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Non-vanishing for Koszul cohomology of curves

M. Aprodu and J. Nagel

Abstract. We study the relationship between rankp+2 Koszul classes and rank 2 vector bundles
on a smooth curve. We show that every rank p+2 Koszul class is obtained from a rank 2 vector
bundle and give an explicit nonvanishing theorem for Koszul classes arising in this way.
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1. Introduction

LetX be a smooth complex projective variety. The geometry ofX is reflected in the be-
haviour of the Koszul cohomology groupsKp,q(X,L) introduced by Green [4], more
specifically the vanishing/nonvanishing of certain Koszul cohomology groups. The
fundamental result in this direction is the nonvanishing theorem of Green–Lazarsfeld
[5]. This theorem states that if a line bundle L admits a decomposition L = L1 ⊗L2
with ri = h0(X,Li) − 1 ≥ 1 (i = 1, 2) then Kr1+r2−1,1(X,L) �= 0. Voisin [9,
(1.1)] has given a different proof of this result under the hypothesis that L1 and L2
are globally generated.

The aim of this note is to give a more geometric approach to this type of problems.
The starting point is the following construction due to Voisin. Given a rank two vector
bundle E on X with determinant L, Voisin [11, (2.22)] defined a homomorphism

ϕ : SpH 0(X,E)⊗ ∧p+2
H 0(X,E) → ∧p

H 0(X,L)⊗H 0(X,L).

By [11, Lemma 5], this homomorphism produces elements of Kp,1(X,L). If we
take E = L1 ⊕ L2, we get back the classes constructed by Green and Lazarsfeld.
As one of the referees pointed out to us, Koh and Stillman [7] had generalised the
Green–Lazarsfeld construction before from a different point of view.

Recall that the rank of a Koszul class γ ∈ Kp,1(X,L) is the minimal dimension
of a linear subspace W ⊂ H 0(X,L) such that γ is represented by an element in∧p

W ⊗ H 0(X,L); cf. [6, Definition 2.2]. (Note that the subspace W is uniquely
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determined if p ≥ 2.) By definition, the Koszul classes constructed in this paper are
of rank p + 2 if the vector bundle E is indecomposable.

Section 3 contains the main results of this paper. We first give a necessary and
sufficient condition for nonvanishing of Koszul classes on smooth curves obtained
from rank 2 vector bundles (Theorem 3.1). This result generalises the nonvanishing
theorem of Green–Lazarsfeld in the case of curves. Our second main result, Theo-
rem 3.4, states that every rank p + 2 Koszul class on a smooth curve comes from a
rank two vector bundle. This theorem is a generalisation of [6, Theorem 6.7].

2. Preliminaries

2.1. The method ofVoisin. LetE be a rank two vector bundle on a smooth projective
variety X defined over an algebraically closed field k of characteristic zero. Write
L = detE and V = H 0(X,L), and let

d : ∧2
H 0(X,E) → V

be the determinant map. Given t ∈ H 0(X,E), define a linear map

dt : H 0(X,E) → V

by dt (u) = d(t ∧ u), and choose a subspace U ⊂ H 0(X,E) with U ∩ ker(dt ) = 0.
Suppose that dim (U) = p+2 with p ≥ 1, and putW = dt (U) ∼= U . The restriction
of d to

∧2
U defines a map

∧2
U → V , which we can view as an element of∧2
U∨ ⊗ V ∼= ∧p

U ⊗ V.

Let
γ ∈ ∧p

W ⊗ V ⊂ ∧p
V ⊗ V

be the image of this element under the map dt .
FollowingVoisin [11, (2.22)], we prove thatγ defines a Koszul class inKp,1(X,L).

