
Comment. Math. Helv. 82 (2007), 629–664 Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Links with no exceptional surgeries

David Futer and Jessica S. Purcell∗

Abstract. We show that if a knot admits a prime, twist-reduced diagram with at least 4 twist
regions and at least 6 crossings per twist region, then every non-trivial Dehn filling of that knot
is hyperbolike. A similar statement holds for links. We prove this using two arguments, one
geometric and one combinatorial. The combinatorial argument further implies that every link
with at least 2 twist regions and at least 6 crossings per twist region is hyperbolic and gives a
lower bound for the genus of a link.
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1. Introduction

Knots and links in S3 are easiest to visualize with a projection diagram, but computing
geometric or topological information directly from the diagram is often a difficult task.
In the very special case of alternating knots, an alternating diagram reveals a lot of
topological information, including the genus of the knot [5], [17] and bounds on the
Heegaard genus of the complement [15]. For alternating knots and links, one can tell
by looking at an alternating diagram whether the complement is hyperbolic [16], and
if it is, compute upper and lower bounds on the volume [14]. However, few results
of this sort extend beyond this special class of knots and links.

In this paper, we prove a mild diagrammatic condition that ensures the complement
of a particular link is hyperbolic, and a slightly stronger one that ensures all non-trivial
Dehn surgeries on the link are hyperbolike. We also use the combinatorial properties
of a diagram to give a lower bound on the genus of a link. To state our results precisely,
we will need a few definitions.

∗The second author was partially supported by a VIGRE postdoc under NSF grant number DMS-0091946 at
the University of Texas at Austin.
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1.1. Twist regions and reduced diagrams. A diagram D(K) of a knot or link
K ⊂ S3 can be viewed as a 4-valent planar graph G(K), with over-under crossing
information at each vertex.

Definition 1.1. A bigon is a contractible region in the complement of G(K) that has
two edges in its boundary. Following Lackenby [12], [14], define a twist region of the
knot or link to be a maximal string of bigons arranged end to end. A single crossing
adjacent to no bigons is also a twist region. We implicitly assume throughout that the
diagram is alternating in each twist region; otherwise, one can reduce the number of
crossings of the diagram in the obvious way.

We are also concerned with the amount of twisting that occurs in each twist region.
We will count this either in terms of crossings or in terms of full twists, where a full
twist of one strand about the other corresponds to two crossings. See Figure 1 for an
illustration of these definitions.

Figure 1. The above diagram has 3 twist regions, containing 2, 1
2 , and 1 1

2 twists, respectively.

Definition 1.2. A diagram D(K) of a knot or link K ⊂ S3 is called prime if for
any simple closed curve γ in the projection plane that intersects the graph G(K)

transversely in two points in the interior of edges, γ bounds a subdiagram containing
no crossings of the original diagram. Note that this ensures the diagram contains no
monogons, provided it has more than one crossing. See Figure 2.

Following Lackenby [14], we also require the diagram to be twist-reduced.

Definition 1.3. A diagram D(K) of a knot or link K is twist-reduced if whenever a
simple closed curve γ in the projection plane intersects the graph G(K) transversely
in four points in the interior of edges, with two points adjacent to one crossing and the
other two points adjacent to another crossing, then γ bounds a subdiagram consisting
of a (possibly empty) collection of bigons arranged in a row between these two
crossings. See Figure 2.
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A B �⇒
A or B is

A B �⇒
...

A or B is

Figure 2. Left: A prime diagram; Right: A twist-reduced diagram.

Note that any diagram of a prime knot or link K can be simplified into a prime,
twist-reduced diagram: for if D(K) is a diagram that fails to be prime, then all
crossings on one side of a simple closed curve γ are extraneous and can be removed.
Similarly, if D(K) is not twist-reduced, then a series of flypes will amalgamate the
two twist regions adjacent to a curve γ into a single region, reducing the number of
twist regions.

These definitions allow us to state our first result.

Theorem 1.4. Let K ⊂ S3 be a link with a prime, twist-reduced diagram D(K).
Assume that D(K) has at least two twist regions (i.e. that K is not a closed 2-braid).
If every twist region of D(K) contains at least 6 crossings, then K is hyperbolic.

This result could be viewed as an extension of Menasco’s theorem [16], which
holds that a prime, non-split alternating link is hyperbolic whenever it is not a closed
2-braid. For alternating links, Menasco does not need any assumption on the number
of crossings per twist region; to rule out non-hyperbolic links in general, some such
assumption is necessary.

Recall that the genus of a link K ⊂ S3 is the smallest genus of an embedded
incompressible, orientable surface S ⊂ S3 whose boundary is K . We can use prime,
twist-reduced diagrams to give a lower bound on the genus.

Theorem 1.5. Let K ⊂ S3 be a link of k components with a prime, twist-reduced
diagram D(K). If D(K) has t ≥ 2 twist regions and at least 6 crossings in each
twist region, then

genus(K) ≥
⌈

1 + t

6
− k

2

⌉
,

where �·� is the ceiling function that rounds up to the nearest integer.

Crowell [5] and Murasugi [17] have independently proved that the genus of an
alternating link is equal to half the degree of its Alexander polynomial, and Gabai
gave an algorithm to compute the genus of an arborescent link [9] . The advantage
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of Theorem 1.5 is that it works for general links and, in fact, gives the exact value for
certain families of links.

1.2. Dehn surgery. Let M be a 3-manifold with torus boundary ∂M , and s a slope
on ∂M , that is, s is an isotopy class of essential simple closed curves on ∂M . The
manifold obtained by gluing a solid torus S1×D2 to ∂M in such a way that the slope s

bounds a disk in the resulting manifold is called a Dehn filling along the slope s, or
a Dehn surgery along s. More generally, if M is a 3-manifold with multiple torus
boundary components and along each component we have a slope si , we obtain a
closed manifold by Dehn filling along these slopes.

Using a basis 〈μ, λ〉 for the fundamental group of the torus, slopes on cusps are
parameterized by Q ∪ {∞}. Thus a slope corresponds to a/b if and only if the slope
is equivalent to aμ + bλ. If K is a knot in S3, and M is taken to be the exterior
E(K) of a tubular neighborhood of K , then we let μ correspond to a meridian, and λ

to a longitude. In this case, Dehn filling along a meridian of K , i.e. 1/0 filling, will
always give S3. This Dehn filling is called the trivial filling. All other Dehn fillings
are non-trivial.

Thurston has shown that given a hyperbolic manifold M with cusps, all but finitely
many choices of surgery slope on each component of ∂M yield a closed hyperbolic
manifold [23]. More recently, Hodgson and Kerckhoff showed that if the surgery
slope on each component of ∂M is longer than a given universal constant, then the
resulting Dehn filled manifold is hyperbolic [11]. Using these results, Purcell was
able to show that for sufficiently complicated knots, every nontrivial Dehn filling is
hyperbolic [20]. However, the required knots are so complicated that they are difficult
to use in practice.

If we weaken the assumption that the resulting manifold be hyperbolic, we can
obtain similar surgery results for much less complicated knots.

Definition 1.6. A closed, orientable 3-manifold M is hyperbolike if

(1) M is irreducible and atoroidal,

(2) M is not Seifert fibered, and

(3) π1(M) is infinite and word-hyperbolic.

All hyperbolic manifolds are hyperbolike. Thurston’s Geometrization Conjecture
[24] (whose proof was recently announced by Perelman [18], [19]) would imply the
converse.

Theorem 1.7. Let K be a link in S3 with a prime, twist-reduced diagram D(K).
Suppose that every twist region of D(K) contains at least 6 crossings and each
component of K passes through at least 7 twist regions (counted with multiplicity).
Then every non-trivial Dehn filling of all the components of K is hyperbolike.
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Notice that we obtain this information about Dehn fillings from the diagram of
the link alone. We need no additional information.

The statement of Theorem 1.7 can be extended in two different ways. First, under
the same hypotheses as in Theorem 1.7, a non-trivial Dehn filling of only some com-
ponents of K yields a hyperbolic manifold with boundary. Second, if we strengthen
the hypotheses to require that each twist region contain 7 or more crossings, it will
follow that a non-trivial Dehn filling of K admits a negatively curved Riemannian
metric. (See Theorem 3.11.) It is worth emphasizing that Perelman’s recent work
on the Geometrization Conjecture implies that every hyperbolike manifold and every
negatively curved manifold actually admit a hyperbolic metric. However, our proofs
do not rely on his papers.

Corollary 1.8. Let K be a knot in S3 with a prime, twist-reduced diagram D(K). If
D(K) has at least 4 twist regions, and each twist region contains at least 6 crossings,
then any non-trivial Dehn filling of K is hyperbolike.

The corollary follows from Theorem 1.7 because if K is a knot, every twist region
contains two strands of K . Thus in a diagram with 4 twist regions, K passes through
a twist region 8 times.

In fact, the hypothesis of 4 twist regions in Corollary 1.8 is a sharp bound. Wu
has shown that every pretzel knot with 3 twist regions and at least 2 crossings per
twist region admits a non-trivial exceptional surgery [27]. Thus our results assume
the smallest possible number of twist regions.

