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Asymptotic non-degeneracy of the solution to the
Liouville–Gel’fand problem in two dimensions
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Abstract. In this paper we study the asymptotic non-degeneracy of the solution to the Liouville–
Gel’fand problem

−�v = λV (x)ev in �, v = 0 on ∂�,

where � ⊂ R
2 is a smooth bounded domain, V (x) is a positive-valued C1(�) function, and

λ > 0 is a constant.
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1. Introduction

The purpose of the present paper is to study the asymptotic non-degeneracy of the
solution to the Liouville–Gel’fand problem

−�v = λV (x)ev in �, v = 0 on ∂�, (1)

where � ⊂ R
2 is a bounded domain with smooth boundary ∂�, V = V (x) > 0 is

a C1 function defined on �, and λ > 0 is a constant. We shall extend a result of
Gladiali–Grossi [5], which is valid for the homogeneous case of V (x) ≡ 1,

−�v = λev in �, v = 0 on ∂� (2)

based on the following fact [8].

Theorem 1.1. If (λk, vk) (k = 1, 2, . . . ) is a solution sequence for (2) satisfying
λk → 0, then we have a subsequence (denoted by the same symbol) such that �k =∫
�

λke
vk → 8πm for some m = 0, 1, 2, . . . , +∞. According to this value of m, we

have the following.

(1) If m = 0, then it holds that ‖vk‖∞ → 0.
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(2) If 0 < m < +∞, then the blowup set of vk (k = 1, 2, . . . ), defined by

S = {x0 ∈ � | there exists xk → x0 such that vk(xk) → +∞},
is composed of m-interior points, and vk → 8π

∑
x0∈S G( ·, x0) locally uni-

formly in � \ S, where G = G(x, y) denotes the Green’s function of −� in
� with ·|∂� = 0. We have −�vk(x)dx ⇀

∑
x0∈S 8πδx0(dx) in the sense of

measure on �. Furthermore, it holds that

1

2
∇R(x0) +

∑
x′

0∈S\{x0}
∇xG(x0, x

′
0) = 0 (3)

for each x0 ∈ S, where R(x) = [
G(x, y) + 1

2π
log |x − y|]

y=x
is the Robin

function.

(3) If m = +∞, then vk → +∞ locally uniformly in �.

Gladiali and Grossi [5] are concerned with the case m = 1, and study the non-
degeneracy of (λk, vk) for large k. From the above theorem, we have S = {x0} if
m = 1 and this x0 ∈ � is a critical point of the Robin function. What they obtained
is the following theorem, motivated by the study of the detailed bifurcation diagram
for (2).

Theorem 1.2. If m = 1 holds in the previous theorem and x0 ∈ S is a non-degenerate
critical point of R(x), then the solution (λk, vk) is non-degenerate for large k, that
is, the linearized operator −� − λke

vk in � with ·|∂� = 0 is invertible.

Theorem 1.1, on the other hand, has an extension to (1). Although the results of
Ma–Wei [7] are presented in the mean field formulation,

−�v = λV (x)ev∫
�

V (x)ev
in �, v = 0 on ∂�,

it is easy to translate them into the following theorem on (1). (See also [9].)

Theorem 1.3. All the results stated in Theorem 1.1 continue to hold for (1), provided
that �k and (3) are replaced by �k = ∫

�
λkV (x)evk and

1

2
∇R(x0) +

∑
x′

0∈S\{x0}
∇xG(x0, x

′
0) + 1

8π
∇ log V (x0) = 0, (4)

respectively.
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In the case of m = 1 again, equation (4) means that x0 ∈ � is a critical point of
R(x) + 1

4π
log V (x). From this point of view, it is natural to extend Theorem 1.2 as

follows.

Theorem 1.4. In Theorem 1.3, if m = 1, V (x) is C2 near x0 ∈ S, and x0 is a
non-degenerate critical point of R(x) + 1

4π
log V (x), then the solution (λk, vk) is

non-degenerate for large k, that is, the linearized operator −� − λkV (x)evk in �

with ·|∂� = 0 is invertible.