To this end, we make the previous construction explicit using coordinates. If we
choose a basis {e1, . . . , ep+3} of 〈t〉 ⊕ U ⊂ H 0(X,E) such that e1 = t , we have

γ =
∑
i<j

(−1)i+j d(t ∧ e2) ∧ · · · ∧ ̂d(t ∧ ei) ∧ · · ·

· · · ∧ ̂d(t ∧ ej ) ∧ · · · ∧ d(t ∧ ep+3)⊗ d(ei ∧ ej ).
(1)

As in [11] one shows that the image of the γ by the Koszul differential

δ : ∧p
V ⊗H 0(X,L) → ∧p−1

V ⊗ S2H 0(X,L)



Vol. 82 (2007) Non-vanishing for Koszul cohomology of curves 619

equals∑
i<j<k

(−1)i+j+kd(t ∧ e2) ∧ · · · ∧ ̂d(t ∧ ei) ∧ · · ·

· · · ∧ ̂d(t ∧ ej ) ∧ · · · ∧ ̂d(t ∧ ek) ∧ · · · ∧ d(t ∧ ep+3)

⊗ {d(t ∧ ei)d(ej ∧ ek)− d(t ∧ ej )d(ei ∧ ek)+ d(t ∧ ek)d(ei ∧ ej )}.
(2)

Lemma 2.1 (Voisin). Given four elements w1, w2, w3, w ∈ H 0(X,E) we have the
relation

d(w ∧ w1)d(w2 ∧ w3)− d(w ∧ w2)d(w1 ∧ w3)+ d(w ∧ w3)d(w1 ∧ w2) = 0

in H 0(X,L2).

Proof. See [11, Lemma 5]. �

The previous lemma shows that γ belongs to the kernel of the Koszul differential

δX : ∧p
V ⊗H 0(X,L) → ∧p−1

V ⊗H 0(X,L2).

Hence γ defines a Koszul class [γ ] = γ (U, t) ∈ Kp,1(X,L,W) ⊆ Kp,1(X,L).

Remark 2.2. If U ′ ⊂ 〈t〉 ⊕ U ⊂ d−1
t (W) is another lifting of W , then γ (U, t) =

γ (U ′, t). In particular, if ker(dt ) = C.t the given class only depends on t andW ; we
write [γ ] = γ (W, t) in this case.

2.2. The method of Green–Lazarsfeld. LetL1,L2 be two line bundles on a smooth
projective variety X such that ri = h0(X,Li) − 1 ≥ 1 (i = 1, 2). Write Li =
Mi +Fi withMi the mobile part and Fi the fixed part. Let B be the divisorial part of
F1 ∩ F2. It is possible to choose si ∈ H 0(X,Li) such that V (s1, s2) = B ∪ Z with
codim (Z) ≥ 2. Set L = L1 ⊗ L2, and put t = (s1, s2) ∈ H 0(X,L1 ⊕ L2), W =
im(dt ) ⊂ H 0(X,L(−B)). By construction h0(X,OX(B)) = 1, hence ker(dt ) = C.t

and dim W = r1 + r2 + 1. By the previous discussion, we obtain a Koszul class
γ (W, t) ∈ Kr1+r2−1,1(X,L). We call such classes Green–Lazarsfeld classes.

Note that the rank of a Green–Lazarsfeld class is either p + 1 or p + 2. Classes
of rank p + 1 are of scrollar type; see e.g. [8] or [6, Corollary 5.2].

Definition 2.3. Given a nonnegative integer k ≥ 0, let Kk,1(X,L)GL ⊆ Kk,1(X,L)

be the subspace generated by Green–Lazarsfeld classes for all decompositions L =
L1 ⊗ L2 with k = r1 + r2 − 1, (r1 ≥ 1, r2 ≥ 1).
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2.3. The method of Koh–Stillman. Voisin’s method produces syzygies of rank
≤ p + 2. As we have seen in the previous subsection, rank p + 1 syzygies are
Green–Lazarsfeld syzygies of scrollar type. Rank p+ 2 syzygies can be obtained in
the following way. Suppose that L is a globally generated line bundle on a projective
variety X, and let [γ ] ∈ Kp,1(X,L) be a nonzero class represented by an element
γ ∈ ∧p

W ⊗ V with dim W = p + 2. We view γ as an element in
∧2
W∨ ⊗ V ∼=

Hom
(∧2

W,V
)
. Following [6, Proof of Theorem 6.1] we consider the map

γ ′ : ∧2
(C ⊕W) = W ⊕ ∧2

W → V

defined by taking the direct sum of γ and the inclusion W ↪→ V . If we choose a
generator e1 for the first summand and a basis {e2, . . . , ep+3} for W , we obtain a
skew-symmetric (p + 3)× (p + 3) matrix A by setting

aij = γ ′(ei ∧ ej ).
By construction, the inclusion W → V corresponds to the map γ ′(e1 ∧ −). This
allows us to identify a1j and ej , 2 ≤ j ≤ p + 3. Let α be the image of γ under the
Koszul differential

δ : ∧p
V ⊗ V → ∧p−1

V ⊗ S2V.