As for the requirement that each twist region contain at least 6 crossings, we know
that some such requirement is necessary. It is known that there exist knots with non-
trivial exceptional surgeries that have arbitrarily large volume, hence an arbitrarily
high number of twist regions. These have been discovered by Eudave-Muñoz and
Luecke [7], Eudave-Muñoz [6], as well as recently by Baker [3]. Thus a high number
of twist regions alone is not enough to rule out exceptional surgeries. However, at
this time the authors do not know whether the requirement of six crossings per twist
region is sharp.

Another advantage of Theorem 1.7 is that it gives information on Dehn fillings
without requiring us to restrict our attention to a particular class of knots or links. This
should be compared to other known results. Lackenby has shown that all non-trivial
Dehn surgeries on alternating knots with at least 9 twist regions are hyperbolike,
as are surgeries on alternating links in which each component passes through 17 or
more twist regions [12]. Wu proved that all non-trivial surgeries on a large class of
arborescent knots are hyperbolic [26]. Theorem 1.7 applies to both of these classes
of knots as well as non-alternating, non-arborescent knots and links.

Theorem 1.7 also gives a nice tool for understanding Dehn fillings on link com-
plements as well as knot complements. Classifying Dehn fillings on links is often
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a more difficult problem than classifying fillings on knots, but our arguments apply
equally well to both knots and links.

1.3. Two proofs, with two notions of length. By the work ofAgol [2] and Lackenby
[12], Dehn fillings of a hyperbolic manifold M are hyperbolike whenever the surgery
slopes on ∂M are “sufficiently long.” This term has two distinct meanings. Agol
and Lackenby independently showed that if the length of each surgery slope on a
maximal cusp of M is at least 6, then the surgered manifold is hyperbolike. Lackenby
also showed that the same conclusion holds when the combinatorial length of each
surgery slope is at least 2π . In this paper, we use these two points of view to give
two different proofs of Theorem 1.7.

Both proofs make use of the same surgery description of the link K . In Section 2,
we show how to start with a prime, twist-reduced diagram of K and construct a
new link, whose complement in S3 has simple geometric properties. The analysis of
these properties in Section 3 leads to estimates of length on a maximal cusp, yielding
our geometric proof of Theorem 1.7. In Section 4, we review relevant results from
Lackenby’s theory of normal and admissible surfaces in angled polyhedra, setting up
the notion of combinatorial length. We then use this machinery in Section 5 to give
combinatorial proofs of all three of our main theorems.

We are grateful to Henry Segerman for his helpful suggestions and to Eric Schoen-
feld for providing a template for Figure 9. Robert Lipshitz has helpfully pointed out
that our techniques can be used to estimate genus. Above all, we would like to ac-
knowledge the extended guidance given to us by Steve Kerckhoff. The bulk of these
results were obtained while both authors were his students.

2. Augmented links

In this section, we describe how to start with a prime, twist-reduced projection of a
link K , construct a flat augmented link L, and subdivide the exterior S3 \ L into two
hyperbolic ideal polyhedra. This construction is originally due to Ian Agol and Dylan
Thurston (see the appendix of [14]). We use the ideal polyhedra to find geometric
information about the cusps of the complement of L in S3.

2.1. Constructing the augmented link. Let D(K) be a prime, twist-reduced dia-
gram of a link K ⊂ S3. As described in the introduction, each twist region in D(K)

consists of two strands of K wrapping around each other. For each twist region Ri ,
add a simple closed curve Ci encircling the twist region, known as a crossing circle.
Let I be the resulting link.

Definition 2.1. For a link K ⊂ S3, let the exterior E(K) denote the complement of
an open tubular neighborhood of K .



Vol. 82 (2007) Links with no exceptional surgeries 635

Note that the manifold E(I) is homeomorphic to the manifold E(J ), where J

is the simpler link with all full twists removed at each twist region of I . We can
recover the original link K from J by performing 1/ni surgery on each Ci , |ni | being
the number of full twists we removed. Furthermore, any Dehn filling of K can be
viewed as a filling of J . The results of this paper work by analyzing the geometry
and combinatorics of S3 \ J .

In fact, to analyze this geometry, we will make J even simpler by removing all
remaining single crossings from the twist regions. The resulting link L has two
kinds of components: knot strands coming from K that lie flat in the projection
plane, and crossing circles Ci perpendicular to the projection plane. We call L a
flat augmented link. If some twist region Ri had an odd number of crossings, E(L)

is no longer homeomorphic to E(J ); indeed, J and L can have a different number
of components. We will address this issue later, in §2.3. See Figure 3 for a visual
summary of this construction.

K I J L

Figure 3. Left to right: The original knot with twist regions marked; the link I with crossing
circles added; the homeomorphic link J ; the flat augmented link L.

To subdivide S3\L into polyhedra, we first slice it along the projection plane. This
divides S3 into two identical 3-balls. Since they are identical, we focus our attention
on B1, the ball above the projection plane. The decomposition of B2 proceeds in the
same way. Each crossing circle Ci bounds a disk Di , half of which lies in B1 and
borders on three edges in the projection plane. We then further slice B1 along each
of these half-disks.

This allows us to pull apart the two sides of each half-disk and flatten them, creat-
ing the planar diagram of a polyhedron. (See Figure 4.) This polyhedron will inherit
one face from each region of the projection diagram and one face from each side of
disk Di . We can turn this polyhedron into an ideal polyhedron P1 by collapsing
strands of L to ideal vertices. The other ball B2 becomes an identical ideal polyhe-
dron P2.

P1 and P2 will each have six edges per twist region, three from each side of
the intersection between Di and the projection plane. At each edge, a face coming
from the projection place meets a face coming from Di . This allows us to two-color



636 D. Futer and J. S. Purcell CMH

A

A

C C

Figure 4. Decomposing S3 \ L into ideal polyhedra: First slice along the projection plane, then
split remaining halves of two-punctured disks. Obtain polygon on right.

the faces in a convenient fashion: the projection-plane faces will be white and the
crossing-disk faces shaded, as in Figure 4.

To reconstruct S3 \ L from P1 and P2, we first glue matching shaded faces in
each Pj , and then glue the two polyhedra to each other along the white faces. Observe
that in this gluing, the edges become 4-valent: each borders on two shaded faces (the
two halves of Di) and two white faces in the projection plane. In R3, we can position
the crossing disks Di perpendicular to the projection plane, creating dihedral angles
of π/2 between adjacent faces. Conveniently, this feature carries over into hyperbolic
geometry.

2.2. The geometry of E(L). The following theorem was used byAgol and Thurston
in [14].

Theorem 2.2. Let D(K) be a prime, twist-reduced diagram of a link K , with at least
two twist regions. Let L be the flat augmented link obtained from D(K). Then E(L)

is hyperbolic. Furthermore, the polyhedra P1 and P2 decomposing E(L) are convex
ideal polyhedra in H3, with totally geodesic faces that meet at right angles.

Proof. Given the diagram D(K), we can always reverse the crossings in some of
the twist regions to obtain an alternating diagram D(K ′). Furthermore, because
the construction of the augmented link ignores the over–under crossing information,
applying this construction to K ′ will yield the same link L.

Thus every flat augmented link L is an example of whatAdams calls an augmented
alternating link. When L has 2 or more crossing circles, and thus K ′ has 2 or more
twist regions, Menasco’s theorem [16] implies E(K ′) is hyperbolic. Then Adams’
result on augmented alternating links [1] implies that every flat augmented link L is
hyperbolic.

Additionally, note that there is an orientation-reversing involution of S3 \ L pre-
serving L and our ideal polyhedra: namely, reflection through the projection plane.
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Every lift of this involution to the universal cover H3 is a reflection in a totally geodesic
plane. Hence the polyhedra can be made totally geodesic in H3, with the shaded faces
meeting the white faces at right angles. �

Remark. It is worth noting that the statement and proof of Theorem 2.2 do not assume
that the original link K is hyperbolic. When D(K) has at least two twist regions, it
follows from Menasco’s theorem [16] that the alternating link K ′ is hyperbolic; we
use this to bootstrap to a hyperbolic structure on E(L). This will eventually be used
to prove that K is hyperbolic (Theorem 1.4).

If we intersect P1 and P2 with the compact manifold E(L), each of their ideal
vertices gets truncated into a rectangular boundary face on ∂E(L). If we keep track
of how these rectangles are glued to one another in the gluing pattern of P1 and P2,
we can construct a picture of the cusp triangulation of each torus of ∂E(L).

Lemma 2.3. The cusp tori of L are rectangular. For a crossing circle Ci , the cusp
torus is composed of two boundary faces. For a knot strand Kj lying flat in the
projection plane, the cusp torus is a 2×n block of boundary faces, where n is the
number of twist regions crossed by Kj (counted with multiplicity).

Proof. As we saw in the construction of §2.1, each crossing circle Ci ⊂ L becomes
an ideal vertex in P1. Truncate this vertex to get a rectangular boundary face F1. The
shaded faces on opposite sides of this boundary rectangle are glued to one another in
the gluing pattern, since they glue to give half the disk Di bounded by Ci ; thus an arc
in F1 connecting the two shaded faces represents a meridian of Ci .

The two white faces meeting F1 are glued to corresponding faces of P2, joining
F1 to the boundary rectangle F2. Thus the cusp torus of Ci is tiled by F1 and F2, with
the meridian and longitude as shown in Figure 5.