To prove the above theorem, we follow the argument of [5], namely, the existence
of wk = wk(x) (k = 1, 2, . . . ) satisfying

− �wk = λkV (x)evkwk in �, wk = 0 on ∂�,

‖wk‖∞ = 1,
(5)

implies a contradiction. The next section is devoted to examine the validity of the
blowup analysis [5] to (1), originally developed for (2). In the latter case, w′

k = ∂vk

∂xi

(i = 1, 2) solves the linearized equation

−�w′
k = λke

vkw′
k in �

(except for the boundary condition). This structure is useful to prove Theorem 1.2,
but obviously does not hold in (1). In the final section, we complete the proof of
Theorem 1.4, providing new arguments to compensate this obstruction.

2. Preliminaries

In this section, we confirm that several assertions for (2) presented in [5] are still valid
for (1). Henceforth, (λk, vk) (k = 1, 2, . . . ) is a solution sequence for (1) satisfying

�k =
∫

�

λkV (x)evk → 8π, λk → 0, (6)

and xk ∈ � denotes a maximum point of vk:

vk(xk) = ‖vk‖∞ .

Then we have xk → x0 with S = {x0}, and this blowup point x0 ∈ � is a critical
point of R(x) + 1

4π
log V (x).

The first lemma corresponds to Theorem 6 of [5].

Lemma 2.1. There is a constant C1 > 0 such that∣∣∣∣∣vk(x) − log
evk(xk){

1 + 1
8λkV (xk)evk(xk) |x − xk|2

}2

∣∣∣∣∣ ≤ C1 (7)

for any x ∈ � and k = 1, 2, . . . .
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Proof. Putting uk = vk + log λk , we obtain

−�uk = V (x)euk in �, uk = log λk on ∂�,∫
�

euk = O(1).

Passing to a subsequence, we shall show that uk(xk) → +∞ holds. Then, Theorem
0.3 of Y. Y. Li [6] guarantees the existence of C1 > 0 such that∣∣∣∣∣uk(x) − log

euk(xk){
1 + 1

8V (xk)euk(xk) |x − xk|2
}2

∣∣∣∣∣ ≤ C1

for any x ∈ � and k = 1, 2, . . . , or, equivalently, (7).
In fact, if uk(xk) → +∞ does not occur, then we may assume either uk(xk) →

−∞ or uk(xk) → c ∈ R. In the first alternative, we have∫
�

λke
vk → 0,

which is impossible by (6), because there are a, b > 0 such that

a ≤ V (x) ≤ b (x ∈ �).

In the second alternative, on the other hand, the sequence {uk} is locally uniformly
bounded in � by Brezis–Merle [1], while Theorem 1.3 guarantees uk = vk+log λk →
−∞ locally uniformly in � \ {x0}. Again, we have a contradiction, and the proof is
complete. �

Now we define δk > 0 by

δ2
kλke

vk(xk) = 1. (8)

The next lemma corresponds to Lemma 5 of [5].

Lemma 2.2. It holds that δk → 0.

Proof. Inequality (7) reads∣∣∣∣vk(x) − vk(xk) + log

{
1 + V (xk)

8δ2
k

|x − xk|2
}2∣∣∣∣ ≤ C1

for x ∈ � and k = 1, 2, . . . , and we have vk → 8πG( ·, x0) locally uniformly in
� \ {x0}, V (xk) → V (x0), and vk(xk) → +∞. These imply δk → 0, because
otherwise we have a contradiction. �



Vol. 82 (2007) Non-degeneracy of the solution to the Liouville–Gel’fand problem 357

We assume the existence of wk = wk(x) satisfying (5) and derive a contradiction.
For this purpose, we put

ṽk(x) = vk(xk + δkx) − vk(xk),

w̃k(x) = wk(xk + δkx),

Ṽk(x) = V (xk + δkx),

where x ∈ �̃k for �̃k = {x ∈ R
2 | xk + δkx ∈ �

}
. We have

−�ṽk = Ṽke
ṽk , ṽk ≤ 0 = ṽk(0) in �̃k,∫

�̃k

eṽk =
∫

�

λke
vk ≤ C2

with a constant C2 > 0 independent of k, and

−�w̃k = Ṽke
ṽk w̃k in �̃k, w̃k = 0 on ∂�̃k ,

‖w̃k‖∞ = 1.

