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Complete hyperbolic Stein manifolds with prescribed
automorphism groups

Su-Jen Kan

Abstract. It is well known that the automorphism group of a hyperbolic manifold is a Lie
group. Conversely, it is interesting to see whether or not any Lie group can be prescribed as the
automorphism group of a certain complex manifold.

When the Lie groupG is compact and connected, this problem has been completely solved
by Bedford–Dadok and independently by Saerens–Zame in 1987. They have constructed
strictly pseudoconvex bounded domains � such that Aut(�) = G. For Bedford–Dadok’s �,
0 ≤ dimC�− dimRG ≤ 1; for generic Saerens–Zame’s �, dimC� � dimRG.

J. Winkelmann has answered affirmatively to noncompact connected Lie groups in recent
years. He showed there exist Stein complete hyperbolic manifolds � such that Aut(�) = G.
In his construction, it is typical that dimC� � dimRG.

In this article, we tackle this problem from a different aspect. We prove that for any connected
Lie groupG (compact or noncompact), there exist complete hyperbolic Stein manifolds� such
that Aut(�) = G with dimC� = dimRG. Working on a natural complexification of the
real-analytic manifold G, our construction of � is geometrically concrete and elementary in
nature.
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1. Introduction

It is well known that the automorphism group of a hyperbolic manifold has the
structure of a Lie group. It is natural to ask whether every Lie group can appear as the
automorphism group of certain hyperbolic manifolds or not. This problem sometimes
is called the realization problem: realizing a Lie group as the automorphism group
of a certain complex manifold.

This realization problem has been completely solved by Bedford–Dadok [B-D]
and independently by Saerens–Zame [S-Z] when the given Lie group is compact and
connected. In recent years, generalizing ideas of Saerens–Zame, Winkelmann [W]
has settled the realizing problem for any connected Lie group. However, domains
� constructed from this Saerens–Zame–Winkelmann’s approach are typically with
dimC� � dimRG.
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The strategy of Saerens–Zame–Winkelmann was first to find a domainD on which
G acts by automorphisms, and then perturbed it to a G-invariant strictly pseudocon-
vex subdomain in such a way that the additional automorphisms were ruled out by
assigning CR-invariants to each G-orbit on the boundary. To find such a domain D
to start with, Saerens–Zame first embedded the compact Lie groupG into the unitary
group U(N1) and then constructed a domain D in GL(N1,C) × C

N2 on which G
acts by automorphisms where N1 and N2 are large in general. Due to the above
embedding process, the generic resultant complex manifold� has large complex di-
mension, dimC� � dimRG. Having observed every Lie algebra is linear and hence
the universal covering of a Lie group can be viewed as linear, Winkelmann has been
able to find a group homomorphism G̃ → Sp(N3,R) and then find a suitable domain
D ⊂ C

N4 to start with. Again, this embedding process and the construction of the
domain D has enormously increased the dimension.

The complexification GC of a compact Lie group G is Stein with dimCGC =
dimRG. Starting from domains in GC, Bedford–Dadok were able to give a more
concrete construction. They found bounded strictly pseudoconvex domains� ⊂ GC

or � ⊂ GC × C such that Aut(�) = G.
A natural attempt is to generalize Bedford–Dadok’s approach to noncompact Lie

groups. Unfortunately, it is not easy to give a canonical complexification of a generic
noncompact Lie group such that dimCGC = dimRG. In this article we consider a
special kind of complexifications of real-analytic manifolds to resolve this difficulty.

A Lie groupG equipped with a left-invariant metric g is naturally a homogeneous
space with Isom(G) � L(G) · K where K is the isotropy group and L(G) are left
multiplications. We provide the tangent bundle of the Riemannian manifold (G, g)
with a complex structure in such a way that all the leaves of the Riemannian foliation
are holomorphic curves. The disk bundle of radius r is called a Grauert tube T rG.

Generalizing the rigidity result, Aut(T rG) = Isom(G), proved in [Ka] we are
able to dominate automorphism groups of certain domains D ⊂ T rG. We prove it
at Theorem 3.6 and call it the subrigidity Aut(D) < Isom(G).

