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Arakelov theory of even orthogonal Grassmannians

Harry Tamvakis∗

Abstract. We study the Arakelov intersection ring of the arithmetic scheme OG which para-
metrizes maximal isotropic subspaces in an even dimensional vector space, equipped with the
standard hyperbolic quadratic form. We give a presentation of the ring CH(OG) (when OG(C)
is given its natural invariant hermitian metric) and formulate an ‘arithmetic Schubert calculus’
which extends the classical one for the cohomology ring of OG. Our analysis leads to a com-
putation of the Faltings height of OG with respect to its fundamental embedding in projective
space, and a comparison of the resulting formula with previous ones, due to Kaiser and Köhler
[KK] and the author [T3], [T4].

Mathematics Subject Classification (2000). Primary 14G40; Secondary 14M15, 05E0.

Keywords. Arakelov theory, orthogonal Grassmannian, characteristic classes, Schubert calcu-
lus, heights.

1. Introduction

In this paper we continue the author’s study of the arithmetic intersection theory of
projective schemes X defined over the ring of integers whose fiber at infinity is a
homogeneous space of a complex Lie group. The theory is most explicit when X(C)

is a hermitian symmetric space of compact type. In this case, the Arakelov Chow
group CH(X) of Gillet and Soulé [GS1] admits a natural ring structure, which is the
focus of our attention here.

The compact irreducible hermitian symmetric spaces have been classified by
É. Cartan [C]. Among them, the most interesting families are the type A Grassman-
nians and the maximal isotropic Grassmannians in the other classical Lie types. The
papers [GS2], [Ma], [T2] and [T3] studied the Arakelov Chow ring of Grassmannians
(in type A) and the Lagrangian Grassmannian (in type C), respectively. We consider
here the case of the even orthogonal Grassmannian OG = OG(n+ 1, 2n+ 2), which
parametrizes (one family of) isotropic subspaces of dimension n + 1 in a (2n + 2)-
dimensional vector space equipped with a smooth quadratic form, over any base field.

∗The author was supported in part by NSF grants DMS-0296023 and DMS-0401082.
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Although similar to the Lagrangian case, as we shall see, the analogous theory for
OG is substantially more difficult.

The key ingredient used in these works is the theory of characteristic classes for
algebraic vector bundles equipped with hermitian metrics [BC], [GS2]. Indeed, there
is a tautological short exact sequence of hermitian vector bundles over OG

E : 0 −→ S −→ E −→ Q −→ 0,

and the arithmetic Chern classes ĉi of Q ∼= S∗ together with the harmonic forms
on OG(C) generate CH(OG). We now have to deal with the following three main
problems: (i) find a presentation of CH(OG) in terms of generators and relations, (ii)
determine an arithmetic Giambelli formula which gives polynomials in the genera-
tors which represent ‘arithmetic Schubert classes’, and (iii) describe algorithms for
computing the structure constants in the multiplication table of CH(OG); this is the
arithmetic Schubert calculus (compare with [KT, §1]).

If�n+1 denotes the ring of symmetric functions in n+ 1 variables, then we have
an arithmetic characteristic class map

� : �n+1 −→ CH(OG); f �−→ f̂ (S∗).

The crucial fact is that � is multiplicative; this implies that the same polynomials
in the Chern classes of S∗ that solve the Giambelli problem in cohomology may
be used to define the arithmetic Schubert classes. Moreover, since � is an algebra
homomorphism, it may be used, together with a presentation of the Arakelov Chow
ring CH(OG), to understand the products of Schubert classes in CH(OG), following
[T2], [T3].

The added difficulty here is that there is an extra relation in the standard presenta-
tion of CH(OG), when compared to the Chow ring of the Lagrangian Grassmannian.
According to Borel [Bo], the ring CH(OG) is generated by the Chern classes of S
modulo the relations (i) c(S)c(S∗) = 1 and (ii) cn+1(S

∗) = 0. In the arithmetic
setting, the Whitney sum relation (i) becomes

ĉ(S) · ĉ(S∗) ≡ 1 + (0, c̃(E)),

where c̃(E) is a Bott–Chern form for the exact sequence E , which may be evaluated as
in the works cited previously. However, the second relation implies that the arithmetic
top Chern class ĉn+1(S

∗) is the class of a harmonic differential form in CH(OG),
whose computation is more challenging. To solve this problem, we first show that the
desired form is a constant rn times the class of the Chern form cn(S). The exact value
of rn is determined in §5, by comparing the formula for the Faltings height of OG
derived from the arithmetic Schubert calculus with the more complicated expression
for the same height in [T4, Thm. 6]. We note that the latter formula was obtained
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using a result of Kaiser and Köhler [KK], proved by completely different methods,
in addition to our work [T3] in the Lagrangian case.

The results of this paper were announced at the International Conference on
Arakelov Geometry in Luminy in May of 2002. The author is grateful to Vincent
Maillot and Christophe Soulé for their efforts in organizing this stimulating event.
Thanks are also due to Ira Gessel and Guoce Xin for their help with the proof of the
hypergeometric identity in Proposition 2, and to the anonymous referee for a careful
reading of the manuscript.

2. The Arakelov Chow ring CH(OG)

Let k be any field, E a vector space over k of dimension 2n+2, and let e1, . . . , e2n+2
be a basis of unit coordinate vectors in E. Define a hyperbolic quadratic form q on
E by setting, for any vector v = ∑

xiei ,

q(v) = x1x2n+2 + x2x2n+1 + · · · + xn+1xn+2.