Concerning ṽk , we can apply [1]. Thus, passing to a subsequence, we obtain ṽk → ṽ0
in C

2,α
loc (R2) for 0 < α < 1, with ṽ0 = ṽ0(x) satisfying

−�ṽ0 = V (x0)e
ṽ0, ṽ0 ≤ 0 = ṽ0(0) in R

2,

∫
R2

eṽ0 < +∞,

and therefore

ṽ0(x) = log
1{

1 + 1
8V (x0) |x|2}2

by [4]. This implies w̃k → w̃0 in C
2,α
loc (R2) for a subsequence, with w̃0 = w̃0(x)

satisfying

− �w̃0 = V (x0)e
ṽ0w̃0 = V (x0){

1 + 1
8V (x0) |x|2}2 w̃0 in R

2,

‖w̃0‖∞ ≤ 1.

(9)

We shall show w̃0 = 0 in R
2. In fact, if this is the case, then it holds that

|yk| → +∞, where yk ∈ �̃k denotes a maximum point of w̃k = w̃k(x); w̃k(yk) =
‖w̃k‖∞ = 1. We make the Kelvin transformation

v̂k(x) = ṽk

(
x

|x|2
)

, ŵk(x) = w̃k

(
x

|x|2
)

,
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and obtain ∥∥ŵk

∥∥∞ = ŵk

(
yk

|yk|2
)

= 1,

−�ŵk = 1

|x|4 Ṽk

(
x

|x|2
)

ev̂k ŵk in B1(0) \ {0}
for large k. On the other hand, inequality (7) reads∣∣∣∣ṽk(x) + log

{
1 + 1

8
V (xk) |x|2

}2 ∣∣∣∣ ≤ C1 (10)

for x ∈ �̃k and k = 1, 2, . . . , and we have eṽk(x) = O
(

1
|x|4
)

uniformly in k.

This means 1
|x|4 ev̂k(x) = O(1) uniformly in k, and therefore x = 0 is a removable

singularity of ŵk ,
−�ŵk = ak(x)ŵk in B1(0)

with ak = ak(x) satisfying ‖ak‖L∞(B1(0)) = O(1). Then, the local elliptic estimate
guarantees 1 = ‖ŵk‖L∞(B1/2(0)) ≤ C‖ŵk‖L2(B1(0)), where the right-hand side con-
verges to 0 by the dominated convergence theorem. This is a contradiction and we
obtain the proof of Theorem 1.4.

To prove w̃0 = 0 in R
2, we put c = V (x0) > 0 and v(x) = w̃0(x/

√
c) in (9).

Then, this v = v(x) ∈ L∞(R2) satisfies

−�v = v{
1 + 1

8 |x|2}2 in R
2

and hence it holds that

v(x) =
2∑

i=1

aixi

8 + |x|2 + b · 8 − |x|2
8 + |x|2

by [2], where ai, b ∈ R. Thus, we only have to derive ai = b = 0 in

w̃0(x) =
2∑

i=1

aixi

8
c

+ |x|2 + b ·
8
c

− |x|2
8
c

+ |x|2 .

We note that ai/
√

c (ai in the formula for v(x)) is newly denoted by ai .
To show ai = 0, we use the following lemma, proven similarly to (3.13) in [5].

Lemma 2.3. In case (a1, a2) �= (0, 0), it holds that

δ−1
k wk(x) = 2π

2∑
j=1

aj

∂G

∂yj

(x, x0) + o(1) (11)

locally uniformly in x ∈ � \ {x0}.
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Proof. In fact, we have

wk(x) =
∫

�

G(x, y)λkV (y)evk(y)wk(y)dy

=
∫

�̃k

G(x, xk + δky
′)Ṽk(y

′)eṽk(y
′)w̃k(y

′)dy′ = I1,k(x) + I2,k(x),

where

I1,k(x) =
∫

�̃k

G(x, xk + δky
′) · fk(y

′)dy′

I2,k(x) =
∫

�̃k

G(x, xk + δky
′) · 64b

c
·

8
c

− ∣∣y′∣∣2(8
c

+ |y′|2)3 dy′

with

fk(y) = Ṽk(y)eṽk(y)w̃k(y) − 64b

c
·

8
c

− |y|2(8
c

+ |y|2)3 .

