invariant line, the elliptic subgroups are the only subgroups which
satisfy this condition. As this condition is algebraic, the set of elliptic subgroups is
invariant under all automorphisms of G, hence we can talk about an Out(G)-invariant
deformation space. We now generalize this fact to any GVP(n)-group.

Recall that a group is called slender if every subgroup is finitely generated. Vir-
tually polycyclic groups are slender. Slenderness of a group G is equivalent to every
subgroup H € G having property AR: whenever H acts on a simplicial tree, H either
stabilizes a point or has an axis [9]. Throughout the following, we use the notation
H¢ = gHg™'. We say two subgroups H, H’' of G are commensurable if H N H’
has finite index in both H and H'. The commensurator of a subgroup H C G is
Commg(H) = {g € G | H is commensurable with H8}.

Lemma 2.1. (Forester [11]) Let T be a locally finite G-tree such that the stabilizer
of any point in T is slender. If T does not contain a G-invariant line, then a subgroup
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H C G is elliptic if and only if H is contained in a subgroup K, where K is slender
and Commg(K) = G.

Proof. As T is alocally finite simplicial tree, any vertex stabilizer is commensurable
to all of its conjugates. Hence, if H is elliptic, it is contained in a vertex stabilizer K
which satisfies the conclusion of the lemma.

For the converse suppose H € G does not act elliptically and H is contained in a
slender subgroup K. Hence K does not act elliptically. Let L g be its axis. Then the
axis of K& is gLg. If K and K& are commensurable, then they have the same axis
so Lx = gLk. Hence if K is commensurable to all of its conjugates, then L is a
G-invariant line. O

Thus for such actions the elliptic subgroups are determined algebraically. In
particular, the elliptic subgroups for these actions are invariant under Aut(G). When
the action is cocompact, we can talk about an Out(G)-invariant deformation space,
denote this space Dg. Hence every point in Dg is a locally finite G-tree where
the stabilizers are virtually polycyclic of Hirsch length n. Since the G-trees in D¢
are locally finite, D¢ is a locally finite complex. Hence all of the stabilizers are
commensurable. Our realization statement (Main Theorem) is a partial converse to
this in the general case and the full converse if n = 0 or 1.

For G € GVP(n), as these actions are irreducible, G contains a free subgroup
of rank 2. Thus if G acts on a tree T with virtually polycyclic stabilizers of Hirsch
length n, then T cannot be a line. This will be used without further mention. We have
another lemma essentially due to Forester about the splittings of GVP(n)-groups as
amalgams over virtually polycyclic groups K withh K = n. Say that G splits over K
if G can either be written as a nontrivial free product with amalgamation G = Axx B
or as an HNN-extension G = Ax*g.

Lemma 2.2 (Forester [11]). Suppose G € GVP(n) and T € Dg. If G splits over a
virtually polycyclic subgroup K withh K = n, then K fixes a point in T. Moreover,
the vertex group(s) in this splitting are finitely presented and either GVPo(n)-groups
or virtually polycyclic with Hirsch length n or n + 1.

Proof. Let Y be the Bass—Serre tree for the splitting of G over K and H a vertex
stabilizer for the G-tree T. Then similarly to Lemma 2.1, H must act elliptically on
Y as Y cannot contain a G-invariant line. Let y € Y be a vertex fixed by H and e an
edge stabilized by K. There is some g € G such that e separates y from gy. As H
and H¥ are commensurable, there is a finite index subgroup H' C H stabilizing e,
hence contained in K. As both K and H' have Hirsch length n, H’ has finite index
in K, hence K an H are commensurable. Thus as H fixes a point in any G-tree
T € Dg, so does K.
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As for the moreover, suppose A is a vertex group for the splitting of G over K.
We examine how A acts on 7. If A fixes a point, then A is virtually polycyclic with
h A = n. If A has an invariant line on which it acts nontrivially, then there is a short
exact sequence 1 > K/ > A - Z — lorl - K' — A — Zy*xZy — 1
where K’ is commensurable to K. Hence A is virtually polycyclicandh A = n + 1.
Otherwise this action implies that A € GVPy(n).