Starting from such a domain D our strategy is to destroy, through certain G-
invariant perturbations, the additional automorphisms coming from the isotropy group.
Though the objects we deal with are not even relatively compact, the holomorphic
extension property needed here is not hard to handle due to the special complex struc-
ture adopted here. In fact, most mappings we deal with are bundle mappings which
automatically extend over the boundary. The main result of this article is

Theorem. Let G be a connected Lie group of dimension n ≥ 2. Then there exist
complete hyperbolic Stein manifolds �, dimC� = n, such that Aut(�) = G.

The dimensional condition n ≥ 2 has to be added here since the main idea we
shall use follows from the rigidity arguments of Grauert tubes while Grauert tubes
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and their perturbations are biholomorphic to the unit disc, by the Riemann mapping
theorem, when the center is of dimension one. In the rigidity arguments of Grauert
tubes, it is also necessary to assume the Riemannian manifold is connected. At this
moment, I can not see a way to release the connectedness of the Lie groups. We
remark while Saerens–Zame’s result works for compact disconnected Lie group as
well, the resultant complex manifold � is typically with dimC� � dimRG.

The organization of this article is the following. In §2 we briefly review termi-
nologies concerning Grauert tubes and recall the existence of Stein Grauert tubes.
Generalizing notations about the rigidity of Grauert tubes, we prove subrigidity char-
acterization of certain domains in §3. In §4, specific domains and perturbations are
constructed explicitly. We perturb domains in the tangent bundle of a connected Lie
group in an invariant way such that extra symmetry on each fiber would be eliminated.
By constructed such kind of domains in a fairly explicitly way, the realization of a
connected Lie group as an automorphism group follows from the subrigidity derived
in §3.

This realization problem was first noticed by the author and also mentioned to the
author by Peter Heinzner in September 2002 when I was visiting Ruhr-Universität,
Bochum, Germany. Over years I was trapped in an effort to show every Grauert tube
is Stein. Among other things, I am very grateful to Peter Heinzner for bringing my
attention to [H-H-K] and [D-G], which have helped settling down the Steiness part
needed in this article, during my recent visit to Bochum in August 2004. I would
also like to thank Jörg Winkelmann for many helpful discussions about this project
during the Hayama Symposium 2002.

2. Existence of Stein Grauert tubes

Throughout this article, (M, g) is assumed to be a connected real-analytic Riemannian
manifold of dimension ≥ 2. There exists a complex structure, the adapted complex
structure, in a domain �(M) ⊂ TM which turns leaves of the Riemannian foliation
on�(M)\M into holomorphic curves. Let us denote by�(M) the maximal domain
in which the adapted complex structure exists. With respect to this complex structure,
the length square function ρ(x, v) := |v|2 is strictly plurisubharmonic and satisfies
the complex homogeneous Monge–Ampère equation (ddcρ)n = 0 on�(M)\M with
the initial condition ρij̄ |M = 1

2gij . The Grauert tube

T rM = {(x, v) : x ∈ M, v ∈ TxM, |v| < r} = {ρ−1[0, r2)}
is the collection of tangent vectors of length less than r equipped with the adapted
complex structure;M is the center and r is the radius. In general the maximal domain
�(M) is not a Grauert tube, �(M) is a Grauert tube if and only if M is a symmetric
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space of rank one. There is a natural antiholomorphic involution σ fixing every point
of M ,

σ : �(M) → �(M), (x, v) → (x,−v). (2.1)

For two isometric real-analytic Riemannian manifolds (M, g) and (N, κ), the
nature of the adapted complex structure will assure the biholomorphic equivalence
of �(M) and �(N) and the biholomorphic equivalence of T rM and T rN as well.
Given an isometryh of (M, g), the differential dh acts as a biholomorphism on�(M);

dh : �(M) → �(M), dh(x, v) = (h(x), h∗v). (2.2)

The notation F rp is reserved for the fiber passing p ∈ M ,

F rp := {(p, v) : v ∈ TpM, |v| < r}. (2.3)

Since the complex structure we consider here is a local object, for each real-
analytic Riemannian manifold, there exists an rmax(M) ≥ 0, the maximal radius such
that the adapted complex structure can be well-defined on T rmaxM . For compact, co-
compact or homogeneous M , rmax(M) > 0. For any r < rmax(M), the complex
manifold T rM ⊂ T rmaxM with strictly pseudoconvex boundary defined by {ρ = r2}.

