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Abstract. We study groups which act cocompactly and properly discontinuously on the direct
product of two trees. This class of groups turns out to be much richer than one might expect.
An interplay is developed between the immersed flats in the complex and the subgroup sep-
arability properties of its fundamental group. This link between algebra and geometry leads
to the solution of several problems concerning the residual properties of automatic groups and
small-cancellation groups. In particular an explicit example is given of a compact non-positively
curved square complex whose fundamental group is not residually finite. A more complicated
such example is given with the property that its fundamental group has no finite quotients. The
universal covers of these examples are isomorphic to the direct product of two trees. Other
examples include a C(4)–T (4) small-cancellation group which is not virtually torsion-free.
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1. Introduction

The theory of small-cancellation groups was developed in the sixties, though its
origins may be traced back much further. With the increased interest in geometric
group theory, the various classes of small-cancellation groups have taken their places
as examples of automatic and, in some cases, word-hyperbolic groups. In addition,
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many simply-connected small-cancellation complexes admit metrics of non-positive
curvature so their fundamental groups act properly-discontinuously and cocompactly
on a CAT(0) space, and are ‘CAT(0) groups’. Perhaps the simplest examples of
2-dimensional non-positively curved spaces that also have the small-cancellation
property, are the non-positively curved square complexes. A non-positively curved
square 2-complex is a 2-complex formed by gluing squares together, which has the
property that the link of each vertex contains no cycles of length < 4. In addition
to being CAT(0) groups, the fundamental groups of compact non-positively curved
square complexes are finitely presented C(4)–T (4) groups and thus biautomatic by
[GS90], [GS91].

Finitely presented small-cancellation groups have numerous agreeable properties,
and as usual, researchers sought to compare them with other classes of agreeable
groups. One such class, is the class of residually finite groups which are groups with
the property that every non-trivial element lies outside some finite index subgroup.

And so it was asked for some time whether all finitely presented small-cancellation
groups are residually finite [Sch73], [Wal79], [Pri89]. More recently, the same ques-
tion was asked about automatic groups [Ger92], and groups which act properly dis-
continuously and cocompactly on CAT(0) spaces.

The main purpose of this paper is to construct examples of non-residually finite
groups belonging to each of these classes. These examples are the fundamental groups
of certain natural spaces defined below. These results appeared as [Wis96b, Part II],
and circulated earlier in [Wis].

Shortly thereafter, Burger and Mozes announced their now-famous work con-
structing infinite simple groups of the same type that I studied. We refer the reader
to [BM97] for their announcement and to [BM00] for a complete account of their
work. Later, Rattaggi resourcefully incorporated the powerful method of Burger–
Mozes together with the small exampleX presented here, to produce other relatively
small examples with infinite simple fundamental groups [Rat07]. Now that the dust
has cleared, I hope that there is still some merit in my elementary approach which
contrasts with the deeper and more powerful approach of Burger–Mozes.

The principal objects of study in this paper are complete square complexes (or
CSCs for short). A CSC is a square complex with the property that the link of
each vertex is isomorphic to a complete bipartite graph. Section 2 described the
background and basic properties of VH -complexes, which are a somewhat more
general class of non-positively curved 2-complexes, and form a more natural context
to describe some of the basic results and language that we will later need. Section 3
introduces CSCs and provides many of the basic theorems and definitions about
CSCs that we shall need. For instance, Theorem 3.8 asserts that a square complex
is a CSC if and only if its universal cover is isomorphic to the direct product of two
trees. It is easy to see that CSCs satisfy the combinatorial non-positive curvature
condition for square complexes, and therefore satisfy the more general C(4)–T (4)
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small cancellation condition. It thus follows (by [GS90]) that the fundamental groups
of compact CSCs are biautomatic. A simple proof of this result for the case of CSCs
is sketched in Proposition 3.10.

The easiest examples of CSCs are the direct products �1 × �2 of two graphs.
Other examples include complexes with a finite cover that is isomorphic to �1 × �2.
In Section 4, I describe a more exotic example called X which is the main example
in this paper. It is a CSC formed by gluing together only 6 squares. Most of the
examples described later in the paper are constructed usingX in some way, and many
of their properties are inherited from X.

In Section 5, we describe an aperiodically tiled plane called an anti-torus. It is
shown that this aperiodically tiled plane appears in the universal cover of X. This
anti-torus lies behind most of our main results.

In Section 6, the anti-torus is used to show that the covering spaces of X are of a
very limited nature. In algebraic terms, π1X is not subgroup separable with respect to
the subgroup of π1X corresponding to the fundamental group of a certain subspace V
of X contained in X1. This subspace V , actually corresponds to one of the trees in
the isomorphism between X̃ and the direct product of two trees. Corollary 6.8 asserts
that π1X is not virtually Fn×Fm. In geometric terms, we assert thatX does not have
a finite cover which is the product of two graphs. One might have expected that any
group acting properly discontinuously and cocompactly on the direct product of two
trees is virtually the direct product Fn × Fm of two free groups, but π1X is an easy
example to the contrary.

In Section 7, some algebra is used to show that when X is doubled along V to
obtain a complex D, the resulting fundamental group π1D is not residually finite.
Since V is a totally geodesic subspace which is also contained in the 1-skeleton ofX,
the complex D is itself a CSC. This is quite surprising, since it means that π1D and
F4 × F3 are algebraically very different but geometrically very similar since their
(non-labeled) Cayley graphs are isomorphic.

