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Abstract. We show that a special case of the equivariant Tamagawa number conjecture implies
explicit restrictions on the structure of ideal class groups that are in general much finer than
those which can be obtained by using the method of Thaine.
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1. Introduction

In [1], Bley and the first-named author showed that a particular case of the equiv-
ariant Tamagawa number conjecture of [9, Conjecture 4] implies, in the setting of
Galois extensions of number fields, the existence of elements satisfying a variety of
rather explicit ‘Stark-type’ conditions. More recently, the relevant special case of [9,
Conjecture 4] has been verified for absolutely abelian fields [11] and an analogous
conjecture for global function fields has been verified at all primes different from
the residue characteristic [6]. In addition, the approach of [1] has been developed in
[5], [6], [7] to prove refinements and generalisations of certain much-studied ‘refined
abelian Stark conjectures’ that are due to inter alia Gross, Rubin and Tate.

The main insight of the present article (in Theorem 3.1) is that the approach of [1]
can in certain cases be further refined to show that the Tamagawa number formalism
predicts explicit structural information about ideal class groups that is in general very
much finer than that which can be obtained by applying the celebrated method of
Thaine [26] (as already used to spectacular effect by Rubin in [23]). Indeed, the
original motivation behind this article was some striking recent work of Greither and
Kuc̆era in [16] proving annihilation statements for the class groups of a restricted
family of absolutely abelian fields, improving upon those that can be obtained by the
method of Thaine in that the ‘special elements’ involved are much better adapted to
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the purpose at hand than are the Sinnott circular units which Thaine’s method would
use. In fact, the special elements in [16] arise by ‘dividing’ the Sinnott circular units
by certain augmentation elements of the associated integral Galois group ring, and
are constructed by means of rather involved combinatorial methods.

By contrast, in this article we shall combine some well known techniques and
results of homological algebra with the general approach of [1] to show that the
existence of the special elements constructed by Greither and Kuc̆era in [16] is directly
implied by the validity of the relevant case of [9, Conjecture 4]. By replacing the direct
use of elaborate combinatorial methods with a reduction to the general formalism of
[1], we obtain several rather concrete advantages. For example, our approach applies
equally well in the setting of global function fields, as well as to extensions for
which the associated L-functions have multiple-order zeroes at s = 0 (rather than
only first-order zeroes, as in [16]), in which case it predicts the existence of suitable
‘systems’ of special elements, and it also allows us to answer a question explicitly
raised by Greither and Kuc̆era in [16] by showing that the special element described
in [loc. cit., Theorem 1] can be directly related to the Fitting ideals, rather than the
annihilators (as in [loc. cit., Theorem 2]), of certain natural class groups (for more
details see Remark 3.3). At the end of the article we also construct an explicit family
of extensions showing that the cyclicity hypothesis used by Greither and Kuc̆era in
loc. cit. is indeed necessary in order to guarantee the existence of suitable special
elements.

It is a pleasure for us to thank Manuel Breuning, Cornelius Greither and Radan
Kuc̆era for a number of helpful conversations and observations. We are also grateful
to the referee for several suggestions which helped to improve the exposition.

In the sequel all unadorned tensor products are to be regarded as computed in the
category of (complexes of) abelian groups.

2. The leading term conjecture

2.1. Formulation of the conjecture. Let K/k be a nontrivial abelian extension of
global fields with Galois group G. Let S be a finite non-empty set of places of k

containing all archimedean places (if any) and all those that ramify in the extension
K/k. We write YK,S for the free abelian group on the set of places S(K) of K which
lie above those in S and XK,S for the kernel of the homomorphism YK,S → Z that
sends each element of S(K) to 1. We write OK,S for the ring of S(K)-integers in K

and we set UK,S := Spec(OK,S) and AK,S := Pic(OK,S).
We define the S-truncated C[G]-valued L-function of K/k by setting

θK/k,S(s) :=
∑
χ

LK/k,S(s, χ−1)eχ ,
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where the index χ runs through all elements of Hom(G, C×), LK/k,S(s, χ) denotes
the S-truncatedArtin L-function and eχ := (1/#G)

∑
g∈G χ(g)g−1 is the idempotent

at χ . Its leading term at s = 0 is then θ∗
K/k,S(0) := ∑

χ L∗
K/k,S(0, χ−1)eχ , where

L∗
K/k,S(0, χ) is the leading coefficient in the Taylor expansion of LK/k,S(s, χ) at 0.

It is easily shown that θ∗
K/k,S(0) belongs to R[G], and in the remainder of this section

we recall a conjectural description of the Z[G]-submodule of R[G] that is generated
by θ∗

K/k,S(0).
The key ingredient in this conjectural description is the determinant of a perfect

complex of Z[G]-modules that is described in the following result. In order to state
this result we write D(Z[G]) for the derived category of the abelian category of G-
modules. For any object C• of D(Z[G]) with differential di in each degree i and any
integer m we write C•[m] for the complex which is equal to Ci+m in each degree i

and for which the differential in degree i is equal to (−1)mdi+m. For any G-module
M and integer m we write M[m] for the complex which is equal to M in degree −m

and is equal to 0 in all other degrees.
In the following result we use the complex R�c,ét(UK,S, Z) that is defined in

[8, (3)]. We recall that this complex is an object of D(Z[G]) which computes the
cohomology ‘with compact support’ of the constant étale sheaf Z on UK,S .

Lemma 2.1. There exists a complex �̃•
S of Z[G]-modules of the form

�0
S

d−→ �1
S −→ XK,S ⊗ Q

which has both of the following properties.

(i) There exists a distinguished triangle in D(Z[G]) of the form

�̃•
S → HomZ(R�c,ét(UK,S, Z), Q/Z[−3]) → Ô×

K,S/O×
K,S[0] → �̃•

S[1]
where Ô×

K,S denotes the profinite completion of O×
K,S and the second arrow is

the unique morphism in D(Z[G]) which induces upon cohomology (in degree 0)

the composite of the canonical identification of

H 0(HomZ(R�c,ét(UK,S, Z), Q/Z[−3]))
with Ô×

K,S and the natural projection from Ô×
K,S to Ô×

K,S/O×
K,S .