The scheme of q-isotropic subspaces of maximal dimension n+ 1 splits into 2 con-
nected components, which are SO(2n+2) orbits; subspaces V and V ′ lie in the same
orbit (or family) if dim(V ∩ V ′) ≡ (n+ 1) (mod 2). The orthogonal Grassmannian
OG = OG(n + 1, 2n + 2) is the scheme which is isomorphic to the component
containing Span{e1, . . . , en+1}, over any base field k. This is a smooth Chevalley
scheme over Spec Z, which admits a cellular decomposition induced by the Bruhat
decomposition of SO(2n+ 2) (see e.g. [J, §13]).

We also let E denote the trivial vector bundle of rank 2n+ 2 over OG and S the
rank n+ 1 tautological subbundle of E. Using the quadratic form q, we can identify
the quotient bundle E/S with S∗. We thus have a universal short exact sequence

E : 0 −→ S −→ E −→ S∗ −→ 0

of vector bundles over OG.
For any abelian groupM , we letM 1

2
= M⊗Z Z

[ 1
2

]
. According to Borel [Bo], the

Chow ring CH(OG) 1
2

is presented as a quotient of the polynomial ring in the Chern

classes of S∗ modulo the relations

(i) c(S)c(S∗) = 1, (ii) cn+1(S
∗) = 0.

Relation (i) comes from the Whitney sum formula applied to E , while (ii) may be
understood as follows. Let H be a hyperplane in E such that the restriction of q to
H is non-degenerate. As H contains no isotropic subspace of dimension n + 1, the
sequence of vector bundles over OG

0 −→ S ∩H −→ S −→ E/H −→ 0 (1)
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is exact. Since the line bundle L = E/H is trivial, we deduce that cn+1(S) =
cn(S ∩H)c1(L) = 0 in CH(OG).

Let x = {x1, . . . , xn+1} denote the Chern roots of S∗. Each symmetric polynomial
φ in the {xi} corresponds to a characteristic class φ(S∗) in CH(OG). In terms of the
root variables {xi}, observe that relation (i) above may be written as

∏
i (1−x2

i ) = 1. It
follows that we can express CH(OG) 1

2
as a quotient of the ring Z 1

2
[x1, . . . , xn+1]Sn+1

modulo the relations

(i) ek(x
2) = 0, 1 � k � n, (ii) en+1(x) = x1 · · · xn+1 = 0,

where ek(x2) := ek(x2
1, . . . , x2

n+1) denotes an elementary symmetric function in the
squares of the root variables. Note that not all of the above root variables are necessary
in order to obtain a presentation. Indeed, setting xn+1 = 0 realizes CH(OG) 1

2
as a

quotient of the ring Z 1
2
[x1, . . . , xn]Sn modulo the relations ek(x2

1, . . . , x2
n) = 0, for

1 � k � n. However, the ‘extra’ root variable will be important in the arithmetic
setting.

We next give an analogous presentation of the Arakelov Chow ring CH(OG) 1
2
; the

beginning of our analysis follows that of [Ma], [T1], [T3]. Endow the trivial bundle
E(C) over OG(C) with a (trivial) hermitian metric h compatible with the quadratic
form q (i.e., such that the real part of h is the symmetric bilinear form on E(C)
induced by q). The metric h induces metrics on the bundles S, S∗, and E becomes a
sequence of hermitian vector bundles

E : 0 −→ S −→ E −→ S∗ −→ 0.

The Kähler form ωOG = c1(S
∗)/2 turns OG(C) into a hermitian symmetric space

with compact presentation

OG(C) ∼= SO(2n+ 2)/U(n+ 1).

Let G = (OG, ωOG) denote the corresponding Arakelov variety, in the sense of
[GS1].

The Chow ring CH(OG) and the ring Harm(OGR) of real ωOG-harmonic differ-
ential forms on OG(C) are related by natural isomorphisms

CH(OG)⊗Z R ∼= Harm(OGR) ∼= H∗(OG(C),R), (2)

where the third ring H∗(OG(C),R) is cohomology with real coefficients.
Elements in the Arakelov Chow group CHp(OG) are represented by arithmetic

cycles (Z, gZ), where Z is a codimension p cycle on OG and gZ is a current of type
(p − 1, p − 1) such that the current ddcgZ + δZ(C) is represented by a differential
form in Harmp,p(OGR). Since the homogeneous space OG admits a natural cellular
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decomposition, it follows that for each p, the exact sequence of [GS1, §3.3.5] is of
the form

0 −→ Harmp−1,p−1(OGR)
a−→ CHp(OG)

ζ−→ CHp(OG) −→ 0, (3)

where the maps a and ζ are defined by

a(η) = (0, η) and ζ(Z, gZ) = Z.

Summing (3) over all p gives the sequence

0 −→ Harm(OGR)
a−→ CH(OG)

ζ−→ CH(OG) −→ 0. (4)

For any symmetric polynomialφ, we will also require the differential formsφ(S∗)
in Harm(OGR) given by Chern–Weil theory, and the arithmetic characteristic classes
φ̂(S∗) in CH(OG). As in [T2], [T3], we agree that symmetric functions φ(x̂) and
ψ(x) in the formal root variables x̂ = {x̂1, . . . , x̂n+1} and x = {x1, . . . , xn} denote
arithmetic classes φ̂(S∗) and characteristic forms ψ(S∗), respectively. The latter are
identified, via the inclusion a, with elements in CH(OG).

Consider the abelian group

A = Z 1
2
[x̂1, . . . , x̂n+1]Sn+1 ⊕ R[x1, . . . , xn]Sn.