A

C

A

C

λ

μ

Figure 5. Left: Each crossing circle gives rise to one ideal vertex in P1. Right: The cusp diagram
corresponding to a crossing circle. Here μ is a meridian, and λ is a longitude.

For a knot strand Kj ⊂ L, P1 will have one ideal vertex (hence one boundary
rectangle) for each strand of Kj between adjacent crossing disks Di . (See Figure 4.)
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These boundary rectangles are glued end to end along shaded faces coming from the
Di to complete a longitude of Kj . P2 will give rise to an identical chain of rectangles,
glued to the boundary rectangles of P1 along the white faces of the projection diagram.
Thus the cusp torus of Kj is tiled by a 2×n block of rectangles, where n is the number
of intersections between Kj and the crossing disks Di , hence equal to the number of
twist regions that Kj passes through, counted with multiplicity. See Figure 6. �

A

C

a d

b c

C

A
a b c d a

a′ b′ c′ d ′ a′

μ

λ

Figure 6. The cusp diagram for the knot strand cusp. Solid segments correspond to white faces,
and dotted segments correspond to shaded faces.

2.3. Half-twists and surgery slopes. Recall that to construct the flat augmented
link L with its nice polyhedral decomposition, we took three steps, summarized in
Figure 3. We added crossing circles to K (obtaining a link I ); removed a whole num-
ber of twists per twist region (obtaining a link J with homeomorphic complement);
and then removed any remaining single crossings. Whereas any Dehn filling of K is
a filling of J , the same is no longer true for L. Thus to obtain our results, we need to
understand the combinatorics of the link J , with the half-twists re-inserted.

Conveniently, E(J ) can still be decomposed into the same polyhedra P1 and P2,
only with a slightly modified gluing pattern. P1 has one shaded face from each side of
a crossing disk Di ; to construct E(L), we glued those faces to each other. If instead
we glue those shaded faces of P1 to matching shaded faces of P2, we effectively insert
a half-twist along disk Di and a single crossing into the projection diagram of L. We
can do this wherever J has a single crossing. In particular, this simple rearrangement
means that we have the following version of Theorem 2.2.

Theorem 2.4. Let D(K) be a prime, twist reduced diagram of a link K . Assume that
D(K) has at least two twist regions, with ai crossings in twist region Ri . Let J be
the augmented link constructed in §2.1, in which the number of crossings in region
Ri is reduced to ai mod 2. Then

(1) E(J ) is hyperbolic,
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(2) E(J ) is subdivided into convex ideal polyhedra P1 and P2 with dihedral an-
gles π/2,

(3) K is the result of Dehn filling each crossing circle Ci of J along the surgery
slope 1/si , where we removed 2|si | crossings from Ri , and

(4) every Dehn filling of K is a filling of J .

Proof. The first two conclusions follow from Theorem 2.2 because E(J ) decomposes
into the same convex ideal polyhedra as E(L). The last two conclusions result from
the process of constructing J , and are mentioned in §2.1. �

In the cusp diagrams of ∂E(J ), each half-twist in the transition from L to J will
shift the gluing by one step along the shaded faces coming from Di , as illustrated in
Figure 7. Thus the neat rectangular pattern of Lemma 2.3 no longer holds. However,
we can still make convenient statements about the universal cover T̃ of each cusp
torus of S3 \ J .

Figure 7. Cusp view: adding a half twist to a flat augmented link shifts the gluing along the
shaded faces.

Definition 2.5. Let T be a cusp torus of ∂E(J ), with universal cover T̃ = R2. Then
T̃ contains a rectangular lattice coming from white and shaded faces of P1 and P2.
We construct a basis 〈s, w〉 of this Z2 lattice by letting s be a step parallel to a shaded
face and w be a step parallel to a white face.

Lemma 2.6. Let T be a cusp torus of ∂E(J ) and let 〈s, w〉 be the basis for the lattice
on T̃ . In this basis, the fundamental domain of T appears as follows:

(1) If T comes from a crossing circle without a half-twist, it has meridian w and
longitude 2s.

(2) If T comes from a crossing circle with a half-twist, it has meridian w ± s

(depending on the direction of the twist) and longitude 2s.
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(3) If T comes from a component Kj of the original link K , it has meridian 2s and
longitude nw + ks, where Kj runs through n twist regions with multiplicity and
k is an undetermined integer.

Proof. If J does not contain any half-twists, this is a restatement of Lemma 2.3. (See
Figures 5 and 6.) Each half-twist along the crossing circle Ci shears the meridian
of Ci by s, as described above. It also shears by s the cusp of every component of
the original link K passing through the crossing disk Di .

Thus if Kj passes through a half-twist m times, the projection of the curve nw+ms

to T will be some longitude of Ki , in the sense of completing a basis of π1(T ) along
with μ = 2s. The true longitude, in the sense of having linking number 0 with Kj ,
is then some curve of the form nw + ks for some integer k. �

The basis 〈s, w〉 also allows us to make precise statements about the surgery curves
on ∂E(J ) that correspond to non-trivial surgeries on K .

Theorem 2.7. Let K = ⋃m
j=1 Kj be a link in S3 with a prime, twist reduced diagram

D(K). Suppose that D(K) contains twist regions R1, . . . , Rn (n ≥ 2) and that twist
region Ri contains ai crossings. For each component Kj , let nj be the number of twist
regions crossed by Kj , counted with multiplicity; and let sj be a non-trivial surgery
slope on Kj .

With this notation, the surgery onS3\K along slopes s1, . . . , sm can be represented
as a surgery on J as follows:

(1) On the (mostly) planar component of J corresponding to Kj , the surgery curve
is pjnjw + qj s, for some integers pj �= 0 and qj .

(2) On the crossing circle Ci , the surgery curve is w ± ais.

Proof. By Lemma 2.6, Kj has meridian 2s and a longitude of the form njw + kj s.
Since sj is a non-trivial surgery slope, it must cover at least one longitude. In particular,
the number of steps that a curve representing sj takes along the white faces is a nonzero
multiple of nj .

To prove conclusion (2), suppose first that ai is even, so J has no half-twist at Ci .
By Lemma 2.6, Ci has longitude 2s and meridian w. By Theorem 2.4, the surgery
curve on Ci traverses ai/2 longitudes and one meridian, proving the result.

Now, suppose that ai is odd. Then in the construction of J , we have removed
2bi = ai −1 crossings; the remaining half-twist of J at Ci goes in the same direction
as the twists of K . By Lemma 2.6, Ci has longitude 2s and meridian w + σis, for
some σi = ±1. By Theorem 2.4, the surgery curve traverses σibi longitudes (with
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the same σi) and one meridian. Thus, in the basis of 〈s, w〉, the surgery curve is

μ + σibiλ = (w + σis) + σibi(2s)

= w + σi(1 + 2bi)s

= w + σiais. �

3. Geometric cusp estimates

In Section 2, we showed that each cusp ofE(J ) contains a rectangular lattice generated
by s and w, and in Theorem 2.7 we expressed the surgery curves on ∂E(J ) explicitly
in terms of s and w. In this section, we will use the geometry of the polyhedra
P1 and P2 to come up with lower bounds for the lengths of s and w on a maximal
cusp. This will allows us to estimate the lengths of surgery curves. By combining
these estimates with Agol and Lackenby’s 6-Theorem (Theorem 3.2), we will obtain
a geometric proof of Theorem 1.7.

3.1. Length on a maximal cusp. In this paper, we measure the length of curves on
a cusp of E(J ) in two distinct ways: geometric and combinatorial. The geometric
measurements of this section come from the hyperbolic metric. A closed curve
isotopic to a cusp torus has many representatives in E(J ), whose lengths shrink to 0
as the representative curves approach the cusp. To obtain a meaningful definition
of length, we will consider curves on a horospherical torus bounding a maximal
neighborhood of a cusp.

For a manifold with just one cusp, such as a knot complement, we obtain the
maximal horoball neighborhood by expanding a horoball about the single cusp until
it becomes tangent to itself. In a manifold with multiple cusps, such as E(J ), the size
of the maximal cusp depends on the order in which we expand horoballs about the
cusps, for a horoball might become tangent to an expanded horoball about a different
cusp before it becomes tangent to itself.

Definition 3.1. Let M be a 3-manifold with boundary consisting of tori, whose
interior has a complete hyperbolic structure. Fix a cusp neighborhood U , consisting
of disjoint horoball neighborhoods of the cusps of M . Then any closed curve γ ⊂ ∂M

can be assigned a unique geometric length �g(γ ), defined as the shortest length of a
curve on ∂U isotopic to γ .

The subscript in �g(γ ) serves to distinguish geometric length from the combi-
natorial length �c(γ ) used in Sections 4 and 5. When the meaning is clear, we will
simply use �(γ ).

To rule out exceptional surgeries on M , it helps to choose the cusp neighborhood
U to be maximal, to make the surgery curves as long as possible. Agol [2] and
Lackenby [12] have independently proved the following surgery theorem:
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Theorem 3.2 (6-Theorem). Let M be a hyperbolic 3-manifold with boundary con-
sisting of tori. Let s1, . . . , sn be surgery slopes on ∂M , with one si on each torus.
Suppose that there are disjoint horoball neighborhoods of the cusps of M , such that
�g(si) > 6 for all i. Then the manifold obtained by Dehn filling M along the slopes
s1, . . . , sn is hyperbolike.