It is shown in Theorem 5.2 of [Ka] that any Grauert tube over homogeneous space
of radius r < rmax is complete hyperbolic. Another natural question to ask about is
whether or not a Grauert tube is Stein.

Recall from [D-G] that an unramified Riemannian domainD over a Stein manifold
X is a complex manifoldD together with a locally homeomorphic holomorphic map
from D to X and that a pseudoconvex unramified Riemannian domain over a Stein
manifold is itself Stein. It is clear that any pseudoconvex domain in a Stein manifold
is Stein since we may take the imbedding as the holomorphic map.

We remark that a Grauert tube T rM is a Stein manifold for any r ≤ rmax(M) pro-
vided M is one of the following: compact; co-compact; homogeneous with nonneg-
ative curvature. The first two cases are clear. Following the decomposition theorem
(Theorem 7.1*, [C-G]) of Cheeger–Gromoll a homogeneous manifoldM of nonneg-
ative curvature may be written as the product R

k×M∗ whereM∗ is a compact homo-
geneous space of nonnegative curvature. Since the metric onM is the product metric
from R

k andM∗, it is clear that rmax(M) = rmax(M
∗) and T r(M) ⊂ C

k×T rmax(M∗)
for all r ≤ rmax. For any r ≤ rmax, T r(M) has pseudoconvex boundary since the
boundary is locally exhausted by the strictly plurisubharmonic function − log(r2−ρ).
Being a pseudoconvex domain in the Stein manifold C

k×T rmax(M∗), T rmaxM is Stein.
Though there is no example disproving the Steiness of any Grauert tube, the above

three categories are the only complete classes that we are sure about the Steiness of any
Grauert tubes over. For some very special kind of homogeneous spaces M = G/K ,
Halverscheid–Iannuzzi [H-I] were able to construct a polar map from TM to the
Stein manifoldGC/i(KC). They show the maximal domain over a Heisenberg group
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is neither holomorphically separable nor holomorphically convex. We would like to
remark that Grauert tubes constructed over their spaces are Stein. Their polar map is
an unramified one therefore, Grauert tubes are pseudoconvex Riemann domains over
the Stein manifold GC/i(KC), they are Stein (cf. [D-G]).

A complex manifoldX is a complexification ofM ifM ⊂ X as a maximal totally
real submanifold dimCX = dimRM . Utilizing his solution to the Levi problem,
Grauert has proved there always exists a Stein complexification of a real-analytic
manifold.

Though any two complexifications (X1, J1) and (X2, J2) of a real-analytic mani-
fold M are locally biholomorphic near M , i.e., there exist a neighborhood U1 of M
inX1 and a neighborhood U2 ofM inX2 such that U1 and U2 are biholomorphically
equivalent, we still can not conclude there are some Stein Grauert tubes of small radii
since it does not seem clear how to control the radius uniformly when the manifold
is not relatively compact.

The following theorem, originally observed by Kutzschebauch in [Ku], states that
a complexification can be chosen to be G-invariant if there is some kind of G-action
on M .

Theorem ([H-H-K]). Let X be a G-complexification of a real-analytic manifold M
where G is a connected Lie group acting properly on M as real-analytic diffeomor-
phisms. Then there exists a G-invariant Stein neighborhood of M in X.

A group action G on M is proper if the mapping G×M → M ×M , (g,m) →
(gm,m) is a proper map. A complexification X of M is called a G-complexification
if the G-action on M extends to a holomorphic G-action on X.

Though it is not clear whether a generic Grauert tube is Stein or not, a direct
application of the above theorem would assert the existence of Stein Grauert tubes
of small radii provided the centers have possessed some transitivity property. This
would be enough for the purpose of solving the realization problem.

Proposition 2.1. Let (M, g) be a homogeneous space. Then there exist ε > 0 such
that the Grauert tube T εM is Stein and complete hyperbolic.

