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On some one parameter families of genus 2 algebraic curves
and half twists
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Abstract. In this paper we show that for certain families of surfaces in genus 2 there is an action
of PSL2(Z) that can be expressed very naturally both in terms of Fenchel–Nielsen coordinates
for the surfaces and in terms of equations of the associated algebraic curves. We also show that
one of these families coincides with the SL2(R) orbit of the translation surface tiled by three
squares and that the above PSL2(Z) action is exactly induced by the natural action of SL2(Z)

on this orbit.
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Introduction

In recent years one parameter families of algebraic curves in genus 2 have attracted
great interest (see for example [Mc] and the bibliography quoted there). Although
the families we consider here also define Teichmüller disks the point of view we
will take in this paper is somewhat different. We will be interested in families for
which one can both explicitly describe the hyperbolic structure and give the form of the
equations. The hyperbolic structure will be described by Fenchel–Nielsen coordinates
depending in each case on two real parameters, the length of a specific geodesic and
a twist parameter. The equations will depend on one complex parameter. Two such
families are well known, surfaces with an order 3 automorphism and surfaces with an
order 4 automorphism, we will consider these but we will also consider others, two in
detail, chosen for the simplicity of both equation and Fenchel–Nielsen coordinates,
and give indications on some more.

The important point and one of the main aspect of this paper is that all these families
share the fact that there is a natural action of PSL2(Z) on the Teichmüller subspace,
defined by the set of Fenchel–Nielsen coordinates, that yields an explicitly describable
action of the permutation group S3 on the parameter space for the equations.
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To be more specific let

T =
(

1 0
1 1

)
and R =

(
0 −1
1 0

)
be representatives in SL2(Z) of the standard generators of PSL2(Z). Then in all
cases T will act by half-Dehn twists along certain geodesics. The action ofR is more
difficult to describe in full generality but is always based on variants of the following.
In [Bu-Si2] it was shown how to associate to Fenchel–Nielsen coordinates a well
defined hyperbolic octagon such that the surface is obtained by identifications of
opposite edges of the octagon (see Section 1 for details). Conversely from such
an octagon we can recover Fenchel–Nielsen coordinates. In the simplest cases R
corresponds to a rotation of the octagon performing a circular permutation on 4 of
the Weierstrass points.

In all cases the induced action of T on the corresponding subspace of moduli space
is generically non-trivial. In the simple cases, as above, the induced action of R will
be trivial on moduli space but not on a double cover that will serve as parameter space
for the equations. On the other hand T R will again act by half-Dehn twists along
another set of geodesics and the induced action will be generically non-trivial on
moduli space and distinct from that of T . In the not so simple cases where the action
of R is more intricate it will turn out that the induced action of R itself is sometimes
non-trivial on moduli space (see Sections 3 and 6).

Returning to the point of view of [Mc] we note that there are also families of
translation surfaces with a natural action of SL2(Z), precisely those described by a
theorem of Gutkin and Judge [Gu-Ju] and obtained as SL2(R) orbits of square-tiled
surfaces also called origami (see for example [Hu-Le1]). In Section 5 we will show
that one of the families we have constructed coincides precisely with the family of
translation surfaces obtained from three squares giving for this family both equations
and a description of the hyperbolic geometry. Since this is probably the most striking
result of this paper we briefly summarize it here. Consider the L shaped polygon
obtained by pasting three Euclidean squares (see Figure 10). Identify the sides of the
polygon using horizontal or vertical translations. We obtain in this way a Riemann
surface. Moreover since dz is translation invariant the surface comes equipped with
a holomorphic differential. Replacing the squares by their images under SL2(R) we
obtain from this construction a one complex parameter family of surfaces. Our results
are then,

Theorem A. Let (S, ω) be in the SL2(R) orbit of the L shape translation surface tiled
by three squares. Then the surface S has Fenchel–Nielsen coordinates of the form

(2 �, tw, �, 2 tw, �′′, 0) and cosh(�′′/2) = 2 cosh(�/2)
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and the surface S has an equation of the form

y2 = x(x − 1)

(
x3 + a x2 − 8

3
a x + 16

9
a

)
with ω = λ

x dx

y
.

Theorem B. If (S, ω), �, tw and �′′ are as in Theorem A, then the transform (S′, ω′)
of (S, ω) under

(
1 0
1 1

)
, has Fenchel–Nielsen coordinates(

2�, tw − 1
2 , �, 2 tw − 1, �′′, 0

)
and the transform (S′′, ω′′) of (S, ω) under

(
0 −1
1 0

)
has Fenchel–Nielsen coordinates

(2�2, tw2, �2, 2 tw2, �
′′
2, 0)

where cosh(�′′2/2) = 2 cosh(�2/2) and (with L = cosh(�) and Tw = cosh(tw · �))

cosh(�2) = L2 = Tw2 2L+ 1

L− 1
− 1,

Tw2 =
√

2Tw2L2 + 3Tw2L+ Tw2 − 2L2 + 2

4Tw2L+ 2Tw2 − L+ 1
,

tw2 = − sign(tw) arccosh(Tw2)/ arccosh(L2).

The methods used in this paper are largely inspired by the generalization found
by Aline Aigon [Ai] for the D5 action on the two parameter space of genus 2 curves
with a non-hyperelliptic involution described in [Bu-Si1].

Finally I would like to thank H.Akrout and S. Lelièvre for very useful discussions.
Others have also helped in various ways and I would also like to thank A. Aigon,
P. Buser, M. Herzlich, C. Mercat and P.-L. Montagard.

1. Octagons, equations and the basic half-twist transformations

We proceed to describe in this section the basic tools that we will use throughout this
paper.

There are many ways to define genus 2 hyperbolic surfaces, but in the sequel we
will describe then in terms of fundamental polygons, an octagon in Sections 2 and 3
a dodecagon in Section 4. On the other hand a more synthetic and practical way to
describe a surface is Fenchel–Nielsen coordinates. None of these descriptions are
unique but we will need to associate to a given set of Fenchel–Nielsen coordinates
an explicit and uniquely defined octagon or dodecagon. For octagons we will do this
in two ways (in fact those given in [Bu-Si2]) one (the most used) that we proceed to
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describe here leaving the second to Section 3 and the representations by dodecagons
to Section 4.

For this we first note that to a genus 2 hyperbolic surface we can always associate
a hyperbolic octagon in the unit disk, symmetric with respect to the origin and such
that the sum of the interior angles is 2π . The corresponding fuchsian group is the
group generated by identification of opposite sides. The preimages of the Weierstrass
points are in this case the origin, the vertices (labeled qi on the right of Figure 1 and
that are identified in the surface), and the hyperbolic midpoints of the sides (see right
of Figure 1 where the midpoints are the pi).

q1

q2q3

q4

q5

q7

q8

q6

p3
p2

0 p1

p4

p5

p6
p7 p8

p

0 p1

p2

q2p

p3

�3

�2 �1

Figure 1

We want to associate such an octagon to a given set of Fenchel–Nielsen coor-
dinates and vice-versa. We briefly recall the method of [Bu-Si2] to do this. Let
(2�1, tw1, 2�2, tw2, 2�3, tw3), where the �i are lengths and the twi are twist parame-
ters, be Fenchel–Nielsen coordinates. Let P be a pair of pants with boundary lengths
2�1, 2�2, 2�3. Cutting P along the geodesic arcs perpendicular to two boundary com-
ponents we obtain two copies of a rectangular hexagon H with side lengths �1, �̂3,
�2, �̂1, �3, �̂2, where the �̂i are the lengths of the perpendicular arcs.

Let ti = �i · twi and embed H isometrically in the unit disk with the edge of
length �3 on the real line, the first vertex at distance t3 from the origin (to the left if t3
is positive or to the right if it is negative) and let p1 be on the real line at distance �3
from the origin and at distance t3 from the second vertex of the edge of length �3.
Shift the remaining vertices by t1 and t2 along the geodesics underlying the edges of
lengths �2 and �3, using a similar sign convention, to obtain points p2, q2, p and p3
as illustrated on the left of Figure 1.

Let hx be the elliptic transformation of order 2 centered at point x. Then the
remaining vertices of the octagon are constructed by means of the hpi and h0. Namely
q1 = hp2(q2), q3 = hp3(q2), q4 = hp4(q3) and the remaining points are obtained
by completing the construction of a symmetric octagon, i.e., taking images under h0
(see right of Figure 1).
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The genus 2 surface S is obtained from this octagon by identifying opposite sides,
or in other words the Fuchsian group G for this surface is generated by

g1 = hp1 · h0, g2 = hp2 · h0, g3 = hp3 · h0 and g4 = hp4 · h0 (1.1)

The hyperbolic arcs,

[q1, q2], [p3, p4] ∪ [p8, p7] and [p5, p1], (1.2)

define simple closed geodesics on the surface S and together they define the pants
decomposition we started with. Hence for this pants decomposition the surface has,
by construction, Fenchel–Nielsen coordinates (2�1, tw1, 2�2, tw2, 2�3, tw3) where
twi = ti/�i (see [Bu-Si2] for more details).

The following important facts should be noted (see also [Ai et al.])

(i) The construction we have given will work for any set �1, �2 and �3 in R
+ and

any set tw1, tw2 and tw3 in R.

(ii) The octagon constructed is uniquely defined by the Fenchel–Nielsen coordi-
nates.

(iii) Conversely starting from an octagon as above, one can compute the correspond-
ing Fenchel–Nielsen coordinates by means of formulae given in [Bu], p. 454
and p. 38–39 (see [Bu-Si2]). In particular such an octagon defines a unique set
of Fenchel–Nielsen coordinates for the pants decomposition defined by (1.2).

Another way of formulating this is that the construction yields a parameterization of
the Teichmüller space of genus 2 surfaces by means of hyperbolic octagons.

We are now ready to introduce the elementary moves that we will elaborate upon
in different contexts. These moves are half-twists, and their importance has been
pointed out by Aline Aigon in [Ai]. We will do this in terms of octagons and in terms
of the Fuchsian group, associated as above to the octagon.

Let S be the surface D/G,G generated by the elements defined in (1.1), and let γ
be the closed geodesic image of the union of the geodesic arcs [p3, p4] and [p7, p8].
Let p′

3 be the hyperbolic midpoint of [p3, p4] (see Figure 2) and p′
4 = hp4(p

′
3). The

surface S′ obtained by performing a half twist along γ has Fuchsian group generated
by g1, g2, g′

3 = hp′
3
· h0 and g′

4 = hp′
4
· h0.