In §3.2, we will give explicit instructions for expanding the horoball neighbor-
hoods about the cusps of E(J ) that produce favorable estimates for the length of
surgery curves. These estimates will rely on lower bounds for �(s) and �(w).

It should be noted that the lengths of the meridians of augmented links were found
independently by Eric Schoenfeld in his undergraduate thesis [22].

3.2. Horosphere packing in H3. Recall from Section 2 that each ideal vertex of P1
and P2 gives rise to a boundary rectangle on a cusp of E(J ). In the geometry of the
universal cover H3, the boundary rectangle can be seen as the intersection of Pi with
a horosphere. A side parallel to s is the intersection of a horosphere with a shaded
face, and a side parallel to w is the intersection with a white face. It turns out that
boundary rectangles and horospheres are easiest to visualize in the upper half-space
model of H3.

Notation. We will parameterize the upper half-space model of H3 with coordinates
(z, h), where z ∈ C and h ∈ R+. In this model, the sphere at infinity S2∞ can be
identified with the Riemann sphere C ∪ ∞.

We can apply an isometry of H3 so that the point at infinity of H3 projects to
the cusp under consideration in E(J ). Then a horosphere about that cusp lifts to a
horizontal plane at height h. In the metric on the upper half-space model, hyperbolic
length corresponds to 1

h
times the Euclidean length. Thus we can bound the hyperbolic

lengths of s and w using Euclidean measurements in upper half-space.
Every procedure for expanding the cusps will lower the horizontal horosphere

until it becomes tangent to another horosphere. This abutting horosphere will look
like a Euclidean sphere tangent to S2∞ at some point of C.

Definition 3.3. Let H be a horosphere in the upper half-space model of H3. If H is a
Euclidean sphere, call the point of tangency in C the center of H . If H is a horizontal
Euclidean plane, we say that H is centered at ∞.

We will normalize our horoball packing in upper half-space by placing ideal
triangles into standard position.

Definition 3.4. Let T ⊂ H3 be an ideal triangle. We will say that T is in standard
position in the upper half-space model if its ideal vertices lie at 0, 1, and ∞. Note
that any ideal triangle can be placed into standard position by an isometry.
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Recall that each shaded face of the polyhedra P1 and P2 is an ideal triangle. Thus
we can place Pi in the upper half-space model of H3 so that a shaded face is in
standard position. When we do so, the polyhedron Pi is lifted to lie entirely over a
boundary rectangle with corners at 0, 1, 0 + ir and 1 + ir for some real number r .

Lemma 3.5. Arrange Pi in H3 so that some shaded side has vertices at 0, 1, and ∞,
so Pi lies over a boundary rectangle with corners at 0, 1, 0 + ir and 1 + ir . Follow
any procedure for expanding the cusps of E(J ) to horoballs with disjoint interiors,
and let H be a horosphere centered at a point of the rectangle. If the center of H

does not lie on a white side of the rectangle, the diameter of H is at most 1.

Proof. Since there is a shaded face of Pi with vertices 0 and 1, there must be a
white face of Pi containing vertices 0, ir and ∞, and another containing 1, 1 + ir ,
and ∞. Recall that reflection through the white faces of E(J ) is an involution of
the manifold, corresponding to a reflection in the projection plane of Figure 4. This
involution permutes the horospheres covering cusps of E(J ), and thus takes H either
to itself or to a disjoint horosphere H ′. If the center of H lies on a white side of
the rectangle, reflection in the plane above that side will fix H . Otherwise, H must
be disjoint from its reflection. Then, since the boundary rectangle has length 1, the
diameter of H can be at most 1. �

For horospheres centered on white sides of boundary rectangles, we will also
prove that the diameter is at most 1. In order to do so, we will need to give specific
instructions for expanding the cusps.

We would like to expand the cusps of E(J ) to a halfway point along each edge
of the polyhedra. It turns out that even though an edge is infinitely long, there is a
natural way to define its midpoint.

Definition 3.6. Let T ⊂ H3 be an ideal triangle. For each edge e of T , define the
midpoint to be the point m ∈ e such that the geodesic from m to the opposite vertex
is perpendicular to e. (This point is unique, for otherwise we would have a triangle
with one ideal vertex and two right angles.)

Now, each edge e in the polyhedral decomposition of E(J ) borders on two shaded
faces, S1 and S2, with each Si ⊂ Pi . (See Figure 4.) It is easy to check that the two
definitions of the midpoint of e, coming from S1 and S2, coincide. This is because
P1 and P2 are symmetric by a reflection in the white faces of the projection diagram.
The reflection preserves angles, so it also preserves the midpoint of e. Thus we have
a well-defined midpoint of each edge of E(J ).

When two ideal triangles T1 and T2 are symmetric across an edge e, we have an
alternate way of seeing the midpoint m in e. Namely, the two ideal triangles glue up
to form an ideal quadrilateral. One diagonal is e, and the other diagonal d intersects e
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at m. (See Figure 8.) By this approach, we see that when T1 is in standard position
and e is vertical, m is at Euclidean height 1.

−1 0 1

m
d

e

Figure 8. When a triangle is in standard position, the midpoint of a vertical edge lies at height 1.

We are now ready to expand all the cusps of E(J ). Pick an order for the cusps,
K1, K2, . . . , Kr , and expand one Ki at a time, starting with K1. Continue expanding
the horoball neighborhood of Ki until it either meets another horoball, or meets the
midpoint of some edge into Ki .

Lemma 3.7. Arrange P1 or P2 in H3 so that some shaded face is in standard position,
and let H be a horoball centered on a white side of a boundary rectangle of Pi . If
the interior of H does not contain the midpoint of any edge of E(J ), the diameter of
H can be at most 1.

Proof. The center of H on S2∞ is an ideal vertex of some translate of Pi , and so at
this ideal vertex, two white faces and two shaded faces meet and intersect H in a
rectangle. Recall that these faces are all totally geodesic, by Theorem 2.4. Since H is
centered on a white side of a boundary rectangle, we know one of these white faces is
actually vertical. That is, one white face V meeting the center of H lies in a vertical
plane in H3, bordered by a line � ⊂ C. The other white face, W , must also lie in a
geodesic plane P in H3. P cannot also be vertical (since H is not centered at ∞),
so it looks like a Euclidean half-sphere, tangent to the vertical plane containing V .
Thus the boundary of P at infinity is a circle C. (See Figure 9.)

Consider the white face W . Since white faces of Pi only meet white faces at ideal
vertices, other white faces meeting W will lie on geodesic planes in H3 tangent to P .
Thus they extend to give circles tangent to the circle C. In particular, these circles
have disjoint interiors, and so the interior of C must be disjoint from the two vertical
planes containing the white sides of the boundary rectangle about the vertex of Pi

at ∞. But because we put a shaded side in standard position, these vertical planes
are of Euclidean distance 1 apart. Thus the diameter of C can be no more than 1.

Now consider the two shaded faces meeting at the center of the horosphere H .
At most one of these shaded faces can lie in a vertical plane. Let S be one of these
shaded faces that does not lie in a vertical plane. Let e be the edge between S and
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H

C
�

γ

e

z

m

Figure 9. If the diameter of H is greater than 1, a 90� rotation about the side of the boundary
rectangle shows that the midpoint of e lies inside H .

the vertical white face V , and let z be the vertex of S opposite e. Note that z is an
endpoint of the edge given by the intersection of S with the white face W . (The other
endpoint is the center of H .) Thus z lies on the circle C.

Consider the midpoint m of e. By Definition 3.6, the geodesic γ from z to m

meets e at a right angle. But γ must lie in S, which by Theorem 2.4 meets the face V

at a right angle, and hence γ is normal to the entire vertical plane containing V . Thus
γ is a Euclidean quarter circle, centered on the line � in C that lies under the vertical
white face V . Then note that a 90� rotation about � takes the point z to m. But this
same 90� rotation about � will take the circle C to the vertical plane over �. If the
diameter of H is greater than 1, the circle C, of diameter at most 1, will be contained
inside H . Since z is on C, in this case the rotated point m will be contained inside H .
(See Figure 9.) Hence if we do not allow H to contain m, the diameter of H can be
at most 1. �

Theorem 3.8. Expand all the cusps of E(J ) as above. Then the midpoint of every
edge of E(J ) will lie at the point of tangency of two horospheres.

Proof. First, we would like to show that an expanding horoball about a given cusp
of E(J ) will simultaneously meet the midpoints of all the edges into that cusp. To
that end, consider the horoball H∞ about ∞, normalized so that a shaded face S is
in standard position. S forms a side of a boundary rectangle of Euclidean width 1.
The opposite side of this rectangle must be another shaded side of Euclidean width 1.
Continuing in the w direction, we see there is an infinite strip consisting of boundary
rectangles lined end to end, and each shaded side in this strip has Euclidean width 1.
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We can now reflect this infinite strip by an involution in the white faces, obtaining
an infinite strip whose sides are separated by 2s. By Lemma 2.6, translation by 2s is
an element of the covering transformation group for any cusp of E(J ). Thus every
shaded face intersecting H∞ has Euclidean width 1. Consequently, the midpoint of
every vertical edge is at height h = 1. (See Figure 8.)