Proof. Let G = Isom0(M), then G acts properly on M and acts holomorphically
on the complexification T rmaxM of M . By [H-H-K], there exists a G-invariant Stein
neighborhood U of M in T rmaxM . For p ∈ M we may assume the fiber Fεp , tangent
vectors atp of length less than ε, is contained inU . By the transitivity of theG-action,
G · Fεp is the Grauert tube T εM . The Steiness follows since T εM is now a strictly
pseudoconvex domain in the Stein manifold U . �
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3. Subrigidity of domains

Let Aut denote the automorphism group and Isom denote the isometry group; Aut0
and Isom0 denote the corresponding identity components. For any real-analytic
Riemannian manifold (M, g) such that T rM is not covered by the ball, the follow-
ing rigidity results were proved in [Ka]: if M is homogeneous then Aut(T rM) =
Isom(M).

We remark here that whenever the rigidity is mentioned, we always assume
dimM > 1. When dimM = 1, a Grauert tube T rM is a Riemann surface. One
essential feature of Grauert tubes is the symmetry on each fiber, each fiber is a disk
bundle. In this section, we consider domains in a more general setting, perfect sym-
metry on fibers will not be asked for anymore. One crucial step in proving the rigidity
is the Theorem 4.1 in [Ka] which has characterized the isometry group ofM . We will
show this kind of characterization still works and Aut(D) is dominated by Isom(M)
provided there is some transitivity onM . Arguments will follow the spirits and meth-
ods developed in [Ka]. However, an extra piece of assumptions on the target Grauert
tube is necessary; we assume Grauert tubes are Stein while the existence has been
guaranteed in the last section.

Lemma 3.1. Let D ⊂ T rM be a connected domain containing M . If f ∈ Aut(D),
f (M) = M , then f = du for some isometry u from (M, g) to (M, κ). Moreover, f
can be extended over the boundary ∂D.

Proof. From the construction of Grauert tubes, it is clear thatM is a maximal totally
real submanifold ofD. Let ρ denote the length square function on T rM , then ρ ·f−1

is a strictly plurisubharmonic function on D. The Riemannian metric g is induced
from the Kähler form i∂∂̄ρ, 2ρij̄ |M = gij . Similarly, the Kähler form i∂∂̄(ρ · f−1)

has induced a Riemannian metric k on M . Let u = f |M : (M, g) → (M, κ). Then
u ∈ Isom((M, g), (M, κ)).

By the nature of the adapted complex structure, the differential du is a biholo-
morphic mapping from the Grauert tube T r(M, g) to the Grauert tube T r(M, κ), i.e.
du ∈ Aut(T rM).

du−1 · f : D → T rM is a holomorphic mapping. Since every complex manifold
is locally Stein and f = du at the maximal totally real submanifold M , the identity
principle implies that f ≡ du on D.

For (x, v) ∈ D, f (x, v) = du(x, v) = (u(x), u∗v)) = (f (x), u∗v) is a bundle
map acting fiberwise. It is clear that f can be extended over the boundary ofD. �

Recall�(M) is the maximal domain in TM such that the adapted complex struc-
ture is defined; σ is the natural antiholomorphic involution in �(M) and the norm-
square function ρ is strictly plurisubharmonic in�(M). Sibony (Theorem 3, [S]) has
asserted the hyperbolicity of any complex manifold equipped with a bounded strictly
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plurisubharmonic function. For domains in �(M) to be hyperbolic, the only thing
we got to take care is the vertical direction.

One essential feature of Grauert tubes is that each fiber, which is diffeomorphic to
a real ball, has perfect symmetry. We have tried to release this symmetry on the fiber
to get some kind of rigidity result. However, it seems to us certain kind of transitivity
on the domain is necessary for our purpose. We make the following definition.

Definition 3.2. A domain D ⊂ �(M) is G-homogeneous if

(1) there exists a connected subgroupG ⊂ (Isom(M)∩Aut(D)) acting transitively
on M;

(2) there exists a bounded open subset Fp ⊂ TpM such that D = G · Fp.

