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Asymptotic non-degeneracy of the solution to the
Liouville-Gel’fand problem in two dimensions

Tomohiko Sato and Takashi Suzuki

Abstract. In this paper we study the asymptotic non-degeneracy of the solution to the Liouville—
Gel’fand problem
—Av=AV(x)e' inQ, v=0 onde,

where @ C R? is a smooth bounded domain, V (x) is a positive-valued C1(Q) function, and
A > 0 is a constant.
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1. Introduction

The purpose of the present paper is to study the asymptotic non-degeneracy of the
solution to the Liouville-Gel’ fand problem

—Av=AV(x)e’ inQ, v=0 onds, €))

where Q C R? is a bounded domain with smooth boundary 02, V = V(x) > O is
a C! function defined on 2, and A > 0 is a constant. We shall extend a result of
Gladiali—Grossi [5], which is valid for the homogeneous case of V(x) = 1,

—Av=2Xxe"' InQ, v=0 ondQ 2)
based on the following fact [8].

Theorem 1.1. If (A, vx) (kK = 1,2,...) is a solution sequence for (2) satisfying
A — 0, then we have a subsequence (denoted by the same symbol) such that Ty =
fQ Axe’s — 8mm for somem = 0,1,2,...,400. According to this value of m, we
have the following.

(1) If m = 0, then it holds that ||vi||sc — O.
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(2) If0 < m < +o0, then the blowup set of vy (k = 1,2, ...), defined by
8 = {xo €Q | there exists x;, — xq such that vi(xg) — —|—oo},

is composed of m-interior points, and vy — 8w Zxod G (-, xg) locally uni-

formly in Q \ 8, where G = G(x, y) denotes the Green’s function of —A in
Q with -|yq = 0. We have —Avi(x)dx — ZXOG5 81y, (dx) in the sense of

measure on Q. F urthermore, it holds that

1
5 VR@o) + > ViG(xo.xp) =0 3)
xhe8\wo)

for each xy € 4, where R(x) = [G(x, y) + % log |x — yl]y:x is the Robin

function.

(3) If m = 400, then vy — 400 locally uniformly in Q.

Gladiali and Grossi [5] are concerned with the case m = 1, and study the non-
degeneracy of (Ax, vg) for large k. From the above theorem, we have § = {xo} if
m = 1 and this xo € 2 is a critical point of the Robin function. What they obtained
is the following theorem, motivated by the study of the detailed bifurcation diagram
for (2).

Theorem 1.2. Ifm = 1 holds in the previous theorem and xo € 4§ is a non-degenerate
critical point of R(x), then the solution (Ag, vy) is non-degenerate for large k, that
is, the linearized operator —A — Are'  in Q with -3 = 0 is invertible.

Theorem 1.1, on the other hand, has an extension to (1). Although the results of
Ma—Wei [7] are presented in the mean field formulation,
_ AV(x)eY
Jo V(x)e

it is easy to translate them into the following theorem on (1). (See also [9].)

—Av inQ, v=0 onod,

Theorem 1.3. All the results stated in Theorem 1.1 continue to hold for (1), provided
that Xy and (3) are replaced by ¥y = fQ MV (x)e% and

-V X _|_ V X0, X, _{__v ‘/ X, =0, 4

xhe8\(xo}

respectively.
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In the case of m = 1 again, equation (4) means that xo € 2 is a critical point of
R(x) + ﬁ log V (x). From this point of view, it is natural to extend Theorem 1.2 as
follows.

Theorem 1.4. In Theorem 1.3, if m = 1, V(x) is C? near xo € 4, and x¢ is a
non-degenerate critical point of R(x) + % log V(x), then the solution (Ai, vg) is
non-degenerate for large k, that is, the linearized operator —A — AV (x)e% in Q
with -|3q = 0 is invertible.
To prove the above theorem, we follow the argument of [5], namely, the existence

of wy = wr(x) (k =1, 2,...)satisfying

— Awg = A V(x)e%w, in, wrp=0 ond<,

lwilloo = 1,

&)

implies a contradiction. The next section is devoted to examine the validity of the
blowup analysis [5] to (1), originally developed for (2). In the latter case, w; = ‘;—;’;
(i =1, 2) solves the linearized equation

—Awy = e w;,  inQ

(except for the boundary condition). This structure is useful to prove Theorem 1.2,
but obviously does not hold in (1). In the final section, we complete the proof of
Theorem 1.4, providing new arguments to compensate this obstruction.