As we expand the horoball H∞ about ∞, the expansion stops before height 1
only if H∞ becomes tangent to another horoball H of diameter greater than 1. But
by Lemmas 3.5 and 3.7, all horoballs obtained with our expansion instructions have
diameter at most 1. Thus H∞ can be expanded until it reaches height h = 1 and
meets the midpoint of every vertical edge. By symmetry, the horosphere centered at
the other endpoint of a vertical edge also meets the midpoint of that edge. �

Corollary 3.9. Expand the cusps of E(J ) by the above procedure. Then in any
boundary rectangle, �(s) = 1 and �(w) ≥ 1.

Proof. Consider a boundary rectangle on a maximal cusp of E(J ), positioned so that
a shaded face S adjacent to this rectangle is in standard position. By Theorem 3.8,
the horosphere H∞ about ∞ meets the midpoints of the vertical edges of S. In
standard position, these midpoints lie at h = 1, where Euclidean lengths correspond
to hyperbolic lengths. Thus �(s) is the Euclidean width of S, namely 1.

Theorem 3.8 also implies that above every corner of a boundary rectangle, horo-
sphere H∞ is tangent to a horosphere of diameter 1. Since these horospheres are
disjoint, we can conclude that �(w) ≥ 1. �

3.3. Surgery consequences. By combining Corollary 3.9 with Theorem 2.7, we
can compute explicit lower bounds for the lengths of surgery curves.

Theorem 3.10. For each cusp Ki of E(J ), pick a surgery slope si that represents
a non-trivial filling of the original link K . If Ki is a knot strand cusp, let ni be the
number of twist regions visited by the corresponding strand of K; if Ki is a crossing
circle cusp, let ni be the number of crossings in the corresponding twist region. Then

(1) on a knot strand cusp, �g(si) ≥ ni , and

(2) on a crossing circle cusp, �g(si) ≥
√

n2
i + 1.

Proof. For part (1), Theorem 2.7 implies that any non-trivial surgery curve on Ki

is of the form piniw + qis for integers pi �= 0 and qi . Then since �(s) = 1 and
�(w) ≥ 1, and s and w are perpendicular, any such curve will have length at least√

p2
i n

2
i + q2

i . This is minimal when qi = 0 and pi = ±1. In this case, �(si) ≥ ni .
For part (2), Theorem 2.7 implies the surgery curve is w ± nis, which has length

at least
√

n2
i + 1. �
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We are now ready to give our geometric proof of Theorem 1.7, which we restate.

Theorem 1.7. Let K be a link in S3 with a prime, twist-reduced diagram D(K).
Suppose that every twist region of D(K) contains at least 6 crossings and each
component of K passes through at least 7 twist regions (counted with multiplicity).
Then every non-trivial Dehn filling of all the components of K is hyperbolike.

Proof. Since each knot strand cusp crosses at least 7 twist regions, Theorem 3.10
says that the surgery curve on that cusp has length at least 7. Since each twist region
contains at least 6 crossings, the surgery curve on the corresponding crossing circle has
length at least

√
62 + 1 > 6. Thus the surgery curve on every component of ∂E(J )

has length greater than 6. Therefore, by the 6-Theorem, the surgered manifold is
hyperbolike. �

Our information about the cusp shapes of E(J ) also allows for the following
extension of Theorem 1.7.

Theorem 3.11. Let K be a link in S3 with a prime, twist-reduced diagram D(K).
Suppose that every twist region of D(K) contains at least 7 crossings and each
component of K passes through at least 7 twist regions (counted with multiplicity).
Then every non-trivial Dehn filling of all the components of K yields a manifold that
admits a negatively curved Riemannian metric.

Proof. Under these hypotheses, every surgery curve on ∂E(J ) will have length at
least 7. In particular, because every surgery curve is strictly longer than 2π , Gromov
and Thurston’s 2π -Theorem [4] implies that the Dehn filled manifold admits a metric
of negative sectional curvatures. �

The Geometrization Conjecture implies that the conclusions of Theorems 1.7
and 3.11 are in fact equivalent. One advantage of Theorem 3.11, despite its stronger
hypotheses, is that the negatively curved metric can be explicitly constructed. In
fact, by estimating the sectional curvatures and volume of this negatively curved
metric, one may obtain explicit estimates on the hyperbolic volume of K and its
Dehn fillings [8].

4. Angled polyhedra and normal surfaces

The next two sections give combinatorial proofs of Theorems 1.4, 1.5, and 1.7, by
using a combinatorial notion of length. In this proof, we make use of a number of
results from the theory of normal and admissible surfaces in angled polyhedra, much
of it developed by Marc Lackenby [12, Section 4]. Lackenby worked with the dual
structure of angled spines. We find it more convenient to work with polyhedra, so in
this section we will translate his definitions and theorems into polyhedral language.
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4.1. Normal and admissible surfaces

Definition 4.1. For the purposes of this paper, a polyhedron is a 3-ball P with a
specified connected graph � embedded in ∂P , such that

(1) each vertex of � has valence at least 3,

(2) each edge of � has ends on distinct vertices, and

(3) each region of ∂P \ � is bounded by at least 3 edges.

P inherits vertices and edges from �, and the faces of P are regions of ∂P \ �. An
ideal polyhedron is a polyhedron with the vertices removed.

Remark. This definition of an ideal polyhedron is actually slightly stronger than
Lackenby’s dual definition of a thickened spine, in that condition (3) prohibits our
polyhedra from having bigon faces. This stronger definition is sufficient for our
purposes (certainly, the ideal polyhedra P1 and P2 constructed in Section 2 have no
bigon faces), and allows for stronger statements of some results.

Let M be a manifold subdivided into ideal polyhedra. To see how the ideal vertices
fit together to tile ∂M , we truncate all the ideal vertices. This gives new polyhedra,
with two kinds of faces: interior faces that are truncated copies of the original faces,
and boundary faces that come from the truncated vertices. We also obtain two kinds
of edges: interior edges that come from the original truncated edges, and boundary
edges along the boundary faces.

In order to define a combinatorial length for a curve on ∂M , we actually need to
consider surfaces inside the manifold with that curve as boundary. Thus we review
some results from the theory of normal and admissible surfaces.

Let (F, ∂F ) ⊂ (M, ∂M) be an embedded essential surface (a sphere not bounding
a ball, or an incompressible, boundary-incompressible surface). The theory of normal
surfaces, originally developed by Haken [10] and generalized and expanded in many
directions, says that F can be isotoped until its intersections with the polyhedra (or
handles) have a particularly nice form. Specifically, we can get F to intersect each
polyhedron in a collection of disjoint, embedded disks, with each disk positioned so
that its boundary curve γ has several nice properties:

Definition 4.2. Let P be a truncated ideal polyhedron. A simple closed curve γ ⊂ ∂P

is called normal if

(1) γ is transverse to the edges of P ,

(2) no arc of γ in a face of P has endpoints on the same edge, or on an interior edge
and an adjacent boundary edge,

(3) γ does not lie entirely in a face of P ,
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(4) γ intersects each edge at most once, and

(5) γ intersects each boundary face at most once.

The disk in P bounded by a normal curve γ is called a normal disk. See Fig-
ure 10 (a) for several examples.

(a) (b)

Figure 10. (a) Normal disks in a truncated polyhedron. (b) An admissible disk.

Notation. To avoid confusion with longer arcs on ∂M , we will refer to the arcs of
intersection between a normal curve γ and the faces of P as segments. (Thus an
arc can consist of many segments.) Segments of γ lying in interior faces of P will
be called interior segments, and the segments lying in boundary faces will be called
boundary segments.

In order to prove word-hyperbolicity, we actually need to work with a more general
class of surfaces that cannot be normalized. These surfaces may not be embedded,
and may even have boundary components in the interior of M .

Definition 4.3. Let P be a truncated ideal polyhedron. An immersed disk D ⊂ P is
called admissible if

(1) ∂D\∂P is a (possibly empty) collection of embedded arcs with endpoints inside
interior faces of P ,

(2) ∂D ∩ ∂P is an immersed closed curve or an immersed collection of arcs,

(3) if ∂D ∩ ∂P is a closed curve, it satisfies conditions (1)–(3) of Definition 4.2 of
a normal curve,

(4) each arc component of ∂D ∩ ∂P satisfies conditions (1)–(2) of Definition 4.2,
and

(5) each segment of ∂D in a face of P is embedded.

An example is shown in Figure 10 (b). We call an immersed surface F ⊂ M an
admissible surface if it intersects each polyhedron in a collection of admissible disks.
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4.2. Angle structures and combinatorial area. The theory of normal surfaces
becomes much more powerful if one has information about the dihedral angles of
ideal polyhedra.

Definition 4.4. Let M be a manifold with boundary. An angled polyhedral decom-
position of M is a subdivision of M \ ∂M into ideal polyhedra, glued along their
interior faces. Each interior edge of each angled polyhedron is assigned an internal
angle αi ∈ (0, π) and an external angle εi = π − αi , such that

(1) around each edge of M ,
∑

αi = 2π , and

(2) in each polyhedron, for a normal curve γ that intersects only interior edges,∑
γ εi ≥ 2π , with equality if and only if γ encircles a vertex.