We adopt the notational convention that α̂ denotes α̂ ⊕ 0, β denotes 0 ⊕ β and any
product

∏
αiβj denotes 0 ⊕ ∏

αiβj , and define a product · in A by imposing the
relations α̂ · β = αβ and β1 · β2 = 0. In the first of these relations, the specialization
α̂ �→ αmeans that we remove the ‘hats’from all the variables x̂i and set the extraneous
variable xn+1 equal to zero. Define the harmonic numbers Hr by

Hr = 1 + 1

2
+ · · · + 1

r

and let pr(x) = ∑
xri denote the r-th power sum in the variables xi .

Consider the following two sets of relations in A:

R1 : ek(x2) = 0, 1 � k � n,

R2 : ek(x̂2) = (−1)k−1H2k−1p2k−1(x), 1 � k � n, en+1(x̂) = 1

2
Hnen(x),

where ek denotes the k-th elementary symmetric function in the indicated variables.
Let A denote the quotient of the graded ring A by the relations R1 and R2.

Theorem 1. There is a unique ring isomorphism

� : A → CH(OG) 1
2

such that
�(ek(x̂)) = ĉk(S

∗), �(ek(x)) = ck(S
∗).
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Proof. The initial part of the argument is similar to that in [T2, Thm. 1], so we will
outline the essential points. The inclusion and projection morphisms

R[x1, . . . , xn]Sn i−→ A
π−→ Z 1

2
[x̂1, . . . , x̂n+1]Sn+1

induce an exact sequence of abelian groups:

0 −→ R[x1, . . . , xn]Sn/(R1)
i−→ A

π−→ Z 1
2
[x̂1, . . . , x̂n+1]Sn+1/(R̂2) −→ 0 (5)

where the relations R̂2 are defined by

R̂2 : ek(x̂2) = 0, 1 � k � n, en+1(x̂) = 0.

To show that � is an isomorphism one uses the isomorphisms (2), the relations (i),
(ii) in CH(OG) 1

2
, and the five lemma to identify the short exact sequences (4) and

(5) (as in loc. cit.). Our definition of the product · agrees with the CH(G)-module
structure of the square zero ideal Harm(GR) ↪→ CH(G) (see [GS1]).

The first set of n relations in R2 come from the equation

ĉ(S) · ĉ(S∗) = 1 + c̃(E).

Here c̃(E) is the image in CH(G) of the Bott–Chern form of the exact sequence E for
the total Chern class (see [BC] and [GS2]). According to [T1, Prop. 3], we have

c̃j (E) = (−1)j−1Hj−1pj−1(S
∗)

for all j ; note that c̃j (E) vanishes when j is odd. If we express the two previous
equations using root notation we obtain

ek(x̂
2
1 , . . . , x̂

2
n+1) = (−1)k−1H2k−1p2k−1(x1, . . . , xn)

for 1 � k � n. These are the first set of relations in R2.
The last relation in R2 is new, and is equivalent to the equation

ĉn+1(S
∗) = 1

2
Hncn(S

∗). (6)

We first claim that there is a constant rn such that

ĉn+1(S
∗) = rncn(S

∗). (7)

To see this, observe that ĉn+1(S
∗) lies in Ker(ζ ), and hence is the image (under a) of a

linear combination of harmonic forms of degree 2n on OG(C). These harmonic forms
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are Poincaré dual to Schubert classes on OG; hence ĉn+1(S
∗) is a linear combination

of Schubert forms τλ = τλ(S
∗) (see §3.2).

Next, consider the natural inclusion j : OG(n, 2n) ↪→ OG(n+1, 2n+2) obtained
by writing the vector space E = k2n ⊕ k2. The bundle j∗S splits as an orthogonal
direct sumSn⊕L, whereSn is the tautological hermitian vector bundle over OG(n, 2n)
and L is a trivial hermitian line bundle. It follows that j∗ĉn+1(S

∗) = 0. The point
now is that each Schubert form τλ of degree 2n on OG(n + 1, 2n + 2) restricts to a
corresponding (non-zero) Schubert form τλ on OG(n, 2n), with the exception of the
special Schubert form cn(S

∗), which vanishes when restricted to OG(n, 2n). This
proves the above claim (7). More work is required to obtain the precise value of the
constant rn; we will do this after we study arithmetic Schubert calculus on OG. �

Remark. As in [T3, §2], the relations R1 and R2 may be expressed in the form

R′
1 :

n∏
i=1

(1 − x2
i t

2) = 1,

R′
2 :

n+1∏
j=1

(1 − x̂2
j t

2) · (1 + qa(x, t)) = 1,
n+1∏
j=1

x̂j = 1

2
Hn

n∏
i=1

xi

where t is a formal variable (note that R′
2 uses the multiplication in A). Here

qa(x, t) = t

2

n∑
i=1

(
log(1 + xit)

1 + xit
− log(1 − xit)

1 − xit

)
.

We next give a presentation of CH(OG) and CH(OG) with integer coefficients.
For this, we will use the special Schubert classes τi and τ̂i , defined by

τk = 1

2
ck(S

∗), 1 � k � n, and τ̂k = 1

2
ĉk(S

∗), 1 � k � n+ 1.