In Section 8 we use D to build a compact CSC E such that π1E has no non-
trivial finite quotient (nor any non-trivial torsion quotient). The complex E is built
up through a sequence of related complexes, which carry immersed copies ofD, and
which are glued together in such a way that the non-residual finiteness of π1D leads
to the related property in π1E. That this can be done is not surprising, since for
instance, one would only have to embed π1D so that it is not contained in any proper
(finite index) normal subgroup.

In Section 9 various examples are given of biautomatic groups and CAT(0) groups
which are not virtually torsion-free. Also, it is shown using similar ideas that the ques-
tion of whether or not word-hyperbolic groups are virtually torsion-free is equivalent
to the question of whether or not word-hyperbolic groups are residually finite. At the
end of Section 9 there is a sketch of a possible method to attempt to produce examples
of word-hyperbolic groups which are not residually finite.
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In Section 10 I pose a collection of problems about compact CSCs and their
fundamental groups. The problems tend to involve either algorithmic or algebraic
issues. Because of the anti word-hyperbolic behavior of their fundamental groups, I
feel strongly that CSCs are an excellent testing ground for some conjectures related
to biautomatic and CAT(0) groups, and I hope that some of the problems will prove
fruitful.

I am grateful to Martin Bridson who was my advisor during 1993–1995, and who
encouraged me to study Gromov’s problem of determining whether the universal
cover of a non-positively curved square complex contains a flat if and only if it
contains a periodic flat. My futile attempts at solving this problem ultimately led me
to the example X and its anti-torus. It took a while to figure out how to utilize X
to build non-residually finite fundamental groups, and it took a bit longer to realize
that X̃ was the product of two trees, but I eventually got there…. Finally, I am grateful
to Tim Hsu who has been a close collaborator over the last eight years, and has
persistently pressed me to finally publish this work. Indeed, Tim and I have applied
these results in [HW98], [HW99] to form non-residually finite non-positively curved
polygons of finite groups, and applied these results in [HW04] to construct CSCs
whose fundamental groups have infinitely many non-isomorphic fixed subgroups.

2. VH -complexes

2a. Definitions and basic properties of VH -complexes

Notation 2.1. Throughout this paper, we let R = (−∞,∞) and R
+ = [0,∞) with

the usual structures as graphs, with 0-cells at each n ∈ Z and open 1-cells at each
(n, n+ 1). We let In ⊂ R denote the subgraph [0, n], and we let I = I1 = [0, 1].
Definition 2.2 (Square complex VH -complex). A square complex X is a combina-
torial 2-complex whose 2-cells are attached by combinatorial paths of length 4. Thus,
we think of each 2-cell as a square attached to X1.

A square complexX is a VH -complex if the 1-cells ofX are partitioned into two
classes V and H called vertical and horizontal edges respectively, and as in the first
square of Figure 1, the attaching map of each 2-cell ofX alternates between edges in
V and H .

We let VX = V ∪X0 denote the vertical 1-skeleton andHX = H ∪X0 denote the
horizontal 1-skeleton. For a 0-cell x ∈ X0, we let Vx denote the component of VX
containing x. We define Hx similarly.

Remark 2.3 (Bipartite links). Let x ∈ X0 where X is a 2-complex. We let Link(x)
denote the link of x inX which is a graph whose vertices and edges correspond to the
ends of 1-cells and corners of 2-cells incident with x. Note that Link(x) is topologized
so that it looks like the ε-sphere about x in X.
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Figure 1. Squares: The squares in the figure above are meant to suggest (from left to right)
a VH -square, a horizontally directed VH -square, a subdivided VH -square (to obtain two
horizontally directed subsquares), and the first barycentric subdivision of a VH -square.

Recall that a graph � is bipartite if �0 is partitioned into two disjoint classes such
that each edge of � connects vertices from distinct classes.

LetX be a VH -complex and let x ∈ X0. The partition of the 1-cells ofX into two
classes V and H , induces a partition of the vertices of Link(x). Furthermore, since
attaching maps of the squares of X alternate between 1-cells in V and 1-cells in H ,
we see that the edges of Link(x) connect vertices from different classes. Therefore,
the VH -structure on X induces a bipartite structure on Link(x) for each x ∈ X0.

This motivates the following definition:

Definition 2.4 (Locally VH ). The square complex X is locally VH if for each
x ∈ X0 there is a chosen bipartite structure on the graph Link(x). As in Remark 2.3,
a VH -complex has an induced local VH -structure.

Note thatX may admit several VH -structures because a graph admitting a bipar-
tite structure actually admits 2c such structures, where c is the number of connected
components of the graph.

Example 2.5 (Not global VH ). The simplest example of a square complex with a
local VH -structure which is not consistent with any (global) VH -structure is a loop
with one 0-cell and one 1-cell, where the bipartite structure on the link of the 0-cell
has one vertex in each class. While the underlying complex in this example does have
two VH -structures, both are inconsistent with the local VH -structure that we chose.

A square complex which has a local VH -structure but no (global) VH -structure,
is obtained from a square by identifying two of its sides as in Figure 2.