With this extra piece of symmetry, Lemma 3.1 has the following refined form:

Proposition 3.3. Let D be a G-homogeneous domain in �(M). If f ∈ Aut(D),
f (M) = M , then f = du for some u ∈ Isom(M).

Proof. By Lemma 3.1, f = du for some isometry u from the Riemannian manifold
(M, g) to the Riemannian manifold (M, κ). By the assumption on D there exist
G ⊂ Isom(M), p ∈ M and Fp such that D = G · Fp.

The homogeneity will imply the equality of the two metrics g and κ . Let q =
u(p) = h(p) for some h ∈ G and let {e1, . . . , en} be an orthonormal basis of Fp with
respect to the metric g. Since h is an isometry, {(e1, . . . , en)A} is an orthonormal
basis of Fq with respect to the metric g where A ∈ O(n). On the other hand,
{u∗e1, . . . , u∗en} form an orthonormal basis of Fq with respect to the metric κ, thus,
there exists a B ∈ GL(n,R) such that

(u∗e1, . . . , u∗en) = (e1, . . . , en)AB.

Let us denote the matrix AB = C = (C1, . . . , Cn) and e = (e1, . . . , en) then

δij = 〈u∗ei, u∗ej 〉κ = 〈eCi, eCj 〉g = Ci · Cj .
This shows C is a matrix with orthonormal columns, thus C ∈ O(n) and B ∈ O(n)
as well.

The orthonormal basis {u∗e1, . . . , u∗en} of the metric κ come from an orthogonal
transformation of the orthonormal basis {e1, . . . , en} of the metric g. Thus, κ = g

and u ∈ Isom(M, g). �

Definition 3.4. A σ -invariant G-homogeneous domain D ⊂ �(M) is strictly pseu-
doconvex if every boundary point of D away from M is strictly pseudoconvex.



378 S.-J. Kan CMH

A G-homogeneous domain is hyperbolic and hence its automorphism group is a
Lie group. LetD be a σ -invariant strictly pseudoconvexG-homogeneous domain in
�(M) and let L denote the Lie algebra of Aut(D). Each ξ ∈ L may be written as

2ξ = (
ξ + d

dt
|t=0(σ · (exp tξ ) · σ)) + (

ξ − d
dt

|t=0(σ · (exp tξ ) · σ)) := ξh + ξv.

Both ξh and ξv are in L. It is clear that ξh is tangent to M . We would like to show
that ξv is tangent to M as well. Since ξv is a left-invariant vector field on Aut(D),
we have, for any z ∈ D, g ∈ Aut(D), g∗(ξv(z)) = ξv(gz) when viewing ξv as the
corresponding vector field on D.

For x ∈ M we have ξv(x) = 2i Im ξ(x). Suppose there exists p ∈ M such
that ξv(p) �= 0. Let f0 = exp t0ξv for some t0 � 1. By the homogeneity
of M and the relation ξv(gp) = g∗(ξv(p)), |ξv(x)| = constant for all x ∈ M

we have M1 := f0(M) sitting on some level set {ρ = δ}. Take the normal co-
ordinate U = {x ∈ R

n : |x| < ε} around p in M so that the (x, y) form a
coordinate system of �(U). Since U1 =: f0(U) ⊂ {ρ = δ}, exp t0ξv(x) =
(x, y1(x), y2(x), . . . , yn(x)) with

∑
j |yj (x)|2 = δ. By the dimensional counting,

every yj is a constant, i.e., U1 = {(x, ε1, ε2, . . . , εn) : x ∈ U},∑j ε
2
j = δ. There

exists η1 ∈ L and t1 > 0 so that exp t1η1(x, ε) = exp t0(−ξv)(x, ε) = x for all
(x, ε) ∈ U1. Then exp t1(−η1)(U1) = {(x, 2ε1, 2ε2, . . . , 2εn) : x ∈ U} =: U2
and exp t1(−η1) · exp t0ξv(p) ∈ U2. Continuing the process, there exist fj :=
exp tj (−ηj ) . . . exp t1(−η1)·exp t0ξv ∈ Aut(D), limj fj (p) is a strictly pseudoconvex
boundary point, which forcesD to be a ball according to the generalized Wong–Rosay
Theorem. Thus, ξv = 0 for all x ∈ M and ξ is tangent to M if D is not the ball. We
conclude

Proposition 3.5. Let D be a σ -invariant strictly pseudoconvex G-homogeneous do-
main in �(M). If D is not biholomorphic to the ball. Then Aut0(D) ⊂ Isom0(M).