The Chow ring CH(OG) is a quotient of the polynomial ring Z[τ1, . . . , τn] modulo
the relations

τ 2
k + 2

k−1∑
p=1

(−1)pτk+pτk−p + (−1)kτ2k = 0

for all 1 � k � n (this presentation for the cohomology ring may be derived e.g. from
[P, §6]). To obtain the analogous presentation of CH(OG), as above, we identify the
τk’s with the images under the map a of the special Schubert forms in CH(OG).
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Theorem 2. The ring CH(OG) is presented as a quotient of the polynomial ring
Z[τ̂1, . . . , τ̂n+1]⊕ R[τ1, . . . , τn] (with the aforementioned product) modulo the rela-
tions

τ 2
k + 2

k−1∑
p=1

(−1)pτk+pτk−p + (−1)kτ2k = 0

for all k � n, together with the arithmetic relations

τ̂k
2 + 2

k−1∑
p=1

(−1)pτ̂k+pτ̂k−p + (−1)kτ̂2k = −1

2
H2k−1 det(τ ′

ij )1�i,j�2k−1 (8)

and

τ̂n+1 = 1

2
Hnτn.

Here {τ ′
ij } is a matrix with τ ′

1j = j τ1+j−i and τ ′
ij = τ1+j−i for i > 1.

Proof. The left hand side of equation (8) is related to ek(x̂2) by the formula

(
1 + 2

n+1∑
k=1

τ̂kη
k
)

·
(

1 + 2
n+1∑
k=1

(−1)kτ̂kη
k
)

=
n+1∏
j=1

(1 − x̂2
j η

2), (9)

where η is a formal variable. Expanding both sides of (9) and equating terms of like
degree gives

τ̂k
2 + 2

k−1∑
p=1

(−1)pτ̂k+pτ̂k−p + (−1)kτ̂2k = (−1)k

2
ek(x̂

2). (10)

Relation R2 equates the right hand side of (10) with − 1
2H2k−1p2k−1(x). We now

use the formula from [M, Ex. I.2.8] which expresses the power sums as a polynomial
in the elementary symmetric functions. This gives

p2k−1(x) = det(τ ′
ij )1�i,j�2k−1.

The rest of the relations in the theorem are clear. �

3. Arithmetic Schubert calculus

3.1. ˜P -polynomials. We will require the basic facts about partitions and theirYoung
diagrams which were used in [T3]. A partition λ = (λ1, . . . , λr) with distinct non-
zero parts λi is called strict. The length �(λ) is the number of non-zero parts λi ,
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and the weight |λ| = ∑
λi . Each partition λ is identified with its Young diagram of

boxes, and this is used to define the containment relation λ ⊃ μ for partitions. We let
Dn denote the set of strict partitions λ with λ1 � n. The shifted diagram of a strict
partition λ, denoted S(λ), is obtained by shifting the i-th row of the diagram of λ
i − 1 squares to the right, for each i > 1 (see Figure 1). For λ ⊃ μ, the shifted skew
diagram S(λ/μ) is obtained by removing the boxes in S(μ) from those of S(λ).

Figure 1. λ and S(λ) for λ = (4, 2, 1).

The P̃ -polynomials of Pragacz and Ratajski [PR] will be useful in our description
of Schubert calculus on OG. Let X = (X1, . . . , Xn) be an n-tuple of variables and
define P̃0(X) = 1 and P̃i(X) = ei(X)/2 for each i > 0. For nonnegative integers
i, j with i � j , set

P̃i,j (X) = P̃i(X)P̃j (X)+ 2
j−1∑
k=1

(−1)kP̃i+k(X)P̃j−k(X)+ (−1)j P̃i+j (X),

and for any partition λ of length � = �(λ), not necessarily strict, define

P̃λ(X) = Pfaffian[P̃λi ,λj (X)]1�i<j�r ,

where r is the smallest even integer such that r � �(λ).
These polynomials are related to the Q̃-polynomials used in [T3] by the equation

P̃λ(X) = 2−�(λ)Q̃λ(X). (11)

If�′
n denotes the Z-algebra generated by the polynomials P̃λ(X) for all λ ∈ Dn, then

�′
n is isomorphic to the ring �n = Z[X]Sn of symmetric polynomials in X, and the

set {P̃λ(X) | λ1 � n} is a free Z-basis of �′
n. It follows that there exist integers f νλμ,

independent of n, such that

P̃λ(X) P̃μ(X) =
∑
ν

f νλμ P̃ν(X). (12)

The corresponding coefficients eνλμ in the expansion of the product Q̃λ(X) Q̃μ(X)

are related to the f νλμ by the equation

eνλμ = 2�(λ)+�(μ)−�(ν)f νλμ.
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There are explicit combinatorial rules (involving signs in general) for comput-
ing the integers f νλμ, which follow from corresponding formulas for decomposing
products of Hall–Littlewood polynomials. When λ, μ and ν are strict partitions,
the f νλμ are classical Schubert structure constants for OG(n+ 1, 2n+ 2), and hence
nonnegative.

Recall that a skewYoung diagramμ/λ is a horizontal strip if it has at most one box
in each column. Define the connected components of such a diagram by specifying
that two boxes are connected if they share a vertex or an edge. We then have the
following Pieri type formula for λ strict:

P̃λ(X) P̃k(X) =
∑
μ

2N(λ,μ) P̃μ(X), (13)

where the sum is over all partitions μ ⊃ λ with |μ| = |λ| + k such that μ/λ is a
horizontal strip, and N(λ,μ) is one less than the number of connected components
of μ/λ. In particular, we have

P̃λ(X)P̃n(X) = P̃(n,λ)(X) (14)

for all λ ∈ Dn.
In [T3, Prop. 1] we proved a combinatorial formula for the product Q̃1(X)

N ,
which implies that

P̃1(X)
N =

∑
|λ|=N

gλP̃λ(X). (15)

Here gλ denotes the number of proper standard tableaux of shape λ, in the sense of
[T3, §3]. We say that a standard tableau T on λ is proper if for each position (i.j)
of a box in λ, there is an odd number of entries of T which (i) lie in positions (k, j)
for some k � i and (ii) are less than the (i, j + 1) entry (the condition is vacuous if
λ has no box in the (i, j + 1) position). In case λ is strict, gλ counts the number of
standard tableaux of shape S(λ), and is given by an explicit formula due to Schur [S]
(see also [M, Ex. III.8.12]):

gλ = |λ|!∏
i λi !