Figure 2. Local but not global: The complex obtained by identifying two sides of a square as
indicated above, has a local VH -structure but no global VH -structure.
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While Example 2.5 shows that there are many examples of local VH -complexes
with no consistent (global) VH -structure, we do have the following theorem which
is analogous to the existence of orientable double covers of manifolds. See [Wis96b]
or [Wis05] for the proof, which is straightforward.

Theorem 2.6 (VH double cover). Let X be a square complex which is locally VH .
Then there is a double cover X̂ → X such that the induced local VH -structure
on X̂ is consistent with a global VH -structure.

Definition 2.7 (Non-positive curvature). A square complexX is non-positively curved
if all immersed cycles in the link of each 0-cell of X have length at least 4. A square
complex satisfying this combinatorial link condition admits a locally CAT(0) metric
(see [Gro87] or [BH99]).

Remark 2.8 (Locally-VH and curvature). If X is a locally-VH square complex,
thenX satisfies the combinatorial non-positive curvature condition if and only if there
are no cycles of length 2 in the links of 0-cells of X. This is because all the cycles in
a bipartite graph have even length, and so we may rule out the short cycles of length 1
or 3.

Definition 2.9 (Directed VH -complex). We view the attaching map of each square
of a square complex X, as a map from the boundary of the unit square I × I to X1.
We orient both horizontal edges of the unit square from left to right as illustrated in
the second square of Figure 1. Let X be a VH -complex and suppose that HX is
a directed graph. The VH -structure on X is horizontally directed if the attaching
map of each square of X is orientation preserving on its horizontal edges. We define
vertically directed similarly. We shall use the term directed to mean horizontally
directed.

Remark 2.10 (Subdividing). There is little loss of generality in considering only
directed VH -complexes. This is because, given a VH -complex, we may subdivide
HX and subdivide each square of X by adding a vertical edge connecting the centers
of its horizontal edges. If we orient all horizontal edges towards the new 0-cells then
we obtain a directed VH -complex. See the third square of Figure 1. Similarly, we
can subdivide each square both vertically and horizontally so thatX is both vertically
and horizontally oriented. See the fourth square of Figure 1.

2b. The graph of spaces decomposition of a VH -complex

Definition 2.11 (Vertical foliation and Vx). We now define a “singular vertical fo-
liation” on the VH -complex X. The unit square I × I is foliated by vertical line
segments. Similarly, the image of a square in X is foliated by vertical segments
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parallel to the pair of vertical edges on its boundary. For an arbitrary point x ∈ X

we define the leaf Vx to be the smallest subset of X having the property that x ∈ Vx
and that Vx contains any vertical segment which intersects it. This definition of Vx is
consistent with the definition given earlier for x ∈ X0.

Thinking of X as being foliated by these vertical subspaces, it is natural to take
the quotient of X in which each leaf is identified to a point. This quotient is a graph
denoted by �X which we shall discuss in Definition 2.14.

Remark 2.12 (Singular leaves and directed VH ). When x is a point in the interior
but not in the center of a horizontal edge, then for y very close to x, the leaf Vx
is isomorphic to the leaf Vy by an isomorphism induced by sliding it along in X.
However, when x is the center of a horizontal edge, the leaf Vx may be different
from the surrounding leaves, in which case they correspond to double covers of it.
This situation can occur only if X is not directed. It is convenient to add all such
singular leaves Vx to the vertical 1-skeleton of X. This corresponds to subdividing
certain squares of X. The resulting complex has a directed VH -structure. Note that
if HX can be oriented so that VX is directed then for any points x and y in the same
horizontal edge, the leaves Vx and Vy are isomorphic by a translation isomorphism.

Example 2.13 (Möbius strip). A Möbius strip obtained by identifying the top and
bottom horizontal edge of a square with a twisted identification map, has an obvious
VH -structure. The circle at the center of the Möbius strip is singular.

Definition 2.14 (The decomposition graph X → �X). Given a directed VH -com-
plexX, we define a graph �X and a map � : X → �X. The vertices of �X correspond
to the connected components of VX, which are called vertex spaces. Note that each
vertex space arises as Vx for some 0-cell x ∈ X0. The edges of �X correspond to the
connected components of X − VX, which are called edge spaces.

If x and y are in the same edge space, then Vx and Vy are isomorphic graphs and
there is a natural isomorphism between them. Indeed, if x is a point in some edge
space C, then C ∼= Vx × (0, 1). It is natural to think of C as a subspace of Vx ×[0, 1]
which is a square complex which we denote by C. We will also refer to C as an edge
space.

For each edge spaceC, the inclusionC ↪→ X uniquely extends to a combinatorial
map C → X. Since C ∼= Vx × I , we obtain induced maps Vx × {0} → VX and
Vx × {1} → VX which we call the attaching maps of the edge space C. Note
that these are combinatorial maps and in case X is non-positively curved then they
are immersions (i.e. local injections) and are therefore π1-injective [Sta83]. The
components of VX that the ends of C are mapped to correspond to the vertices of �X
that the edge of �X corresponding to C is attached to.
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Finally, the mapX → �X is the quotient map induced by identifying each vertical
leaf of Definition 2.11 to a point.