Angle structures on a polyhedral decomposition of M allow us to define the
combinatorial area of a surface.

Definition 4.5. Let D ⊂ P be an admissible disk in an angled polyhedron, with
the boundary faces of P lying on ∂M . Let E1, . . . , En be the interior edges crossed
by ∂D (counted with multiplicity), and let ε1, . . . , εn be the corresponding external
angles. Then define the combinatorial area of D to be

a(D) =
n∑

i=1

εi + π |∂D ∩ ∂M| − 2π + 3π |∂D \ ∂P |.

For an admissible surface F ⊂ M , a(F ) is defined by summing the areas of its
admissible disks.

For disks with ∂D ⊂ ∂P , this definition matches the formula for hyperbolic area.
For a polygon T ⊂ H2 with external angles εi , a(T ) = ∑

εi −2π . (See, for example,
Corollary 2.4.15 of [25].) Ideal vertices have internal angle 0 and thus add π to the
area, just as each component of ∂D ∩ ∂M adds π to combinatorial area. As for
the coefficient 3π per component of ∂D \ ∂P , it was chosen by Lackenby to make
the combinatorial area of D automatically positive whenever ∂D passes through the
interior of P .

In fact, there are only two types of admissible disks whose area is 0; both of them
happen to be normal. The first is a vertex link cutting off a boundary face; its area
is 0 by Definition 4.4. The second is a boundary bigon cutting off an interior edge;
it has area 0 because its boundary curve only picks up area from two boundary faces.
They are shown in Figure 11.

Lemma 4.6. Let D ⊂ P be an admissible disk in an angled polyhedron. If D is not
a vertex link or a boundary bigon, then a(D) > 0.
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(a) (b)

Figure 11. (a) Vertex links. (b) A boundary bigon.

Proof. If D is normal, Lackenby [13, Lemma 4] proves that a(D) > 0 unless D is
a vertex link or a bigon. If D is not normal, Lackenby [12, Lemma 4.2] proves that
a(D) > 0. In both cases, the proofs rely on condition (2) of Definition 4.4 of an
angled polyhedron and the observation that if ∂D self-intersects or crosses an edge
multiple times, the area can actually be reduced by surgering the disk. �

Remark. Lemma 4.6 is one place where our definition of a polyhedron, which is
stronger than Lackenby’s definition of an angled spine because it rules out bigon
faces, becomes convenient. Bigon faces of the polyhedra allow normal disks other
than boundary bigons or vertex links to have zero area [12, Lemma 4.2]; in our
scenario, every other admissible disk has strictly positive area.

The analogy between hyperbolic area and combinatorial area extends to the fol-
lowing combinatorial version of the Gauss–Bonnet theorem [12, Proposition 4.3].

Proposition 4.7 (Gauss–Bonnet Theorem). Let F ⊂ M be an admissible surface in
a manifold with an angled polyhedral decomposition. Let Length(∂F \ ∂M) be the
number of arcs of intersection between ∂F \ ∂M and the polyhedra. Then

a(F ) = −2πχ(F ) + 2πLength(∂F \ ∂M).

Combinatorial area in angled polyhedra has powerful consequences. Among them
is the following stronger version of a result of Lackenby [12, Corollary 4.6]:

Theorem 4.8. Let M be an orientable 3-manifold with an angled polyhedral decom-
position. Then ∂M is composed of tori, and M is hyperbolic.

Proof. To prove the first assertion, observe that each component of ∂M is tiled by
boundary faces of the polyhedra. Just inside each boundary face, a polyhedron has a
normal disk of area 0. These vertex links glue up to form a closed, boundary-parallel
normal surface F of area 0. By Proposition 4.7, χ(F ) = 0, and since M is orientable,
F must be a torus.
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By Thurston’s Hyperbolization Theorem [24], a manifold with boundary consist-
ing of tori is hyperbolic if and only if it contains no essential spheres, disks, tori, or
annuli. If M contains such a surface S, then it contains one in normal form. If S is
a sphere or disk, then it has positive Euler characteristic, hence negative area. Thus
spheres and disks cannot occur.

A normal torus T ⊂ M has area 0 and thus, by Lemma 4.6, must be composed of
normal disks of area 0. Since T has no boundary, these must all be vertex links, which
glue up to form a boundary-parallel torus. Similarly, a normal annulus A ⊂ M must
be composed entirely of bigons, since a bigon cannot be glued to a vertex link. But a
chain of bigons forms a tube around an edge of M , which is certainly not essential.
Thus we can conclude that M is hyperbolic. �

4.3. Combinatorial length and surgery results. Lackenby’s crucial insight [12]
is that one can use the combinatorial area of surfaces in a manifold M to define a
combinatorial length of curves on ∂M , and that this notion of length turns out to be
closely related to geometric length on a maximal cusp.

Definition 4.9. Let P be an angled polyhedron, and let D ⊂ P be an admissible disk
that intersects at least one boundary face. Let γ be a segment of ∂D in a boundary
face of P . Then we define the length of γ relative to D to be

�(γ, D) = a(D)

|∂D ∩ ∂M| .

Definition 4.10. For a manifold M with an angled polyhedral decomposition, let γ

be a (possibly non-closed) immersed arc in ∂M . We call γ a simplicial arc if

(1) γ is disjoint from the vertices of ∂M ,

(2) the endpoints of γ (if any) lie on edges of ∂M ,

(3) each segment of γ in a boundary face is embedded, and

(4) no segment of γ in a boundary face has endpoints on the same edge.

We can now define the combinatorial length of simplicial arcs on ∂M by consid-
ering all the possible inward extensions of the arc.

Definition 4.11. Let γ ⊂ ∂M be a simplicial arc. Let γ1, . . . , γn be the boundary
segments that make up γ , ordered along a parametrization of γ . For each i, let Di

be an admissible disk in the corresponding polyhedron, whose boundary contains γi .
Then H = ⋃n

i=1 Di is called an inward extension of γ if

(1) ∂Di agrees with ∂Di+1 on the shared face of their polyhedra, and

(2) if γ is closed, ∂Dn agrees with ∂D1 on the common face.
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We define the combinatorial length of γ to be

�c(γ ) = inf
{ n∑

i=1

�(γi, Di)
}
,

where the infimum is taken over all inward extensions of γ . The subscript in �c(γ )

serves to distinguish combinatorial length from the geometric cusp length �g(γ ) used
in Section 3. When the meaning is clear, we will simply use �(γ ).

Definition 4.12. Let s be a slope on a boundary component of M . Then define

�c(s) = inf{�c(γ )},
the infimum being taken over all closed simplicial curves γ ⊂ ∂M that represent
non-zero multiples of slope s.

The point of this string of definitions is to imply the following lemma, which is
essentially Proposition 4.8 of [12], rewritten in terms of polyhedra instead of spines.

Lemma 4.13. Let M be a manifold with an angled polyhedral decomposition, and let
F ⊂ M be an admissible surface. Let C1, . . . , Cm be the components of ∂F ∩ ∂M ,
each Cj representing a non-zero multiple of some slope si(j). Then

a(F ) ≥
m∑

j=1

�c(si(j)).

Proof. The admissible disks of F bordering on each Cj form one inward extension
of Cj . Definition 4.9 has us divide the area of each disk by the number of its inter-
sections with ∂M , so we do not end up double-counting any area. �

As a consequence of Lemma 4.13, surfaces with long boundary have large com-
binatorial area, hence large genus. This yields the following combinatorial analogue
of the 6-Theorem, stated as Theorem 4.9 of [12].

Theorem 4.14 (Lackenby). Let M be a manifold with an angled polyhedral decompo-
sition. Let s1, . . . , sn be a collection of slopes on ∂M , with one si on each component
of ∂M . If �c(si) > 2π for each i, then the manifold obtained by Dehn filling M along
the slopes s1, . . . , sn is hyperbolike.

In fact, Lackenby’s machinery allows for an extension of his theorem to surgeries
along only some components of ∂M .
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Theorem 4.15. Let M be a manifold with an angled polyhedral decomposition. Let
s1, . . . , sm be a collection of slopes on some, but not all, of the boundary tori. If
�c(si) > 2π for each i, then the manifold obtained by Dehn filling M along the
slopes s1, . . . , sm is hyperbolic.

Proof. By Thurston’s Hyperbolization Theorem [24], proving that the Dehn filled
manifold is hyperbolic amounts to ruling out essential spheres, disks, tori, and annuli.
Any such surface F must intersect at least one of the solid tori added during the surgery
process, because M is hyperbolic by Theorem 4.8. Thus F contains a punctured
surface G ⊂ M , whose punctures (not counting the original boundary components
of F ) represent surgery slopes si(1), . . . , si(k) of length greater than 2π . We can place
G in normal form in the angled polyhedra and compute its combinatorial area. Then

a(G) = −2πχ(G) by Proposition 4.7

≤ 2π |∂G \ ∂F | given the choices of F

<

|∂G\∂F |∑
j=1

�(si(j)) by assumption

≤ a(G) by Lemma 4.13,

obtaining a contradiction. �

Juxtaposing Theorem 3.2 with Theorems 4.14 and 4.15, one can see that for the
purpose of ruling out exceptional surgeries, �c(si) corresponds to π

3 �g(si). It turns
out that on the cusps of E(J ), geometric and combinatorial length have a similar
correspondence (compare Theorem 3.10 with Corollary 5.12). This yields a second,
combinatorial, proof of Theorem 1.7.