·
∏
i<j (λi − λj )∏
i<j (λi + λj )

. (16)

3.2. Classical theory. We review here the classical Schubert calculus which de-
scribes the multiplicative structure of CH(OG) with respect to the basis of Schu-
bert classes, following [P, §6]. We agree that τλ(x) will denote P̃λ(x), where
x = {x1, . . . , xn} are the Chern roots of the vector bundle S∗ (we have set the last
root variable xn+1 = 0 here). Similar conventions are used when dealing with P̃ -
polynomials in the other two kinds of root variables discussed in §2.
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The abelian group CH(OG) is freely generated by the Schubert classes τλ(x) =
τλ(S

∗), for all strict partitionsλ inDn. Recall that τλ(x) is the class of the codimension
|λ| Schubert varietyXλ, defined as follows: if {ei} is the basis of E chosen in §2 and
Fk = Span 〈e1, . . . , ek〉 then Xλ parametrizes the set

{V ∈ OG(k) | dim(V ∩ Fn+1−λi ) � i for 1 � i � �(λ)}
over any base field k.

The formulas in §3.1 give the following multiplication rules in CH(OG): for any
two partitions λ,μ ∈ Dn,

τλ(x)τμ(x) =
∑
ν∈Dn

f νλμτν(x); (17)

the non-negative integers f νλμ are the structure constants in CH(OG). When μ = k

is a single integer then τμ(x) = τk(x) is a special Schubert class, and (17) specializes
to the following Pieri rule (due to Hiller and Boe [HB]):

τλ(x)τk(x) =
∑

2N(λ,μ)τμ(x) (18)

the sum over all (strict) partitions μ ⊃ λ with |μ| = |λ| + k such that μ/λ is
a horizontal strip, with N(λ,μ) defined as in §3.1. Since OG(C) is a hermitian
symmetric space, (17) and (18) are valid on the level of harmonic differential forms
on OG(C).

3.3. Schubert calculus in CH(OG). We are now ready to extend the classical
Schubert calculus described in §3.2 to CH(OG). An edge-connected skew diagram
γ is called a rim hook if it contains no 2 × 2 square; the height ht(γ ) of γ is one less
than the number of rows it occupies. We define, in the context of shifted diagrams, a
double rim to be the skew diagram formed by the union of two rim hooks which both
end on the main diagonal� = {(i, i) | i > 0}. Each double rim δ = α ∪ β is a union
of two non-empty edge-connected pieces; α consists of the diagonals of length two
in δ (which are parallel to �) and β = δ � α is a rim hook. In this case we say that
the double rim is of type ( 1

2 |α|, |β|); a double rim of type (2, 3) appears in Figure 2.
For any such double rim δ and for any single rim hook γ , let

ε(δ) = (−1)|α|/2+ht(β)2 and ε(γ ) = (−1)ht(γ ).

Define ρ(n) to be the partition (n, n−1, . . . , 1), so thatDn consists of those strict
partitions λ with λ ⊂ ρ(n). Following [T3, §4.2], we let En be the set of non-strict
partitions λ with λ1 � n such that exactly one non-zero part rλ of λ occurs more
than once, and further, rλ occurs 2 or 3 times. In addition, let E′

n be the set of strict
partitions of the form (n+ 1, λ′), where λ′ ⊂ ρ(n− 1). Define a map

En ∪ E′
n −→ Dn : λ �−→ λ̄
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as follows: if λ ∈ En, let λ̄ be λ minus two of the repeated parts rλ, and if λ =
(n + 1, λ′), let λ̄ = (n, λ′). For example, if n = 6, λ = (6, 5, 5, 5, 2), and μ =
(7, 5, 2), then λ̄ = μ = (6, 5, 2).

Suppose that λ ∈ En and μ ∈ Dn are two Young diagrams with |μ| = |λ| − 1.
We say that there is a shifted hook operation from λ to μ if the shifted skew diagram
S(μ/λ̄) is a rim hook or double rim (with 2rλ − 1 boxes). If λ ∈ E′

n, we say that
there is a row operation from λ to μ if μ = λ̄. A mixed operation from λ ∈ En ∪E′

n

to μ ∈ Dn is a shifted hook operation (if λ ∈ En) or a row operation (if λ ∈ E′
n) from

λ to μ. Figure 2 illustrates three mixed operations to the partition (5, 3, 2), when
n = 5.

Figure 2. One row and two shifted hook operations to (5, 3, 2).

It is clear that there is at most one mixed operation from λ to μ; it determines an
integer ελμ ∈ {±1,±2} defined by

ελμ =
{
(−1)rλ−1ε(S(μ/λ̄)) if λ ∈ En,
1 if λ ∈ E′

n
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and a rational number ϑμλ by

ϑ
μ
λ =

{
1
2ελμH2rλ−1 if λ ∈ En,
1
2Hn if λ ∈ E′

n.