(ii) �0
S is a finitely generated cohomologically-trivial G-module, �1

S is a finitely
generated free Z[G]-module, and the distinguished triangle in claim (i) induces
exact sequences of the form

0 −→ O×
K,S −→ �0

S

d−→ �1
S −→ X′

K,S −→ 0 (1)

0 −→ AK,S −→ X′
K,S −→ XK,S −→ 0. (2)
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Proof. An explicit description of the complex HomZ(R�c,ét(UK,S, Z), Q/Z[−3])
allows to easily deduce the existence of a complex �̃•

S with all of the properties stated
above. Indeed, if AK,S is trivial, then this is the method used by Flach and the first-
named author in [8, Proposition 3.1] to prove the existence of just such a complex
�̃•

S (we note that whilst the argument of loc. cit. is phrased solely in terms of number
fields, it extends immediately to the case of global function fields). Further, in the
general case the explicit computation of HomZ(R�c,ét(UK,S, Z), Q/Z[−3]) that is
given in [loc. cit., pp. 1356–1358] can be completed in exactly the same way even
if AK,S(∼= H 1

ét(UK,S, Gm)) is non-trivial and this leads directly to the existence of a
complex �̃•

S with all of the required properties. �

For any commutative ring R we write DetR for the determinant functor of Knudsen
and Mumford [19], valued in the category P (R) of graded invertible R-modules, and
for any object (L, r) of P (R) we set (L, r)−1 := (HomR(L, R), −r) (which is
again an object of P (R)).

In terms of the notation of Lemma 2.1 we write �•
S for the perfect complex of

Z[G]-modules which is equal to �0
S

d−→ �1
S , where the first term is placed in degree 0

and the cohomology groups are identified with O×
K,S and X′

K,S by means of (1). Then
we obtain an isomorphism

ϑ�•
S,R : DetR[G](�•

S ⊗ R) ∼= (R[G], 0)

in P (R[G]) by composing the isomorphism

DetR[G](�•
S ⊗ R) ∼= DetR[G](O×

K,S ⊗ R) ⊗P (R[G]) DetR[G](XK,S ⊗ R)−1

that is induced by the scalar extension of (1) with the map DetR[G](RegK,S)⊗P (R[G])id
and then the evaluation pairing on the space DetR[G](XK,S ⊗ R), where RegK,S

denotes the R[G]-equivariant isomorphism O×
K,S ⊗ R → XK,S ⊗ R which at each

element u of O×
K,S satisfies

RegK,S(u) = −
∑

w∈S(K)

log | u |w ·w,

with | · |w denoting the normalised absolute value of each place w.

Conjecture C(K/k). One has an equality in P (Z[G]) of the form

(θ∗
K/k,S(0) · Z[G], 0) = ϑ�•

S,R(DetZ[G]�•
S).

Remark 2.2. Under the conditions of Lemma 2.1, the complex �•
S is unique to within

an isomorphism in D(Z[G]) that induces the identity map on all (non-zero) degrees of
cohomology, and this can be used to show that the (graded) lattice ϑ�•

S,R(DetZ[G]�•
S)

depends only upon the pair (K/k, S).
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Remark 2.3. The same argument as used to prove [4, Theorem 2.1.2 (i)] shows that
the validity of Conjecture C(K/k) is independent of the chosen set S. Further, if S

is large enough to ensure that AK,S vanishes, then �•
S coincides with the complex

described in [loc. cit., Proposition 2.1.1] and [8, Remark following Proposition 3.1]
(in the number field case) and also in [5, §2]. It follows that Conjecture C(K/k)
coincides with the conjectures studied in [4], [8], and is therefore equivalent (in
the number field case) to the ‘Equivariant Tamagawa Number Conjecture’ of [9,
Conjecture 4(iv)] as applied to the pair (h0(Spec K), Z[G]), where h0(Spec K) is
considered as a motive that is defined over k and has coefficients Q[G] (see [4,
Theorem 2.4.1] or [10, §3] for different proofs of this fact). Since G is abelian, this
observation shows that Conjecture C(K/k) implies the relevant special case of the
‘Generalised Iwasawa Main Conjecture’ formulated by Kato in [18, §3.2] (cf. [10,
§2] in this regard). In addition, one knows that Conjecture C(K/k) is valid if either
k = Q (cf. [11, Theorem 8.1, Remark 8.1], [14, Theorem 5.1]) or k is a global function
field whose characteristic is coprime to the order of G [6, Corollary 1, Remark 5].

Remark 2.4. If K/k is an extension of global function fields, then �•
S can also be

interpreted in terms of the Weil-étale cohomology of Gm on UK,S [6, §2.2]. In partic-
ular, if K = k is a global function field, then one can show that Conjecture C(K/k)
is equivalent to a special case of the conjecture formulated by Lichtenbaum in [20,
Conjecture 8.1e)].

2.2. An explicit reinterpretation. In this section we impose certain additional hy-
potheses on K/k in order to give an interpretation of Conjecture C(K/k) in terms of
the existence of S-units satisfying a variety of explicit conditions. This reinterpreta-
tion arises by combining the approach of Bley and the first-named author in [1] with
that of Rubin in [24] and will be used in the next section to prove our main result.

For convenience we now label, and hence order, the elements of S as {vi : 0 ≤
i ≤ n}. For each such index i we choose a place wi of K above vi , we let Gi denote
the decomposition group of wi in G, and we set Ki := KGi . For any place w of K

and a subfield L, we write wL for the place of L induced by w, and we abbreviate
(wi)L by wi,L. We assume throughout that there exists a strictly positive integer r

with r < n which is such that Gi is trivial for each index i with 1 ≤ i ≤ r .
We write r(χ) for the order of vanishing of the meromorphic function LS(s, χ)

at s = 0.

Lemma 2.5. For each nontrivial character χ of G, the integer r(χ) is equal to the
number of places vi in S for which χ is trivial on Gi .

If χ is the trivial character, then r(χ) is equal to n.

Proof. This follows immediately from [25, Chapter I, Proposition I.3.4]. �
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For each prime p we write Z(p) for the p-localisation of Z.

Lemma 2.6. Assume that #G is coprime to both #(K×)tors and #AK,S and that
Conjecture C(K/k) is valid. Assume also that G0 = G, that Gi is trivial if 1 ≤ i ≤ r

and that Gi is cyclic if r < i ≤ n. For each integer i with r < i ≤ n fix a generating
element gi of Gi .

Then for each j with 1 ≤ j ≤ n there exists an element εj of O×
Kj ,S which satisfies

all of the following conditions.

(i) If ES denotes the G-submodule of O×
K,S that is generated by {εj : 1 ≤ j ≤ n},

then the index (O×
K,S : ES) is finite and coprime to #G.

(ii) If r < j ≤ n, then for each place w of K the local symbol (εj , Kw/(Kj )wKj
) is

equal to gj if w is equal to wj and is equal to the identity element in all other
cases.