The fundamental octagon forS′ is shown in Figure 2. It has verticesq1,q2,q ′
3,q4,q5,

q6,q ′
7,q8, where q ′

3 = hp′
3
(q2), which is the same as hp′

4
(q4), and q ′

7 = hp′
7
(q6). An

informal formulation of this is that we have replaced the Weierstrass points defined
by p3 and p4 by the midpoints of the arcs [p3, p4] and [p7, p8].
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There are many other possibilities, but the description is basically the same (see
[Ai] for a more complete treatment and [Si2] for other indications). This operation
can also be formulated in terms of Fenchel–Nielsen coordinates. For the example we
are considering it is,

(�1, tw1, �2, tw2, �3, tw3) �→ (�1, tw1, �2, tw2 + 1
2 , �3, tw3) (1.3)

In general there is no obvious algebraic relation between the equations for S and S′
but this will be the case if for example the point p′

3 is a center of symmetry for the
surface S. To make things more precise we need to introduce specific uniformizing
functions.

For the first let F be the G-equivariant meromorphic even function on the unit
disk, two to one on the interior of the octagon �{0} and such that

F(0) = 0, F (p1) = 1, F (p3) = ∞. (1.4)

Then an equation for S is

y2 = x(x − 1)(x − F(q1))(x − F(p2))(x − F(p4)) (1.5)

andF is of course the uniformizing function yielding the x-coordinate (see [Bu-Si2]).
If p′

3 is a center of symmetry for S we will need a second form. Let ϕ be the
Möbius transformation sending 0 to −1, F(q1) to 1 and F(p′

3) to ∞. Write Fs for
the composed map ϕ � F . Then

y2 = (x2 − 1)(x2 − a)(x2 − b) where a = Fs(p2)
2, b = Fs(p4)

2 (1.6)

and again Fs is a uniformizing function (see [Si2]). Note that in this context we have

Fs(0) = −1, Fs(qi) = 1, Fs(p1) = −Fs(p2), Fs(p3) = −Fs(p4) (1.7)

(see again [Si2]).
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In the case (1.6), that is when p′
3 is a center of symmetry and more precisely

Fs(p
′
3) = ∞, Aline Aigon [Ai] has shown that an equation for S′ (obtained by a

half-twist as in (1.2)) is

y2 = (x2 − 1)(x2 − a′)(x2 − b′) where a′ = a(1 − b)

a − b
, b′ = 1 − b (1.8)

(see also for this form [Si2]).

2. Genus 2 curves with an order 3 automorphism

In this section we consider the one (complex) parameter family of genus 2 curves
with an order 3 automorphism. The main result of this section is

2.1 Proposition. The transformations γ1 : (�, tw, �, tw, �, tw) �→ (
�, tw + 1

2 , �,

tw + 1
2 , �, tw + 1

2

)
and γ2, induced by a rotation of a fundamental octagon (see

Lemma 2.6 below), generate an action of PSL2(Z) on the Teichmüller space of
genus 2 surfaces with an order 3 automorphism. This action in turn induces an
action of the symmetric group S3 on a double cover of the moduli space of such
surfaces.

There are various ways to describe the family of genus 2 curves with an order 3
automorphism, some probably simpler than others but for technical reasons we will
use a less known way.

2.2 Lemma. Let C be a genus 2 curve with an order 3 automorphism. Then an
equation for C can always be written in the form

y2 = (x2 − t0
2)(x2 − f3(t0)

2)(x2 − f3(f3(t0))
2)

for some t0 �= 0, ±1, ±3, ±i√3 and where f3 is

f3 : t �→ 3 + t

1 − t
.

Proof. If C has an order 3 automorphism, then, by the classical classification of
automorphism groups of genus 2 surfaces, its reduced group of automorphisms (the
quotient of Aut(C) by the hyperelliptic involution) contains a dihedral group D3.
Let f1, of order 2, and f2, of order 3, generate such a dihedral group. Using a
suitable conjugation we may assume that f1 is x �→ −x. Since f2 is of order 3 it

is conjugate to
(
j 0
0 j−1

)
, with j a third root of unity. But in this case the condition

−f2
2(x) = f2(−x) imposes that f2 be of the form

f2 : z �→ 3α + z

1 − z/α
, α ∈ C, α �= 0.
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Dividing the x-coordinate of the Weierstrass points by α, we can choose α = 1 and
hence f2 = f3. To end the proof we note that the points ±t0, ±f3(t0) and ±f3

2(t0)

are distinct unless t0 = 0, ±1, ±3, ±i√3. �

An important fact motivating our choice is that

the orbit of 0 under f3 is 0, 3, −3 and the orbit of infinity is ∞, −1, 1. (2.3)

Note that these points are fixed points of the involutions of the D3 action.
In practice we will need a slightly different version of Lemma 2.2

2.4 Corollary. Let C be a genus 2 curve with an order 3 automorphism. Then an
equation for C can always be written in the form

y2 = x6 − (a + 18) x4 + (2 a + 81) x2 − a

with a �= 0 or −27.
Moreover two curves C and C′ defined by a and a′ are isomorphic if and only if

a′ = a or a′ = 729/a. More precisely the natural map from C � {0,−27} to the
coarse moduli space M2 of genus 2 curves is a double cover of its image ramified at
a = 27.

Proof. For the first part just take a = (t0 + f3(t0)+ f3(f3(t0)))
2.

For the second assume first that the reduced automorphism group is D3. In this
case the only involutions of C or C′ are induced by transformations with two fixed
points one in each of the orbits described in (2.3) and hence an isomorphism must be
induced by a Möbius transformation preserving globally the points defined in (2.3).
It is easily checked that this is only possible if the transformation is in the group
generated by x �→ −x, f3 and x �→ 3/x. This yields a′ = a or a′ = 729/a.

If the reduced automorphism group is larger than D3 then it is of order 12, or 24
and there are only two such curves. The first, as is easily checked, corresponds to
a = 27. Hence the map ϕ from C � {0,−27} to the moduli space M2 of genus 2
curves is of degree 2 with ramification at the point for which a = 729/a i.e., 27. �

From the hyperbolic point of view the corresponding surfaces are also easy to
describe. Start with a pair of pants with all three geodesic boundary components of
equal hyperbolic lengths. Paste two copies of such a pair of pants in such a way that
none of the geodesic boundaries are separating and with the same twist parameter for
each. The order 3 symmetry of the pair of pants extends to a conformal order 3 auto-
morphism of the resulting genus 2 surface. In terms of Fenchel–Nielsen coordinates
these surfaces have coordinates of the form (2�, tw, 2�, tw, 2�, tw). Moreover since
this order 3 automorphism is an homeomorphism, obviously non homotopic to the
identity, it defines an element of the Teichmüller modular group, the fixed points of
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which are precisely the surfaces with the above Fenchel–Nielsen coordinates. Since
in genus 2 there is only one topological type of order 3 automorphism the above
defines a Teichmüller space for genus 2 surfaces with an order 3 automorphism.

In this context the hexagon used to build the octagon, as in Section 1, has side
lengths �, �̂, �, �̂, �, �̂ (notations similar to the ones used in Section 1). In particular
it admits an order 3 symmetry.

q2p
p3

p2

0 p1
�

��

Figure 3

The order 3 automorphism being induced by the order 3 transformation on the
hexagon one can easily deduce its action on the Weierstrass points (which are the
images of 0, the vertices and the midpoints of the sides). In particular if we denote
by f̃3 this transformation we have f̃3(p1) = q2, f̃3(q2) = p3 and f̃3(p3) = p1.

2.5 Remark. By construction the Fenchel–Nielsen coordinates in 2� and tw corre-
spond to the pants decomposition given in (1.2). On the other hand if we rotate the
octagon in such a way that p3 becomes a positive real we get new Fenchel–Nielsen
coordinates. These correspond to the pants decomposition indicated in Figure 5.
Noting this, it can easily be checked by following the action of f̃3 (note that p, of
Figure 3, is identified in the surface with p8 and p4) that the new Fenchel–Nielsen
coordinates are again of the form (2�′, tw′, 2�′, tw′, 2�′, tw′).
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2.6 Lemma. Let (2�, tw, 2�, tw, 2�, tw) correspond to the octagon of Figure 3 and
let (2�′, tw′, 2�′, tw′, 2�′, tw′) correspond to the octagon obtained by the rotation
indicated in Remark 2.5.

Let L = cosh(�), L′ = cosh(�′), Tw = cosh(tw �) and Tw′ = cosh(tw′ �′). We
then have

L′ = Tw2 2L− 1

L− 1
− 1,

Tw′ =
√
Tw2(L+ 1)(2L− 1)− 2(L2 − 1)

2Tw2(2L− 1)− 3(L− 1)
,

tw′ = − sign(tw) arccosh(Tw′)/ arccosh(L′).

Proof. To find �′ we only need, by Remark 2.5, to compute the hyperbolic distance
between 0 and p3. For this note that in the construction we started with a rectangular
hexagon with 3 sides of lengths �. The hyperbolic cosine of the remaining sides, i.e.
cosh(�̂), is then L/(L− 1) (see [Bu] p. 454). We can now easily compute the length
of [0, p3] using formula (2.3.2) in [Bu] p. 38. This yields L′. The transformation
being symmetric we can apply it twice and solve in Tw′ to recover L. Finally the
reason for the sign change is the same as the one given in [Ok]. �

Let, as in Section 1, the points pi be the midpoints of the sides of the octagon (see
Figure 4). The fuchsian group G is, as in (1.1), the group generated by gi = hpih0,
1 � i � 4, where as before hx is the order 2 elliptic transformation centered at the
point x.

Let u1 be the midpoint of [p1, p2] (see Figures 4 and 5) and r1 be the midpoint of
[p3, p4] (see Figure 4). Obviously we are in the situation described in (1.6) and we
can use the uniformizing function Fs for which we have in addition to the relations
(1.7) the relations

Fs(u1) = 0 and Fs(r1) = ∞
By Lemma 2.2, and its proof, we can easily find t0 such that t0Fs(p3) = f3(t0)

and t0Fs(p1) = f 2
3 (t0). Hence if we replace Fs by F1 = t0 Fs we have

F1(qi) = −F1(0) = t0,

F1(p3) = −F1(p4) = f3(t0),

F1(p1) = −F1(p2) = f3(f3(t0))

(note that p4 = −p8 and that p = g3(p8) with g3 as in (1.1)). In particular the
algebraic curve has an equation of the form given in Lemma 2.2.