If there is no mixed operation from λ to μ then set ϑμλ = 0.
Next we define the arithmetic structure constants f̃ νλμ: for any ν ∈ En and λ, μ

strict such that |ν| = |λ| + |μ| − 1 let

f̃ νλμ =
∑

ρ∈En∪E′
n

ϑνρf
ρ
λμ (19)

where the f ρλμ are defined by (12). Observe that only partitions ρ such that there is a
mixed operation from ρ to ν contribute to the sum (19).

Theorem 3. (a) Let p be an integer between 0 and
(
n+1

2

) + 1. Each element z ∈
CHp(OG) has a unique expression

z =
∑
λ∈Dn|λ|=p

cλτλ(x̂)+
∑
λ∈Dn|λ|=p−1

γλτλ(x),

where cλ ∈ Z and γλ ∈ R.
(b) For λ and μ in Dn we have the multiplication rules

τλ(x̂) · τμ(x̂) =
∑
ν∈Dn|ν|=|λ|+|μ|

f νλμτν(x̂)+
∑
ν∈Dn|ν|=|λ|+|μ|−1

f̃ νλμτν(x),

τλ(x̂) · τμ(x) =
∑
ν∈Dn|ν|=|λ|+|μ|

f νλμτν(x),

τλ(x) · τμ(x) = 0.

Proof. The argument is similar to the proof of [T3, Thm. 2], and we will discuss the
main points here. First, we use the morphism ε : CH(OG) → CH(OG) defined by
ε(τλ(x)) = τλ(x̂) (for each λ ∈ Dn) to split the exact sequence (4). We thus obtain
an isomorphism of abelian groups

CH(OG) ∼= CH(OG)⊕ Harm(OGR),

proving the statement in part (a). By the definition, the τλ(x̂) for λ ∈ Dn are the
arithmetic Schubert classes.
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The only difficulty in part (b) lies in proving the first equality. We use the fact
that the arithmetic characteristic class map is an algebra homomorphism; this gives
the identity

τλ(x̂) · τμ(x̂) =
∑
ν∈Dn|ν|=|λ|+|μ|

f νλμτν(x̂)+
∑

ρ∈En∪E′
n|ρ|=|λ|+|μ|

f
ρ
λμτρ(x̂). (20)

All of the classes τρ(x̂) which appear in the second sum in (20) lie in the image of
a : Harm(OGR) ↪→ CH(OG), and it remains to equate them with explicit harmonic
forms on OG(C). This is done in the following result.

Proposition 1. For partitions λ ∈ En ∪ E′
n, we have

τλ(x̂) =
∑
ν

ϑνλτν(x), (21)

the sum over all ν ∈ Dn that can be obtained from λ by a mixed operation. If
λ /∈ Dn ∪ En ∪ E′

n then τλ(x̂) = 0.

Proof. For λ ∈ En, the relation (11) between P̃ - and Q̃-polynomials and [T3,
Eq. (18)] give

τλ(x̂) = 1

4
τλ̄(x̂) · erλ(x̂2) = (−1)rλ−1

4
H2rλ−1p2rλ−1(x)τλ̄(x); (22)

here we have used the first set of relations in R2 of §2. The following rule for
multiplying a P̃ -polynomial by a power sum pr(x) with r odd in Harm(OGR) is
derived from [T3, Eq. (19)]:

pr(x)τμ(x) = 2
∑
ν

ε(S(ν/μ))τν(x), (23)

the sum over all strict ν ⊃ μ with |ν| = |μ| + r such that S(ν/μ) is a rim hook or a
double rim. One now combines (22) with (23) to prove (21) in the case when λ ∈ En.

If λ = (n+ 1, λ′) ∈ E′
n, we use equation (14) twice and the last relation in R2 to

obtain

τλ(x̂) = τn+1(x̂) · τλ′(x̂) = 1

2
Hnτn(x) · τλ′(x̂) = 1

2
Hnτλ̄(x).

Finally, the fact that Im(a) is a square zero ideal in CH(OG) implies that for all
partitions λ with λ /∈ Dn ∪ En ∪ E′

n, we have τλ(x̂) = 0. This completes the proof
of the proposition. �

To finish the proof of Theorem 3, substitute (21) in the second sum in (20) and
gather like terms. �
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The Pieri formula (13) is used to obtain the following special case of Theorem 3:

Corollary 1 (Arithmetic Pieri rule). Let C(λ, k) be the set of partitions μ ⊃ λ with
|μ| = |λ| + k such that μ/λ is a horizontal strip. Then for λ ∈ Dn we have

τλ(x̂) · τk(x̂) =
∑
μ

2N(λ,μ)τμ(x̂)+
∑
ν

( ∑
ρ

2N(λ,ρ)ϑνρ
)
τν(x),

where the first (classical) sum is over μ ∈ Dn ∩ C(λ, k) and the second sum is over
ν and ρ with ρ ∈ (En ∪ E′

n) ∩ C(λ, k).

4. The Faltings height of OG

In this section, we use arithmetic Schubert calculus to compute the Faltings height
of OG with respect to its fundamental embedding in projective space. This is the
embedding given by the generator L of Pic(OG) with c1(L) = τ1(S

∗). In geometry
the degree of OG(k) (for any field k) with respect to L = O(1) is given by

degO(1)(OG(k)) = gρ(n). (24)

This is a direct consequence of equation (15). The Faltings height [F] of OG under
its fundamental embedding is an arithmetic analogue of the geometric degree (24).