(iii) Let M denote the n × n matrix in R[G] which has (i, j)-th entry equal to

Mij :=
{

yij , if 1 ≤ i, j ≤ r,

yij + δij (gi − 1), otherwise

where yij denotes the unique element of R[G] · ∑
g∈Gj

g which satisfies

1

#Gi

RegK,S(εi) =
j=n∑
j=1

yij (wj − w0) (3)

and δij is equal to 1 if i = j and is equal to 0 otherwise. Then FittZ[G](AK,S)

is an invertible ideal of Z[G] and there exists an element x of
⋂

p|#G Z(p)[G]×
which satisfies both

θ∗
K/k,S(0) = x det(M) and Z[G]x−1 = FittZ[G](O×

K,S/ES)FittZ[G](AK,S)−1.

Proof. This is merely a slight elaboration of the main results of Bley and the first-
named author in [1] and hence follows directly from an explicit computation of the
image of DetZ[G]�•

S under the map ϑ�•
S,R. Indeed, under the stated hypotheses on

K/k and S, the existence of a set of elements {εj : 1 ≤ j ≤ n} satisfying claims (i)
and (ii) is proved in [loc. cit., Theorem 3.2a), b)] and then, given the definition of
the matrix M in claim (iii), the existence of an element x of Q[G]× which satisfies
the last two displayed equalities of claim (iii) follows from the argument of [loc. cit.,
Theorem 2.3] (any interested reader can find more details as to the latter deduction
in [6, Proposition 6.1, (19), (20)]). It therefore only remains for us to show that any
such element x must belong to Z(p)[G]× for each p dividing #G. But this follows
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because for each such p claim (i) combines with our assumption that #G is coprime
to #AK,S to imply that

Z(p)[G]x−1 = Z[G]x−1 ⊗ Z(p)

= FittZ(p)[G]((O×
K,S/ES) ⊗ Z(p))FittZ(p)[G](AK,S ⊗ Z(p))

−1

= FittZ(p)[G](0)FittZ(p)[G](0)−1 = Z(p)[G]. �

We now consider an intermediate field L = KH between K and k and set � :=
Gal(L/k) ∼= G/H . We assume that the ordering of S is such that there exists an
integer rL such that vi is totally split in L (or equivalently Gi ⊆ H ) if 1 ≤ i ≤ rL
and that vi is not totally split in L if rL < i ≤ n. Note that this implies rL ≥ r .
Following the approach of [24], we observe that there exists a unique element ηL,S

of the space R ⊗ ∧rL
Z[�] O

×
L,S which satisfies

( ∧rL
R[�] RegL,S

)
(ηL,S) = lims→0 s−rLθL/k,S(s) · ∧i=rL

i=1 (wi,L − w0,L) (4)

and is such that for each element χ of Hom(�, C×) one has eχ (ηL,S) �= 0 if and only
if eχ · lims→0 s−rLθL/k,S(s) �= 0.

Proposition 2.7. Assume the hypotheses of Lemma 2.6 and the previous paragraph.
Then in Q ⊗ ∧rL

Z[�] O
×
L,S we have

ηL,S = x

j=n∏
j=rL+1

(gj − 1) · ∧i=rL
i=1 NKi/Ki∩Lεi.

Proof. Let eH = 1
#H

∑
h∈H h, and write qH : R[G]eH → R[�] for the R[G]-

isomorphism which sends eH to 1. The complex characters of � are in bijec-
tion with those characters of G which are trivial on H , and [25, 4.2.3] shows
that LK/k,S(s, InfG

� (χ)) = LL/k,S(s, χ) for each such character χ . The criteria
of Lemma 2.5 show that LL/k,S(s, χ) vanishes at s = 0 to order at least rL, and to
order exactly rL if InfG

� χ is nontrivial on each of the subgroups GrL+1, . . . , Gn. We
write e := ∑

χ eInfG
� (χ), where the sum is over these χ where the order of vanishing is

exactly rL. Then, setting θ
rL
L/k,S(0) := lims→0 s−rLθL/k,S(s), Lemma 2.6 (iii) shows

that
θ

rL
L/k,S(0) = qH (xe det(M)).

For each integer i with 0 ≤ i ≤ n we set Ti := ∑
g∈Gi

g ∈ Z[G]. Then we may
write M in the block form

M = Y +
(

0 0
0 


)
,
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where Y has (i, j)-th entry yij ∈ R[G] ·Tj and 
 is the (n− rL)× (n− rL) diagonal
matrix with (j, j)-th entry grL+j − 1 for 1 ≤ j ≤ n − rL.

Lemma 2.5 shows that if j satisfies rL < j ≤ n then eTj = 0, and so eyij = 0
for all i and j with 1 ≤ i ≤ n and rL < j ≤ n. Therefore the matrix eM takes the
form

eM =
(

M ′ ∗
0 e


)
,

where M ′ is the rL × rL matrix with (i, j)-th entry eyij . Set tS := ∏j=n
j=rL+1(gj −1) ∈

Z[�]; here the product is understood to be the identity element of Z[�] if rL = n.
We then have e det(M) = tS det(M ′). Now

det(M ′) · ∧i=rL
i=1 (wi,L − w0,L) = ∧i=rL

i=1

( ∑j=rL
j=1 eyij (wj,L − w0,L)

)
,

and noting that e(wj,L − w0,L) = 0 if j > rL, the right hand side of this equation is

equal to e
∧i=rL

i=1 (
∑n

j=1 yij (wj,L − w0,L)).

The natural inclusion map O×
L,S → O×

K,S fits into a commutative diagram

O×
K,S

RegK,S �� R ⊗ XK,S

O×
L,S

RegL,S ��

��

R ⊗ XL,S ,

��

in which the map R ⊗ XL,S → R ⊗ XK,S sends wL to (#HeH)w; see [25, bottom
of p. 29]. Combining this with (3) implies

RegL,S(NKi/Ki∩Lεi) =
j=n∑
j=1

yij (wj,L − w0,L)

for each index i with 1 ≤ i ≤ rL, and so we conclude that

det(M ′) · ∧i=rL
i=1 (wi,L − w0,L) = e · ∧i=rL

i=1 RegL,S(NKi/Ki∩Lεi)

= (∧rL
R[�]RegL,S

)
(e · ∧i=rL

i=1 NKi/Ki∩Lεi).

Hence we obtain

θ
rL
L/k,S(0) · ∧i=rL

i=1 (wi,L − w0,L) = xe det(M) · ∧i=rL
i=1 (wi,L − w0,L)

= xetS · (∧rL
R[�]RegL,S

)( ∧i=rL
i=1 NKi/Ki∩Lεi

)
.