Letm1 be the midpoint of [0, p1], n1 the midpoint of [q1, p2], r1 the midpoint of
[p3, p4] and so on as indicated in Figures 5 and 6.
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We still have F1(u1) = 0, but f̃3(u1) = g3(−t2) (g3 as in (1.1) and f̃3 as above)
and f̃3(g3(−t2)) = m1, hence by (2.3), F1(t1) = F1(t2) = 3 and F1(s1) = F1(s2) =
−3. For the same reasons F1(m1) = −1 and F1(n1) = 1.

2.7 Lemma. LetG be, as above, the fuchsian group generated by g1, . . . , g4. Let G̃
be the extended group generated byG, f̃3, h0 and hm1 . Then the quotient D/G̃ of the
unit disk by this extended group is the Riemann sphere with four elliptic points, one
of order 3 and three of order 2.

Proof. By construction the quotient of D byG is a genus 2 surface S with an automor-
phism group containing the dihedral groupD3. The quotient of S by the hyperelliptic
involution, which is induced by h0, is the sphere with 6 marked points of order 2. By
the above we may assume that these points are ±t0, ±f3(t0) and ±f3(f3(t0)). On
this sphere f̃3 induces f3. Taking the quotient yields the sphere with 4 marked points,
b = (t0 +f3(t0)+f3(f3(t0))), (−t0 +f3(−t0)+f3(f3(−t0))) = −b and the images
of the fixed points of f3, ±3 i

√
3. On this quotient hm1 induces the same action as

hn1 , hr1 and so forth, in other words hm1 induces the transformation x �→ −x. Hence
the final quotient is the sphere with the marked points a = b2, −27 of order 3, and
the images of the fixed points 0 and ∞. Note that the a mentioned here is the same
as the a in Corollary 2.4. Note also that 0 is also the image in the last quotient of si ,
ui and ti while ∞ is also the image of mi , ni and ri . �

Summarizing we have,

2.8 Corollary. Let G and G̃ be as in Lemma 2.7. Let

y2 = x6 − (a + 18) x4 + (2 a + 81) x2 − a

be an equation for the algebraic curve defined by D/G. Then the quotient D/G̃ is
the Riemann sphere with the four marked points

−27 of order 3 and 0, a and ∞ of order 2.

2.9 Proposition. Let S be genus 2 surface with an order 3 automorphism. Let
(2�, tw, 2�, tw, 2�, tw) be Fenchel–Nielsen coordinates for S and let

y2 = x6 − (a + 18) x4 + (2a + 81) x2 − a

be an equation for the corresponding algebraic curve.
Then the surface S′ obtained by replacing (�, tw) by

(
�, tw + 1

2

)
has equation

y2 = x6 − (a′ + 18) x4 + (2a′ + 81) x2 − a′ with a′ = −(27 + a)

and the surface S′′ obtained by replacing (�, tw) by (�′, tw′), with �′ and tw′ as
defined in Lemma 2.6, has equation

y2 = x6 − (a′′ + 18) x4 + (2a′′ + 81) x2 − a′′ with a′′ = 729/a.
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Proof. For notational reasons we prove the first assertion for tw− 1
2 instead of tw+ 1

2 .
Since the transformation a �→ a′ is an involution this is innocuous.

We are applying here simultaneously three half-twist along the non intersecting
closed geodesics yielding the pants decomposition. The obvious generalization of
the construction made in Section 1 shows that the group G′ generated by

g′
1 = hm1 · hm2, g

′
2 = hn1 · hm2, g

′
3 = hr ′2 · hm2, g

′
4 = hr1 · hm2

(where r ′2 = g3(r2)) is a fuchsian group for S′ (see Figure 4 and Figure 6).

r1

m2 m10m′
1

n2
n1

r ′2

Figure 6

Writing S′ = D/G′ we note that, since f̃3(n2) = m1, f̃3(n1) = m2 and so
forth, f̃3 also induces an order 3 automorphism on D/G′ = S′. Also h0 induces an
involution, distinct from the hyperelliptic involution which is induced by hm2 . Hence
if G̃′ is the group generated by G′, hm2 , h0 and f̃3, then, as in Lemma 2.7, D/G̃′ is
the sphere with the four marked points −27 (of order 3), 0, a′ and ∞.

On the other hand we obviously have G̃ = G̃′. Hence the two quotients are
isomorphic the difference being that now mi , ni and ri are sent to a′, in place of ∞
while 0, pi and qi are sent to ∞ in place of a. In other words there is a Möbius
transformation taking −27, 0, a, ∞ to −27, 0, ∞, a′, keeping −27 and 0 fixed and
sending a to ∞. It is z �→ − (27+a)z

z−a . The point a′ being the image of ∞ is then equal
to −(27 + a).

For the last assertion we note that if we replace the original octagon by the rotated
octagon introduced in Lemma 2.6 we are replacing p1 by p3, p2 by p4 and so on.
The role played by u1 is now played by r1 and it also exchanges the orbits of these
two points. By (2.3) and the remarks made on F1 the corresponding uniformizing
functionF ′

1 will be 3/F1. In particular t0 will be replaced by 3/t0 (note that 3/f3(t) =
f3(f3(3/t))) and a by 729/a (cf. Corollary 2.4). �

2.10 Lemma. Let γ1 : (�, tw) �→ (
�, tw + 1

2

)
and γ2 : (�, tw) �→ (�′, tw′), �′ and

tw′ as in Lemma 2.6. Then γ2
2 = 1 and (γ1γ2)

3 = 1. In particular they induce
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an action of PSL2(Z) on the Teichmüller space of genus 2 surfaces with an order 3
automorphism.

Proof. It would be nice to have a direct geometric proof but unfortunately we have
not as yet found one. Hence we proceed with an ugly computational proof. For
this we first note that γ2

2 = 1 is obvious, and that (γ1γ2)
3 = 1 is equivalent to

γ1γ2γ1 = γ2γ1
−1γ2. To express γ2, γ1 and γ1

−1 in terms of L and Tw (notations as
in 2.6) we consider

T2 = (L, Tw) �→
⎛⎝Tw2 2L− 1

L− 1
− 1,

√
Tw2(L+ 1)(2L− 1)− 2(L2 − 1)

2Tw2(2L− 1)− 3(L− 1)

⎞⎠ ,
T1 = (L, Tw) �→

(
L, Tw

√
L+ 1

2
+
√
Tw2 − 1

√
L− 1

2

)
, (2.11)

T1
−1 = (L, Tw) �→

(
L, Tw

√
L+ 1

2
−
√
Tw2 − 1

√
L− 1

2

)
.

Because of the sign change indicated in Lemma 2.6, γ1γ2γ1 will be represented by
T1

−1 T2 T1 and γ2γ1
−1γ2 by T2 T1 T2. It can be proved by brute force that these

are indeed equal but the computations involved, although reasonable enough for
the length, turn out to be extremely heavy for the twist. On the other hand the
computations simplify considerably for surfaces with zero twist i.e., with Tw = 1.
We find fairly directly that T2 T1 T2 maps (L, 1) to((

2L2 − L+ 1
)

2(L− 1)
,

1

2

√(
2L2 − 3L+ 3

)
(2L− 1)(

L2 − L+ 1
)
(L− 1)

)
.

On the other hand T1
−1 T2 T1 maps (L, 1) to⎛⎝

(
2L2 − L+ 1

)
2(L− 1)

,

√
3 + 2L3 − L2

√
2L2 + L− 1 −

√
(2L− 1) (L− 1)2

√
2L2 − 3L+ 3

4
√(
L2 − L+ 1

)
(L− 1)

⎞⎟⎠ .
Squaring the numerator of the second term one easily finds that both transformations
coincide if Tw = 1.

Remains to show that the sign condition is satisfied. For this we note that
γ2(�, 0) = (�′, 0) and γ1

−1(�′, 0) = (
�′′,− 1

2

)
. Hence γ2γ1

−1γ2(�, 0) will be of

the form (�′′′, tw) with tw � 0. A value of tw = 1
2 corresponds to Tw =

√
L+1

2 .
Applying T2 to this we have

T2

(
L,

√
L+ 1

2

)
=
⎛⎝ (L+ 1)(2L− 1)

2 (L− 1)
,

√
3 + 2L3 − L2

4(L2 − L+ 1)

⎞⎠
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from which it is easy to conclude that for the twist parameter tw of γ2γ1(�, 0) we
will have tw � − 1

2 and hence the twist parameter of γ1γ2γ1(�, 0) will be positive.
We conclude that γ1γ2γ1 and γ2γ1

−1γ2 coincide on the full set of surfaces with
zero twist, which is a subspace of real codimension 1. On the other hand, by 2.10, these
transformations induce holomorphic maps on the parameter space C�{0,−27}. Since
γ1γ2γ1 and γ2γ1

−1γ2 are continuous bijections, this implies that they are holomorphic
and we conclude that they coincide everywhere. �

Proof of Proposition 2.1. The proposition follows from Lemma 2.10, Proposition 2.9
and the fact that σ1 : a �→ −(a + 27) and σ2 : a �→ 729/a generate an action of the
symmetric group S3 on the parameter space Ĉ�{−27, 0,∞} which, by Corollary 2.4,
is a double cover of the moduli space of genus 2 curves with an order 3 automorphism.

�

2.12 Remark. It should be noted that although σ2 operates trivially on the moduli
space the action of σ1σ2 differs from the action induced by σ1. To see this just note that
σ1σ2(a) = −27(a+ 27)/a is in general different from −(a+ 27) or −729/(a+ 27)
and apply Corollary 2.4.

2.13 Examples. We limit here to examples that can immediately be deduced from
the results of 2.9.

• The fixed point of σ2 is a = 27. As noted earlier this is the curve with an
automorphism group of order 24. It is easily checked that it corresponds to � =
arccosh(2), tw = 0, which is the fixed point of γ2.