We have

Ṽk(y)eṽk(y)w̃k(y) → c · 1(
1 + c

8 |y|2)2 ·
(

2∑
i=1

aiyi

8
c

+ |y|2 + b ·
8
c

− |y|2
8
c

+ |y|2
)

,

or equivalently,

fk(y) → f0(y) = 64

c

2∑
i=1

aiyi(8
c

+ |y|2)3 ,

locally uniformly in y ∈ R
2.

We have, on the other hand, fk(y) = O
(

1
|y|4
)

uniformly in k = 1, 2, . . . by

(10), and therefore gk(y) → g0(y) locally uniformly in y ∈ R
2 by the dominated

convergence theorem, where

gk(y1, y2) = −
∫ +∞

a1y1+a2y2
a2
1+a2

2

fk

(
a1t + a2

2y1 − a1a2y2

a2
1 + a2

2

, a2t − a1a2y1 − a2
1y2

a2
1 + a2

2

)
dt

for k = 0, 1, 2, . . . . This gk , introduced in Lemma 6 of [5], satisfies

a1
∂gk

∂y1
+ a2

∂gk

∂y2
= fk,



360 T. Sato and T. Suzuki CMH

and therefore it holds that

I1,k(x) =
∫

�̃k

G(x, xk + δky
′)fk(y

′)dy′

=
∫

�̃k

G(x, xk + δky
′) ·

2∑
j=1

aj

∂gk

∂y′
j

(y′)dy′

= −δk

2∑
j=1

aj

∫
�̃k

∂G

∂yj

(x, xk + δky
′) · gk(y

′)dy′

= δk

{ 2∑
j=1

aj

∂G

∂yj

(x, x0)

∫
R2

16

c
· 1(8

c
+ |y′|2)2 dy′ + o(1)

}

= δk

{
2π

2∑
j=1

aj

∂G

∂yj

(x, x0) + o(1)
}

locally uniformly in x ∈ � \ {x0} by the dominated convergence theorem.
To study I2,k(x), we note that u(y) = log 64

c
· 1(

8
c
+|y|2

)2 satisfies

∂

∂y1

(
y1e

u
)+ ∂

∂y2

(
y2e

u
) = 128

c
·

8
c

− |y|2(8
c

+ |y|2)3 ,

and in this case we obtain

I2,k(x) = b

2

∫
�̃k

G(x, xk + δky
′) ·

2∑
j=1

∂

∂yj

(
yj e

u(y)
)∣∣∣∣

y=y′
dy′

= −δk

b

2

2∑
j=1

∫
�̃k

∂G

∂yj

(x, xk + δky
′) · y′

j e
u(y′)dy′

= −δk

b

2

{ 2∑
j=1

∂G

∂yj

(x, x0) ·
∫

R2
y′
j e

u(y′)dy′ + o(1)
}

= o (δk)

locally uniformly in x ∈ � \ {x0}, again by the dominated convergence theorem.
Thus, the proof of (11) is complete. �

3. Proof of Theorem 1.4

We prove the following lemma, using new arguments.
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Lemma 3.1. If V (x) is C2 near x = x0 ∈ � and x0 is a non-degenerate critical
point of R(x) + 1

4π
log V (x), then it holds that a1 = a2 = 0.