To establish the equality of Proposition 2.7 it is thus enough to show that etS = tS .
If rL = n, we have e = 1 and so etS = tS is clear. If rL < n then, for each character
χ inflated from � to G with r(χ) > rL, we have χ(tS) = ∏j=n

j=rL+1(χ(gj ) − 1) = 0,
since a factor in the product must be 0 by Lemma 2.5. This shows that etS = tS in
both cases and hence completes the proof. �
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3. Special cases

In this section we assume the notation and hypotheses of Lemma 2.6. We also fix a
prime p and an integer � > 1 which is a power of p.

We assume given a cyclic extension K/k of degree �, with #k×
tors not divisible by p.

We set G := Gal(K/k) and fix a generating element σ of G. We let T = ∑
g∈G g be

the norm element in the integral group ring Z[G] and we denote the corresponding
quotient ring Z[G]/Z[G] · T by A. We also set e := 1 − 1

�
T and observe that the

G-equivariant homomorphism Z[G]e → A which takes e to 1 is a ring isomorphism.
We set A(p) := A ⊗ Z(p).

For any G-module M we let MT=0 denote the kernel of the endomorphism of
M that is induced by the action of T. We also write M for the quotient of M by its
Z-torsion submodule Mtors and we regard M as a submodule of the space M ⊗ Q in
the natural way.

For each integer i with 0 ≤ i ≤ n we define a homomorphism fi : O×
k,S → Z/�Z

by the condition that the local reciprocity symbol (u, Kwi
/kvi

) is equal to σfi(u) for
all elements u of O×

k,S . We observe that the group Z/�Z acts on any group ‘modulo �’,
meaning modulo �-th powers.

Theorem 3.1. Assume that p � #k×
tors and let K/k be a cyclic extension of order �

and group G. Let S = {v0, . . . , vn} be a set of places of k containing all archimedean
places and all which ramify inK/k and for each index i writeGi for the decomposition
subgroup of vi in G. We assume that G0 = G and also that there exists an integer r

with 1 ≤ r < n which is such that Gi is trivial, resp. Gi is equal to G, if 1 ≤ i ≤ r ,
resp. r < i ≤ n.

Suppose in addition that Conjecture C(K/k) is valid. Then ηK,S belongs to∧r
Z[G] O

×
K,S ⊗ Z(p) by Proposition 2.7. Furthermore, there exists an element ε of∧r

Z[G] O
×
K,S⊗Z(p), respectively of

∧r
Z[G] O

×
K,S if ηK,S belongs to

∧r
Z[G] O

×
K,S , which

has all of the following properties.

(i) In Q ⊗ ∧r
Z[G] O

×
K,S one has ηK,S = (σ − 1)n−r (ε).

(ii) The congruence

( ∧r
Z[G] NK/k

)
(ε) ≡ (fr+1 ∧ · · · ∧ fn)(ηk,S)

holds in
∧r

Z O×
k,S ⊗ Z(p) modulo �.

(iii) Let S1 denote the subset {vi : 1 ≤ i ≤ r} of S consisting of those places which
have trivial decomposition group. Then S1 contains all archimedean places of k.
Further, there exists a free Z[G]-submodule E of O×

K,S of rank r and an integer
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tE which is a power of p such that both
∧r

Z[G] E ⊗Z[G] A(p) = tEA(p)ε and

t−1
E (σ − 1)r · FittA((O×

K,S1
/O×

K,S1
∩ E)T=0) ⊗ Z(p) ⊆ FittZ[G](AK,S)A(p)

⊆ t−1
E FittA((O×

K,S1
/O×

K,S1
∩ E)T=0) ⊗ Z(p).

Further, if r = 1, then we may take tE = 1.

In the course of proving this result we shall actually obtain finer information than
is provided by the inclusions given in claim (iii) (cf. Lemma 3.7). However, before
giving the proof we use this result to answer a question raised by Greither and Kuc̆era
in [16]. To do this, we take p odd, assume that k = Q, and fix a set {pi : 1 ≤ i ≤ n}
of distinct rational primes which are congruent to 1 modulo �, with n ≥ 2. We then
let K/Q be a cyclic extension of degree �, of Galois group G = 〈σ 〉, in which each pi

has full decomposition group and all other primes are unramified. Since such a field
is totally real, the infinite place ∞ of Q splits completely in K , and so we set r = 1
and S = {p1, ∞, . . . , pn}, where the ordering of S is chosen to be compatible with
the assumptions of Theorem 3.1 (so S1 = {∞} in the notation of Theorem 3.1 (iii)).
We note that Conjecture C(K/k) is valid by Remark 2.3. For each index i we fix
a complex pi-th root of 1, and call it ζpi

. We denote the Sinnott circular unit of
conductor level by η := NQ(ζp1···pn)/K(1 − ζp1 · · · ζpn).

Define an n × n matrix A over Z/�Z as follows. The field K is contained in
Q(ζp1···pn). If i �= j , we let aij be the unique class in Z/�Z such that σaij is the
restriction of the automorphism ζj �→ ζ

pi

j . Then choose aii for each i in such a
way that the matrix has zero row sums. It is easy to see that this corresponds to the
definition given by Greither and Kuc̆era before [16, Theorem 1]. We define Ai to be
the lift to Z of the (i, i) minor of A satisfying 0 < Ai ≤ �.1

We let OK denote the ring of algebraic integers OK,S1 in K and set AK :=
Pic(OK).

Corollary 3.2. Let K/Q be a cyclic extension of order a power of an odd prime p

and assume that the decomposition group of each prime pi which ramifies in K/Q

is equal to G. Set S = {p1, ∞, . . . , pn} (where the ordering of S is chosen to be
compatible with that used in Theorem 3.1). Then there exists an element ε of O×

K,S

which satisfies all of the following conditions.

(i) (σ − 1)n−1(ε) = η.

(ii) NK/Q(ε)(−1)n−1 = ∏i=n
i=1 p

Ai

i .

1Note that we have preferred Ai = l to Ai = 0. This will ensure that ε is not a unit. Since ε may be adjusted
by rational factors, as explained in the proof of Corollary 3.2 below, any length-� range for Ai may be specified.
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(iii)

(σ − 1) · AnnA(O×
K/εσ−1) ⊗ Z(p) ⊆ FittA((σ − 1)AK) ⊗ Z(p)

⊆ AnnA(O×
K/εσ−1) ⊗ Z(p).