Following the arguments in [Ka], we are going to prove the subrigidity Aut(D) ⊂
Isom(M). For the rest of this section, we assume D is a strictly pseudoconvex
σ -invariant G-homogeneous domain in �(M), D is not biholomorphic to the ball.
Proofs go exactly the same way as in §7 of [Ka]; a brief explanation would be given
in the following.

(I) First of all, a strictly pseudoconvexG-homogeneous domain in�(M) is com-
plete hyperbolic since the boundary behavior is dominated by the strictly pseudocon-
vexity and the horizontal direction is determined by the transitivity of the G-action.

(II) Secondly, the following is clear from theG-homogeneity and Proposition 3.5:

G ⊂ Aut0(D) ⊂ Isom0(M).

Given f ∈ Aut(D), D is also a f · G · f−1–homogeneous domain centered at
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N = f (M). By the homogeneity of the G-action,

N = f (M) = f (G · p) = f (Aut0(D) · p) = Aut0(D) · f (p);
π(N) = π(Aut0(D) · f (p)) = Aut0(D) · π(f (p)) = M.

Thus, the argument in Lemma 7.1 of [Ka] goes through and f (M) ∩ TpM �= ∅
for any p ∈ M .

(III) Since D is complete hyperbolic and G-homogeneous, arguments in Propo-
sition 7.2 of [Ka] can be transplanted here. Thus, the index of G in Aut(D) is finite.

We conclude this section by the following theorem.

Theorem 3.6. LetD be a σ -invariant strictly pseudoconvexG-homogeneous domain
in �(M). Then either Aut(D) ⊂ Isom(M) or D is the ball.

Proof. As stated in (III), Aut(D)/G = {gjG : gj ∈ Aut(D), j = 1, . . . , k}. Then
ψ(z) = ∑k

j=1 ρ(gj (z)) is an ± Aut(D)-invariant strictly plurisubharmonic nonneg-
ative function inD where ρ is the length square function inD. AsG acts transitively
on M , the tangent space Tz(D) can be decomposed as, for any z ∈ D,

Tz(D) = Tz(G · z)+ Tz(Tπ(z)M ∩D)
where π is the fiber projection π(x, v) = x for all v ∈ TxM .

Since ψ is constant inG · z, every critical point of the function fz := ψ |Tπ(z)M∩D
is a critical point of ψ and every critical point of ψ occurs at the critical points of the
functions fz.

As ψ is strictly plurisubharmonic, the above decomposition implies that the real
Hessian of fz is positive definite on the tangent space Tz(Tπ(z)M ∩D). Since fz is
proper on the fiber, it follows that there is exactly one critical point of fz which turns
out to the minimal point. Since ψ · σ = ψ , the minimum of fz occurs at π(z). That
is to say that the set of critical points of ψ is exactly M .

Let f ∈ Aut(D), f (M) = N , then N is the critical point set of ψ since ψ is
Aut(D)-invariant. We conclude that N = M and f ∈ Isom(M) following from
Proposition 3.3. The inclusion Aut(D) ⊂ Isom(M) is concluded. �

4. Realizing a connected Lie group as an automorphism group

LetG be a connected real Lie group with Lie algebra G. Given a positive definite inner
product 〈 , 〉 on TeG = G, we may endow G with the associated left invariant Rie-
mannian metric g. Every Lie group is real-analytic, since it is locally diffeomorphic
to the Lie algebra G through the exponential map. Thus (G, g) is a real-analytic Rie-
mannian manifold. Furthermore, (G, g) is a homogeneous space with trivial tangent
bundle G× TeG.
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It is clear that the left translation group L(G) is a subgroup of Isom(G, g) and
L(G) acts transitively on G. Furthermore, the transitivity implies the diffeomorphic
equivalence of G with Isom(G, g)/K and with Isom0(G, g)/K0 where

K = {h ∈ Isom(G, g) : h · e = e} (4.1)

is the isotropy group at e ∈ G and K0 = K ∩ Isom0(G, g). The following two
equations are immediate.