2. Preliminaries

In this section, we confirm that several assertions for (2) presented in [5] are still valid
for (1). Henceforth, (Ag, vr) (k =1, 2, ...)is a solution sequence for (1) satisfying

i = / AV(x)e™ — 8w, A — 0, (6)
Q

and x; € 2 denotes a maximum point of vg:

Ve (k) = vkl oo -
Then we have x; — xo with 8 = {x¢}, and this blowup point xo € 2 is a critical
point of R(x) + 7= log V (x).
The first lemma corresponds to Theorem 6 of [5].
Lemma 2.1. There is a constant C1 > 0 such that

eVk (k)

vk (x) — log <C (7

{1+ §AV () e (i) |x — xklz}2

foranyx € Qandk =1,2, . ...



356 T. Sato and T. Suzuki CMH

Proof. Putting u; = vy + log Ax, we obtain

—Aup = V(x)e" inQ, wup=logi; ondL,

/ e = 0(1).
Q

Passing to a subsequence, we shall show that uy (x;) — +o00 holds. Then, Theorem
0.3 of Y. Y. Li [6] guarantees the existence of C; > 0 such that

ek (Xx)

ug(x) — log < (i

{14 §V(xp)em@) |x — )cklz}2

for any x € Qandk=1,2,...,o0r equivalently, (7).
In fact, if ux(xx) — 400 does not occur, then we may assume either uy (xx) —
—oo or ui(xg) — c¢ € R. In the first alternative, we have

/ re’ — 0,
Q

which is impossible by (6), because there are a, b > 0 such that
a<Vx) <b (xeQ).

In the second alternative, on the other hand, the sequence {uy} is locally uniformly
bounded in €2 by Brezis—Merle [1], while Theorem 1.3 guarantees uy = vy+log Ay —
—o0 locally uniformly in © \ {xo}. Again, we have a contradiction, and the proof is
complete. O

Now we define §; > 0 by
S e = 1. (8)
The next lemma corresponds to Lemma 5 of [5].

Lemma 2.2. It holds that §; — 0.

Proof. Inequality (7) reads

Vix 2
vk (x) — vr(xx) + log il + (—zk) lx — xel? } <C;
86,
forx € Qand k = 1,2, ..., and we have vy — 87 G(-, x0) locally uniformly in

Q \ {x0}, V(xx) = V(x0), and vg(xx) — +oo. These imply §; — 0, because
otherwise we have a contradiction. O
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We assume the existence of wy = wy (x) satisfying (5) and derive a contradiction.
For this purpose, we put

Uk (x) = v (g + 8px) — v (xp),
Wi (x) = wi(xg + 0kx),
Vie(x) = V (x + 8ix),

where x € Qk for Qk = {x € R? | xx + Orx € Q} We have
— AV, = Vkef)k, U <0 =1,(0) in Qk,
/ eV =/ Are’k < Cy
Q Q
with a constant C, > 0 independent of k, and
—Awy = Vkeﬁ"i)k inQr, wWr=0 ondS,
[Willoo = 1.
Concerning vy, we can apply [1]. Thus, passing to a subsequence, we obtain vy — Vg
in Clzog (R2) for 0 < o < 1, with ¥y = Tg(x) satisfying

— Ay = V(xg)e™, 7y <0 = i(0) in R, / e < 400,
RZ

and therefore
1

{1+ Lvxo) 112}

vo(x) = log

by [4]. This implies wxy — wp in Clzof (R?) for a subsequence, with wy = wo(x)
satisfying

~ \%4

— Aty = V(xp)e™ g = 1 (x0) swo  inR?,

{14 §V(xo) Ix*} 9)
lwolloe < 1.