Proof. We suppose the contrary, and then obtain (11) locally uniformly inx ∈ �\{x0}.
We note

−�
∂vk

∂xi

= λkV evk
∂vk

∂xi

+ λkV evk
∂ log V

∂xi

in �

and define hi,k = hi,k(x) by

−�hi,k = ∂ log V

∂xi

· λkV evk in �, hi,k = 0 on ∂�,

where i = 1, 2. Then it follows that

wk�

(
∂vk

∂xi

− hi,k

)
− �wk · ∂vk

∂xi

= 0 in �

by (5), and therefore we have∫
∂�

{
wk

∂

∂ν

(
∂vk

∂xi

− hi,k

)
− ∂wk

∂ν
·
(

∂vk

∂xi

− hi,k

)}
=
∫

�

hi,k�wk.

Here and henceforth, ν denotes the outer unit normal vector on ∂�. Since wk =
hi,k = 0 on ∂�, the above equation is reduced to

δ−1
k

∫
∂�

∂vk

∂xi

∂wk

∂ν
= −δ−1

k

∫
�

hi,k�wk = −δ−1
k

∫
�

�hi,k · wk

= δ−1
k

∫
�

∂ log V

∂xi

· λkV evk · wk.

(12)

We have

vk → 8πG( ·, x0) in C
2,α
loc (� \ {x0}),

δ−1
k wk → 2π

2∑
j=1

aj

∂G

∂yj

( ·, x0) in C
2,α
loc (� \ {x0})

by Theorem 1.3 and the elliptic estimate, and therefore the left-hand side of (12)
converges to

16π2
2∑

j=1

aj

∫
∂�

∂G

∂xi

(x, x0)
∂2G

∂yj∂νx

(x, x0).

Now we apply Lemma 7 of [5]:∫
∂�

∂G

∂xi

(x, x0)
∂2G

∂yj∂νx

(x, x0) = −1

2

∂2R

∂xi∂xj

(x0), (13)
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and then obtain

lim
k→+∞ δ−1

k

∫
∂�

∂vk

∂xi

∂wk

∂ν
= −8π2

2∑
j=1

aj

∂2R

∂xi∂xj

(x0).

We note here that (13) is shown by the Pohozaev identity [10].
Therefore, if we can show

lim
k→+∞ δ−1

k

∫
�

∂ log V

∂xi

· λkV evk · wk = 2π

2∑
j=1

aj

∂2 log V

∂xi∂xj

(x0), (14)

then
2∑

j=1

aj

{
∂2R

∂xi∂xj

(x0) + 1

4π

∂2 log V

∂xi∂xj

(x0)

}
= 0

follows for i = 1, 2, and hence a1 = a2 = 0 from the assumption.
For this purpose, we use the Taylor expansion around xk = (xk1, xk2) for large k

and obtain

∂ log V

∂xi

(x) = ∂ log V

∂xi

(xk) +
[
(x1 − xk1)

∂

∂x1
+ (x2 − xk2)

∂

∂x2

]

· ∂ log V

∂xi

(xk) + Rk(x) |x − xk|
(15)

for x = (x1, x2) with |Rk(x)| ≤ r(x, xk), where r( ·, xk) is uniformly bounded on �,
and near x0,

r(x, xk) = sup
y∈B(xk,|x−xk |)

∑
i,j

∣∣∣∣∂2 log V

∂xi∂xj

(y) − ∂2 log V

∂xi∂xj

(xk)

∣∣∣∣ .
Therefore, this r( ·, xk) is continuous there, satisfying r(xk, xk) = 0 and converging
to r( ·, x0) uniformly. We shall show that there exists C3 > 0 such that

δ−1
k |(x − xk)wk(x)| ≤ C3 (16)

for any x ∈ � and k = 1, 2, . . . . Then, we have∣∣∣∣
∫

�

Rk(x) |x − xk| λkV evk δ−1
k wk

∣∣∣∣ ≤ C3

∫
�

r(x, xk)λkV evk → 0

by λkV evkdx ⇀ 8πδx0(dx) and r(x0, x0) = 0, and therefore the contribution of the
residual term of (15) is neglected in the limit of (12).



Vol. 82 (2007) Non-degeneracy of the solution to the Liouville–Gel’fand problem 363

To show (16), we use

wk(x) = I1,k(x) + I2,k(x)

with

δ−1
k I1,k(x) = −

2∑
j=1

aj

∫
�̃k

∂G

∂yj

(x, xk + δky
′) · gk(y

′)dy′,

δ−1
k I2,k(x) = −b

2

2∑
j=1

∫
�̃k

∂G

∂yj

(x, xk + δky
′) · y′

j e
u(y′)dy′.