Writing this out, we obtain

α =
∑
i<j<k

(−1)i+j+ka12∧· · ·∧â1,i∧· · ·∧â1,j∧· · ·∧â1,k∧· · ·∧a1,p+3⊗Pf1ijk(A).

(3)
As the elements {a12, . . . , a1,p+3} = {e2, . . . , ep+3} are linearly independent, this
expression is nonzero if and only if at least one of the Pfaffians Pf1ijk(A) is nonzero.
Furthermore, since α maps to zero in

∧p−1
V ⊗ H 0(X,L2) the Pfaffians Pf1ijk(A)

have to vanish on the image of X.
The preceding discussion shows that every rank p+2 syzygy arises from a skew-

symmetric (p + 3)× (p + 3) matrix A such that

(i) the elements {a12, . . . , a1,p+3} are linearly independent;

(ii) there exists a nonzero Pfaffian Pf1ijk(A);

(iii) the Pfaffians Pf1ijk(A) vanish on the image of X in P(V ∨).
This is exactly the method used by Koh and Stillman to produce syzygies; see [7,
Lemma 1.3].

Remark 2.4. In the geometric setting of Section 2.1, let Y be the image of X in
P(V ∨). The expression (2) shows that the canonical isomorphism

Kp,1(X,L) ∼= Kp−1,2(P
r ,�Y ,OP(1))
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maps the class [γ ] to the element α defined in (3). Moreover, if d does not vanish on
decomposable elements then [γ ] �= 0. Indeed, this condition is satisfied if and only
if the matrix A has no generalised zero; cf. [7, Definition (1.1)]. One then applies
[loc. cit., Remark p. 122].

3. Main results

Theorem 3.1. Let X be a smooth curve, let L be a base-point free line bundle on X
and letW ⊂ H 0(X,L) be a linear subspace. Put B = Bs(W), and let t be a section
of H 0(X,OX(B)) vanishing on B. Consider an extension

0 → OX(B) → E → L(−B) → 0 (4)

such that
W ⊂ (kerH 0(X,L(−B)) δ−→ H 1(X,OX(B))).

Then the Koszul classes γ (U, t) defined in Section 2.1 are nonzero for all liftings U
of W if and only if the extension (4) is non-split.

Proof. The proof proceeds in several steps. We use the notation of Section 2.1.

“Only if”. Suppose that the extension (4) splits, hence W ⊂ H 0(X,E) canonically.
We then put U = W . In this case, one readily verifies that d vanishes identically on∧2
U . The formula (1) then shows that γ (U, t) = 0.

“If”. Suppose there exists U such that γ (U, t) = 0. We proceed in several steps.

Step 1. There exists a linear map h : U → C such that

d(u1 ∧ u2) = h(u2)dt (u1)− h(u1)dt (u2) (5)

for all u1, u2 ∈ U .
Indeed, suppose that there exists a nonzero element γ̃ ∈ ∧p+1

W ∼= W∨ such
that γ is the image of γ̃ under the Koszul differential. Then γ coincides with the
composition of maps ∧2

W δ−→ W ⊗W
γ̃⊗id−−−→ W ↪→ V.

Since

d(u1 ∧ u2) = γ (dt (u1) ∧ dt (u2))

= γ̃ (dt (u2))dt (u1)− γ̃ (dt (u1))dt (u2)),

condition (5) is satisfied with h = γ̃ � dt : U → C.
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Step 2. Let u1, u2 ∈ 〈t〉 ⊕ U be two sections such that dt (u1) and dt (u2) generate
L(−B). If d(u1 ∧ u2) = 0, the extension (4) splits.

To prove this assertion, put si = dt (ui) (i = 1, 2) and consider the commutative
diagram

0 �� OX(B) �� E �� L(−B) �� 0

0 �� 〈u1 , u2〉 ⊗ OX
∼ ��

ev2

��

〈s1 , s2〉 ⊗ OX ��

ev1

��

0.