Construction 2.15 (Constructing X from data). In order to further understand the
map � : X → �X we show how X can be built up from the information encoded in
�X and the associated data. This is a special case of the notion of a graph of spaces
[SW79].

Consider a graph �X, and suppose that for each vertex v ∈ �0
X we have an

associated vertex space Xv which is a graph, and for each edge e ∈ Edges(�X) we
have an associated edge space Xe × I where Xe is a graph. Suppose that for each
edge e which is attached to the vertices e0 and e1, there are corresponding maps
φe0 : Xe × {0} → Xe0 and φe1 : Xe × {1} → Xe1 .

Using this data we may construct a VH -complex X as follows: Let VX be the
disjoint union of the set of vertex spaces, that is

VX =
{ ⋃
v∈�0

X

Xv

}
.

We form X by attaching Xe × I along its ends to VX for each edge e of �X, so that

X =
{
VX

⋃
e∈Edges(�X)

Xe × I
}
.

Theorem 2.16 (Graph of free groups). Suppose that X is a non-positively curved
VH -complex. Then the map � : X → �X determines a splitting of π1X as a graph
of free groups. Specifically, for each vertex v ∈ �X, π1v = π1Xv and for each edge e
of �X, π1e = π1Xe. For each edge e, attached to the vertices e0 and e1, the inclusion
π1Xe → π1Xei is induced by the maps φei described above.

Proof. The non-positive curvature hypothesis implies that the attaching maps φei are
immersions. They therefore induce π1-injections [Sta83]. �

We close this section with the following:

Definition 2.17 (Map of VH -complexes). Let X and Y be VH -complexes, and let
φ : X → Y be a cellular map. Then φ is a VH -map provided that φ(VX) ⊂ VY and
φ(HX) ⊂ HY . We will be dealing with combinatorial maps, and so φ is a VH -map
provided it maps vertical edges to vertical edges and horizontal edges to horizontal
edges. Note that for a VH -map φ, there is an induced map φ� : �X → �Y .
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3. Complete square complexes

Definition 3.1 (Complete square complex). A complete bipartite graph is a graph
whose vertices are partitioned into two classes V andH such that there is exactly one
edge joining v, h for each (v, h) ∈ V ×H , and there are no other edges.

A connected square complexX is a complete square complex (CSC) if Link(v) is
a complete bipartite graph for each v ∈ X0.

Remark 3.2 (CSCs are non-positively curved). If X is a CSC then X obviously
satisfies the combinatorial non-positive curvature condition for square complexes
because for each vertex v ∈ X0, each cycle in Link(v) has even length, and there is
no length 2 cycle.

Example 3.3 (Not global-VH ). While a CSCX is obviously a locally VH -complex,
there are examples of CSCs which do not have a global VH -structure. For instance,
the Klein bottle is the standard 2-complex of 〈a, b | a2b2〉, and this 2-complex is a
CSC with no VH -structure.

Lemma 3.4 (CSC has VH double cover). Let X be a CSC, then there is a double
cover X̂ → X such that X̂ is a CSC which is also a VH -complex.

Proof. This follows from Theorem 2.6 becauseX is a locally VH -complex, but there
is also a more direct proof. Indeed, the automorphism group of X̃ has a subgroup of
index 2 which preserves the local VH -structure. Its intersection with the covering
transformation group gives the desired subgroup of index ≤ 2 of π1X. Note that
some extra care must be taken in the degenerate case where X is a graph. �

Lemma 3.5 (Trees). Let X̃ be a simply connected non-positively curvedVH -complex.
Then for each point x ∈ X̃, the spaces Vx and Hx are trees.

Proof. The map Vx → X̃ is a local-isometry and therefore lifts to an isometry. (I first
learned of this idea from [Mos95], and it has had a large influence on me.) Note that
this reasoning shows that local-isometries lift to isometries between universal covers
and hence induce π1-injections, so π1Vx is trivial, and hence the graph Vx is a tree.

�

Lemma 3.6 (Connecting with vertical and horizontal). Any two points w and z in
a connected simply connected CSC X̃ can be uniquely connected by a path σv · σh,
which is the concatenation of a vertical and horizontal path. Similarly, any two points
can be uniquely connected by a path σ ′

h ·σ ′
v which is the concatenation of a horizontal

and vertical path.
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Proof. By subdividing X̃we may assume thatw and z are in X̃0. Since X̃ is connected
we may connect w to z by a path of minimal length σ in X̃1. We now show that σ is
path homotopic to a path σv ·σh which is the concatenation of a vertical path beginning
at w, followed by a horizontal path ending at z. To see this, note that any length 2
subpath say hε1

1 v
ε2
2 of a path λ, determines a unique square s of X̃, whose attaching

map can be thought of as hε1
1 v

ε2
2 = v

ε3
3 h

ε4
4 for some choices of h4, v3, ε3, and ε4.

But then we can homotope λ through the square s to a path of the same length by
homotoping the subpath hε1

1 v
ε2
2 to vε3

3 h
ε4
4 , and leaving everything outside the subpath

h
ε1
1 v

ε2
2 unchanged.

Define the complexity of a path λ in X̃1 as follows: For each horizontal edge a
in λ, let Ka denote the number of vertical edges in λ coming after a. We let the
complexity of λ equal

∑
a∈Horizontal Edges(λ) Ka .