Isom(G, g) � L(G) ·K, Isom0(G, g) � L(G) ·K0. (4.2)

From now on, we denote the homogeneous Riemannian manifold (G, g) as (M, g)
where G is a connected Lie group of dimension n ≥ 2 and g is a left invariant
real-analytic metric on G. We would like to construct a G-homogeneous strictly
pseudoconvex domain and then further perturb the domain to eliminate additional
automorphisms such that the automorphism group of the resultant domain is G. We
emphasize that our methods work for both compact and noncompact Lie groups as
long as the Lie group is connected. The dimensional condition n ≥ 2 has to be added
here since the main idea we used here follows from the rigidity argument of Grauert
tubes while the rigidity of Grauert tubes fails when the center is of dimension one.

Let (M, g) = (G, g) be as above. Since it is homogeneous, there exist δ > 0
such that the Grauert tube T δM is Stein and the Grauert tube T 2δM still exists. Let
ρ denote the length square function; σ denote the natural antiholomorphic map in
T 2δM and F rp denote tangent vectors at p ∈ M of length less than r , F rp := {(p, v) :
v ∈ TpM, |v| < r}.

Let {e1, . . . , en} be an orthonormal basis – with respect to the metric g – of F 2δ
p ,

K be the isotropy group of (M, g) at p ∈ M . ThenK ⊂ O(n) when we view F 2δ
p as

a subspace of the real vector space generated by the orthonormal basis {e1, . . . , en}.
Let aj = δej ∈ F 2δ

p , j = 1, . . . , n. Choose a ball Bε ⊂ F 2δ
p centered at a1

of radius ε � δ and a family of orthogonal transformations fj ∈ O(n) such that
fj (a1) = aj , j = 2, . . . , n.

Let η1(x) = (x − a1)
4l , l ≥ 1, be a real-analytic function on Bε. Convoluting

with some cut-off function, we may assume η1 has compact support C1 ⊂ Bε.
Denoting f1 = id, we define a function η2 on F 2δ

p as follows:

η2(fj (x)) = η2(σ (fj (x))) = 1
j
η1(x) for all x ∈ F 2δ

p , j = 1, . . . , n. (4.3)

The ball Bε can be arranged so small that {σ i(fj (Bε)) : i = 0, 1; j = 1, . . . , n}
are pairwise disjoint. It is clear that η2 is a σ -invariant function in F 2δ

p with compact
support C2 contained in

⋃n
j=1(fj (Bε) ∪ σ(fj (Bε))).

Since the tangent bundle of a Lie group is trivial, TM = G× TpM . We define a
real-analytic functions η in T 2δM = G× F 2δ

p by setting

η(h · x) = η2(x) for all h ∈ G, x ∈ F 2δ
p . (4.4)
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Clearly, η is a nonnegative G-invariant and σ -invariant real-analytic function
on T 2δM . Recall ρ is the length square function of the tangent vectors which is
G-invariant and strictly plurisubharmonic and T δM = {ρ−1([0, δ2))}. Define the
function, for some 0 < ε′ � 1,

ρ̂ = ρ − δ2 + ε′η (4.5)

Shrinking ε′ if necessary such that all the 0-th, first and second order derivatives of
ε′η are well under control. Thus, we may assume the function ρ̂ is strictly plurisub-
harmonic. It is G and σ invariant since both ρ and η are.

Let D be a domain defined by the function ρ̂,

D := {z ∈ T 2δM : ρ̂(z) < 0}. (4.6)

It is clear that D is a σ -invariant strictly pseudoconvex G-homogeneous domain
in T δM . In order to apply Theorem 3.6 to conclude the subrigidity, we need to show
the domain D is not biholomorphic to the ball. Some background on Chern–Moser
normal form is needed here.