Remark 3.3. This answers the question raised in [16, Comment following Theo-
rem 2], which asks about the possibility of using elements of the form ε to produce
bounds on the Fitting ideal FittA((σ − 1)AK) ⊗ Z(p).

In the remainder of this section we first prove the deduction of Corollary 3.2 from
Theorem 3.1 and then prove Theorem 3.1 itself.

Proof of Corollary 3.2. To identify ηK,S in (4) we must choose an infinite place of K

(“w1,L” in that formula); we use the place induced by the embedding of the overlying
cyclotomic field into C by which ζp1 · · · ζpn corresponds to e2πi/(p1···pn). The formulas
for the values of L-functions of even Dirichlet characters show that η2

K,S = η in this
situation, as in [17, §5]. Claim (i) of Theorem 3.2 shows that ηK,S = (σ − 1)n−1(ε′)
for some element ε′ of O×

K,S ⊗ Z(p). Since η2
K,S belongs to O×

K,S , setting ε = (ε′)2

gives ±η = (σ −1)n−1(ε) in O×
K,S . To see that the undetermined sign must be +, it is

enough to take the norm to Q of both sides, and note that NK/Qη = 1 by well-known
properties of cyclotomic elements.

Now for the second assertion, we note that the analytic class number formula for
Q implies that η2

Q,S = p1 ∧ · · · ∧ pn. Since aij = −fj (pi), this shows that

(f2 ∧ · · · ∧ fn)(η
2
Q,S) =

i=n∏
i=1

p
(−1)n−1Ai

i

in Z×
S modulo torsion and �-th powers. But the multiplicative torsion in ZS consists

of �-th powers since � is odd. So Theorem 3.1 (ii) shows that

NK/Qε(−1)n−1 =
i=n∏
i=1

p
Ai

i

in Z×
S modulo �-th powers. Now the transformation ε �→ yε for an arbitrary element y

of Z×
S leaves claim (i) true and multiplies NK/Qε(−1)n−1

by the �-th power of y. In
this way ε can be adjusted to achieve the equality of claim (ii) with the liftings Ai in
the specified range.

Note that the norm map T from O×
K to Z× is valued in a group of order 2, and

so is the zero map after tensoring with Z(p). Therefore we may erase the ‘T= 0’ in
Theorem 3.1 (iii). Further, the Z[G]-module E there is the free submodule of O×

K,S
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generated by ε, and, since each finite prime in S lies below a unique place of K , it is
easy to see that O×

K ∩ E = Z[G] · εσ−1. Hence

(O×
K/O×

K ∩ E)T=0 = O×
K/εσ−1 (5)

and this shows that Theorem 3.1 (iii) implies

(σ−1)·AnnA(O×
K/εσ−1)⊗Z(p) ⊆ FittZ[G](AK,S)⊗A(p) ⊆ AnnA(O×

K/εσ−1)⊗Z(p).

Our proof of Corollary 3.2 is therefore completed by means of the following obser-
vation. �

Lemma 3.4. If K/Q and S are as in Corollary 3.2, then the G-modules AK,S and
(σ − 1)AK are naturally isomorphic.

Proof. For any G-module M we write MG for the submodule consisting of those
elements which are fixed by the action of all elements of G. Then the exact sequence

0 −→ AG
K

⊆−−→ AK
×(σ−1)−−−−→ (σ − 1)AK −→ 0,

reduces us to showing that AG
K is generated by the classes of primes above those in S.

Let IK , resp. PK , denote the group of fractional ideals, resp. principal fractional
ideals, of OK . We claim that the natural morphism IG

K → AG
K is surjective. To

show this we combine the cohomology sequence of the exact sequence 0 → PK →
IK → AK → 0 with the fact that H 1(G, IK) vanishes to obtain an exact sequence
of the form IG

K → AG
K → H 1(G, PK) → 0. On the other hand, we may deduce

that H 1(G, PK) vanishes by combining the cohomology sequence of 0 → O×
K →

K× → PK → 0 together with the fact that H 1(G, K×) vanishes (by Hilbert 90) and
H 2(G, O×

K) ∼= Ĥ 0(G, O×
K) vanishes (since G is a cyclic group of odd order).

We now take an ideal a := ∏
p∈S pap

∏
q ∈ IG

K where no prime ideal q ramifies in

K/Q. Then
∏

q belongs to IG
K and so is of the form mOK for some rational number

m. It follows that a and
∏

p∈S pap have the same image in AK , as required. �

Proof of Theorem 3.1. Let r ′ be an integer with r ′ ≥ r , set n′ := n + (r ′ − r)

and let S′ = {v′
0, . . . , v

′
n′ } be an ordered set of places of k such that v′

i = vi if
0 ≤ i ≤ r; v′

r ′+i
= vr+i if 1 ≤ i ≤ n − r; and {v′

j : r < j ≤ r ′} is a set of r ′ − r

places which do not belong to S and are each totally split in K . By Čebotarev’s
density theorem, there exists such an S′ with the property that p � #AK,S′ . We
may now apply Lemma 2.6 with S′ and r ′ instead of S and r , and with gj = σ

for each index j with j > r ′. We set ε′ := x · ∧i=r ′
i=1 εi ∈ ∧r ′

Z[G] O
×
K,S′ ⊗ Z(p).

Then Proposition 2.7 implies that ηK,S′ is equal to the image of (σ − 1)n−r (ε′) in∧r ′
Z[G] O

×
K,S′ ⊗ Z(p). Now, [24, Proposition 5.2] shows that there is a Z[G]-module
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homomorphism � = �K,S,S′ : ∧r ′
Z[G] O

×
K,S′ → ∧r

Z[G] O
×
K,S such that ηK,S is equal

to �(ηK,S′). Hence we can take ε to be the image under � of the image of ε′ in∧r ′
Z[G] O

×
K,S′ ⊗ Z(p), and this satisfies the equality of claim (i).

We next show claim (ii). Proposition 2.7 gives the formulas

ηK,S′ = x(σ − 1)n
′−r ′ · ∧i=r ′

i=1 εi; ηk,S′ = x
( ∧i=r ′

i=1 NK/kεi

) ∧ ( ∧i=n′
i=r ′+1 εi

)
.