Observe that each square homotopy as above reduces the complexity of the path.
It follows that after finitely many such homotopies, we obtain a path of complexity 0
which is therefore of the form σv · σh. �

Lemma 3.7 (Vw ∩ Hz is one point). Let w, z be points in the connected simply
connected CSC X̃, then the intersection of Vw and Hz consists of a single point.

Proof. To see that Vw ∩Hz has at least one point, note that by Lemma 3.6, there is a
path σv · σh which connects w to z. But σv ends at the point where σh begins, and so
this point is in Vw ∩Hz, because σv is a path in Vw and σh is a path in Hz.

We will apply the Combinatorial Gauss–Bonnet Theorem (see, for instance,
[Ger87]). Let σv and σh be paths in Vx and Hx with the same endpoints. Let
D → X be a reduced disc diagram whose boundary path is σvσ

−1
h . Assigning an-

gles of π
2 to each corner of each 2-cell, we see that each 2-cell and interior 0-cell

has non-positive curvature, and each boundary 0-cell (except for the endpoints of σv
and σh) has non-positive curvature. If σv and σh are non-trivial then the curvature
at their endpoints is ≤ π

2 which is impossible. If one is non-trivial and the other is
trivial then the two endpoints are identified and that point has curvature ≤ π which
is impossible. Therefore, both σv and σh are trivial. �

As motivation for the following theorem, observe that the condition that X is a
CSC is equivalent to X being locally isomorphic to the direct product of two trees.

Theorem 3.8 (X is CSC ⇔ X̃ ∼= Tree × Tree). Let X̃ be the universal cover of the
square complex X. X̃ is a CSC if and only if X is a CSC. Specifically, let x ∈ X̃, and
consider the two trees Vx and Hx . If X is a CSC then X̃ is isomorphic to Vx ×Hx .

Proof. Note that by Lemma 3.4, X̃ is a VH -complex, so the statement of the theorem
makes sense. We define a mapφ : X̃ → Vx×Hx defined by y �→ (Vx∩Hy,Hx∩Vy).
The map φ is well-defined by the previous lemma.
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Note that φ has an inverse, Vx×Hx → X̃ defined by (a, b) �→ Ha∩Vb. It is easy
to see that these two maps are inverse to each other because Ha = Hy and Vb = Vy .
It is easy to check that φ is cellular as well and so it is an isomorphism. �

Remark 3.9 (Factoring π1). When x is the only 0-cell of X, then one can deduce
from Lemma 3.6 or Theorem 3.8 that π1X factors as π1X = π1(Vx)π1(Hx) =
π1(Hx)π1(Vx). Note that we always haveπ1(Vx)∩π1(Hx) = {1}, butπ1(Vx)π1(Hx)

is not always a subgroup when X has more than one 0-cell.

Proposition 3.10 (Biautomatic: the Tree × Tree language). Let X be a compact
CSC. Then π1X is biautomatic.

Using biautomatic structures for groupoids (see [ECH+92]), it is easy to show
that the language consisting of paths which are vertical followed by horizontal, is the
language of a biautomatic structure for the fundamental group of a compact CSC.
Note that it is obvious that this is a language of geodesics which satisfies the fellow
traveller property. A similar language works for the higher dimensional cases (that is
Tree×Tree×Tree, etc.). Biautomatic structures have been obtained for more general
classes of complexes: For finite C(4)–T (4)-complexes this is proven in [GS90], and
for compact non-positively curved cubulated complexes this is proven in [NR98].

Lemma 3.11 (CSC ⇔ attaching maps are covering maps). A directed VH -complex
X is a CSC if and only if each attaching map of each edge space in the decomposition
of X is a covering map.

Proof. If all the attaching maps are covering maps, then it is easy to see that the
links are complete bipartite graphs. To see the converse, we note that for cellular
maps between graphs, a covering map is just a local homeomorphism. But this local
condition is satisfied by the attaching maps of the edge spaces in the case of CSCs
because the links of vertices are complete bipartite graphs. So, in case X is a CSC,
all the attaching maps of edge spaces are covering maps. �

Remark 3.12 (Weighted graph). Because of Lemma 3.11, we are able to add some
structure to the decomposition graph �X. When X is a directed CSC, we label the
ends of edges in �X with numbers indicating the covering degrees of the associated
attaching maps.

4. The main example: X

Example 4.1 (X as six squares). We define X to be the complex consisting of the
six squares indicated in Figure 3. The squares are glued together as indicated by
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the labeled directed edges. It is easily verified that X is a VH -complex and that it
is a CSC. Note that X has a unique 0-cell. Let H = HX, denote the subcomplex
consisting of the 2 horizontal edges, and letV = VX denote the subcomplex consisting
of 3 vertical edges.

Figure 3. X as six squares: The figure above indicates the gluing pattern for the six squares ofX.
The three vertical edges colored white, grey, and black are denoted a, b, and c respectively. The
two horizontal edges, single and double arrow, are denoted x and y respectively.

Explanation 4.2 (The vertical decomposition of X). Since X is both vertically and
horizontally directed, X may be described in terms of both its vertical and horizontal
decompositions. We now describe the vertical decomposition of X.

Let ρL : L → V and ρR : R → V be the covering spaces of V indicated in
Figure 4. Denote by τ : L → R the obvious (translation) graph isomorphism. Note
that τ is not a covering space isomorphism.