We shall show wg = 9 in R%. In fact, if this is the case, then it holds that
|yk| — +o00, where yx € Qi denotes a maximum point of Wy = Wi (x); Wr(yx) =
[Wklloo = 1. We make the Kelvin transformation

N ~ X ~ - X
Uk (x) = Uk (W) o wr(x) = Wi <W) )
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and obtain

1 -
— Al = — Vi (%) iy in By (0)\ {0}
|x] |x]
for large k. On the other hand, inequality (7) reads

1 2
¥k (x) + log {1 + gV |x|2} < C (10)

for x € Qk and k = 1,2,..., and we have %™ = O (#) uniformly in %.
This means P |4 L e%® = 0(1) uniformly in &, and therefore x = 0 is a removable
singularity of wy,
— AW = arp(x)wg in B1(0)

with a; = ay (x) satisfying [lagll 1 (p, o)) = O(1). Then, the local elliptic estimate
guarantees 1 = ||kl (B, ,0)) < CllWkllL2(p, (o)), Where the right-hand side con-
verges to 0 by the dominated convergence theorem. This is a contradiction and we
obtain the proof of Theorem 1.4.

To prove wg = 0 in R?, we put c = V(x9) > 0 and v(x) = wo(x/+/c) in (9).
Then, this v = v(x) € L (R?) satisfies

v
—Av=———— inR?

2
{1+ % Ix?}
and hence it holds that

2 i 8 — |x|?
vEx) =Y +b-

8+ |x|? 8+ |x|?
by [2], where a;, b € R. Thus, we only have to derive a; = b =0 in
8 2
ai xi c x|
wo(x) = 3
Z 8 + |x |2 § + |X|2

i=1 ¢

We note that a; /+/c (a; in the formula for v(x)) is newly denoted by a;.
To show a; = 0, we use the following lemma, proven similarly to (3.13) in [5].

Lemma 2.3. In case (ay, az) # (0, 0), it holds that
2. 9G
5w (x) =2n;aja—yj(x,x0)+a(l) (11)

locally uniformly in x € Q \ {xo}.
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Proof. In fact, we have

wi(x) = /Q G(x, )MV (3)e™ P wy(y)dy

- / G (x, xk + 8y )WV (e OV (v dy' = Ty 4 (x) 4 Tog (%),
Q

where
Lie(x) = / Gx, xx + 8y) - fie¥Ndy'
Qi
2
64b S|y
L(x) = / G(x,xk 4+ 8y) - — - %d}/
o <G+
with
o n0)a 640 S —1y)?
@) = Ve@e™ iy (y) - 22 £
< (t+IP)
We have

V(1) O (y) — ¢ -

2 8 2
(L+ 51y <i=1 ¢t 1yl

or equivalently,

64 &
Ji(y) = fo)=—) ————,
¢ ; (& +1y12)°

C
locally uniformly in y € R?.
We have, on the other hand, fi(y) = O (ﬁ) uniformly in k = 1,2,... by

(10), and therefore gx(y) — go(y) locally uniformly in y € R? by the dominated
convergence theorem, where

2 2
+oo asyy — aiazy aiazyy — aiy
gk(y1, y2) = — Jie\ar + a2t — > dt
ayyy1tazyn a +Cl a + a
a2 ra2 1 2 1 2
1772

fork =0,1,2,.... This g, introduced in Lemma 6 of [5], satisfies

0 0
alﬁ + azﬁ = f&,
ayi dy2
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and therefore it holds that

L) = /Q G, x + 86y) fi YNy
k

:./Q G(x, xi + 8,y - Zaj

j=1 J

2
G
=Y a [ Gl 8 sy
=1 Qr 9Yj

16 1
= Sdy' +o(1)}

—(X x0) -3
R2 C (§+|y/|2)

Il gm

{27‘[ Zaj (x x0) +o(1)]

locally uniformly in x € € \ {xo} by the dominated convergence theorem.

To study I x(x), we note that u(y) = log % . % satisfies
(8+1P)
3 9 128 3—pyp
oy 1) F gy ) = 2 o
N1 y2 (E + |y )

and in this case we obtain

dy’

b
L(x) = §/~ G(x, xi + 8y
Q

~.
i MN

!

y=y

3 ( u(y)
JR— y~e )
0y, J
b 2

=—5k22f 8—(36 i+ 8y - vje O Vdy
Jj=1 Vi

b~ 3G
= 82| —(x,xo)-/ yje"00dy' + o} =0 50
2 ; ay] R2 J

locally uniformly in x € €\ {xo}, again by the dominated convergence theorem.