The natural invariant metric on projective space induces a hermitian metric on L.
The height of G with respect to L = O(1) is the number

ht
O(1)

(OG) = d̂eg(ĉ1(O(1))
d | OG) = d̂eg(τ d1 (x̂)). (25)

Here the arithmetic degree map d̂eg is defined as in [BGS] and d = (
n+1

2

) + 1 is the
absolute dimension of OG. We have an equation

τd1 (x̂) = wn τρ(n)(x) = wn τρ(n)(S
∗)

in CH(OG), for some rational number wn. The height (25) is then given by

ht
O(1)

(OG) = 1

2

∫
OG(C)

wn τρ(n)(S
∗) = wn

2
.

The last equality holds because τρ(n)(S∗) is dual to the class of a point on OG(C).

Theorem 4. The height of the orthogonal Grassmannian G with respect to O(1) is
given by

ht
O(1)(OG) = 1

2

∑
0�a+2b<n
a,b�0

(−1)b2−δa0H2a+2b+1 g
[a,b]n + 1

4
Hn g

(n+1,ρ(n−1)) (26)

where δij is the Kronecker delta.
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Proof. We recall the fundamental set of diagrams E(n) from [T3, §5]. First, we agree
that a single rim hook β which ends on the main diagonal of a shifted diagram is a
double rim of type (0, |β|). Then

E(n) = {[a, b]n | a, b � 0, 0 � a + 2b < n}
where [a, b]n denotes the unique diagram λ ∈ En of weight d such that S(ρ(n)/λ̄)
is a double rim of type (a, 2b + 1). For example, one has

E(4) = {[0, 0]4, [1, 0]4, [2, 0]4, [3, 0]4, [0, 1]4, [1, 1]4}
= {(4, 3, 2, 1, 1), (4, 3, 2, 2), (4, 3, 3, 1),

(4, 4, 2, 1), (4, 2, 2, 2, 1), (3, 3, 3, 2)}.
The partitions in E(n) are exactly those which admit a shifted hook operation to

ρ(n). Moreover, (n + 1, ρ(n − 1)) is the unique partition with a row operation to
ρ(n). We now use equation (15) and Proposition 1 to obtain

τ1(x̂)
d =

∑
λ∈E(n)

gλτλ(x̂)+ g(n+1,ρ(n−1))τ(n+1,ρ(n−1))(x̂)

=
∑
λ∈E(n)

gλϑ
ρ(n)
λ τρ(n)(x)+ 1

2
Hn g

(n+1,ρ(n−1))τρ(n)(x).

The sum in the last equation is evaluated exactly as in the proof of [T3, Thm. 3], and
we obtain formula (26). �

It is clear from equation (26) that ht
O(1)

(OG) is a number in
∑2n
k=1

1
2kZ.

Examples. If n = 1, OG(2, 4) = P
1 and the formula gives ht

O(1)
(OG(2, 4)) = 1

2 .
For n = 2 we have E(2) = {[0, 0]2, [1, 0]2} = {(2, 1, 1), (2, 2)} and the relevant g
numbers are g(2,1,1) = 2, g(2,2) = 1, and g(3,1) = 2. Theorem 4 now gives

ht
O(1)

(OG(3, 6)) = 1

2
(H1 + H3)+ 1

2
H2 = 13

6

which coincides with the Faltings height of P
3, as expected. The case of n = 3 gives

the height of the six dimensional quadric OG(4, 8). The required g numbers are

g(3,2,1,1) = 8, g(3,2,2) = 3, g(3,3,1) = 4, g(2,2,2,1) = 1, g(4,2,1) = 7.

It follows that

ht
O(1)

(OG(4, 8)) = 2H1 + 3H3 + 2H5 = 181

15
.
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This agrees with the known result from [CM, Cor. 2.2.10]. Finally, when n = 4 we
find (using the computer program Magma) that

g(4,3,2,1,1) = 88, g(4,3,2,2) = 30, g(4,3,3,1) = 36, g(4,4,2,1) = 41,

g(4,2,2,2,1) = 22, g(3,3,3,2) = 8, g(5,3,2,1) = 66,

and therefore

ht
O(1)

(OG(5, 10)) = 1

2
(44H1 + 19H3 + 33H4 + 28H5 + 41H7).

5. A comparison of height formulas

In this section we finish the proof of Theorem 1 by computing the exact value of the
constant rn in (7). This will be done by comparing the height formula derived in the
last section with the corresponding formula from [T4]. If we substitute rn in place of
Hn/2 in the last relation R2 of §2 and carry out the subsequent analysis in §3 and
§4, we arrive at the following formula for the height of OG under its fundamental
embedding:

ht
O(1)

(OG) = 1

2

∑
0�a+2b<n
a,b�0

(−1)b2−δa0H2a+2b+1 g
[a,b]n + rn

2
g(n+1,ρ(n−1)). (27)

For each a, b � 0 with a + 2b < n, let 〈a, b〉n denote the partition in Dn whose
set of parts is {1, . . . , n} � {a + 2b + 1, a}. The more complicated formula for the
Faltings height of OG obtained in [T4, Thm. 6] states that

ht
O(1)

(OG) = nd

4
gρ(n) + 1

2

∑
0�a+2b<n
a,b�0

(−1)b2−δa0 H2a+2b+1 g
[a,b]n

− 1

2

∑
0�a+2b<n
a,b�0

(−1)a2−δa0

a + b + 1

(
d

2a + 2b + 2

)
g〈a,b〉n .