Put M = ker(ev1), and note that ker(ev2) ∼= L−1(B) since ev2 is surjective. By the
Snake Lemma we obtain an exact sequence

0 → M → L−1(B) → OX(B) → coker (ev1) → 0.

Note that

d(u1 ∧ u2) = 0 ⇐⇒ rank im(〈u1 , u2〉 ⊗ OX → E) = 1 ⇐⇒ rank M = 1

where the first equivalence follows from [10, p. 380]. If d(u1 ∧ u2) = 0 the above
exact sequence shows that M ∼= L−1(B), hence the isomorphism 〈u1 , u2〉 ⊗ OX

∼→
〈s1 , s2〉 ⊗ OX induces an isomorphism im(ev1) ∼= L(−B). The inverse of this
isomorphism provides a splitting of the extension (4).

Step 3. By Step 1, there exists a linear map h : U → C verifying the relation (5). If h
is identically zero, then we can apply Step 1 and Step 2 to conclude. Suppose h �≡ 0.
Consider the morphism

π : X → P(W∨)

defined by the base-point free linear system W ⊂ H 0(X,L(−B)), and choose a
linear subspace � ⊂ P(W∨) of codimension two such that � ∩ π(X) = ∅. The
hyperplane ker(h) ⊂ W corresponds to a point p ∈ P(W∨). Put H1 = 〈�,p〉 and
choose a hyperplane H2 ⊂ P(W∨) containing � such that p /∈ H2. Let u1, u2 be
the sections corresponding to H1, H2. Then dt (u1) and dt (u2) generate L(−B) and
u1 ∈ ker(h), u2 /∈ ker(h). Equation (5) yields the identity

d(u1 ∧ u2) = h(u2)dt (u1).

Rewriting this identity, we obtain d(u1 ∧ (u2 + h(u2)t)) = 0. Since the pair
{dt (u1), dt (u2 + h(u2)t)} = {dt (u1), dt (u2)} generates L(−B), Step 2 implies that
the extension (4) splits. �

Remark 3.2. In the statement of Theorem 3.1 it is not necessary to suppose that L
is globally generated, since Kp,1(X,L(− Bs(L))) ∼= Kp,1(X,L).
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Theorem 3.1 yields a short, geometric proof of the Green–Lazarsfeld nonvanishing
theorem for curves.

Theorem 3.3 (Green–Lazarsfeld). Let X be a smooth curve, and let L be a line
bundle on X that admits a decomposition L = L1 ⊗ L2 with ri = dim |Li | ≥ 1 for
i = 1, 2. Then Kr1+r2−1,1(X,L) �= 0.

Proof. We define s1, s2, t , W , B and γ (W, t) as in Section 2.2. Let C be the base
locus of W , seen as a subspace of H 0(X,L(−B)). We prove that γ (W, t) �= 0.
Suppose that γ (W, t) = 0. Consider the extension

0 → OX(B) → L1 ⊕ L2 → L(−B) → 0.

Pulling back this extension along the injective homomorphism L(−B − C) →
L(−B), we obtain an induced extension

0 → OX(B) → E → L(−B − C) → 0.

Applying Theorem 3.1 to the line bundle L(−C), we find that this extension splits.
Hence there exists an injective homomorphism

OX(B)⊕ L(−B − C) → L1 ⊕ L2.

In particular there exists i ∈ {1, 2} such that Hom(L(−B−C),Li) �= 0. This implies
that

ri + 1 = h0(X,Li) ≥ h0(X,L(−B − C)) ≥ dim W = r1 + r2 + 1,

and this is impossible since r1 ≥ 1 and r2 ≥ 1. �

Theorem 3.4. LetX be a smooth curve, and letα �= 0 ∈ Kp,1(X,L) be a Koszul class
of rank p+ 2 represented by an element of

∧p
W ⊗H 0(X,L) with dim W = p+ 2.

There exist a rank 2 vector bundle E on X, a section t ∈ H 0(X,E) and a subspace
W ∼= U ⊂ H 0(X,E) such that α = γ (U, t).