5. Normal surfaces in the augmented link polyhedra

In this section, we apply the normal surface theory of Section 4 to the ideal polyhedral
decomposition of the augmented link complement E(J ), constructed in Section 2.
Recall that by Theorem 2.4, P1 and P2 are convex ideal polyhedra in H3, so they
satisfy the definition of an angled polyhedron. (See [21, Theorem 1].) In fact, they
are examples of a special type of ideal polyhedron, which we call rectangular-cusped.
If we truncate the ideal vertices, as we did with P1 and P2 in Section 2, the resulting
boundary faces subdivide ∂M into rectangles.
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5.1. Rectangular-cusped polyhedra

Definition 5.1. Let P be an angled ideal polyhedron (see Definition 4.4) in which
we have truncated the ideal vertices. We say that P is rectangular-cusped if

(1) each boundary face of P (each face of P ∩ ∂M) meets 4 interior edges, and

(2) each interior edge is labeled with angle π/2.

Rectangular-cusped polyhedra have two convenient features. First, their interior
faces can be two-colored, in a similar fashion to the white and shaded faces of P1
and P2. Around each rectangular boundary face, opposite interior faces have the same
color. Second, making all dihedral angles equal to π/2 ensures that all combinatorial
areas are multiples of π/2.

In addition to the vertex links and boundary bigons of area 0 (see Figure 11), we
need to define a third kind of special admissible disk.

Definition 5.2. Let P be a truncated ideal polyhedron. An admissible disk D ⊂ P

is called an ideal triangle if

(1) ∂D ⊂ ∂P ,

(2) ∂D intersects the boundary faces of P exactly three times, and

(3) ∂D is disjoint from the interior edges of P .

Two examples are shown in Figure 12. Note that an ideal triangle D has area
a(D) = π and length �(γ, D) = π/3 for each segment γ of ∂D ∩ ∂M .

(a) (b)

Figure 12. Two ideal triangles in a rectangular-cusped polyhedron.

Proposition 5.3. Let D ⊂ P be an admissible disk in a rectangular-cusped polyhe-
dron, such that ∂D passes through at least one boundary face. Let γ ⊂ ∂M be a
boundary segment of ∂D. If D is not a bigon or an ideal triangle,

�(γ, D) ≥ π

2
.
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Proof. We consider different cases, conditioned on n = |∂D ∩ ∂M|. By Defini-
tion 4.9, �(γ, D) = a(D)/n.

Case 1: n = 1. For this case, we need to prove that a(D) ≥ π/2. An admissible
disk with one component of ∂D ∩ ∂M cannot be a vertex link or boundary bigon, so
by Lemma 4.6, a(D) > 0. Since all areas in a rectangular-cusped polyhedron are
multiples of π/2, a(D) ≥ π/2.

Case 2: n = 2. For this case, we need to prove that a(D) ≥ π . If a(D) = 0, D is a
boundary bigon, excluded by the hypotheses. So we need to rule out the possibility
that a(D) = π/2.

If such a disk were to occur, it would have to have ∂D ⊂ ∂P , and ∂D would
have to intersect exactly one interior edge. Then ∂D passes through three interior
faces, which cannot all have the same color because two of them share an edge. Thus
a segment γ1 ⊂ ∂D in a boundary face must connect adjacent interior faces, for
otherwise all three interior faces would have the same color. See Figure 13 for a
schematic picture.

γ1 γ2

γ ′
2

γ ′′
2

γ3

γ4

γ5
γ ′

5

e1 e2

e3

e4

Figure 13. Schematic picture for Case 2 of Proposition 5.3.

We can pull γ1 off the boundary face and have it intersect interior edge e1. This
creates a new disk D′ with one segment on ∂M and area 0, since this isotopy reduced
the area by π/2. If D′ were admissible, it would be a counterexample to Case 1. Thus
∂D′ must violate some condition of admissibility. The only way this can happen is
if one of the new segments of ∂D′, γ ′

2 or γ ′
5, has both endpoints on the same edge, or

on adjacent interior and boundary edges. But since D is admissible, e1 and e4 must
be distinct edges, so γ ′

5 has endpoints on distinct edges.
Thus γ ′

2 connects adjacent interior and boundary edges, and so e1 = e2. We
can then isotope γ ′

2 across this interior edge, creating a new disk D′′ that has just one
intersection with ∂M and one intersection with an interior edge. Since γ4 and the new
segment γ ′′

2 lie in adjacent faces of P , we have e3 = e4. Then γ4 connects adjacent
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interior and boundary edges, contradicting the assumption that D was admissible.
Therefore, such a disk D does not exist.

Case 3: n = 3. For this case, we need to prove that a(D) ≥ 3π/2. The three
components of ∂D ∩ ∂M already ensure that a(D) ≥ π . So if ∂D also intersects an
interior edge or the interior of P , we have a(D) ≥ 3π/2. Otherwise, D is an ideal
triangle, excluded by the hypotheses.

Case 4: n ≥ 4. For this case,

a(D) ≥ n · π − 2π ≥ n

2
· π,

proving the lemma. �

Thus ideal triangles are the only admissible disks of nonzero area that contribute
less than π/2 to combinatorial length. To obtain the best possible bounds on the
length of surgery curves, we need to find out more about how these triangles fit into
polyhedra P1 and P2 that decompose the link complement E(J ).

5.2. More on ideal triangles

Lemma 5.4. Let P be a truncated angled ideal polyhedron, and let D ⊂ P be an
ideal triangle. Then all the segments of ∂D lie in distinct faces of ∂P , and D is
normal.

Proof. ∂D consists of six segments, alternating between boundary and interior faces.
Label them γ1, . . . , γ6. Suppose that two of these segments (say, γ1 and γ3) lie
in the same face F . Then the endpoints of γ2, which must lie in different edges
because D is admissible, both meet F . But if we connect the two endpoints of γ2 to
each other through F , we will obtain a normal disk with negative combinatorial area,
contradicting Lemma 4.6.

Thus each γi must lie in a different face, so ∂D is embedded. Since ∂D intersects
each boundary face at most once and is disjoint from the interior edges altogether, D

must be normal. �

For the rest of this section, we will work directly with the polyhedra P1 and P2,
and the only manifolds we will consider are E(J ) and its Dehn fillings.

Definition 5.5. In polyhedra P1 and P2, we will classify ideal triangles into three
types. A triangle of type S is one that is parallel to a shaded face, as in Figure 12 (a).
A triangle of type W is one that is parallel to a white face, as in Figure 12 (b). An
ideal triangle parallel to no face of its polyhedron will be of type N.

Lemma 5.6. Let D be an ideal triangle in P ∈ {P1, P2}. Let γ1, . . . , γ6 be the
segments of ∂D. Then the following hold:
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(1) If D is of type S or type W, then at least two of the γi are parallel to interior
edges of P .

(2) If D is of type N, then no γi is parallel to an interior edge, and the three interior
faces of P intersecting ∂D are all white faces.

Proof. We consider two cases:

Case 1: ∂D intersects both white and shaded faces. Then D can be schematically
represented by the left side of Figure 14. Label the stumps of interior edges e1, . . . , e4,
as in the figure; some of these are likely to be part of the same edge. Now, we can
pull segment γ2 off the boundary face and have ∂D intersect edge e2 instead. This
creates a disk D′ of area π/2, which could a priori be normal. However, by Case 2 of
Proposition 5.3, there are no normal disks that have two intersections with ∂M and
area π/2. Thus D′ fails some part of Definition 4.2.

γ1γ1 γ ′
1γ ′

1

γ2γ2 γ3γ3

γ ′
3

γ ′
3

γ4γ4

γ5γ5
γ6γ6

e1

e2 e3

e4

e2 = e3

e1 = e4
F�⇒

Figure 14. Schematic picture of an ideal triangle intersecting faces of both colors. The shading
is generic, and might be reversed.

Since D is normal by Lemma 5.4, the only way that D′ can fail to be normal is if
one of the new segments, γ ′

1 or γ ′
3, connects adjacent boundary and interior faces. If

γ ′
1 violates normality, e1 is the same edge as e2. But then γ3 and γ5 must lie in the

same face, contradicting Lemma 5.4.
If γ ′

3 violates normality by connecting adjacent boundary and interior faces, we
can tighten ∂D′ by removing its intersection with e2 = e3. This creates a new disk
D′′ with area 0. Segment γ5 and the isotopic image of γ3 lie in distinct faces because
they are on opposite sides of edge e4. So D′′ is normal, and thus a boundary bigon.
Then we can conclude that e1 = e4, and the original disk D was parallel to face F ,
into which we have pulled γ3 (see Figure 14, right). So D is of type S or W. Notice
that both γ3 and γ5 are parallel to edges of F .
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Case 2: All interior faces intersecting ∂D are the same color. If some segment γi

is parallel to an interior edge, we can isotope ∂D across that edge, into a face of a
different color, putting us in Case 1. Otherwise, if no γi is parallel to an interior edge,
the three interior faces must all be white. (Shaded faces are all triangles, in which
any arc connecting distinct ideal vertices is parallel to an edge.) By Lemma 5.4, the
segments γi all lie in distinct faces, so since none of them is parallel to an edge, D

cannot be parallel to a face. Thus D is of type N, and satisfies conclusion (2) of the
lemma. �

Corollary 5.7. In an admissible surface in E(J ), an ideal triangle of type N cannot
be glued to a bigon or a triangle of type S.