• The fixed point of σ1 is a = −27
2 . But −27

2 = σ2(σ1(27)), hence we can recover
the Fenchel–Nielsen coordinates by applying γ2γ1 to the preceding case. We find
� = arccosh

( 7
2

)
and tw = 1

4 .

• σ1σ2 has two fixed points, −27 1±i√3
2 , and these are exchanged by σ2. To

find the Fenchel–Nielsen coordinates we look for fixed points of γ1γ2. We find that
� = arccosh(L), where L is the solution 2.2057 . . . of equation 8 x3 − 12 x2 −
12 x − 1 = 0 and tw = 1

4 . Other considerations show that this in fact corresponds

to a = −27 1−i√3
2 . The other value for a corresponds to the same value of � but

tw = −1
4 . This is a fixed point of γ−1

1 γ2. Both curves, with tw = ±1
4 , are of course

isomorphic.

2.14 Remark. In this section we have only considered the pants decompositions
indicated in Figure 4 and 5 but it is sometimes useful to consider other rotations of
these.

An example of this is the following. Consider the surface defined by the co-
ordinates

(
2�, 1

2 , 2�, 1
2 , 2�, 1

2

)
and assume that we are using the pants decomposi-

tion (1.2). We can also use the pants decomposition defined by the arcs [p6, p2],
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[p3, p4] ∪ [p8, p7] and [q8, q1]. Elementary computations of the same type as the
ones used in the proof of Lemma 2.6 show that the Fenchel–Nielsen coordinates are
now

(
2�′, 1

2 , 2�, 0, 2�′, 1
2

)
where

L′ = cosh(�′) = 3L− 1

2(L− 1)
if L = cosh(�). (2.15)

In particular we have �′ = � if L = (
5 + √

17
)
/4. But in this case the associated

algebraic curve is isomorphic to one of its transforms under the transformations
indicated in (1.7). Looking how this isomorphism acts on the Weierstrass points

one can show that the curve corresponds to t0 = i
√

10 − 2
√

17/2 and hence has an
equation of type 2.4 with a = −23 + √

17.

3. Genus 2 curves with an order 4 automorphism and cousins

In this section we study two families. The first is the family of genus 2 surfaces
with an order 4 automorphism. To formulate our main result concerning these we
recall that from the hyperbolic point of view such surfaces are precisely the ones ad-
mitting a pants decomposition, with non-separating geodesics, and Fenchel–Nielsen
coordinates of the form(

2�1, tw, 2�1, tw, 2�3,
1
2

)
, with cosh(�3) = 2 cosh(�1)+ 1 (3.1)

(see [Si2] but we will briefly indicate the construction below). With this we have

3.2 Proposition. The transformations

γ1 : (2�1, tw, 2�1, tw, 2�3,
1
2

) �→ (
2�1, tw + 1

2 , 2�1, tw + 1
2 , 2�3,

1
2

)
and

γ2 : (2�1, tw, 2�1, tw, 2�3,
1
2

) �→ (
2�′1, tw′, 2�′1, tw′, 2�′3, 1

2

)
,

induced by a rotation of a fundamental octagon (see Lemma 3.9 below), generate
an action of PSL2(Z) on the Teichmüller space of genus 2 surfaces with an order 4
automorphism. This action in turn induces an action of the symmetric group S3 on
a double cover of the moduli space of such surfaces.

The second family is obtained by applying a half twist to the geodesic of length
2�3. Namely we consider the sub-space of Teichmüller space defined by surfaces with
Fenchel–Nielsen coordinates of the form (2�1, tw, 2�1, tw, 2�3, 0), with cosh(�3) =
2 cosh(�1)+ 1. Denote by ϕ the natural map

ψ : (2�1, tw, 2�1, tw, 2�3,
1
2

) �→ (2�1, tw, 2�1, tw, 2�3, 0)

For these surfaces the main result of this section is the following.
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3.3 Proposition. Surfaces with Fenchel–Nielsen coordinates of the form

(2�1, tw, 2�1, tw, 2�3, 0) with cosh(�3) = 2 cosh(�1)+ 1

have equations of the form

y2 = (x2 − 1)(x2 − α)(x − α − 1) with α �= 0, ±1.

Moreover γ1 and γ2 (of Proposition 3.2) induces, viaψ , an action of PSL2(Z) on
the subspace of the genus 2 Teichmüller space defined by the above conditions and
in turn this action defines an action of the symmetric group S3 on the corresponding
moduli space.

To prove these propositions we start by reviewing and reformulating some of the
results of [Si2].

To this end let H be a rectangular hyperbolic hexagon with side lengths
(�1, �2, �1, �2/2, �3, �2/2), in that order (see left of Figure 7). Such hexagons exist,
but the values of the �i are far from independent. In fact writing Li = cosh(�i) we
have the relations

L2 = L1 + 1

L1 − 1
and L3 = 2L1 + 1 (3.4)

(see [Bu], p. 454).

q1
0

p1

p2
p3

p4

q1q5

p1

p2
p3

p4
0

m1

q2

p5

q6 p6

p7

p8

q3

q4

q7

q8

�3

�1�1

Figure 7

Embed isometrically this hexagon in the unit disk with the side of length �3 on the
real axis with midpoint at the origin. Let q1 be positive real at hyperbolic distance �3
from the origin. Then proceed as in Section 1 and shift the vertices of the edges of
length �1 by tw · �1 to obtain points p1 to p4 (see left of Figure 7).

To build the octagon from this data we let pi+4 = −pi , i = 1, . . . , 4 and let
qi+1 = hpi (qi), i = 1, . . . , 7.
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Since the surface is obtained by identifying opposite sides of the octagon, the
geodesic arcs

[p1, p2] ∪ [p6, p5], [p3, p4] ∪ [p8, p7] and [q5, q1] (3.5)

define simple closed geodesics. These in turn define a pants decomposition for which,
by construction, the Fenchel–Nielsen coordinates are

(
2�1, tw, 2�1, tw, 2�3,

1
2

)
.

Since the edge of the hexagon opposite to the one of length �3 is twice the length
of those opposite to those of length �1 it is readily checked that the octagon we
have constructed is stable under rotation by π/2. In other words the surface has an
order 4 automorphism. Moreover this automorphism being clearly non-homotopic to
the identity it defines an element of the Teichmüller modular group, the fixed points
of which are precisely the surfaces with Fenchel–Nielsen coordinates of form (3.1).
Since, just as in the case of order 3, there is only one topological type of automorphism
of order 4, the Fenchel–Nielsen coordinates of (3.1) define a Teichmüller space for
genus 2 surfaces with an order 4 automorphism.

By [Si2] (1.6) and (3.2) we have that the uniformizing map Fs of (1.7) satisfies

Fs(q1) = −Fs(0) = 1, Fs(p2) = −Fs(p1) = a, Fs(p4) = −Fs(p3) = 1/a.
(3.6)

Hence an equation for the algebraic curve is,

y2 = (x2 − a2)(x2 − 1)(x2 − 1/a2) with a �= 0, ±1, ±i. (3.7)

We also note that by [Si2] Section 3, since m1 is the midpoint of 0 and q1, we
have Fs(m1) = −i.

We now proceed to define the PSL2(Z) action. For this let γ1 be the transformation
keeping the lengths fixed but replacing tw by tw + 1

2 . The transformation induced
on the equation is taken care of by

3.8 Proposition. Let S be a genus 2 surface with an order 4 automorphism and Fen-
chel–Nielsen coordinates

(
2�1, tw, 2�1, tw, 2�3,

1
2

)
where cosh(�3)=2 cosh(�1)+1.

Let
y2 = (x2 − a2)(x2 − 1)(x2 − 1/a2)

be the associated equation (as in (3.7)).
Then the surface S′ obtained by replacing (�1, tw) by

(
�1, tw + 1

2

)
has equation

y2 = (x2 + a2)(x2 − 1)(x2 + 1/a2).

This is (3.2) of [Si2].
To define γ2 we rotate the octagon so that q2 becomes a positive real. This can

equivalently be viewed as changing the pants decomposition.
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3.9 Lemma. Suppose that S is a genus 2 surface with an order 4 automorphism
and with Fenchel–Nielsen coordinates

(
2�1, tw, 2�1, tw, 2�3,

1
2

)
where cosh(�3) =

2 cosh(�1) + 1. Suppose further that this set of coordinates corresponds to the
octagon of Figure 7 and to the pants decomposition defined by [p1, p2] ∪ [p6, p5],
[p3, p4] ∪ [p8, p7] and [q5, q1]. Then the Fenchel–Nielsen coordinates for the pants
decomposition [p2, p3]∪[p7, p6], [p4, p5]∪[p1, p8]and [q6, q2] (see Figure 7)are of
the form

(
2�′1, tw′, 2�′1, tw′, 2�′3,

1
2

)
with again cosh(�′3) = 2 cosh(�′1)+1. Moreover

writing L1 = cosh(�1), L′
1 = cosh(�′1), Tw = cosh(tw �1) and Tw′ = cosh(tw′ �′1)

we have

L′
1 = Tw2 2L1

L1 − 1
− 1,

Tw′ =
√
L2

1Tw
2 + L1Tw

2 − L2
1 + 1

2L1Tw
2 − L1 + 1

,

tw′ = − sign(tw) arccosh(Tw′)/ arccosh(L′
1).

Proof. We first note that the fact that the octagon is stable under rotation by π/2
ensures that the new Fenchel–Nielsen coordinates are of the announced form. To
compute these we note two facts. The first is that the midpoint of [0, q2] is also
the midpoint of [p1, p2]. The second is that the hexagon we started with can be
decomposed into four isometric copies of a trirectangular quadrangle and remaining
angle π/4 (at 0). With the formulae [Bu] p. 454 it is now easy to compute the length
of the geodesic arc [0, q2]. The hyperbolic cosine of this length is

2
2 Tw2L1

L1 − 1
− 1.

But this is 2L′
1 + 1 hence the value of L′

1 found. Since the transformation is an
involution we can solve it backwards to find Tw′. The sign condition on tw′ is again
the same as the one explained in [Ok]. �

We will denote by γ2 the transformation that replaces (�1, tw) by (�′1, tw′) as
defined in Lemma 3.9.