Thus, the proof of (11) is complete. O

3. Proof of Theorem 1.4

We prove the following lemma, using new arguments.
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Lemma 3.1. [f V(x) is C? near x = xo € Q and xq is a non-degenerate critical
point of R(x) + 7 log V(x), then it holds that a1 = a; = 0.

Proof. We suppose the contrary, and then obtain (11) locally uniformly inx € €\ {xo}.
We note

0 dvg dlogV
ALK aven K L ven 228 g
0x; 0x; Xi
and define h; y = h; i (x) by
dlogV

—Ahj = M Ve’ inQ, hix=0 ondQ,

0Xx;
where i = 1, 2. Then it follows that
v v
wr A K hik | — Awg - L =0 inQ
0x; ax,

by (5), and therefore we have

9 [ vk dwr (g
/ {wk— (— — hi,k) (— - hi,k)} = / hi g Awg.
a0 av ax,- al) ax,- Q

Here and henceforth, v denotes the outer unit normal vector on 9L2. Since w; =
h; x = 0 on €2, the above equation is reduced to

_ dvk dwy _1/ —1/
s ———= =5 hi kAwg = —38 Ahig-w
k /39 ax; ov k o ik k k Q ik k

(12)
1
:6k1/ dlogV Ve ow
d
Q

Xi
We have
v — SnG(- x0) in Cﬁ;f‘(S_Z \ {xo0}).

8¢ wk—>27rZaJ ( x0) in Co¥(R\ {xo))
j=1

by Theorem 1.3 and the elliptic estimate, and therefore the left-hand side of (12)
converges to

1672 Z aj / —(x, 0)

Now we apply Lemma 7 of [5]:

/ 8G( ) 2G( ) = : 82R( ) (13)
sa 0 gy Y T T2 e

(x, x0).




362 T. Sato and T. Suzuki CMH

and then obtain

We note here that (13) is shown by the Pohozaev identity [10].
Therefore, if we can show

. _ dlogV 3% log V
lim 8! A Vel =2 14
ks oo K /Q ox; POk nzaf axon OO U

then

22: 92R ( - 18210gV( :
X =
=" |oxox YO 4x axox

follows for i = 1, 2, and hence a; = a> = 0 from the assumption.
For this purpose, we use the Taylor expansion around x; = (xk1, xx2) for large k
and obtain

dlogV 810g a a
x (xx) + | (x1 — xkl) — + (2 —xk2) ——
0x; 0X; 0x1 0x7 (15)
Blog Vv

(xk) + Ry (x) [x — xi|

i

for x = (x1, x2) with |Rg(x)| < r(x, xx), where r( -, xi) is uniformly bounded on Q,
and near xg,

3% log V 3% log V

0x;0x; ) = 0x;0x

(Xk)

r(x, xp) = sup
YEB(x, Ix—xil) ;5

Therefore, this r (-, x¢) is continuous there, satisfying r (xx, xx) = 0 and converging
to 7 (-, xo) uniformly. We shall show that there exists C3 > 0 such that

8 1(x — xp)we(x)] < Cs (16)

for any x € Qandk = 1,2, .... Then, we have

/ Ri(x) |x — x| XkVekaI:Iwk
Q

< C3/ r(x, xp) Ve — 0
Q

by A VeYkdx — 8méy,(dx) and r(xg, xo) = 0, and therefore the contribution of the
residual term of (15) is neglected in the limit of (12).
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To show (16), we use
wi (x) = 11 (%) + Ik (x)

with

57 T1k() = Za,/ —(x St 80y) - g ()Y,

8 op(x) = ——Z/ — (0, x5+ 81y) - yje O dy’.