Proof. Put T = C ⊕ W , and choose a basis {e1, . . . , ep+3} of T such that t = e1
is the generator of the first summand. Writing zij = ei ∧ ej , we obtain a skew-
symmetric matrixZ = (zij ) and coordinates (zij )1≤i<j≤p+3 on P

(∧2
T ∨)

. Consider
the Grassmannian G = G(2, T ) of 2-dimensional quotients of T . The ideal of G
under the Plücker embedding G ⊂ P

(∧2
T ∨)

is generated by the 4 × 4 Pfaffians
Pf ijkl(Z) of the matrix Z. Taking exterior powers in the exact sequence

0 → 〈t〉 → T → W → 0
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we obtain an exact sequence

0 → 〈t〉 ⊗W → ∧2
T → ∧2

W → 0.

The linear subspace P
(∧2

W∨) ⊂ P
(∧2

T ∨)
is defined by the vanishing of the linear

forms z1j , j = 2, . . . , p + 3. A straightforward computation then shows that the
ideal of the union

G(2, T ) ∪ P
(∧2

W∨) ⊂ P
(∧2

T ∨)
is generated by the Pfaffians Pf1ijk(Z). The tautological exact sequence

0 → S → T ⊗ OG → Q → 0

induces an isomorphism T ∼= H 0(G,Q). Under this isomorphism, we have
G(2,W) = V (t).

As in Section 2.3 we associate to the Koszul class α a matrix A = (aij ) of linear
forms such that

(a) the linear forms in the first row of A span W ;

(b) there exists a nonzero 4 × 4 Pfaffian of A involving the first row and column;

(c) the 4 × 4 Pfaffians involving the first row and column of A vanish on the image
of X in PH 0(X,L)∨.

Let C be the base locus of the image of A. Replacing L by L(−C) if necessary (W
is obviously contained in the image of A) we can suppose that C is empty, hence the
matrix A defines a morphism

ψ : X → P
(∧2

T ∨)
.

Condition (c) implies that the image Y = ψ(X) is contained in the union G(2, T ) ∪
P
(∧2

W∨)
, and condition (a) shows that Y is not contained in P

(∧2
W∨)

. As Y is
irreducible, this implies that Y is contained in G(2, T ).

Put E = ψ∗Q. Twisting the exact sequence

0 → �Y → OG → ψ∗OX → 0

by the universal quotient bundle Q and taking global sections, we obtain an exact
sequence

0 → H 0(G,Q⊗ �Y ) → H 0(G,Q)
ψ∗−−→ H 0(G,ψ∗OX ⊗Q) ∼= H 0(X,E).

Condition (a) implies that Y is not contained in G(2,W) = G(2, T ) ∩ P
(∧2

W∨)
,

hence t does not vanish identically on X and defines a global section of E. The
zero locus of this section is given by the equations a12 = · · · = a1,p+3 = 0, hence



Vol. 82 (2007) Non-vanishing for Koszul cohomology of curves 625

it coincides with the base locus B of the sublinear system of |L| induced by W .
Consequently the line bundle E is given by an extension

0 → OX(B) → E → L(−B) → 0. (6)

Consider the commutative diagram

0

��

0

��
H 0(G,OG) ��

.t

��

H 0(X,OX(B))

.ψ∗(t)
��

H 0(G,Q)
ψ∗

��

��

H 0(X,E)

dt
��

W
i �� H 0(X,L(−B)).

Note that ker i = W ∩ H 0(G,OG(1) ⊗ �Y ) = 0 by condition (a). As the map
H 0(G,Q) → W is surjective, we find that W is contained in the image of the map
dt : H 0(X,E) → H 0(X,L(−B)). The embedding W ⊂ H 0(G,Q) = 〈t〉 ⊕ W

composed with ψ∗ is a section of dt . Put U = ψ∗(W). By construction we obtain
γ = γ (U, t). �

Remark 3.5. The union G(2, T ) ∪ P
(∧2

W∨)
is a generic syzygy scheme; see [6,

Theorem 6.1]. In [loc. cit., Theorem 6.7] it was shown that a rank p+2 syzygy gives
rise to a rank 2 vector bundle if L is very ample and the ideal of X is generated by
quadrics.

The condition of Theorem 3.1 can be reinterpreted in terms of surjectivity of a
natural multiplication map.

Proposition 3.6. Let X be a smooth curve, and let W ⊂ H 0(X,L) be a linear
subspace. We put B = Bs(W) and view W as a base-point free linear subspace of
H 0(X,L(−B)). Let

μ : W ⊗H 0(X,KX(−B)) → H 0(KX ⊗ L(−2B))

be the multiplication map. The following conditions are equivalent.