Figure 4. Vertical decomposition of X: The bouquet of 3 circles in the center is V . The graph
on the left and right are denoted by L and R respectively. There are covering maps ρL : L → V

and ρR : R → V induced by the colorings of the graphs.

Using the information contained in ρL, ρR and τ we may form X as follows: �X
will be a graph with one vertex v, and one edge e. Let
e denote a graph isomorphic
toR and thus isomorphic toL via τ . The vertex v ∈ �X corresponds to
v = V ⊂ X.
The edge space
e×I corresponds to the edge e in�X. Identify
e×{0} and
e×{1}
with L and R respectively, in such a way that the isomorphism 
e × {0} ∼= 
e × 1
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is the same as τ . Now, glue each end of 
e × I to V using the maps ρL and ρR ,
respectively. So we have

X = (
(
e × I ) ∪ V )/{

(x, 0) ∼ ρL(x), (x, 1) ∼ ρR(x) | x ∈ 
e
}
.

Notice that this describes π1X as an HNN extension of a free group of rank 3,
associating subgroups of index 2. The decomposition in the horizontal direction
provides a decomposition of π1X as an HNN extension of a free group of rank 2,
associating subgroups of index 3.

5. The anti-torus

Definition 5.1 (Anti-torus). Let Y be a CSC with a VH -structure, and let Ỹ denote
the universal cover of Y . Let y ∈ Y 0 and let ỹ ∈ Ỹ denote a preimage of y.

Let sh → Hy → Y and sv → Vy → Y denote immersed circles based at y. Let
s̃h ↪→ Ỹ and s̃v ↪→ Ỹ denote the induced maps between universal covers based at ỹ.

Let s̃h× s̃v denote the convex hull of s̃h and s̃v in Ỹ . Note that since Ỹ ∼= HỸ ×VỸ ,
the convex hull of s̃h ∪ s̃v is the product subspace s̃h × s̃v ↪→ HỸ × VỸ .

We say that the plane s̃h×s̃v ⊂ Ỹ is an anti-torus if it is not tiled periodically by the
preimages of squares of Y . More precisely, it is an anti-torus if the map s̃h× s̃v → Y

does not factor through a torus T 2 → Y .

We shall now describe an immersed anti-tori in a compact CSC which will play a
fundamental role in this work.

Example 5.2 (The anti-torus � immersed in X). Let c̃ denote the infinite periodic
vertical line in X̃ which is the component containing the basepoint p̃ ∈ X̃0 of the
preimage in X̃ of the loop labeled by c in X. Define x̃ similarly. Let � denote the
plane in X̃ that is the convex hull of c̃ and x̃. The plane �, is tiled by the six orbits
of squares in X̃ as partially illustrated in Figure 5.

The remainder of this section is devoted to proving that:

Theorem 5.3. � is not doubly periodic and therefore � is an anti-torus.

Let the basepoints l0, v0, and r0 of L, V , and R be represented by the white
vertices. Let the second vertex of L be denoted by l1.

Given a path σ : I → V with σ(0) = x0, let σ̃ o and σ̃ 1 denote the lifts of σ to L
based at l0, and l1 respectively.

Define φi(σ ) : I → V to be φi(σ ) = ρr � τ � σ̃ i .
Let ι : V → V be the orientation-preserving automorphism that permutes the

edges a and c and fixes b.
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Figure 5. The anti-torus �: The plane � above is the convex hull of two periodically labeled
lines in X̃. A small region of the northeast quadrant has been tiled by the squares of X.

We are interested in the case were σ is a combinatorial path, and so is naturally
represented as a word in {a±1, b±1, c±1}. As usual, the product of two paths σ1 · σ2
is represented by the concatenation of words.

Define #a : π1V → Z to be the homomorphism induced by a �→ 1, b �→ 0,
and c �→ 0. Note that this merely counts the number of signed occurrences of a in
the reduced word representing the element. Define #b and #c similarly, and let #b+c
denote #b + #c.

Lemma 5.4. (1) σ ∈ π1(L) ⇔ #b+c(σ ) ≡2 0.

(2) φ1 = ι � φ0.

(3) σ /∈ π1(L) ⇒ φ0(σ
2) = φ0(σ ) · φ1(σ ).

Proof. The statements follow easily from the definitions. �

Lemma 5.5 (Doubling lemma). σ /∈ π1(L) ⇒ φ0(σ
2) /∈ π1(L).

Proof. #b+c(φ0(σ
2)) ≡2 #a(φ0(σ

2))

= #a(φ0(σ ) · φ1(σ ))

= #a(φ0(σ ))+ #a(ι � φ0(σ ))

= #a(φ0(σ ))+ #c(φ0(σ ))

= #b(σ )+ #c(σ )

= #b+c(σ )
≡2 1.
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The first equality follows because |σ 2| ≡2 0. The second follows from Lemma 5.4.3.
The third follows from Lemma 5.4.2 and the fact that #a is a homomorphism. The
fourth follows from the definition of ι. The fifth follows because the letters that may
be transformed by φ0 into either a or c are the letters b and c (not respectively).
The sixth follows by definition. The seventh follows from Lemma 5.4.1 and the
assumption that σ �∈ π1(L). �

Corollary 5.6. φn0 (c
2n) /∈ π1(L).