There is C4 > 0 such that
oG _1
a—(x, V| =< Cqlx —yl
Yj

for any (x, y) € Q x Q, and therefore

_ b —1 N
ak‘|wk<x)|sc4(al+az+5)-f~ e = oy’ = x| (g ] + |y e0)
Qp ’

holds true. It is obvious that

_3
lgk ) + [yjle"™ < Cs (1+ |yl?) 2

with Cs > 0 independent of y € R2andk = 1,2, ..., and hence

—1 b / —1 % /
5w = CoCs(ar+ar+3 ) [ v =0y = (1+|y|) dy'.
Q

This implies

- b x’ 3
i ) e 0 = (v 5) [ ()

but we have

[ *% o2\~
/RZIx’—y’I<1+|y| dy_/ d@/ |x|1+|x+rel|> dr < Ce

with C¢ > Oindependentof x € R2. Hence (16) follows for x € Qandk = 1,2, ....
Thus, we have proven that the limit of the right-hand side of (12) is reduced to

dlogV
lim 87" [ T2 Ve cwp = lim {Tox + 104 + oy},
k o 0Xx; k—+o00
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where
dlogV
0x; Q
9% log V
I = g (xk)/ (x1 — xk1) - A Vet - 8wy,
Bxlaxl- Q
3% log V v g1
I = (xx) | (2 —xx2) M Ve™ - 8§ wy.
’ 8x28xi Q

First, we have

Vv 0
Hox = — (xk)[ 8 Awyg = (xk)f 8 — w"
alog Vv
(x0) - 27 ) aj / (-, x0)
Z ! I 8an)’]
and
3°G 382G 382Gy
/ (-, x0) :/ (-, x0) :/ (-, x0) +o(1)
aQ 0vxdy; 3B, (xo) IVx0Yj B, (x) OVx3Y;
asr | 0, where Go(x, y) = 27r log = y| Then it holds that
3’°G 1 xj —xo;
270 (x,x0) = __xf—xoé
3l)x3yj 27 |x — xo|

for x € 0B, (xp), and therefore

32Gy
/ (-, x0) =0.
3B, (xg) OVx0Yj

Thus, we have proven limy_, ;o IIp x = 0.
Next, we have

/ (xg — xke) - A Vet - wy = —f (xe — xke) Awg
Q

0wy oWy Jwg
= — - (X¢ —xpe) — = vewg — (Xg — Xke) ——
Q 8)6[ 9Q ov 90 v

0wy
= — (X¢ — Xke) —
aQ v
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for £ = 1, 2, and this implies

8 logV B wk
IIf’k = g (xk)/ (xe _ xké)a 1
0X00X;
8210gV
Ix09%; (x0) - 2m Za// (XZ—X()g) .(',Xo)-

Here, we have

0 0G
/ (x¢g — XOe) (x x0) = / i(xg — xo¢) —(x, XO)}
] IQ 8 8y]

i(Xe — X0¢) —(x XO)}

Br (XO)

3G
+ A (xg — x0¢) — (x, X0)
Q\B, (x0) dyj

B G %G
= — 1 (x¢ — x00) —(x, x0) ¢ +2 (x, x0)
3B, (xo) OVx ay; Q\B, (xo) 9%¢dYj
0 G G
:/ — (xe—xozz)—(x,xo)}—2/ ve—(x, xp)
9B, (xo) IVx ayj 3B, (x0)  0Yj
0 Gy RICH)
=/ — (xz—xoz)—(x,xo)} —2/ Vz—(x,x0)+0(1)
3B, (xg) IVx ayj 0B, (x0)  0Yj
as r | 0, and the first term of the right-hand side is equal to 0 because
9 3G x¢ — xor [9Go 932Gy
— 1 —xp) — (x,x0) f = ——— | —(x,x0) +r (x,x0) | =
Ay dy; r dyj drdy;

in terms of 7 = |x — x¢o|. On the other hand, the second term is equal to

1 / (xe — xoe) (xj — x0;) -1 =),
—— 3 = —dj¢ = .
B, (x0) r 0 «#),

and therefore

2
log
lim Iy =2
k—irfoo bk e dx¢0x; (XO)
holds for £ = 1, 2. We obtain (14), and the proof is complete. O

Once a; = ap = 0 is obtained, then the proof of » = 0 is similar to [5]. For the
sake of completeness, we confirm the following lemma and conclude the proof of
Theorem 1.4.
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Lemma 3.2. Under the assumptions of the previous lemma, it holds that b = 0.