Proof. Let F be a shaded face of P1 or P2, and D be a type S ideal triangle parallel
to F . Since shaded faces are all triangles, every interior segment of ∂D is parallel
to an interior edge of F , hence an edge of E(J ). Similarly, both interior segments
on the boundary of a bigon are parallel to an edge of E(J ). On the other hand,
by Lemma 5.6 the boundary of a type N ideal triangle does not have any segments
parallel to interior edges. �

5.3. Progressive arcs and length estimates. We are now ready to estimate the
combinatorial length of surgery slopes on ∂E(J ).

Definition 5.8. Let T be a torus of ∂E(J ). Recall that, by Definition 2.5, its universal
cover T̃ contains a lattice of shaded and white faces, generated by a basis 〈s, w〉. If
T is a crossing circle cusp, we will say that the w direction is meridional and the s

direction is longitudinal. If T is a knot strand cusp, we will say that the s direction
is meridional and the w direction is longitudinal. (By Lemma 2.6, the meridian and
longitude of T are in fact aligned primarily in these directions.)

Thus if a segment γ spans opposite edges of a boundary face B ⊂ ∂E(J ), it
makes sense to talk of γ lying in a meridional or longitudinal direction.

Definition 5.9. Let P ∈ {P1, P2}, and let D ⊂ P be an admissible disk. Then D can
intersect a boundary face B ⊂ ∂E(J ) in one of three types of segments: a longitud-
inal segment, connecting opposite edges of B in a longitudinal direction; a meridional
segment, connecting opposite edges of B in a meridional direction; or a diagonal
segment, connecting adjacent edges of B.

To estimate the combinatorial length of surgery slopes on ∂E(J ) representing a
surgery slope, it helps to divide a curve into smaller pieces.
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Definition 5.10. Let T be a torus of ∂E(J ), and let γ ⊂ T be a non-closed simplicial
arc (see Definition 4.10). Lift γ to an arc γ̃ ⊂ T̃ , and cut T̃ into vertical strips along
meridional faces in the lattice. We say that γ is a progressive arc if γ̃ is contained
entirely in one of these vertical strips, and the endpoints of γ̃ lie on opposite sides of
the strip.

In other words, a progressive arc on a crossing circle cusp has endpoints on
consecutive white faces, and constitutes a step in the s direction. A progressive arc
on a knot cusp has endpoints on consecutive shaded faces, and constitutes a step
in the w direction. In either case, a progressive arc γ can consist of (a) a single
longitudinal segment, (b) two diagonal segments connecting to different meridians,
or (c) two diagonals with some number of meridional segments between them. These
basic types are shown in Figure 15.

Figure 15. The three types of progressive arcs.

Lemma 5.11. Let γ ⊂ ∂E(J ) be a progressive arc. Then �(γ ) ≥ π/3.

Proof. Let H be an inward extension of γ (see Definition 4.11). For each admissible
disk Di ⊂ H bordering on a segment γi ⊂ γ , �(γi, Di) = 0 if and only if Di is
a boundary bigon. By Proposition 5.3, every other type of disk contributes at least
π/3 to �(γ ). So the only way to have �(γ ) < π/3 is if H consists only of bigons.
However, a string of bigons circles around a single edge of E(J ), which means that
its intersection with a component of ∂E(J ) cannot be a progressive arc. �

Corollary 5.12. Let T be a torus of ∂E(J ), and let s be a non-trivial surgery slope
on T . If T comes from a crossing circle Ci , let n be the number of crossings in region
Ri; if T comes from a component Kj of K , let n be the number of twist regions visited
by Kj , counted with multiplicity. Then, in either case,

�c(s) ≥ nπ

3
.

Proof. By Theorem 2.7, a surgery curve on a crossing circle corresponding to n

crossings must cross at least n (white) meridional faces, and any surgery curve on a
component of K passing through n twist regions with multiplicity must cross at least n
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(shaded) meridional faces. Specifically, we can say that they must each contain at
least n progressive arcs. Thus the result follows from Lemma 5.11. �

For surgery curves on a crossing circle cusp, which by Theorem 2.7 look like
ns ± w in the basis 〈s, w〉, we can obtain a slightly better estimate.

Proposition 5.13. Let s ⊂ ∂E(J ) be a surgery slope on a crossing circle cusp that
yields n crossings. Then we have the strict inequality

�c(s) >
nπ

3
.

Proof. By Corollary 5.12, we must only rule out equality. Equality occurs when
a simplicial curve c representing s contains exactly n progressive arcs, an inward
extension of c picks up length exactly π/3 per progressive arc, and any part of c not
covered by progressive arcs contributes zero length. Consider such a curve.

If a progressive arc γ ⊂ c has combinatorial length π/3, it must have an inward
extension whose area comes from a single triangle D. D cannot be of type W, because
white faces are meridional on a crossing circle cusp, and thus a triangle of this type,
plus some bigons, cannot have their boundary segments add up to a progressive arc.
Thus D must be a triangle of type S or type N.

Let H be an inward extension of c. We claim that if H contains a type-N triangle,
then it consists entirely of type-N triangles. This is because by Corollary 5.7, a type-
N triangle D cannot be glued to a type-S triangle or a bigon, and any other type of
admissible disk glued to D would contribute extra area and bring the total length
above nπ/3. But if H consists entirely of type-N triangles, c consists entirely of
longitudinal segments and never travels in the w direction. Thus we can conclude
that H cannot contain any type-N triangles.

The only remaining possibility is that H consists entirely of type-S triangles and
bigons. But in this case, all of H is parallel to a single shaded disk, and again c never
traverses the lattice in the w direction. Thus the assumption that �(c) = nπ/3 leads
to a contradiction. �

We are now in a position to prove the theorems listed in the introduction.

Theorem 1.4. Let K ⊂ S3 be a link with a prime, twist-reduced diagram D(K).
If D(K) has at least two twist regions and every twist region of D(K) contains at
least 6 crossings, then K is hyperbolic.

Proof. The assumption that D(K) has at least two twist regions ensures that the
constructions and results of Section 2 apply. Thus, by Theorem 2.4, K is obtained
by Dehn surgery on the crossing circles of a hyperbolic link J . By Proposition 5.13,
every surgery slope si on a crossing circle Ci has combinatorial length �(si) > 2π .
Therefore, by Theorem 4.15, E(K) is hyperbolic. �
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Theorem 1.7. Let K be a link in S3 with a prime, twist-reduced diagram D(K).
Suppose every twist region of D(K) contains at least 6 crossings and each component
of K passes through at least 7 twist regions (counted with multiplicity). Then

(1) any non-trivial Dehn filling of some but not all components of K is hyperbolic,
and

(2) any non-trivial Dehn filling of all the components of K is hyperbolike.

Proof. By Corollary 5.12, any non-trivial slope s on a component of K will have
�(s) > 2π , and by Proposition 5.13, the same is true for surgery slopes on the crossing
circles. Thus all surgery slopes on ∂E(J ) are sufficiently long. Conclusion (1) now
follows by Theorem 4.15, and conclusion (2) by Theorem 4.14. �

Theorem 1.5. Let K ⊂ S3 be a link of k components with a prime, twist-reduced
diagram D(K). If D(K) has t ≥ 2 twist regions and at least 6 crossings in each
twist region, then

genus(K) ≥
⌈

1 + t

6
− k

2

⌉
,

where �·� is the ceiling function that rounds up to the nearest integer.

Proof. Let F be a Seifert surface for K , that is, an orientable incompressible surface
whose boundary is K . Then F contains a punctured surface G ⊂ E(J ), where ∂G

consists of curves γ1, . . . , γk that are longitudes of K and curves γk+1, . . . , γk+n

along the crossing circles. We can place G in normal form in the polyhedra P1 and
P2 and compute its combinatorial area. Observe that, by Corollary 5.12, the total
length of γ1, . . . , γk is at least 2tπ/3, because K passes through each twist region
twice. By Proposition 5.13, �(γi) > 2π for i > k. Thus we can compute that

2π · genus(F ) = 2π · genus(G)

= 2π

(
1 − 1

2
χ(G) − 1

2
(k + n)

)

= 2π + 1

2
a(G) − πk − πn

≥ 2π + 1

2

k∑
i=1

�(γi) − πk + 1

2

k+n∑
i=k+1

�(γi) − πn

≥ 2π + tπ

3
− πk

= 2π

(
1 + t

6
− k

2

)
.

Since the genus of F is an integer, we are done. �
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Observe that the inequality in the computation is an equality whenever G does not
meet any crossing circles and consists of only ideal triangles. This can happen when
the twist regions of D(K) always meet in threes and G lies in the projection plane.
In this situation, Theorem 1.5 actually gives the exact value for the genus of K .
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