To see that A is finitely presented we can assume that A € GVPy(n). As K
acts elliptically in 7', using the action of A on T we can refine the splitting of G
over K to get a graph of groups decomposition for G that includes the graph of
groups decomposition of A with virtually polycyclic vertex and edge groups of Hirsch
length n. As G is finitely generated, after reducing we can assume that the graph of
groups decomposition for G, hence the graph of groups decomposition of A, is a
finite graph. Thus A can be expressed as a finite graph of groups where all of the
vertex and edge groups are virtually polycyclic of Hirsch length n. In particular, A
is finitely presented. a

We record some properties about GVP(n)-groups that will be used in Section 4.

Lemma 2.3. Let G € GVP(n) then:
1. cdgG=n+1;

2. G does not split over a virtually polycyclic group of Hirsch length less than n;
and

3. the center of G, Z(G), is a virtually polycyclic subgroup withh Z(G) < n. The
quotient G/ Z(G) is in GVP(n') forn' = n —h Z(G).

Proof. For 1. and 2. see Sections 6 and 7 in [3].

To see 3., let T € Dg. As the action is irreducible, Z(G) must act trivially on
T [1]. Hence Z(G) is a virtually polycyclic subgroup with h Z(G) < n. Also, we
have an induced irreducible cocompact action of G/Z(G) on T, where the stabilizers
are the quotients of the stabilizers for the G-action by Z(G). Hence G/Z(G) is in
GVP(n') wheren’ =n —h Z(G). O

Remark 2.4. As cohomological dimension is an invariant of the group, if G €
GVP(n), then G ¢ GVP(n') forn # n'.

3. Promoting finite index splittings

The main step in proving Out(F;) realization is to use Stallings’ theorem to get a
splitting of the virtually free subgroup of Aut(F;,) which is the lift of some finite sub-
group in Out(F}). In the present setting we will need an analog of Stallings’ theorem
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to tell us when a splitting of a finite index subgroup H € G over K C H implies
a splitting of the whole group G over some subgroup K’ which is commensurable
to K. In general, we cannot expect a splitting of G. In our special case though, the
answer is given by the following theorem of Dunwoody and Roller [8] as stated by
Scott and Swarup [19]. The ends of the pair of groups K C G, denoted e(G, K),
is the number of ends of I'/K where I" is a Cayley graph for G. If G splits over a
subgroup K, then e(G, K) > 1. See [19] or [20] for these notions.

Theorem 3.1 (Dunwoody—Roller [8] as stated in [19]). If G, K are finitely generated
subgroups with e(G, K) > 1 and if Commg(K) = G, then G splits over a subgroup
commensurable to K.

We can now prove our analog to Stallings’ theorem.

Theorem 3.2. Let G be a finitely presented group which has a finite index subgroup
H € GVP(n), then G € GVP(n).

Proof. 1If n = 0 then this is Stallings’ theorem [20], so we assume thatn > 1.

Let T € Dy and K be an edge stabilizer of T. As finite index subgroups
of H are in GVP(n), we can assume that H is normal in G. By Lemma 2.1, elliptic
subgroups of H are invariant under automorphisms of H, hence Commg(K) = G. As
e(H, K) > 1 and H is a finite index subgroup of G, we must have that e(G, K) > 1.
Then by Theorem 3.1, G splits over a subgroup K’ commensurable with K. Let
T’ be the Bass—Serre tree for this splitting of G over K’. If T’ is locally finite
then we are done as the vertex and edge stabilizers for G acting on this tree are
then commensurable to K’ hence virtually polycyclic subgroups of Hirsch length n,
therefore G € GVP(n).

Suppose that T’ is not locally finite, we now show that we can split a vertex
group for the graph of group decomposition induced by H acting on 7”. As T’ is not
locally finite there is a vertex group H, which is not a virtually polycyclic subgroup
of Hirsch length at most n. Suppose G, is the vertex group under the G-action,
thus H, has finite index in G,. As the induced action of H, on T is nontrivial, we
get a graph of groups decomposition for H,. Then we can collapse this graph of
groups decomposition to get a splitting of H, over some edge stabilizer K,. Denote
the Bass—Serre tree for this splitting as 7,,. As K, is commensurable to K we have
Commg(K,) = G, thus Commg, (K,) = G,. As H, is finitely generated, G, is
also. Therefore by as above by Theorem 3.1, G, splits as an amalgam over K, which
is commensurable to K, hence also K.