Proof. We use Lemma 5.5 to prove this by induction. When n = 0 we have φ0(c20
) /∈

π1(L) since this just means that c /∈ π1(L). Suppose that the statement is true for
n = k, we shall prove it for n = k + 1.

By Lemma 5.5, φk0(c
2k ) /∈ π1(L) implies that φ0

(
(φk0(c

2k ))2
)
/∈ π1(L). But we

shall show below that
(
φk0(c

2k )
)2 = φk0(c

2k+1
) and so substituting proves the lemma.

We now prove by induction on k that φk0(w
2k+1

) = [φk0(w2k )]2 for any word w in
a±1, b±1, c±1. The base case where k = 0 holds because φ0

0(w
2) = w2 = [w1]2 =

[φ0
0(w

1)]2. Now the result follows from the following equalities:

φk0(w
2k+1

) = φk−1
0

(
φ0(w

2k+1
)
) = φk−1

0

([φ0(w
2)]2k)

= [
φk−1

0

(
φ0(w

2)2
k−1)]2 = [

φk−1
0 [φ0(w

2k )]]2 = [
φk0(w

2k )
]2
.

The first and last equalities hold because φk−1
0 � φ0 = φk0 . The second and fourth

equalities hold because [φ0(u
2)]m = φ0(u

2m) for any u, since u2 ∈ π1(L, l0). The
third equality holds by induction. �

Remark 5.7. Notice that aba−1b−1 φ0−−→ bab−1a−1 φ0−−→ aba−1b−1. So Lemma 5.5
cannot be strengthened to say that for any σ , there exists n such that, φn0 (σ ) �∈ π1(L).

Remark 5.8 (Geometric interpretation). Consider the horizontal geodesic in X̃ based
at p̃ corresponding to xn. Given a vertical geodesic based at p̃ represented by some
word σ in {a±1, b±1, c±1}, the convex hull of the union of these two paths at p̃, is a
rectangle. The word φn(σ ) is simply the label (beginning at the endpoint of xn) of
the side opposite σ in this rectangle. In a sense, all of the ‘calculations’ in the lemmas
above are really occurring inside of X̃, and Corollary 5.6 is a statement about�. Using
this point of view, it is easy to show that� is not periodic, merely as a consequence of
Lemma 5.5. However, instead of going through that relatively simple argument, we
will look more carefully at the tiling of �, and obtain a somewhat more informative
proof of aperiodicity.

Let Wn(m) denote the horizontal positive path in � of length n beginning at the
endpoint of the vertical path cm (see Figure 6). Thus, Wn(m) determines a word
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which is the label of the side opposing xn in the rectangle which is the convex hull
of xn and cm. We will also use Wn(m) to denote this associated word.

Figure 6. Computations in �: The figure above represents the upper right quadrant of �. The
bold horizontal line, represents the path corresponding to W5(3).

Proposition 5.9 (Period doubling). For each n, the words {Wn(m) | 0 ≤ m ≤ 2n−1}
are all distinct, and thus, every positive word of length n is Wn(m) for some m.

Proof. We begin by observing that a vertical path represents an element of π1(L) if
and only if the convex hull of its base lift together with the horizontal edge labeled
by y or x yields a rectangle whose top edge is labeled by y or x respectively.

Now, arguing by induction, we assume that the theorem is true for n = k, so that
the Wk(m) are distinct for 0 ≤ m ≤ 2k − 1. In particular, it follows that

Wk(m) = Wk(m+ 2k).

Consequently the first k letters of the words Wk+1(m) and Wk+1(m + 2k) are
equal, therefore it suffices to show that the last letters of these words are distinct.
However, the vertical word connecting the endpoints of the paths associated with

Wk(m) andWk(m+2k) is just a subword of length 2k of the word
(
φk0(a

2k )
)2

, so it is

a conjugate of φk0(a
2k )which, by Corollary 5.6, is not an element of π1(L). It follows

from our observation at the beginning of the proof, that the last letters of Wk+1(m)

and Wk+1(m+ 2k) are distinct, and we are done. �

We can now prove Theorem 5.3 which we restate as follows:

Proposition 5.10. � is an anti-torus.

Proof. To see that� is aperiodic, observe that Proposition 5.9 shows that the width n,
infinite vertical strip in� bounded on the left by the c̃ axis has period 2n. Alternatively,
the proof of Proposition 5.9 shows that every finite positive word in x and y appears
in �, and so � cannot possibly be periodic. �

Question 5.11 (Finding anti-tori). It would be remarkable if there were an algorithm
to determine whether or not two perpendicular elements in the fundamental group of
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a CSC do not have powers that commute, or in other words, to decide whether the
convex hull of their axes is an anti-torus or a periodic plane. It seems very likely that
CSCs typically have immersed anti-tori. An algorithm in the context of certain non-
positively curved square complexes which are rather different from CSCs is described
in [Wis05].