Starting with �′1 and tw′ and associating an equation of the form (3.7), with the
same method as before, will not lead to the same value for a. In fact as explained in
[Si2] this yields the equation,

y2 = (x2 − a′′2)(x2 − 1)(x2 − 1/a′′2) with a′′ = i
i − a

i + a
. (3.10)

Proof of Proposition 3.2. We first note that we again have γ2
2 = 1 and (γ1γ2)

3 = 1.
The proof is of the same nature as the proof of Lemma 2.10, and quite similar.
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Expressed in terms of L and Tw both γ1γ2γ1 and γ2γ1
−1γ2 transform (L, 1) into⎛⎝L2 + 1

L− 1
,

√
L (L2 − L+ 2)

(L2 + 1)(L− 1)

⎞⎠ .
The rest of the argument is the same. Hence γ1 and γ2 induce an action of PSL2(Z)

on the Teichmüller space of genus 2 surfaces with an order 4 automorphism.
The way we have defined the transformations on the equations in Proposition 3.8

and in (3.10) is needed for the next part of this section. On the other hand the action
of the permutation group S3 is not clearly visible in this formulation. To recover this,
simply write the equation in the form

y2 = (x2 − 1)(x4 + μx2 + 1) with μ = −(a2 + 1/a2).

Then the induced actions of γ1 and γ2 are given by

μ �→ −μ and μ �→ 2
μ+ 6

μ− 2

from which we recover the desired S3 action.
Remains to show that the μ-parameter space we have just introduced is a double

cover of the moduli space of genus 2 curves with an order 4 automorphism. To do
this recall that the automorphism group of a generic genus 2 curve with an order 4
automorphism is isomorphic to the dihedral group D4 and the square of the order 4
automorphism is the hyperelliptic involution. If we write the equation of such a
generic curve in the form (3.7), then the order 4 automorphisms are induced by x �→
1/x and the non-hyperelliptic involutions are induced by x �→ −x and x �→ −1/x.
From this we can conclude that, up to composition with automorphisms, the only
Möbius transformations inducing isomorphisms are the identity and x �→ ix+1

x+i . The

second possibility corresponds precisely to replacing μ by 2(μ+6)
μ−2 . Finally there

are only two curves in the family which have an automorphisms group larger than
D4. The orders are 24, which corresponds to μ = 1 or μ = −14 (see [Bu-Si1]
(8.2)), and 48, which corresponds to μ = 6 (see [Bu-Si1] (8.13)). We conclude that
our μ-parameter space is a double cover of its image in moduli space ramified at
μ = 6. �

We now proceed to study the family introduced in Proposition 3.3. Since this
family is obtained by applying a half twist to the first we are going to apply (1.8) to
the present situation. For this we need to change octagons and consider the octagon
associated by (1.2) to the coordinates (2�1, tw, 2�3,

1
2 , 2�1, tw). In this case with the

associated Fs function we have equation

y2 = (x2 − 1)(x2 − a1
2)(x2 − b1

2). (3.11)
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To obtain a1 and b1 in terms of a and b we use the properties of Fs , indicated in
Section 1, to compare where points are mapped in the curves defined by equations
(3.7) and (3.11). Doing this we find that to pass from (a, b) to (a1, b1) we need a
Möbius transformation that maps −i to ∞, −a to 1 and 1/a to −1. This is

ϕ : z �→ a − i

a + i
· z− i

z+ i
.

In this context we have

a1 = ϕ(a) = (i − a)2

(i + a)2
and b1 = ϕ(1) = i

i − a

i + a
. (3.12)

Proof of Proposition 3.3. If we apply (1.8) to (3.12) we find that the algebraic curve
associated to the surface with coordinates (2�1, tw, 2�3, 0, 2�1, tw) has for equation
y2 = (x2 − α)(x2 − 1)(x2 − β) with

α = a1
2(1 − b1

2)

a1
2 − b1

2 and β = 1 − b1
2, (3.13)

but this just yields: α = a1 and β = 1 + a1. This proves the first assertion of
Proposition 3.3.

To end the proof of the proposition we will need the following

3.14 Lemma. Let C and C′ be the curves with respective equations y2 = (x2 − α) ·
(x2 −1)(x2 −α−1) and y2 = (x2 −α′)(x2 −1)(x2 −α′ −1). ThenC is isomorphic
to C′ if and only if α′ = α or α′ = 1/α.

Proof. We first note that if α′ = 1/α then the two curves are clearly isomorphic.
To see that the condition is also necessary consider two curves with equations y2 =
(x2 − 1)(x2 − α)(x2 − β) and y2 = (x2 − 1)(x2 − α′)(x2 − β ′) and assume their
automorphism groups do not contain elements of order 4. Then the two curves are
isomorphic if and only if {α′, β ′} is, up to order, one of the six pairs

{α, β}, {1/α, 1/β}, {1/α, β/α}, {α/β, 1/β}, {α, α/β}, {β/α, β}. (3.15)

Replacing β by α + 1 we obtain the result for curves without automorphisms of
order 4.

IfC does have an automorphism of order 4, replacing if necessary {α, β} by one of
the pairs in (3.15), we may assume that β = 1/α. In this case we must also consider
the pairs obtained by applying (3.15) to{

−
(√

α − i√
α + i

)2

,−
(√

α + i√
α − i

)2
}
.
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A case by case study shows that, up to isomorphism, the only pairs to consider are

{α, α + 1} for α equal to
√

5−1
2 , −

√
5+1
2 or i

√
3−1
2 in which cases reexamining the

lists one can directly show the result to be true. �

End of Proof of Proposition 3.3. By Lemma 3.14 the map α �→ ν = α+ 1/α defines
a map from C � {−1, 0, 1} to moduli space. In terms of the parameter a defining a
curve with an order 4 automorphism in (3.7), we have by (3.12) and (3.13)

ν = 2((a2 − 1)2 − 4a2)

(a2 + 1)2
. (3.16)

Note that this expression for ν is invariant under a �→ −a and a �→ 1/a and only
depends on the equation (3.7).

We have seen that replacing (�1, tw) by
(
�1, tw + 1

2

)
consists in replacing a by

i a and replacing (�1, tw) by (�′1, tw′) consists in replacing a by i(i−a)
i+a . Applying

this to (3.16) we obtain the transformations

τ1 : ν �→ 2
6 − ν

2 + ν
and τ2 : ν �→ 2

ν + 6

ν − 2
. (3.17)

Since τ1 and τ2 are of order 2 and τ1τ2 is of order 3 they generate a group isomorphic
to S3 and we are done. �

3.18 Examples. We first look for fixed points for the transformations of (3.17).

• The fixed points of τ2 are −2 (which is excluded) and 6. This corresponds to
α = 3−2

√
2. The Fenchel–Nielsen coordinates for the corresponding surface where

computed in [Bu-Si1], (8.3). We have L1 = 1 + √
2, tw = 0.

• The fixed points of τ1 are 2 (again excluded) and −6. But this is the image under
τ2τ1 of the preceding example. Hence to recover the Fenchel–Nielsen coordinates
we only need to compute γ2(γ1(1 + √

2, 0)) = (2 + 2
√

2,−1/4).

• Applying γ1 to the first example we find the fixed point of τ2τ1τ2 which corre-
sponds to α = i and of course to L1 = 1 + √

2, tw = 1
2 .

• The fixed point of τ1τ2 corresponds, to α = i (
√

3 − 2). This is the curve
associated to the last example of [Si2] hence L1 = 1 + √

3, tw = 1/4.

Also of interest are the curves in the family with larger automorphism groups.
We have already encountered in the proof of Lemma 3.14 those with an order 4
automorphism.

• The case α = (
√

5 − 1)/2 was computed in [Bu-Si1] (8.1) it corresponds to
L1 = (1 + √

5)/2, tw = 0.

• For α = −(1 + √
5)/2 we note that this can be obtained by applying τ2τ1τ2 to

α′+1/α′ with α′ =
√
(
√

5 − 1)/2. Hence to obtain the Fenchel–Nielsen coordinates
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we apply γ2γ1γ2 to ((1 + √
5)/2, 0). This yields L1 = (5 + 3

√
5)/2 and Tw =√

150 + 30
√

5/10. This curve was also considered in a different form in [Bu-Si1]
(8.11).

• For α = (i
√

3 − 1)/2 we note that this corresponds to applying τ1 to α′ + 1/α′
with α′ = (2 − √

3)2. But α = 7 − 4
√

3 is the second example of [Bu-Si1] (8.2),
hence L1 = 3, tw = 1/2.

For those with an order 3 automorphism it is far more difficult to be systematic.
We know nevertheless of two.

• The first corresponds to L1 = 4 + √
17, tw = 1

2 . Assuming this corresponds
to the pants decomposition (1.2), it has a second pants decomposition given by the
arcs [q3, q4], [p6, p2] and [p3, p5] ∪ [p1, p7] all of length 2 arccosh((5 + √

17)/4).
The twist parameters are 1

2 , 0, 1
2 . In other words this surface is isometric to the one

considered in 2.14. As noted there it has an equation of the form given in Corollary 2.4
with a = −23 + √

17.

• The second corresponds to L1 = (3 + √
17)/4, tw = 1

2 . But this is of the form
(2.15) with L = (5 + √

17)/2. Hence the order 3 automorphism by Remark 2.14.

Again an equation is easiest expressed in the form 2.4 with a = −16767+729
√

17
512 . Note

that σ2 of this value is −23 − √
17 (compare with the above).

4. Quotients of genus 5 surfaces with an order 6 automorphism

In this section we will prove parts of the statements of Theorem A and Theorem B.
Namely the main result of this section is

4.1 Proposition. Let S be a genus 2 surface with Fenchel–Nielsen coordinates
(2�, tw, �, 2tw, �′′, 0), for a pants decomposition of type (1.2), and additional re-
lation cosh(�′′/2) = 2 cosh(�/2). Then the algebraic curve defined by S has an
equation of the form

y2 = x(x − 1)

(
x3 + a x2 − 8

3
a x + 16

9
a

)
, a �= 0, −9. (4.1.1)

Moreover the maps γ1 : (�, tw) �→ (
�, tw + 1

2

)
and γ2 : (�, tw) �→ (�2, tw2),

with �2 and tw2 as in Theorem B, induce an action of PSL2(Z) on the Teichmüller
space of such surfaces. These transformations induce the maps a �→ −9 − a and
a �→ −9 a

9+a which define an action the symmetric group S3 on a double cover of the
moduli space of such surfaces.