As K| and K’ are commensurable, in the Bass—Serre tree associated to the splitting
of G, over K, K’ acts elliptically. This allows us to refine the one edge splitting
of G over K’ to get a two edge splitting of G over K" and K. Once again, we have a
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Bass—Serre tree Ty associated to this graph of groups decomposition, and the action
of H on Tj induces a graph of groups decomposition for H.

If Ty is not locally finite, repeat. As long as the resulting Bass—Serre tree is not lo-
cally finite we can continue. Since at each step, we add one edge to the quotient graph

of groups decomposition of G, this process must terminate by Bestvina—Feighn [2].
O

We also note that recently Kropholler has proved a more general statement [17].

4. Realization

In this section we prove the main theorem. For the remainder of this paper, we
let G € GVP(n) be fixed and D¢ denote the Out(G)-invariant deformation space
discussed in Section 2. _

Suppose that K is a subgroup of Out(G) and K fixes some point T € D¢g. Then K
the lift of K to Aut(G) consists of automorphisms ¢ such that there exists an isometry
hg: T — T where hy(gx) = ¢p(g)hgy(x) forall x € T, g € G. As the G-trees in
!DG are irreducible and minimal, Ay is unique [6]. Thus we e geta homomorphism
K — Isom(T),1.e. T is a K -tree. Tt is easy to check that K extends the action of
G/Z(G)onT.

As T is a locally finite tree, if the edge groups are virtually polycyclic then
K ¢ GVP(n') for some n’. In this case Theorem 3.2 implies that whenever K is
a finite index subgroup of some group H , then He GVP(n'). Thus we have a G-tree
fixed by H, the image of H in Out(G). We compute the edge stabilizers for the
action of K on T via the following sequences. For an edge f C T denote by Gy
(respectively K r) the edge stabilizer of f.

Lemma 4.1. The edge stabilizers of T for the K -action, K f, fit into short exact
sequences:

| ——=Gf/Z(G) Ky Ky 1 ()

where Ky is the image of K 7 in K. In particular, if Ky is virtually polycyclic then
Ky is a virtually polycyclic subgroup of K.

Proof. This only place where exactness needs to be checked is that G¢/Z(G) is the
kernel of the map K r — Ky. This follows as K extends the action of G/Z(G),
hence G/Z(G)ﬂKf =Gr/Z(G). O

We can now prove the main theorem.
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Main Theorem. Suppose G € GVP(n) and K is a polycyclic subgroup of Out(G)

that fixes a point in Dg. If H is a subgroup of Out(G) commensurable with K,
then H fixes a point in Dg.

Proof. Suppose that H € Out(G) contains K as a finite index subgroup where K is
polycyclic and fixes a point in Dg. We then have the following short exact sequences:

1 — G/Z(G) — Aut(G) — Out(G) —— 1

[ \% v

1 —G/Z(G) H H 1 (2)
[ \ \

1 —G/Z(G) K K 1

Then as K € GVP(n') by Lemma4.1, and as H contains K as a finite index subgroup,
we have H € GVP(n') by Theorem 3.2. Thus H actsona locally finite tree 7”7 induc-
ing an action of G/Z(G), hence also G, on T’ with virtually polycyclic stabilizers
necessarily of Hirsch length n by Lemma 2.3. Let T be the minimal subtree of T’
for G. Then T € D¢ and clearly H fixes this G-tree. O

Forn = 0 or 1, if G € GVP(n) then for any point T € D¢ the vertex and
edge groups have finite outer automorphism groups. Levitt [18] has shown that for
these G-trees the stabilizer is virtually finitely generated abelian, hence we have the
following corollary:

Corollary 4.2. If G € GVP(n) forn = 0or 1 and H is a subgroup of Out(G) which
contains a finite index subgroup that fixes a point in Dg, then H fixes a point in Dg.
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