In the fundamental paper [C-M], Chern and Moser have associated to every strictly
pseudoconvex point p in a hypersurface H a family of local invariants, namely a
neighborhood Up of p in H is biholomorphically equivalent to a neighborhood Vq
of q in a hypersurface S if and only if the associated families of invariants at p and at
q are the same. These invariants are given by the coefficients of certain normal form
of the defining function which we briefly explain in the following. Let ψ be a local
defining function of the (2n− 1)-dimensional hypersurface H near the point p, say
inside a coordinate chart. Since p is strictly pseudoconvex the Levi form is positive
definite and the defining function can be transformed through some linear translation
and proper holomorphic transformations to the following:

v = |z|2 + F(z, z̄, w) (4.7)

where z = (z1, . . . , zn−1) ∈ C
n−1, w = u + iv ∈ C. Using the transformations

z∗ = z+ f (z,w), w∗ = w + g(z,w) Chern and Moser have simplified (4.7) to

v∗ = |z∗|2 +N24(u
∗)z∗2z̄∗4 +N42(u

∗)z∗4z̄∗2 +
∑

j,k≥2,j+k≥7

Njk(u
∗)z∗j z̄∗k (4.8)

Furthermore this transformation, and hence all of the coefficientsNjk , is made unique
when certain normalizations on f and g are made.

For the hyperquadric Q = {v = |z|2}, the unbounded model of the sphere, all
invariants Njk vanish.

Lemma 4.1. D is not biholomorphic to the ball.
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Proof. It is standard that given any n-dimensional totally real closed submanifold
X ⊂ Bn there exists ϕ ∈ Aut(Bn) such that ϕ(X) = R

n ∩ Bn.
Suppose there exists a biholomorphic map f : D → Bn, then f (M) is a maximal

totally real closed submanifold of Bn since M is such kind of submanifold of D.
Without loss of generality, we may assume f (M) = R

n∩Bn. Adopting the argument
used in the proof of Lemma 3.1, we see f is a bundle map, f = du for some isometry
u from (M, g) to (Rn ∩ Bn, g∗).

Thus, the biholomorphic map f can be extended holomorphically over the bound-
ary ∂D and thus the Chern–Moser normal form of ρ̂ at any boundary point of D has
the local expression v = |z|2.

However, the defining function near a1 ∈ ∂D and the defining function near
generic boundary points differ by some 4l-order terms. In the construction of the
normal form, we see the orders will not decrease. Thus the Chern–Moser normal
form at a1 will not be the same as the Chern–Moser normal form at generic boundary
points which we assume to be v = |z|2. A contradiction. �

It is clearG is contained in the automorphism group ofD sinceD isG-invariant.
Theorem 3.6 along with (4.2) implies

L(G) < Aut(D) < Isom(M) � L(G) ·K. (4.9)

The last step is to eliminate those automorphisms coming form the isotropy group.

Theorem 4.2. D is a complete hyperbolic Stein manifold with Aut(D) = G.

Proof. D is complete hyperbolic since it is G-homogeneous with strictly pseudo-
convex boundary. It is Stein since D is a strictly pseudoconvex domain in the Stein
manifold T δM .

It remains to show if h ∈ K ∩ Aut(D), then h is the identity map. By the
construction of η2 at (4.3) and hence the construction of the defining function ρ̂, we
see that there exist neighborhoods Uj of aj on the hypersurface ∂D ∩ Fδp such that
points in Ui − ai all have norms different from norms of points in Uj − aj for i �= j .
Besides, every point in Ui − ai has norm < δ and |ai | = δ, i = 1, . . . , n.

SinceK is a subgroup of Isom(M), h is a linear and norm-preserving isomorphism
of Fδp ∩D. In fact, h is the restriction of an orthogonal transformation in Fδp . Thus, h
is a norm preserving map from ∂D ∩Fδp to ∂D ∩Fδp and the only possibility for h is
either h(aj ) = aj or h(aj ) = σ(aj ) = −aj , j = 1, . . . , n.

Recall that aj = δej , the linearity ofh implies eitherh(ej ) = ej orh(ej ) = −ej for
all j . Thus, h is either the identity map or the negative identity, in other words, h = id
or h = σ . The second case is not possible since then h is antiholomorphic rather than
holomorphic. We conclude h = id, K = id and Aut(D) = L(G) � G. �
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