Subtracting (27) from the previous equation, we obtain

nd

2
gρ(n) − rn g

(n+1,ρ(n−1)) =
∑

0�a+2b<n
a,b�0

(−1)a2−δa0

a + b + 1

(
d

2a + 2b + 2

)
g〈a,b〉n . (28)

We are fortunate that all of the g numbers in (28) are indexed by strict partitions, and
hence may be computed using formula (16). This gives

g(n+1,ρ(n−1)) = d

2
gρ(n) (29)



472 H. Tamvakis CMH

and, setting (s, t) = (a + 2b + 1, a),(
d

s + t + 1

)
g〈a,b〉n = d

4(s + t + 1)

s − t

s + t

(n+ s)! (n+ t)!
(s + t)! s! t ! (n− s)! (n− t)! g

ρ(n).

(30)
Using (29) and (30) in (28), we deduce that the desired equation rn = Hn/2 is
equivalent to the identity displayed in the next Proposition.

Proposition 2.∑
0�t<s�n
s+t odd

(−1)t

(s + t + 1)2
s − t

s + t

(n+ s)! (n+ t)!
(s + t)! s! t ! (n− s)! (n− t)! = n− 1

2
Hn. (31)

Proof. Let an denote the left hand side of (31). For n > 1, we have

an − an−1 = 2n
∑

0�t<s�n
s+t odd

(−1)t (s − t) (n− 1 + s)! (n− 1 + t)!
(s + t + 1)2 (s + t)! s! t ! (n− s)! (n− t)! .

Hence it will suffice to prove that, for n > 1,

S :=
∑

0�t<s�n
s+t odd

(−1)t (s − t) (n− 1 + s)! (n− 1 + t)!
(s + t + 1)2 (s + t)! s! t ! (n− s)! (n− t)! = 1

2n

(
1 − 1

2n

)
.

We now substitute s = u− t in the above summand and express the sum over t using
hypergeometric notation. Observe that this introduces an extraneous term of 1/n2

when u = −1. We obtain the equation

S + 1

n2 =
∑
u odd

u�(n+ u)

n�(u+ 2)2�(n+ 1 − u)
4F3

( −u, 1 − u/2, −n, n
−u/2, 1 − u+ n, 1 − u− n

∣∣∣∣ 1

)
.

The identity from [B, §4.3, (3)] for a well-poised 5F4 implies that

4F3

( −u, 1 − u/2, −n, n
−u/2, 1 − u+ n, 1 − u− n

∣∣∣∣ 1

)
= (1 − u)n (

1
2 + u

2 )n

(u)n (
1
2 − u

2 )n
, (32)

where (x)n = x(x + 1) · · · (x + n− 1) is the Pochhammer symbol. Now substitute
(32) into the previous formula for S, set u = 2v − 1, and express the result as a
hypergeometric series. We obtain that

4n2S + 1 = 3F2

(
n, −n, − 1

2
1, 1

2

∣∣∣∣ 1

)
.
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The 3F2 transformation formula

3F2

(−n, a, b
c, d

∣∣∣∣ 1

)
= (c − a)n(d − a)n

(c)n(d)n
·3F2

(−n, a, a + b − c − d + 1 − n

a − d + 1 − n, a − c + 1 − n

∣∣∣∣ 1

)
with a = −1/2, b = n, c = 1, and d = 1/2 gives

3F2

(
n, −n, − 1

2
1, 1

2

∣∣∣∣ 1

)
= ( 3

2 )n

( 1
2 )n

· 3F2

(−n, −1, − 1
2−n, − 1

2 − n

∣∣∣∣ 1

)

= (2n+ 1) · 2F1

(−1, − 1
2− 1

2 − n

∣∣∣∣ 1

)
= 2n,

where the last equality follows by Gauss’s hypergeometric theorem. Therefore

S = 1

2n
− 1

4n2 ,

as desired.
Guoce Xin has pointed out a different proof of (31), using a variant of Zeilberger’s

creative telescoping method [PWZ, §6]. Let

F(n, s, t) = (−1)t

(s + t + 1)2
s − t

s + t

(n+ s)! (n+ t)!
(s + t)! s! t ! (n− s)! (n− t)! .

Applying Zeilberger’s algorithm, one shows that the second difference

�2F(n, s, t) = F(n+ 2, s, t)− 2F(n+ 1, s, t)+ F(n, s, t)

satisfies

�2F(n, s, t) = G(n, s, t)−G(n, s + 1, t)+H(n, s, t)−H(n, s, t + 1), (33)

where

G(n, s, t) = (−1)t
A

N

s

s + t

(n+ s)!(n+ t)!
(s + t)! s! t ! (n+ 2 − s)! (n+ 2 − t)!

and

H(n, s, t) = (−1)t
B

N

t

s + t

(n+ s)!(n+ t)!
(s + t)! s! t ! (n+ 2 − s)! (n+ 2 − t)! .

Here N = (n+ 1)(n+ 2) and

A = N2 + 2t (t − s)N + t (1 − t)(s2 + t);
B = N2 + (2s2 − 2t2 − 4st + s + t)N + (t − 1)(2s3 + s2t − s2 + t2 + st).
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Equation (33) is checked by dividing both sides by F(n, s, t), and verifying the
resulting identity of rational functions. Let bn = 2n− Hn. To prove (31), it suffices
to show that

2�2an = �2bn = 1

N
. (34)

Equation (34) is proved by summing (33) over all s, t with 0 � s, t � n + 2 and
noting that

(G(n, s, t)+H(n, s, t))|s=t=0 = 1

N
. �

Remark. It would be interesting to have a direct computation of the constant rn, for
instance by evaluating the Bott–Chern form of the exact sequence (1), or an analogous
sequence over isotropic flag bundle of E → OG. Although more elementary than
the above comparison of heights, the combinatorial analysis required by such a direct
approach appears difficult.
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