(i) The map μ is not surjective.

(ii) There exists a non-split extension 0 → OX(B) → E → L(−B) → 0 such that
W is contained in the kernel of the map δ : H 0(X,L(−B)) → H 1(X,OX(B)).
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Proof. We first show that (i) implies (ii). Since μ is not surjective, there exists a
hyperplane H ⊂ H 0(X,KX ⊗ L(−2B)) that contains im(μ). Let η be a linear
functional defining H . Put 0 �= ξ = η∨ ∈ H 1(X,L−1(2B)), and let

0 → OX(B) → E → L(−B) → 0

be the corresponding non-split extension. Given w ∈ W and v ∈ H 0(X,KX(−B)),
the formula

δ(w)(v) = (η � μ)(w ⊗ v) (7)

shows that W is contained in the kernel of δ.
For the converse, note that formula (7) implies that η|imμ ≡ 0. �

Remark 3.7. If B is a fixed divisor, the result of the previous Proposition follows
from Green’s duality theorem [4, Corollary (2.c.10)]. Indeed,

coker μ ∼= K0,1(X,KX(−B),L(−B),W) ∼= Kp,1(X,B,L(−B),W)∨ (8)

and since h0(X,OX(B)) = 1 we have an injection

Kp,1(X,B,L(−B),W) ↪→ Kp,1(X,L).

Theorem 3.4 shows that Voisin’s method may produce nontrivial Koszul classes
that are not contained in the space Kp,1(X,L)GL spanned by Green–Lazarsfeld
classes.

Example 3.8. By [2, Theorem 3.6 and Theorem 4.3] there exists a smooth curve of
genus 14 and Clifford index 5 whose Clifford index is computed by a unique line
bundle L such that L2 = KX. The line bundle L embeds X in P4 as a projectively
normal curve of degree 13 which is not contained in any quadric of rank ≤ 4, and the
ideal ofX is generated by the 4×4 Pfaffians of a skew-symmetric matrix (aij )1≤i,j≤5
with

deg(aij ) =
{

2 if i = 1 or j = 1

1 if i ≥ 2 and j ≥ 2

such that the quadric Q = a23a45 − a24a35 + a25a34 has rank 5.
By [loc.cit.] the group K1,1(X,L) is generated by [Q], hence IX contains no

quadrics of rank ≤ 4. If K1,1(X,L) contains a Green–Lazarsfeld class this class
would be of scrollar type, since it necessarily comes from two pencils |L1|, |L2|.
This is impossible, since classes of scrollar type give rise to quadrics of rank ≤ 4.

The Koszul class [Q] ∈ K1,1(X,L) has rank 3, since it is represented by the
linear subspace W = 〈a23, a24, a25〉. Hence [Q] comes from Voisin’s method by
Theorem 3.4.
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Remark 3.9. A more geometric description of a subspace W representing [Q] is
the following. A smooth intersection of the quadric V (Q) ⊂ PH 0(X,L)∨ with one
of the cubic Pfaffians is a K3 surface in PH 0(X,L)∨ containing a line � which is
disjoint from X by [2, Proposition 4.1]. The line � corresponds to a 3-dimensional
linear subspace W ⊂ H 0(X,L), which is base-point-free since � does not meet X.

One could ask whether the syzygies constructed in Section 2.1 span Kp,1(X,L).
In principle it may be possible to obtain higher rank syzygies as linear combinations
of rank p + 2 syzygies. However, if Kp,1(X,L) is spanned by a single syzygy of
rank ≥ p + 3 this is not possible.

Example 3.10 (Eusen–Schreyer). Eusen and Schreyer [3, Theorem 1.7 (a)] have
constructed a smooth curveX ⊂ P5 of genus 7 and Clifford index 3 embedded by the
linear system |KX(−x)| such thatK2,1(X,KX(−x)) ∼= C is spanned by a syzygy s0.
The explicit expression for s0 given on p. 8 of [loc. cit.] shows that s0 is a rank 5
syzygy. Hence s0 cannot be obtained by the Green–Lazarsfeld construction or the
method of Section 2.1.
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