Vol. 82 (2007) One parameter families in genus 2 algebraic curves and half twists 435

Before going into the proof of this proposition we will give a geometric description
of the surfaces. We will consider dodecagons as fundamental domains in this section
but revert to octagons in the next.

We start with a rectangular dodecagon D with edges alternatively of hyperbolic
lengths � and �′ (see Figure 8). These lengths are of course related, in fact we have
sinh(�/2) sinh(�′/2) = √

3/2 (see [Bu], p. 454). Moreover if we call �′′ (resp. �′′′)
the length of the separating horizontal (resp. vertical) geodesic we have cosh(�′′/2) =
2 cosh(�/2) (resp. cosh(�′′′/2) = 2 cosh(�′/2)).

�′

�

�′�
�′

�

�′

�

�′ � �′

�

1

2
345

6

7

8
9 10 11

12

Figure 8 Figure 9

Paste two copies of the dodecagon D along the edges of length �′. This yields a
sphere with 6 disks removed and geodesic boundary components of length 2�. Now
we can paste two copies of such a sphere to obtain a genus 5 surface S1, which is
hyperelliptic by its construction from two isometric spheres. We can do this last
pasting with twist parameters, and if we do so with the same twist parameter tw
on the six boundary components we will then obtain a genus 5 surface with an
order 6 automorphism (induced by rotation of angle π/3 in the dodecagon). It also
has involutions distinct from the hyperelliptic involution. In particular it is easy to
construct a fixed point free involution ϕ that exchanges the closed geodesics of length
2�, fixes globally two of length 2�′ and exchanges two pairs of length 2�′.

Since ϕ is fixed point free the quotient S2 = S1/ϕ is of genus 3. Moreover from
the construction of ϕ we can give a geometric description of S2 as follows. Consider
a sphere with 4 disks removed and three geodesic boundaries of length 2� and one
of length 2�′′. Then S2 is obtained by pasting two copies of such a sphere using the
twist parameter tw (the same as above) on the geodesics of length 2� and twist 0
on the one of length 2�′′. From this it follows that S2 is hyperelliptic. Moreover by
construction it also admits non-hyperelliptic involutions.

One of these involutions is again fixed point free. The quotient of S2 by this
involution is of genus 2 with Fenchel–Nielsen coordinates (2�, tw, �, 2tw, �′′, 0).
This defines the family of genus 2 surfaces we want to consider.
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There is a second description of the surfaces that will be useful. Start again with
the dodecagon D but shift the end points of the edges of lengths � by tw � as shown
in Figure 9. Then S is obtain by the identifications

1—7, 2—12, 3—5, 4—10, 6—8, 9—11. (4.2)

Note that this twisted dodecagon is stable under rotation by π/3. The surface of
genus 5 is obtained by pasting two copies of the twisted dodecagon to two copies of
their mirror images. In this context the order 6 automorphism is induced by the π/3
rotation.

Proof of Proposition 4.1. Since the genus 5 surface S1 is hyperelliptic with an addi-
tional non-hyperelliptic involution ϕ it has an equation of the form

y2 =
6∏
i=1

(x2 − x2
i ), (4.3)

Moreover since it has an order 6 automorphism, we may assume by an argument
similar to the one used in the proof of Lemma 2.2 that the xi are globally stable under
the action of

f : x �→ 3x − √
3√

3x + 3
(4.4)

(note for further use that f 3(t) = −1/t and that f (−t) = −f 5(t)).
In this context the genus 3 quotientS2 ofS1 byϕ has equationy2 =x∏6

i=1(x − x2
i ).

Let yi = x2
i +1

x2
i −1

. Relabeling the yi if necessary we obtain that S2 has an equation of the

form y2 = (x2 − 1)
∏3
i=1(x

2 − y2
i ). This change of coordinates for the Weierstrass

points is exactly what is needed to recover S simply or more precisely the genus 2
quotient S of S2 has for equation

y2 = x(x − 1)
3∏
i=1

(x − y2
i ). (4.5)

Expanding (4.5) we obtain the equation (4.1.1) after a tedious but elementary com-
putation. �

The Fenchel–Nielsen coordinates in Proposition 4.1 correspond to the pants de-
composition given by the arcs (2—12) ∪ (6—8), (4—10) and the horizontal axis in
Figure 9.

We also have a second pants decomposition with the same properties, namely we
can consider the pants decomposition defined by the arcs (3—5) ∪ (9—11), (1—7)
and the line joining the midpoints of arc 4 to the midpoint of arc 10. Again this can
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be viewed as obtained by rotating the dodecagon. Applying the formulae in [Bu],
p. 38–39 and 454 we can easily compute the Fenchel–Nielsen coordinates for this
second decomposition. If we let L = cosh(�), Tw = cosh(tw �), then

L2 = Tw2 2L+ 1

L− 1
− 1,

Tw2 =
√

2Tw2L2 + 3Tw2L+ Tw2 − 2L2 + 2

4Tw2L+ 2Tw2 − L+ 1
,

tw2 = − sign(tw) arccosh(Tw)/ arccosh(L2)

(4.6)

and the Fenchel–Nielsen coordinates are (2�2, tw2, �2, 2tw2, �
′′
2, 0), where

cosh(�2) = L2 and cosh(�′′2/2) = 2 cosh(�2/2).
The quotient map from the genus 5 surface S1 to the genus 2 surface S is induced

by the map

ψ : x �→ (x2 + 1)2

(x2 − 1)2
. (4.7)

Under this map the fixed points of f , which corresponds to x = ±i are mapped
to the point with x = 0. The fixed points of the non-hyperelliptic involutions of
S1 corresponds to the midpoints of the edges of the twisted Dodecagon of Figure 9.
These correspond to x either in the orbit of 0 under f or in the orbit of 1. From our
construction we may assume that x = 0 corresponds to the point at the right end of the
horizontal axis of Figure 9. Since by construction f is induced by rotation of angle
π/3 in the dodecagon, this choice imposes that the midpoint of arc 4 corresponds to
x = −1. Note for further use that ψ(0) = 1 and ψ(−1) = ∞.

Let G be the Fuchsian group generated by the identifications (4.2) and let FD be
the even G-equivariant uniformizing function from the unit disk to the sphere such
that FD sends 0 to 0, sends the midpoint of the arc labeled 1 to 1 and the midpoint
of the arc labeled 4 to infinity. By the above this means that this function FD is the
uniformizing function giving the x-coordinate in the equation (4.1.1).

The function playing the role of the uniformizing function FD for the second
pants decomposition (with coordinates defined by (4.6)) is clearly seen to be z �→
FD(z)/(FD(z)−1). Applying the map x �→ x/(x−1) the equation (4.1.1) becomes

y2 = x(x − 1)

(
x3 + a2 x

2 − 8

3
a2 x + 16

9
a2

)
with a2 = −9 a

9 + a
(4.8)

(cf. [Si1] (6.8)).
Now the only automorphism of a generic member of this family is the hyperelliptic

involution. Hence the same argument as above shows that an isomorphism between
two generic curves with equations of the form (4.1.1) must be induced by the identity
or by a Möbius transformation leaving 0 fixed and exchanging 1 and ∞. But this is
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precisely how we have obtained a2 in (4.8). This proves that the a-parameter space of
(4.1.1) is a double cover of its image in moduli space, ramified at the point a = −18.

We again have γ2
2 = 1 and (γ1γ2)

3 = 1. Unfortunately we do not have in this
case either, a direct geometric proof. The only proof we know of, follows the same
lines as the proof of Lemma 2.10 and is just as ugly. In terms of the L and Tw
introduced in (4.6) γ1γ2γ1 and γ2γ1

−1γ1 transform (L, 1) into⎛⎝2L2 + L+ 3

2(L− 1)
,

√
4L3 + 9L+ 5

(L2 + L+ 1)(L− 1)

⎞⎠ .
To end the proof of Proposition 4.1 we only need now

4.9 Lemma. Let S be a surface with coordinates (2�, tw, �, 2tw, �′′, 0) and with
cosh(�′′/2) = 2 cosh(�/2). Let (4.1.1) be the associated equation for the surface.

Then the surface with Fenchel–Nielsen coordinates (2�, tw+ 1
2 , �, 2tw+1, �′′, 0)

has for equation

y2 = x(x − 1)

(
x3 + a1 x

2 − 8

3
a1 x + 16

9
a1

)
with a1 = −9 − a.

Proof. Let as before S1 be the genus 5 surface we have used in the construction of S.
We also assume that S1 has the equation considered in the proof of Proposition 4.1.
Consider the group of automorphism of S1 generated by the hyperelliptic involution,
the automorphism induced by f and the one induced by x �→ −x. The quotient of
S1 under this group is a sphere with 4 elliptic points one of order 6, the image of the
fixed points of f and 3 of order 2 which are respectively the images of the Weierstrass
points, the image of the points in the orbit under f of the fixed points of x �→ −x and
finally the image of the points in the orbit under f of the fixed points of x �→ 1/x.

Now the map

ϕ : x �→ −(ψ(x)+ ψ(f (x))+ ψ(f (f (x)))
)

(4.10)

(with ψ as in (4.7)) is a 12 to 1 map satisfying ϕ(f (x)) = ϕ(−x) = ϕ(x). In other
words it induces the quotient map from S1 to the sphere. The image of the Weierstrass
points is of course a, the image of i is 0, while ϕ(0) = −9 and ϕ(1) = ∞.

Let G be a Fuchsian group uniformizing S1, and let G̃ be the group generated by
G and elliptic transformations inducing f and x �→ −x. The quotient of D by G̃ is
again the same sphere with the 4 marked points.

The same argument as the one used in the proof of Lemma 2.9 shows that replacing
tw by tw+ 1

2 in the construction ofS1 is equivalent to replacinga by∞while keeping 0
and −9 fixed. This is achieved by z �→ −(9+a)z/(z−a). Since a1 is the image of ∞
under this map we obtain the result. Also since a �→ a1 and a �→ a2 clearly generate
a group isomorphic to S3, this also completes the proof of Proposition 4.1. �



Vol. 82 (2007) One parameter families in genus 2 algebraic curves and half twists 439

4.11 Remarks. For use in the next section we will need three additional results on
the surfaces studied in this section.

1) Consider again the genus 5 surface S1 and its equation of the form (4.3). The
midpoints of the arcs of length � and �′ have x coordinate in the orbits of 1 and 0
under the function f of (4.4). In particular in these orbits we have the points with x
coordinate

√
3−2 and −1/

√
3. Applying the mapψ of (4.7) to these points we obtain

4/3 and 4. Let m be the midpoint of the arc labeled 2 in Figure 9 and let n be the
midpoint of the arc labeled 3. From the geometric construction of the genus 2 quotient
given at the beginning of this section we find that FD(m) = 4/3 and FD(n) = 4,
where FD is the uniformizing function for the twisted dodecagon.