Therefore, letting f ′
j correspond to v′

j as fj does to vj , we have

(f ′
r ′+1 ∧ · · · ∧ f ′

n′)(ηk,S′) = x det((f ′
j (εi))r ′<i,j≤n′) · ( ∧i=r ′

i=1 NK/kεi

)
,

since the f ′
j are trivial on the image of NK/k . By Lemma 2.6 (ii), the displayed

determinant is that of the identity matrix, and so we obtain( ∧r ′
Z[G] NK/k

)
(ε′) ≡ (f ′

r ′+1 ∧ · · · ∧ f ′
n′)(ηk,S′)

in
∧r ′

Z O×
k,S′ ⊗Z(p) modulo �. We have ηk,S = �k,S,S′(ηk,S′), and so we apply �k,S,S′

to both sides of this congruence to obtain

�k,S,S′
(( ∧r ′

Z[G] NK/k

)
(ε′)

) ≡ (f ′
r ′+1 ∧ · · · ∧ f ′

n′)(ηk,S)

But the definition [24, (14)] shows that �k,S,S′ � ( ∧r ′
Z[G] NK/k

) = ( ∧r
Z[G] NK/k

) �
�K,S,S′ , and therefore we obtain the congruence of claim (ii).

Regarding claim (iii) we first observe that if k is a number field, then the condition
p � #k×

tors implies that K/k has odd degree and hence that all archimedean places
belong to S1, as claimed. We next describe the definition of the module E . As a Q[G]-
module, we have QO×

K,S
∼= Q[G]r ⊕Qn−r . Hence, considering the component away

from the trivial character, we have
∧r

Q[G]e eQO×
K,S = Q[G] · eε, since eχε �= 0 for

all nontrivial χ (by its relation to the values of L-functions). Now the Q[G]e-module
eQO×

K,S is isomorphic to (Q[G]e)r and
∧r

Q[G]e(Q[G]e)r is a cyclic Q[G]e-module
generated by the primitive tensor corresponding to the standard basis of (Q[G]e)r .
We may therefore conclude that eε may be written as a primitive tensor

eε = q · eα1 ∧ eα2 ∧ · · · ∧ eαr, (6)

with q−1 ∈ Z \ {0} and each αi an element of O×
K,S . For any nontrivial character χ ,

we therefore have
eχ · α1 ∧ α2 ∧ · · · ∧ αr �= 0. (7)

But expression (6) is not changed by multiplying any αi by an element of O×
k,S , and

by doing so one may ensure that (7) holds for χ the trivial character as well. If we
then take E to be the G-submodule of O×

K,S that is generated by {αi : 1 ≤ i ≤ r},



490 D. Burns and A. Hayward CMH

this module is free of rank r and the equality
∧r

Z[G] E ⊗ A(p) = tEA(p)ε holds with
tE equal to the maximal power of p which divides q−1.

If we now assume that r = 1, then we may simply take E = Z(p)[G]ε, and this is
free of rank 1 (adjusting ε by an element of O×

k,S if necessary, which does not affect
the validity of either claim (i) or claim (ii)). Therefore we may take tE = 1 in the
case r = 1.

We have now proved all of Theorem 3.1 apart from the inclusions of claim (iii).
In the rest of this section we deduce these via homological algebra from Conjecture
C(K/k).

It is straightforward to verify that there exists a free Z[G]-submodule F of �1
S

which is of rank r and projects to
∑i=r

i=1 Z[G] · (wi − w0) under the composite
surjection �1

S → X′
K,S → XK,S , where the first and second arrows are as in (1) and

(2) respectively. We use the same symbol to denote the image of F in X′
K,S . We also

let F • denote the complex E
0−→ F , where the first term occurs in degree 0. Then

one has a tautological short exact sequence of perfect complexes

0 −→ F • −→ �•
S −→ �•

S −→ 0 (8)

where the second arrow denotes the natural ‘inclusion’ map and �•
S denotes the

complex obtained from the middle two terms in the following exact sequence (induced
by (1))

0 −→ O×
K,S/E −→ �0

S/E −→ �1
S/F −→ X′

K,S/F −→ 0. (9)

We must now extend scalars from Z[G] to A. For any two G-modules M and
N , the ‘diagonal’ G-action on M ⊗ N is the action by which each g ∈ G sends
m ⊗ n ∈ M ⊗ N to g−1m ⊗ gn. In the special case that N is equal to Z[G], the
resulting module is isomorphic to M ⊗Z[G], where G acts only on the second factor
(in the canonical way). The isomorphism from the former to the latter is given by
taking m ⊗ g to gm ⊗ g. It follows that for any finitely-generated free Z[G]-module
F , isomorphic modules are obtained from M⊗F by taking either the diagonal action,
or the action on the second factor.

We now apply the exact functor A ⊗Z − to (9), endow the resulting groups with
the diagonal G-action, and compare taking G-invariants and G-coinvariants. This
gives the following commutative diagram:

0 �� (A ⊗ (O×
K,S/E))G �� (A ⊗ �0

S)G �� (A ⊗ �1
S)G

A ⊗Z[G] �0
S

��

��

A ⊗Z[G] �1
S

��

��

A ⊗Z[G] (X′
K,S/F ) �� 0.
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The vertical maps here are those which are induced by the action of T and are bi-
jective since the G-modules �0

S and �1
S , and hence also A ⊗ �0

S and A ⊗ �1
S , are

cohomologically trivial. Hence one has an exact sequence of A-modules

0 −→ (A ⊗ (O×
K,S/E))G −→ A ⊗Z[G] �0

S

−→ A ⊗Z[G] �1
S −→ A ⊗Z[G] (X′

K,S/F ) −→ 0.
(10)

Now G acts trivially on both Q ⊗ O×
K,S/E and Q ⊗ X′

K,S/F , and so the second
and fifth terms in the above sequence are finite. This observation implies that there
is a canonical isomorphism

ι : Q[G]e ⊗Z[G] DetZ[G](�•
S) ∼= (Q[G]e, 0).

Furthermore, the approach of [12, proof of Corollary 2] allows one to compute
ι(DetA(p)

(A(p) ⊗Z[G] �•
S)). Indeed, after observing that A(p) satisfies the condi-

tions on R in [loc. cit., Lemma 5], we may deduce from the exactness of (10) an
equality of the form

FittA(p)
((A(p) ⊗ (O×

K,S/E))G)DetA(p)
(A(p) ⊗Z[G] �•

S)

= FittA(p)
(A(p) ⊗Z[G] (X′

K,S/F )).
(11)

(Here, when applying [loc. cit., Lemma 5], we have also used the fact that, since
G is cyclic, the argument of [22, Appendix, Proposition 1] implies the equality
FittA(p)

(HomZ(p)
(M, Q/Z(p))) = FittA(p)

(M) for any finite A(p)-module M .)
In the next three results we provide explicit information on each of the terms

in (11).

