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Erratum to ‘“The Huber theorem for non-compact conformally
flat manifolds”

Gilles Carron and Marc Herzlich

Abstract. An argument in our paper The Huber theorem for non-compact conformally flat
manifolds [Comment. Math. Helv. 77 (2002), 192-220] was not justified. Using recent work by
G. Tian and J. Viaclovsky, we show that our result holds true.

In [4] we consider a complete conformally flat Riemannian manifold (M", g) which
satisfies the Sobolev inequality :
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and whose Ricci tensor is in LZ. On page 208 we then assert that “diameter is
controlled from above and volume growth is controlled from below (from the Sobolev
inequality) on each annulus My, — M;-1,. We can then infer from Anderson—Cheeger
harmonic radius’ theory that the rescaled annuli (Myy, — My-1,,, ”;2 g) are covered
by a finite (and uniformly bounded) number of balls of uniformly bounded size where
the metric coefficients are C1%-close to the euclidean metric.” In fact, the trivial
extrinsic diameter bound is not enough to ensure Anderson—Cheeger compactness
(one needs an intrinsic diameter control) and this argument needs to be justified. This
is what we intend to do below.

First observe that the needed intrinsic diameter control can be replaced by an upper
bound on the volume growth of geodesic balls. Recently, G. Tian and J. Viaclovsky
[5] investigated an issue closely related to ours, and proved the following result:

Theorem ([5]). Let (X", g) be a complete noncompact Riemannian manifold of
dimension n > 3. If there exists a constant C; > 0 such that vol(B(q, s)) > Cis",
forany q € X,s > 0, if furthermore supg, |Kg| = o(r=2) as r — oo, where S(r)
is the sphere of radius r centered at a basepoint p, and if b1 (X) < oo, then there
exists a constant Cy so that

vol(B(p, s)) < Cas" foranys > 0. (2)
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Using this one can show that our argument remains true. Indeed, the Sobolev
inequality implies that the manifold has an euclidean lower bound on the volume
growth of geodesic balls. Moreover, Sobolev and L%—integrability of the Ricci cur-
vature imply that the space of L? harmonic 1-forms

HY M) ={h e LXA(T*M), da =0, d*a = 0}

and the first cohomology group with compact support HC1 (M) have finite dimensions
[2], [3]. In particular M has a finite number of ends. As it is proved in [4] that
Supg |Kgl = o(r~?) in our setting, one can apply Tian—Viaclovsky’s theorem if
one has finiteness of the first Betti number.

However the assumption on the first Betti number is only used in their paper to
insure that the manifold has a finite number of ends (which we already have) and a
finite number of bad connected components of annuli, as defined below. This is then
used to prove the upper bound on the volume growth. A bad component of an annulus
is defined as follows: if p is a point in a complete (connected) Riemannian manifold
(M, g), let B(r) be the geodesic ball of radius r centered at p and, for R > r, let the
annulus A(r, R) be the closure of B(R) — B(r). Let (r;) be an unbounded increasing
sequence of positive real numbers and note Ay = A(rg, rk+1)-

Definition ([5]). A connected component C of Ay is said to be bad if S(ry) N C is
disconnected. If S(r¢) N C is connected, we say that C is good.

We now state:

Claim. The Sobolev inequality and L 3 -integrability of the Ricci curvature imply that
the number of bad connected components of any sequence of annuli is finite.

This will follow from the following

Lemma. Ifthe image of HCl (M) in HY (M) is zero (for instance ichl (M), H'(M)
or H1 (M) is zero) then all connected components of Ay are good.

If the dimension of the image of HC] (M) in HY(M) is finite (for instance if one
of the spaces HC1 (M), H' (M) or #'(M) has finite dimension), then there are only
a finite number of bad connected components.

Proof. To prove the first part, let C be a bad connected component of Ag, then
S(rx) N C has at least two connected components let S1 be one of these connected
components and S, be the union of the remaining other components ; choose p; € S
and p> € S». By definition there is a continuous curve ¢ in € from p, to p;. And
because B(ry) is connected there is also a continuous curve ¢ in B(ry) from pj to p».
Let ye be the loop ca#cy. There also exist a smooth function f on C such that the
support of f is a neighborhood of S; C C, such that f is constant near S(rx) N C and
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suchthat f = 1on S7. Thenthe 1-formae = df has clearly an extension as a smooth
closed 1-form on M with support in a small thickening of S} in C. It is clear that

/ ae = 1.
Ye

Hence oe defines a non zero class in the first cohomology group with compact support
HC1 (M) and also in the first cohomology group H L(M). Now, M. Anderson ([1]) has
noticed that the space Im (HC1 (M) — H'(M )) always injects in the space of L?
harmonic 1-forms #' (M) and this yields the expected result.

To prove the second part of the lemma, let Cy, ..., Ci be different bad connected
components in a sequence (A;). We can assume that for a non decreasing sequence
(ji) one has G; C A,ji. Consider now the loops y; = ye,; and the 1-forms o; = ae;.
Then it is clear that

o =1, /()lj=0ifi<j.
Yi Vi
Hence k < dim [Im (H}(M) — H'(M))]. O

The proof of the claim is then done since our assumptions imply that the space of
L? harmonic 1-forms is finite dimensional, as already noticed.
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