There is C4 > 0 such that ∣∣∣∣∂G

∂yj

(x, y)

∣∣∣∣ ≤ C4 |x − y|−1

for any (x, y) ∈ � × �, and therefore

δ−1
k |wk(x)| ≤ C4

(
a1 +a2 + b

2

)
·
∫

�̃k

∣∣x − δky
′ − xk

∣∣−1
(∣∣gk(y

′)
∣∣+ ∣∣∣y′

j

∣∣∣ eu(y′)
)

dy′

holds true. It is obvious that

|gk(y)| + |yj |eu(y) ≤ C5
(
1 + |y|2)− 3

2

with C5 > 0 independent of y ∈ R
2 and k = 1, 2, . . . , and hence

δ−1
k |wk(x)| ≤ C4C5

(
a1 + a2 + b

2

)∫
�̃k

∣∣x − δky
′ − xk

∣∣−1
(

1 + ∣∣y′∣∣2)− 3
2
dy′.

This implies

δ−1
k

∣∣(δkx
′)wk(xk + δkx

′)
∣∣ ≤ C4C5

(
a1 + a2 + b

2

)∫
R2

∣∣x′∣∣
|x′ − y′|

(
1 + ∣∣y′∣∣2)− 3

2
dy′,

but we have∫
R2

∣∣x′∣∣
|x′ − y′|

(
1 + ∣∣y′∣∣2)− 3

2
dy′ =

∫ 2π

0
dθ

∫ ∞

0

∣∣x′∣∣ (1 + ∣∣x′ + reıθ
∣∣2)− 3

2
dr ≤ C6

with C6 > 0 independent of x′ ∈ R
2. Hence (16) follows for x ∈ � and k = 1, 2, . . . .

Thus, we have proven that the limit of the right-hand side of (12) is reduced to

lim
k→+∞ δ−1

k

∫
�

∂ log V

∂xi

· λkV evk · wk = lim
k→+∞

{
II0,k + II1,k + II2,k

}
,
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where

II0,k = ∂ log V

∂xi

(xk)

∫
�

λkV evk · δ−1
k wk,

II1,k = ∂2 log V

∂x1∂xi

(xk)

∫
�

(x1 − xk1) · λkV evk · δ−1
k wk,

II2,k = ∂2 log V

∂x2∂xi

(xk)

∫
�

(x2 − xk2) λkV evk · δ−1
k wk.

First, we have

II0,k = −∂ log V

∂xi

(xk)

∫
�

δ−1
k �wk = −∂ log V

∂xi

(xk)

∫
∂�

δ−1
k

∂wk

∂ν

→ −∂ log V

∂xi

(x0) · 2π

2∑
j=1

aj

∫
∂�

∂2G

∂νx∂yj

( ·, x0)

and∫
∂�

∂2G

∂νx∂yj

( ·, x0) =
∫

∂Br (x0)

∂2G

∂νx∂yj

( ·, x0) =
∫

∂Br (x0)

∂2G0

∂νx∂yj

( ·, x0) + o(1)

as r ↓ 0, where G0(x, y) = 1
2π

log 1
|x−y| . Then it holds that

∂2G0

∂νx∂yj

(x, x0) = − 1

2π

xj − x0j

|x − x0|3

for x ∈ ∂Br(x0), and therefore

∫
∂Br (x0)

∂2G0

∂νx∂yj

( ·, x0) = 0.

Thus, we have proven limk→+∞ II0,k = 0.
Next, we have∫

�

(x
 − xk
) · λkV evk · wk = −
∫

�

(x
 − xk
) �wk

=
∫

�

∂wk

∂x


−
∫

∂�

(x
 − xk
)
∂wk

∂ν
=
∫

∂�

{
ν
wk − (x
 − xk
)

∂wk

∂ν

}

= −
∫

∂�

(x
 − xk
)
∂wk

∂ν
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for 
 = 1, 2, and this implies

II
,k = −∂2 log V

∂x
∂xi

(xk)

∫
∂�

(x
 − xk
) δ−1
k

∂wk

∂ν

→ −∂2 log V

∂x
∂xi

(x0) · 2π

2∑
j=1

aj

∫
∂�

(x
 − x0
)
∂2G

∂νx∂yj

( ·, x0).