Lemma 3.5. If Conjecture C(K/k) is valid, then one has

DetA(p)
(A(p) ⊗Z[G] �•

S) = A(p) · t−1
E (σ − 1)n−r .

Proof. Since A(p) ⊗Z[G] E and A(p) ⊗Z[G] F are both Z(p)-torsion-free, whilst the
groups Tor1

Z[G](A(p), �
0
S) and Tor1

Z[G](A(p), �
1
S) are both finite, (8) induces an exact

sequence of complexes of A(p)-modules

0 → A(p) ⊗Z[G] F • → A(p) ⊗Z[G] �•
S → A(p) ⊗Z[G] �•

S → 0,

and hence also an isomorphism in P (A(p)) of the form

DetA(p)
(A(p)⊗Z[G]F •)⊗P (A(p))DetA(p)

(A(p)⊗Z[G]�•
S) ∼= DetA(p)

(A(p)⊗Z[G]�•
S).

(12)
Now if C• denotes any of the complexes F •, �•

S or �•
S , then A(p) ⊗Z[G] C• is

naturally isomorphic to A(p) ⊗L
Z[G] C• and so DetA(p)

(A(p) ⊗Z[G] C•) identifies with
A(p) ⊗Z[G] DetZ[G]C•.
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In particular, therefore, the validity of Conjecture C(K/k) would imply that

(R[G]e ⊗R[G] ϑ�•
S,R)(DetA(p)

(A(p) ⊗Z[G] �•
S)) = (A(p) · θr

K/k,S(0), 0).

We combine (12) with the isomorphism ι to identify DetQ[G]e(Q[G]e ⊗Z[G] F •)
with DetQ[G]e(Q[G]e⊗Z[G]�•

S). Then, in view of (12) and the last displayed equality,
the claimed result is equivalent to an equality

(R[G]e⊗R[G]ϑ�•
S,R)(DetA(p)

(A(p)⊗Z[G]F •)) = (A(p) · tE (σ −1)r−nθr
K/k,S(0), 0).

(13)
But

DetA(p)
(A(p)⊗Z[G]F •) = DetA(p)

(A(p)⊗Z[G]E)⊗P (A(p))DetA(p)
(A(p)⊗Z[G]F )−1.

(14)
Also, if we pick a basis α1, . . . , αr for the free module E , then by what we have
proved so far of Theorem 3.1 (iii), there exists an element u of Z(p)[G]× such that
e
∧i=r

i=1 αi = eutE (ε) = utE (σ − 1)r−ne(ηK,S). Therefore

e
( ∧r

R[G] RegK,S

)( ∧i=r
i=1 αi

) = utE (σ − 1)r−ne
( ∧r

R[G] RegK,S

)
(ηK,S)

= utE (σ − 1)r−neθr
K/k,S(0)

∧i=r
i=1(wi − w0),

the last equality following from the definition (4) of ηK,S . Hence the image of (14)
under R[G]e ⊗R[G] ϑ�•

S,R is equal to (A(p) · utE (σ − 1)r−nθr
K/k,S(0), 0), and this

implies the required equality (13) because A(p) · u = A(p). �

Lemma 3.6. FittA(A ⊗Z[G] (X′
K,S/F )) = (σ − 1)n−rFittZ[G](AK,S)A.

Proof. We have the exact sequence

0 −→ AK,S −→ X′
K,S/F −→

i=n∑
i=r+1

Z[G] · (wi − w0) −→ 0

where the last nonzero term is isomorphic as a Z[G]-module to Zn−r . Applying
A ⊗Z[G] − therefore gives an exact sequence

0 −→ A ⊗Z[G] AK,S −→ A ⊗Z[G] (X′
K,S/F ) −→ (A ⊗Z[G] Z)n−r −→ 0. (15)

(Here we use the fact that Tor1
Z[G](A, Z) = 0, as can be easily verified directly.) In

addition, the exact sequence 0 → A
1�→σ−1−−−−→ A → A⊗Z[G] Z → 0 shows that [13,

Lemma 3] applies to (15) and therefore implies that

FittA(A ⊗Z[G] (X′
K,S/F )) = FittA(A ⊗Z[G] AK,S)FittA((A ⊗Z[G] Z)n−r ).

But FittA(A ⊗Z[G] AK,S) = FittZ[G](AK,S)A and FittA((A ⊗Z[G] Z)n−r ) =
A(σ − 1)n−r , and this implies the claimed result. �
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By first substituting the last two results into (11), and then cancelling the element
(σ − 1)n−r (which is a unit in Q[G]e) from the resulting equalities, we obtain

t−1
E FittA(p)

((A(p) ⊗ (O×
K,S/E))G) = FittZ[G](AK,S)A(p).

Our proof of Theorem 3.1 will therefore be completed by the following lemma. �

Lemma 3.7. Let I denote the group of fractional ideals supported above S \ S1, and
〈E〉 the image of E under the natural map O×

K,S → I . Then 〈E〉 is a free Z-module
of rank b with b ≤ r , and one has

(σ − 1)b · FittA((O×
K,S1

/O×
K,S1

∩ E)T=0) ⊆ FittA((A ⊗ (O×
K,S/E))G)

⊆ FittA((O×
K,S1

/O×
K,S1

∩ E)T=0).

Further, the image of the natural map (A ⊗ (O×
K,S/E))G → (A ⊗ (I/〈E〉))G is

finite of order dividing �b, and the second, respectively first, displayed inclusion is
an equality if the image of this map is trivial, respectively has order �b.

Proof. If M is any G-module, then by applying −⊗ZM to the augmentation sequence

0 → A
1�→σ−1−−−−→ Z[G] → Z → 0 and then taking fixed points under the diagonal G-

action one obtains an exact sequence of G-modules of the form 0 → (A⊗Z M)G →
M

T→ MG (where the G-action on the term (A ⊗Z M)G is by multiplication on the
first factor).

By applying this observation to each of the modules in the natural exact sequence

0 → O×
K,S1

/O×
K,S1

∩ E → O×
K,S/E → I/〈E〉

we obtain an exact commutative diagram

0

��

0

��

0

��
0 �� (A ⊗ (O×

K,S1
/O×

K,S1
∩ E))G

��

�� (A ⊗ (O×
K,S/E))G

��

�� (A ⊗ (I/〈E〉))G

��
0 �� O×

K,S1
/O×

K,S1
∩ E ��

T
��

O×
K,S/E ��

T
��

I/〈E〉
T

��
0 �� (O×

K,S1
/O×

K,S1
∩ E)G �� (O×

K,S/E)G �� I/〈E〉.