2) As noted earlier the twisted dodecagon of Figure 9 is globally invariant under
rotation by π/3. This rotation is of course incompatible with the identification of
edges, of (4.2), used to define the genus 2 surface S. On the other hand we can
construct a genus 3 double cover with an order 3 automorphism (this surface is
distinct from the surface S2 used in the construction of S). To do this consider the
curve with equation

y2 = P(x) = x (x + 3) (x − t2)
(
x − (f3(t))

2) (x − (f3(f3(t)))
2) (4.12)

f3 as in Lemma 2.2. If we apply the transformation x �→ x
3 + 1 to the roots of P an

elementary computation shows that the curves defined by (4.12) also have equations
of the form given in (4.1.1). Hence (4.12) is just another description of the family.

But now the curve defined by

y2 = (x2 + 3) (x2 − t2)
(
x2 − (f3(t))

2) (x2 − (f3(f3(t)))
2) (4.13)

is a genus 3 double cover with an order 3 automorphism induced by f3. We will use
this in the next section.

3) We have shown that the image in moduli space of the family considered in
this section is the quotient of Ĉ � {−9, 0,∞} under a �→ −9 a

9+a . In particular it is
isomorphic to the sphere minus two points and a cone point of order 2 (image of
a = −18). Note also that the values a = 0, −9 and ∞ correspond to singular curves
and in particular the image is closed in moduli space.

4.14 Examples. As before we look for fixed points of the transformations. Up to
isomorphy we have three fixed points. The first is given by a = −18 in equation
(4.1.1) and was described in [Si1] 6.8. It corresponds to cosh(�) = 1 + √

3, tw = 0.
Note that in this case the curve has a larger automorphism group, in particular it has
an automorphism of order 4, induced by x �→ x/(x − 1).

The second is defined by a = − 9
2 . This corresponds to γ2γ1 of the preceding.

Hence to cosh(�) = 1 +
√

3
2 and tw = − 1

2 . Note that this curve is isomorphic to the
one defined by a = 9, which corresponds to the transform by γ1 of the first example.
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The third is given by a = − 9
2 (1 + i

√
3), it corresponds to a fixed point of γ1γ2.

This yields for cosh(�) the solution 3.1454 . . . of equation 8x3 − 12x2 − 36x − 17
and tw = 1

4 .

5. Translation surfaces obtained from 3 squares

In this section we complete the proof of Theorems A and B. This will be done by
identifying the surfaces of Section 4 with surfaces in the SL2(R)orbit of the translation
surface tiled by 3 squares of the introduction.

But before that we need to recall a few facts. Let C be a real genus 2 curve with
three real components. Then it always admits an equation of the form,

y2 = P(x) = x(x − 1)(x − a1)(x − a2)(x − a3) with 1 < a1 < a2 < a3. (5.1)

Let γ1 be the pull back in C of [0, 1], γ2 the pull back of [1, a1] and so on up
to γ5 the pull back of [a3,∞]. Finally let γ6 be the pull back of [−∞, 0]. The γi are
simple closed curves in C but to obtain cycles we need to orient them. For this we
do the following.

Since P is non zero in the upper half plane H, and the latter is simply connected,
we can choose on H a determination of the square root

√
P(x). Obviously we can

extend this determination to R. We take the one which is positive on [0, 1]. It will
then be negative on [a1, a2] and positive on [a3,∞]. It will also be pure imaginary
with negative imaginary part on [a1, a2], pure imaginary with positive imaginary part
on [a2, a3] and be pure imaginary with positive imaginary part on [−∞, 0].

With this determination of the square root, we can lift the natural orientation of R

to a part of γi . We extend this orientation to γi . With this, the intersection numbers
are now easy to compute they are γk ·γk+1 = 1 (k mod 6). As a consequence we have

γ3 = −γ1 − γ5 and γ6 = −γ2 − γ4. (5.2)

We generalize this convention, let a1, a2 and a3 be distinct complex numbers
different from 0 and 1. Let α1 be a simple arc in the complex plane joining 0 and 1
and not passing through any of the ai . Let α2 join 1 and a1 and not passing through
the other ai and intersecting α1 only in 1. Construct in the same way α3 from a1 to a2,
α4 from a2 to a3, α5 from a3 to ∞ and α6 from 0 to ∞ so the αi only intersect in one
point. Let γi be the pull back in C of αi . We can choose on each αi a determination
of the square root

√
P(x) so that the induced orientation on the γi is such that the

intersection numbers are γk · γk+1 = 1 (k mod 6). This is the convention we will use
when dealing with both∫

γi

a dx + b x dx

y
or

∫
αi

a dx + b x dx√
P(x)

. (5.3)
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Note that with this convention we again have (5.2).

5.4 Lemma. Let a be a real number, a < −9, and let C be the curve defined by

y2 = Pa(x) = x(x − 1)

(
x3 + a x2 − 8

3
a x + 16

9
a

)
.

Then for some real number λ �= 0,
(
C, λ x dx

y

)
is a translation surface in the SL2(R)

orbit of the translation surface tiled by 3 squares and holomorphic differential dz.

Proof. Let C be the curve defined by y2 = Pa(x). The conditions on a are exactly
the conditions for the roots of Pa to be real and distinct. Let (0, 1, a1, a2, a3) be
the ordered set of roots of Pa . By the construction of the uniformizing map FD of
Section 4, a1 will be the image under FD of the upper end point of arc 1 in Figure 9,
a2 the image of the upper endpoint of arc 2 and a3 the upper end point of arc 3.

By Remark 4.11, 2) we can choose t0 so that a1 is mapped to t02 by x �→ 3 (x−1),
a2 is mapped to f3(f3(t0))

2 and a3 to f3(t0)
2 (f3 as in Lemma 2.2).

On the curveC1 defined byw2 = z (z+3) (z− t02) (z−f3(t0)
2) (z−f3(f3(t0))

2)

the differential x dx
y

becomes, up to multiplication by
√

3,

ω1 = 3
dz

w
+ z dz

w
.

Let C2 be the genus 3 double cover of C1 defined by w2 = (z2 + 3) (z2 −
t0

2) (z2 − f3(t0)
2) (z2 − f3(f3(t0))

2). The quotient map from C2 to C1 is defined by
(z, w) �→ (z2, z w). From this it follows that the differential ω1 lifts to

ω2 = 2

(
3
dz

w
+ z2 dz

w

)
. (5.5)

Now C2 has the order 3 automorphism induced by f3 and defined by

ϕ3 : (z, w) �→
(

3 + z

1 − z
,

16w

(1 − z)4

)
. (5.6)

It is readily checked that ω2 is an invariant differential under this automorphism.
Let α be the simple closed geodesic in C1 defined by arc 1 in Figure 9. Since the

midpoint of arc 1 is the point (0, 0) inC1, α lifts to a simple closed geodesic α1 inC2.
Let α2 be the image of α1 under f3. Similarly let β be the simple closed geodesic in
C1 defined by arc 4. Since the midpoint of arc 4 is the point at infinity of C1, β also
lifts to a simple closed geodesic β1 in C2. Define β2 in the same way as α2.

Since the differential ω2 is ϕ3 invariant, we have∫
α1

ω2 =
∫
α2

ω2 and
∫
β1

ω2 =
∫
β2

ω2. (5.7)
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The isomorphism between C1 and C is induced by x �→ x/3 + 1, and by con-
struction this map sends t02 to a1, f3(f3(t0))

2 to a2 and f3(t0)
2 to a3. Recalling the

convention on the orientation of cycles and the choice of determination of
√
Pa(x),

we note that x/
√
Pa(x) will be positive real on [0, 1], negative real on [a1, a2], pos-

itive real on [a3,∞], pure imaginary with negative imaginary part on [1, a1] and so
forth.

Now the map from C2 to C1 is two to one on α1 and β1. On the other hand α2
is mapped to the geodesic (6–8) ∪ (2–12) in C1 and the covering map is one to one
on α2. The same is true for β2 which is mapped to (3–5) ∪ (9–11). Note that the
Weierstrass points on the image of α2 are

(
f3(f3(t0))

2, 0
)

and
(
f3(t0)

2, 0
)

and those
on the image of β2 are

(
t0

2, 0
)

and
(
f3(f3(t0))

2, 0
)
.

Summarizing and using (5.2), we find that (5.7) translates into∫ a2

a1

x dx√
Pa(x)

= −2
∫ 1

0

x dx√
Pa(x)

= −2
∫ ∞

a3

x dx√
Pa(x)

and∫ a3

a2

x dx√
Pa(x)

= −2
∫ a1

1

x dx√
Pa(x)

= −2
∫ 0

∞
x dx√
Pa(x)

.

(5.8)

Letting ω = xdx
y

, the relations of (5.8) show that in terms of the locally flat metric
defined byω, the points are the vertices of an L shaped polygon, as shown on the right
of Figure 10, and that the surface (S, ω) is in the deformation space of the surface
tiled by three squares and differential dz. �

0

∞a3

a2 a1

1

Figure 10

Proof of Theorem A. The image in moduli space of the SL2(R)-orbit of the surface
tiled by three squares is the modular curve defined by the congruence sub-group
generated by

(
1 2
0 1

)
and

(
0 −1
1 0

)
(see [Hu-Le2] Remark 1.10). This is well known to

be of genus 0 with two cusps and one elliptic point of order 2. In particular as an
algebraic curve it is smooth and irreducible.

On the other hand, by Remark 4.11 3) the moduli space of the surfaces considered
in Section 4 is an algebraic curve, closed in the moduli space of genus 2 surfaces.
By Proposition 4.1 and Lemma 5.4 the intersection of these two curves contains the
isomorphy classes of the real curves with three real components in the family. Since
this is of real codimension 1 the two curves in moduli coincide.
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To end the proof of Theorem A we only need to note that the differential ω has
a double zero at the vertices of the L shaped polygon. In terms of equation (4.1.1)
these vertices correspond to the point (0, 0). But this simply means that ω is a scalar
multiple of xdx

y
. �

To prove Theorem B we are going to identify the transformations considered in
Section 4 in the context of translation surfaces. For γ2 of Proposition 4.1 this is
relatively easy.