Here, we have∫
∂�

(x
 − x0
)
∂2G

∂νx∂yj

(x, x0) =
∫

∂�

∂

∂νx

{
(x
 − x0
)

∂G

∂yj

(x, x0)

}

=
∫

∂Br (x0)

∂

∂νx

{
(x
 − x0
)

∂G

∂yj

(x, x0)

}

+
∫

�\Br(x0)

�

[
(x
 − x0
)

∂G

∂yj

(x, x0)

]

=
∫

∂Br (x0)

∂

∂νx

{
(x
 − x0
)

∂G

∂yj

(x, x0)

}
+ 2

∫
�\Br(x0)

∂2G

∂x
∂yj

(x, x0)

=
∫

∂Br (x0)

∂

∂νx

{
(x
 − x0
)

∂G

∂yj

(x, x0)

}
− 2

∫
∂Br (x0)

ν


∂G

∂yj

(x, x0)

=
∫

∂Br (x0)

∂

∂νx

{
(x
 − x0
)

∂G0

∂yj

(x, x0)

}
− 2

∫
∂Br (x0)

ν


∂G0

∂yj

(x, x0) + o(1)

as r ↓ 0, and the first term of the right-hand side is equal to 0 because

∂

∂νx

{
(x
 − x0
)

∂G0

∂yj

(x, x0)

}
= x
 − x0


r

[
∂G0

∂yj

(x, x0) + r
∂2G0

∂r∂yj

(x, x0)

]
= 0

in terms of r = |x − x0|. On the other hand, the second term is equal to

− 1

π

∫
∂Br (x0)

(x
 − x0
)
(
xj − x0j

)
r3 = −δj
 =

{
−1 (
 = j),

0 (
 �= j),

and therefore

lim
k→+∞ II
,k = 2πa


∂2 log V

∂x
∂xi

(x0)

holds for 
 = 1, 2. We obtain (14), and the proof is complete. �

Once a1 = a2 = 0 is obtained, then the proof of b = 0 is similar to [5]. For the
sake of completeness, we confirm the following lemma and conclude the proof of
Theorem 1.4.
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Lemma 3.2. Under the assumptions of the previous lemma, it holds that b = 0.

Proof. By Lemma 3.1, we have

w̃k(x) −→ b

8
c

− |x|2
8
c

+ |x|2 in C
2,α
loc (R2).

We assume b �= 0 and note the equalities

−wk�vk = λkV evkwk and − vk�wk = λkV evkvkwk

in � and also∫
�

(wk�vk − vk�wk) =
∫

∂�

(
wk

∂vk

∂ν
− vk

∂wk

∂ν

)
= 0.

Then we have

λk

∫
�

V evkwk = λk

∫
�

V evkvkwk. (17)

We also have

λk

∫
�

V evkvkwk =
∫

�̃k

Ṽke
ṽk ṽkw̃k + ‖vk‖∞ λk

∫
�

V evkwk

=
∫

R2

c(
1 + c

8 |x|2 )2 · log
1(

1 + c
8 |x|2 )2 · b

8
c

− |x|2
8
c

+ |x|2 dx

+ ‖vk‖∞ λk

∫
�

V evkwk + o(1)

= 8πb + ‖vk‖∞ λk

∫
�

V evkwk + o(1)

by (7), and therefore

8πb = (1 − ‖vk‖∞) λk

∫
�

V evkwk + o(1) (18)

by (17).
We shall show

∂wk

∂xi

= o (δk) locally uniformly in � \ {x0} (19)

for i = 1, 2 and

‖vk‖∞ = −2 log λk + 2 log
8

c
− 8πR(x0) + o(1). (20)
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In fact, if this is the case we obtain λk ∼ δ2
k by (8), and therefore

‖vk‖∞ λk

∫
�

V evkwk = − ‖vk‖∞
∫

∂�

∂wk

∂ν
= o (δk log λk) = o(1).