NowG acts trivially on the free Z-module I so that ker(I/〈E〉 T−→ I/〈E〉) is isomorphic

to a submodule of cok(〈E〉 ·�−→ 〈E〉) ∼= (Z/�Z)b where b is the rank of the free Z-
module 〈E〉. (We also note that, since 〈E〉 is a quotient of H0(G, E) ∼= Zr one has
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b ≤ r , as claimed.) The above diagram thus gives rise to an exact sequence of
A-modules of the form

0 −→ (O×
K,S1

/O×
K,S1

∩ E)T=0 → (A ⊗ (O×
K,S/E))G → (Z/�Z)b. (16)

But Z/�Z ∼= A/A(σ − 1) so that the exact sequence

0 −→ A
1�→σ−1−−−−→ A −→ Z/�Z −→ 0 (17)

implies FittA((Z/�Z)b) = (FittA(Z/�Z))b = A(σ − 1)b and, since G is cyclic,
FittA(N) ⊆ FittA(M) for any finite A-modules M ⊆ N . Hence, the exact sequence
(16) combines with well-known properties of Fitting ideals with respect to short exact
sequences (cf. [21, Chapter XIX, Proposition 2.7]) to imply that

(σ − 1)b · FittA((O×
K,S1

/O×
K,S1

∩ E)T=0) ⊆ FittA((A ⊗ (O×
K,S/E))G)

⊆ FittA((O×
K,S1

/O×
K,S1

∩ E)T=0),

as claimed.
Finally, we observe that the image B of the map

(A ⊗ (O×
K,S/E))G −→ (A ⊗ (I/〈E〉))G

is isomorphic to a submodule of (Z/�Z)b and hence has order dividing �b. Now if B

is trivial, then (16) reduces to give an isomorphism between (O×
K,S1

/O×
K,S1

∩ E)T=0

and (A ⊗ (O×
K,S/E))G so that the second displayed inclusion is an equality. On the

other hand, if B has order �b, then (16) is a short exact sequence and by applying [13,
Lemma 3] to this sequence (which is permissible by virtue of (17)) we find that the
first displayed inclusion is an equality. �

We now finish this section by providing a condition under which the image of the
map mentioned in the statement of Lemma 3.7 is trivial.

Lemma 3.8. Let P denote the image of O×
K,S in I . For any group A, let A×� denote

the set of �-th powers in A. If P ×� ∩ 〈E〉 = 〈E〉×�, then

FittA((A ⊗ (O×
K,S/E))G) = FittA((O×

K,S1
/O×

K,S1
∩ E)T=0).

Proof. Applying the snake lemma to the exact diagram

0 �� 〈E〉 ��

×�

��

I ��

×�

��

I/〈E〉 ��

×�

��

0

0 �� 〈E〉 �� I �� I/〈E〉 �� 0

yields an inclusion (A ⊗ (I/〈E〉))G → 〈E〉/〈E〉×�, under which the image of the
map described in the statement of Lemma 3.7 is contained in (P ×� ∩ 〈E〉)/〈E〉×�.

�
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4. Further examples

The following result shows that if Gal(K/Q) is not cyclic, then there is no direct
analogue of Corollary 3.2.

Proposition 4.1. There exists an infinite family of non-cyclic finite abelian extensions
K/Q in which every ramified prime has decomposition subgroup equal to G :=
Gal(K/Q), and yet the conductor-level Sinnott unit of K cannot be expressed in
the form

∏
i λi(ui) with each ui an element of O×

K,S and each λi an element of the
augmentation ideal IG of Z[G], where S is the set of places of Q which are either
archimedean or ramified in K .

Proof. Fix an odd prime p and let p1, p2 be distinct rational primes congruent to 1
modulo p. For i = 1, 2, assume that pi is not a p-th power modulo p3−i , and let Ki

be an extension of Q of degree p and conductor p
ai

i for some integer ai > 0. Let
K be the compositum K1K2, so K/Q has Galois group G ∼= (Z/pZ)2, each pi has
decomposition subgroup equal to G, and we may take S = {∞, p1, p2}. We recall
that such fields have been studied in detail by Fröhlich and, in particular, that it was
proved in [15] that the class number of K is coprime to p.

As in §3, for any Z[G]-module A we set A := A/Ators. We also let AT=0, resp.
AIG , denote the kernel of the endomorphism of A that is induced by the action of
the element

∑
g∈G g ∈ Z[G], resp. the submodule of AT=0 that is generated by all

elements of the form i(a) with a ∈ A and i ∈ IG.

Lemma 4.2. O×
K,S

T=0
/O×

K,S

IG = H−1(G, O×
K,S) �= 0.

Proof. The first equality follows directly from the definition of H−1(G, O×
K,S), and

so we need only show that H−1(G, O×
K,S) does not vanish.

First note that (O×
K,S)tors = {±1} is a cohomologically trivial G-module (since #G

is odd) and hence that H−1(G, O×
K,S) is canonically isomorphic to H−1(G, O×

K,S).
Now applying the double coboundary isomorphism induced by the exact sequence
(1) (which exists by our definition of S) shows that H−1(G, O×

K,S) is isomorphic to
H−3(G, X′

K,S). In addition, AK,S is a cohomologically trivial G-module because
p � #AK,S , and so the exact sequence (2) induces an isomorphism H−3(G, X′

K,S) ∼=
H−3(G, XK,S). But XK,S is isomorphic to Z[G]⊕Z by the definition of S, and hence

one has an isomorphism H−1(G, O×
K,S) ∼= H−3(G, Z). On the other hand, this last

group is H2(G, Z) and is therefore isomorphic to
∧2

Z G [2, Chapter V, Theorem 6.4].

But, in our case,
∧2

Z G is isomorphic to Z/pZ and hence H−1(G, O×
K,S) does not

vanish, as required. �
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We return to the proof of Proposition 4.1. Let η = NQ(ζ
p
a1
1

ζ
p
a2
2

)/K(1 − ζ
p

a1
1

ζ
p

a2
2

)

be the conductor-level Sinnott unit of K . Then, since p is odd, the argument of [3,

proof of Lemma 6.2] implies that the image of η in O×
K,S ⊗Zp is a Zp[G]-generator of

O×
K,S

T=0 ⊗Zp. It follows that the image of η in O×
K,S generates a nontrivial subgroup

of H−1(G, O×
K,S) and hence that η does not belong to (O×

K,S)IG , as claimed. �
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