Consider the fundamental dodecagon for the surface. The circuit we have used to
obtain the integrals of (5.8) is illustrated on the left of Figure 11.

If we let

α =
∫ 1

0

x dx

y
and β =

∫ a1

1

x dx

y
(5.9)

then by (5.8) the sequence of integrals along the arcs of the circuit will be α, β, −2 α,
−2 β, α and β.

Now consider the circuit indicated on the right of Figure 11. Taking into account
the identifications (4.2) we find that the values of the integrals along this circuit
(starting again in 0) are

−β, α, 2 β, −2 α, −β, α. (5.10)

But as explained in Section 4 the transformation (�, tw) �→ (�2, tw2) of (4.10)
corresponds precisely to the rotation bringing the point p6 to the horizontal axis.
Hence the transformation corresponds to (α, β) �→ (−β, α). But the translation
surface is built from three copies of the elementary parallelogram with vertices
0, 2α, 2α + 2β, 2β and the transformation is obtained by applying

(
0 −1
1 0

)

0 p1

p6

0

p6

Figure 11

The description of the transformation (�, tw) �→ (
�, tw + 1

2

)
is a little more

involved. To make the arguments easier to follow we are going to change models on
both sides. For the translation surface this is easy we cut two of the parallelograms
forming the L shaped polygon and re-paste using the identifications. We obtain in this
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way a star shaped polygon as illustrated on the right of Figure 12. The identifications
are now by opposite sides.

For the hyperbolic model, we use the octagon with Fenchel–Nielsen coordinates
(�′′, 0, �, 2 tw, 2 �, tw) and pants decomposition (1.2).

0
p1

p2

p3
p4

p5

p6

p7 p8

q1q5

q8

Figure 12

Now consider the uniformizing function F of (1.4). Let b1 = F(p2), b2 = F(q1)

and b3 = F(p4) (see Figure 12). In general the bi are distinct from the roots ai of
the polynomial of Theorem A. Let F1 be F composed with

z �→ b1 − b3

b1 − b2
· z− b2

z− b3
.

Then

F1(qi) = 0, F1(p3) = F1(p6) = 1 and F1(p4) = F1(p8) = ∞. (5.11)

Moreover comparing lengths one can check that

F1(0) = a2, F1(p1) = F1(p5) = a1 and F1(p3) = F1(p7) = a3. (5.12)

In particular the integration circuit we have been using is the one illustrated by doted
arcs on the left of Figure 12 and starts at q5.

We want now to describe the transformation

(�′′, 0, �, 2 tw, 2 �, tw) �→ (�′′, 0, �, 2 tw + 1, 2 �, tw + 1
2 ) (5.13)

in terms of octagons and Fuchsian groups.
We split the transformation (5.13) in two. In the first step we transform the initial

octagon into the one for the coordinates (�′′, 0, �, 2 tw + 1, 2 �, tw). This is shown
on the left of Figure 13. We complete by the action of a half twist along the horizontal
geodesic [p5, p1] to obtain an octagon representing (�′′, 0, �, 2 tw + 1, 2 �, tw + 1

2 )

(see the right of Figure 13).
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p2

p3
p4

p5

p6

p7 p8

q1
q5

q8

p′
4

p′
8

m2 m1 0

p6

p8
p′

8

m2 m1

p′
4 p4

Figure 13

Call G the group generated by,

g1 = h0 · hp5, g2 = h0 · hp6, g3 = h0 · hp7, g4 = h0 · hp8

Where as before hp is the elliptic transformation of order 2 centered at p. Let
p′

8 = hp8(p7) and let

g′
4 = h0 · hp′

8
, g′′

2 = hm2 · hp6, g′′
3 = hm2 · hp8, g′′

4 = hm2 · hp′
8

CallG′ the group generated by g1, g2, g4 and g′
4 and callG′′ the group generated by

g1, g′′
2 , g′′

3 and g′′
4 . The groups G, G′ and G′′ are the groups identifying the opposite

edges of the three octagons of Figure 13.
Let C be the algebraic curve with equation as in Theorem A and associated to the

hyperbolic surface by Proposition 4.1. The function F1 we have introduced in (5.11)
and (5.12) is the uniformizing function for the groupG, giving the x-coordinate. Let
π1 be the G-uniformizing map from the unit disk to C such that the x-coordinate
of π1(z) is F1(z) and such that the induced orientation on the arcs along which we
integrate coincides with the one we have used above.

5.14 Lemma. Let

ω = π∗
1

(
x dx

y

)
.

Then ω is an invariant differential for the three groups G, G′ and G′′.

Proof. For G this is by definition. For G′ all we need to note is that p′
4 being in the

orbit of p8 underG, hp′
8

induces the hyperelliptic involution. Hence hp′
8

∗(ω) = −ω.
Since h0 acts in the same way we have the invariance under g′

4.
We have F1(0) = a2 and F1(p1) = F1(p5) = a1. On the other hand m1 and

m2 are the midpoints of [0, p1] and [p5, 0]. By Remark 4.11 1) we conclude that
F1(m1) = F1(m2) = 4/3.
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Now consider the curve C2 of genus 3 defined in Remark 4.11 2) and used in the
proof of Lemma 5.4 and let ϕ : C2 → C be the map defined by

ϕ : (x, y) �→
(
x2

3
+ 1,

x y

9
√

3

)
.

Note for further use that the image of the points with x-coordinate ±1 in C2 are the
points with x-coordinate 4/3 in C.

Let π2 be the map from the unit disk to C2 such that ϕ ·π2 = π1. From the above
we obtain that π2(m2) is a point with x-coordinate ±1 in C2.

Let f : (x, y) �→ (−x, y) in C2 and let ω2 = ϕ∗(x dx
y

)
. Up to multiplication by a

scalar this is the same as the ω2 of (5.5) and from this we obviously have f ∗(ω2) =
−ω2. Also since ω2 is ϕ3 invariant (ϕ3 as in (5.6)) we have (ϕ−1

3 f ϕ3)
∗(ω2) = −ω2.

But since π2(m2) is a fixed point of ϕ−1
3 f ϕ3, this involution is induced by hm2 .

Hence h∗
m2
(π∗

2 (ω2) = −π∗
2 (ω2) or since by definition of ω2 and π2, π∗

2 (ω2) = ω,
we have

h∗
m2
(ω) = −ω.

With the same argument as for G′ we conclude that ω is G′′ invariant. �

If

α =
∫ p6

q5

ω and β =
∫ p5

p6

ω

then by (5.8), (5.11) and (5.12) we also have∫ 0

p1

ω = −2 α,
∫ p7

0
ω = −2 β,

∫ p8

p7

= α,

∫ q8

p8

ω = β.

0
p1

p5

p6

p8

q5

q8

p′
8

m2 m1p′
5

Figure 14
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5.15 Lemma. We have∫ p′
5

p6

ω = β−α,
∫ m2

m1

ω = −2 α,
∫ p8

m2

ω = 2 α−2 β,
∫ p′

8

p8

ω = α,

∫ q8

p′
8

ω = β−α

(see Figure 14).

Proof. The arguments used in the proofs of Lemma 5.4 and Lemma 5.14 show that∫ 0

m1

ω =
∫ m2

0
ω =

∫ p5

m2

ω =
∫ p′

5

p5

ω = 1

2

∫ 0

p1

ω = −α.

This proves the assertion about the integral between m1 and m2. Moreover since we
clearly have ∫ p′

5

p6

ω =
∫ p5

p6

ω +
∫ p′

5

p5

ω = −α + β

the assertion for the integral between p6 and p′
5 is also proved.

For obvious reasons (see Figures 13 and 14) we have∫ p′
8

p8

ω =
∫ p8

p7

ω,

∫ p8

m2

ω =
∫ p8

0
ω −

∫ m2

0
ω and

∫ q8

p′
8

ω =
∫ q8

p8

ω −
∫ p8

p7

ω.

This proves the remaining three assertions of the lemma. �

Calling S the surface D/G an S′′ the surface D/G′′ we have shown that the values
of the integrals of ω along the circuits are respectively

α, β, −2 α, −2 β, α, β

α, β − α, −2 α, 2 α − 2 β, α, β − α.

In terms of the elementary parallelograms this transforms the one with vertices 0, 2α,
2(α + β), 2β into the one with vertices 0, 2α, 2β, 2(β − α) and this is obtained by
applying

(
1 0−1 1

)
and this ends the proof of Theorem B.

5.16 Examples. We can identify in terms of translation surfaces the three examples
of 4.14. The first, which has an automorphism of order 4 is obviously the surface
defined by three squares itself. The second is the transform of the first under

(−1 −1
1 0

)
or equivalently under

(
1 0−1 1

)
.

For the third example we note that
(

0 −1
1 1

)
must act as a rotation on the L-type

polygon. From this it is not hard to see that the corresponding surface is the one tiled
by six equilateral triangles.
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6. Conclusion and questions

There are other families to which we can apply the methods developed in Sections 2,
3 and 4. For instance one can apply the transformations of Aline Aigon to the family
of surfaces with an order 3 automorphism and proceed as in Section 3. We can also do
this for transforms of the family with an order 4 automorphism we have not considered
in this paper. Again for all these we will have an action of PSL2(Z) generated by
half twists. The first obvious question is to describe these also as translation surfaces.
For real curves with 3 real components and an order 4 automorphism there is an
easy interpretation in terms of “Swiss crosses” (see [Mc]), this will be developed in
a forthcoming paper.

At the other end we have SL2(R) orbits of surfaces tiled by squares and one of the
natural questions is: is the action of SL2(Z) also generated by fractional Dehn-twists
(and rotations of fundamental domains)?

In the other direction one can also ask the following. If (S, ω) is a translation
surface and (S′, ω′) is the transform of (S, ω) underU ∈ SL2(R) can one express the
Fenchel–Nielsen coordinates of S′ in terms of those of S?

In fact we can generalize further and consider primitive Teichmüller disks and ask
about the hyperbolic counterpart of the actions of SL(S, ω) and SL2(R).
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