Then, b = 0 follows from (18).

Proof of (19). In fact, we have

∂wk

∂xi

= λk

∫
�

∂G

∂xi

(x, y) · V (y)evk(y)wk(y)dy =
∫

�̃k

∂G

∂xi

(x, xk + δky
′)hk(y

′)dy′

with

hk(y) = Ṽk(y)eṽk(y)w̃k(y) = O

(
1

|y|4
)

uniformly in k and

hk(y) → h0(y) = 64bc
8 − c |y|2(

8 + c |y|2 )3
locally uniformly in y ∈ R

2. Therefore ζk(y) → ζ0(y) locally uniformly in y ∈ R
2

for ζk = ζk(y) defined in Lemma 6 of [5]:

ζk(y1, y2) = log

⎡
⎢⎣ 1

y2
1 + y2

2

∫ √
y2

1+y2
2

−∞
thk

⎛
⎜⎝ ty1√

y2
1 + y2

2

,
ty2√

y2
1 + y2

2

⎞
⎟⎠ dt

⎤
⎥⎦ .

Here we have (
y1

∂ζk

∂y1
+ y2

∂ζk

∂y2
+ 2

)
eζk = hk

and

ζ0(y) = log
32bc(

8 + c |y|2 )2 ,

and the dominated convergence theorem guarantees

∂wk

∂xi

(x) =
∫

�̃k

∂G

∂xi

(x, xk + δky
′) ·
(

y1
∂ζk

∂y1
+ y2

∂ζk

∂y2
+ 2

)
eζk

∣∣∣∣
y=y′

dy′

= −
2∑

j=1

δk

∫
�̃k

∂2G

∂xi∂yj

(x, xk + δky
′) · y′

j e
ζk(y

′)dy′

= −δk

{ 2∑
j=1

∂2G

∂xi∂yj

(x, x0)

∫
R2

32bcy′
j(

8 + c|y′|2)2 dy′ + o(1)

}
= o (δk)

and hence (19).
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Proof of (20). We have G(x, y) = 1
2π

log 1
|x−y| + K(x, y) with K ∈ C2,α(� × �),

and therefore it follows that

‖vk‖∞ = vk(xk) = III1,k + III2,k,

where

III1,k = − λk

2π

∫
�

log |xk − y| · V (y)evk(y)dy,

III2,k = λk

∫
�

K(xk, y)V (y)evk(y)dy.

We have λkV evkdx ⇀ 8πδx0(dx), and therefore

III2,k = 8πK(x0, x0) + o(1) = 8πR(x0) + o(1).

For the first term, on the other hand, we have

III1,k = − 1

2π

∫
�̃k

log
∣∣δky

′∣∣ · Ṽk(y
′)eṽk(y

′)dy′

= 1

4π
(log λk + ‖vk‖∞)

∫
�̃k

Ṽk(y
′)eṽk(y

′)dy′

− 1

2π

∫
�̃k

log
∣∣y′∣∣ · Ṽk(y

′)eṽk(y
′)dy′

by (8), and therefore an asymptotic formula of [3] guarantees∫
�̃k

Ṽk(y
′)eṽk(y

′)dy′ =
∫

�

Vk(y)evk(y)dy = 8π + O (λk |log λk|) .

Thus we obtain

III1,k = (2 log λk + 2 ‖vk‖∞) (1 + O (λk |log λk|))
− 1

2π

∫
R2

(
log
∣∣y′∣∣) · c(

1 + c
8 |y′|2)2 dy′ + o(1)

= (2 log λk + 2 ‖vk‖∞) (1 + O (λk |log λk|)) − 2 log
8

c
+ o(1).

These results are summarized as

‖vk‖∞ (1 + O (λk |log λk|))
= −2(log λk) · (1 + O (λk |log λk|)) + 2 log

8

c
− 8πR(x0) + o(1),

or (20). �
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