Proof. By Lemma 3.1, we have

8 )2

~ . 2, 2
Wr(x) — b<—— in C°Y(R?).
§+ |x|2 loc
We assume b # 0 and note the equalities
—wrAvg = M Ve wr and — v Awg = A Ve vpwy

in 2 and also

vy oWy
(W Avg — v Awg) = wy— —vr— | = 0.
Q a0 ov av

Then we have

)»k/. Ve wy =)»k/. Ve vwy.
Q Q

We also have

)»k/ Ve vpwy =‘/~ Viee" Dy + [[vell oo )»k/ Vekwy
Q o Q

2
— |x|

/ c ) 1 %
= . Og .
R (1+51x2)? (1+§5xP) 2

¢
+ llvklloo )»kfg Ve wi + o(1)
= 87D + ||vkll oo Ak /Q Vel wy 4+ o(1)
by (7), and therefore
87b = (1 — Ilvklloo)kk/Q Ve wi + o(1)

by (17).
We shall show

a —_—
% =0 (k) locally uniformly in Q2 \ {xo}
Xi

fori =1,2and

8
lvklloo = —21log Ak + 2 log P 81 R(xp) + o(1).

+ |x|?

dx

CMH

A7)

(18)

19)

(20)
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In fact, if this is the case we obtain Ay ~ 8,% by (8), and therefore

oWy
||vk||oo)»kf Vel wy = — ”vk”oo/ —— =0 (8 logig) = o(1).
Q aQ dv

Then, b = 0 follows from (18).
Proof of (19). In fact, we have

Jwg 0G i G
— =M / —(x,y) - Ve D (y)dy = / —(x, Xk + 8y Yy’
0x; Q 0x; &, 0X;

with .
hie(y) = Ve(0)e* P (y) = 0 (W)

uniformly in k£ and

8 —cly]?

hi(y) = ho(y) = 64be—— =

(8 +cly| )

locally uniformly in y € R?. Therefore ¢ (y) — Zo(y) locally uniformly in y € R?
for ¢ = ¢x(y) defined in Lemma 6 of [5]:

1 /,/yfﬂ%

t t
. . thy Y1 ’ Y2 d
R DR i3

Ck(y1, y2) =log t

Here we have

and

and the dominated convergence theorem guarantees

ow 0G 9
_k(X)z/ o (X 8) - <yl—+y2—+2> bk
axi S~2k 3xi yl

: 3°G
:_Zék/: 3% 9 (X,xk—i—éky/).yj{elk(y)dy/
j=1 Qp 9Xi0)j
2 2 ,

92G 32bcy!,
= —3k{ Z 350 (x, XO)/ ——dy' + 0(1)} =0 (&)
o Xi0yj R2 (8—|—c|y’|2)

and hence (19).
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Proof of (20). We have G(x, y) = 5 log ﬁ + K (x,y) with K € C>%(Q x Q),
and therefore it follows that

lvklloo = vi(xx) = Iy x + 1k,

where

A
I = ——"/ log |xx — y| - V(»)e* D dy,
’ 2w Q

Ml = ?»k/ K (xp, Y)V (e Pdy.
Q

We have A VeYdx — 8wy, (dx), and therefore
I x = 87 K (xp, x0) + o(1) = 8w R(xp) + o(1).

For the first term, on the other hand, we have
1 ~ _—
I = —o— / log [8¢Y] - Vi(3")e™ O ay’
2w J&,
1 7 (v ek O g0/
= — (logrx + llvklloo) |. Vk(¥)e™ dy
4 Qi
1 ~ o
- —/ log [y'| - Ve (v)e™ Oy’
2 Jo,
by (8), and therefore an asymptotic formula of [3] guarantees
[ ey = [ Vit ay = 7+ 0 G llog ha).
Qi Q
Thus we obtain

Iy = 2log Ak + 2 luklleo) (1 + O (Ak [log Akl))

5 |, llogly']) - ——ay + o)
27 JRr2 (1 +§|y/|2)

= (2logAx + 2 lluklloo) (1 + O (Ax [log Ax])) — 210g§ +o(1).
These results are summarized as
Vi lloo (1 + O (Ak [1og Ak]))
= —2(log Ax) - (1 4+ O (A [log Ak ) + 210g§ — 87 R(x0) + o(1),

or (20). O
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