6. The covering spaces of X

Let Y denote a directed CSC and let Y → �Y denote the associated vertical decom-
position. A covering space Ŷ of Y has an induced directed VH -structure, and the
covering map gives rise to a commutative diagram:

Ŷ

ρ

��

��
�Ŷ

ρ�

��
Y �� �Y

It is natural to label each end of each edge of �Y with the degree of the associated
attaching map in X. So, if the initial vertex of ε ∈ Edges(�Y ) is v, then we label the
end of ε at v with the degree of the associated attaching map Yε × {0} → Yv of the
edge space corresponding to ε.

Keeping track of this additional information, the map ρ� : �Ŷ → �Y is locally
weight conserving. That is, the link of each vertex of �Ŷ and �Y has a weighting
by natural numbers, and for each v ∈ �Ŷ , the map Link(v) → Link(ρ�(v)) has the
property that the sum of the weights of the preimage of a point is equal to the weight
of that point. This is a rather simple restriction, but it will enable us to limit the types
of covering spaces that may arise. We record this as:

Lemma 6.1. The map ρ� is weight conserving.

Remark 6.2 (Restrictions on covering spaces of X). Since the attaching maps of
the sole edge space of X are both of degree 2, (that is, the maps ρL : L → V and
ρR : R → V are each of degree 2, as above), there are only four local models for
the map �X̂ → �X induced by a covering space X̂ → X. These are illustrated in
Figure 7 below. Using the anti-torus �, we will be able to show that under certain
circumstances only case (iv) may occur.

Lemma 6.3 (Anti-torus obstruction). Suppose that X̂ → X is a regular covering,
and suppose there exists n such that the closed path cn lifts to a closed path in X̂.
Then only case (iv) of Figure 7 may occur. That is,

(
π1V ∩ π1(X̂)

) �⊂ π1(L), and(
π1V ∩ π1(X̂)

) �⊂ π1(R).
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Figure 7. The four cases: Diagrams (i), (ii), (iii), and (iv) represent the four different local
possibilities for the map �X̂ → �X . The figure on the left is meant to suggest the type of local
behavior of a map X̂ → X that would produce case (i).

It is worth mentioning that in the case where X̂ is a finite cover of X, cases (ii)
and (iii) are automatically excluded because components of ρ−1(R) and ρ−1(L)must
be isomorphic as graphs and so it is impossible for one of them to be isomorphic
to a proper cover of V̂ while the other one is isomorphic to the trivial cover. A
different proof that there is no finite cover of type (i) can be obtained by combining
Proposition 6.6 and Corollary 6.8 below.

Proof of Lemma 6.3. Suppose that case (iv) does not occur, then in the decomposition
of X̂, the attaching maps of edge spaces corresponding to at least one of L → V or
R → V have degree 1.

The idea of the proof is to assume that a cover X̂ → X exists, and produce a
contradiction, namely that either the right or left half of � is (singly) periodic. We
do this by showing that �̂ factors through an immersion of a cylinder C → X̂,
where C = S1 × [0,∞) and where the map S1 → X represents cn and the map
[0,∞) → X represents ỹ. This seems is very plausible since C → X is determined
by its restriction to these subspaces, but I have included a more detailed explanation
below.

Let us consider the case where the attaching maps of the edge spaces of X̂ corre-
sponding to the map L → V are of degree 1.

From the point of view of a preimage V̂ of V , this means that outgoing horizontal
arrows point towards a graph isomorphism between V̂ and a cross section of the
respective edge space, that is, towards a component of the preimage L. This means
that given a closed path in V̂ one is able to push it in the direction of the horizontal
arrows, towards another copy of V̂ . More precisely, given a map of a graph � → V̂

one can extend it through this edge space to a combinatorial map of � × I → X̂.
Since each y-labeled outgoing edge points towards such a graph isomorphism, we
are able to extend the map of � so that an edge γ0 × I ⊂ �× I is sent to an outgoing
y-labeled edge.

Denote by C the semi-infinite cylindrical square-complex S1 × [0,∞) where S1

consists of n edges and [0,∞) is subdivided into edges in the usual way. Also, orient
all the edges of [0,∞) so that they are pointing away from 0.
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Figure 8. Trajectory of C in X̂: The figures on the left and right represent �X̂ corresponding
to cases (ii) and (iii) of Figure 7. The sequence of arrowed edges in the figure on the left, is
meant to suggest the image of the map �C → �X̂ that would be induced by the map C → �X
constructed in the proof. The sequence of arrowed edges in the figure on the right is meant to
suggest the same for a similar proof in case (iii).

We identify S1 with S1 × {0} ↪→ C and, letting s be a basepoint 0-cell of S1, we
identify [0,∞) with s × [0,∞) ↪→ C. In addition, let (s, 0) denote the basepoint
of C.

We will show that there is a VH -immersion φ : C → X̂, so that S1 ↪→ C gets
sent to a closed path in X̂ with label cn, and so that [0,∞) ↪→ C gets sent to the
infinite path ỹ. This will result in a contradiction as explained below, so it follows
that our assumption that there is a covering space X̂ falling into case (iii) above is
incorrect.

We begin by using our assumption that cn lifts to a closed path in order to define
φ : S1 → X̂ to represent such a closed path. Then, as above, we may extend the
map φ restricted to S1 = S1 × {0} to S1 × [0, 1) so that the edge s × [0, 1] is sent
to a y-labeled outgoing edge. Similarly we extend φ to S1 × [0, 2), and so on to
define φ on all of C.

Now, since there are only finitely many labels, and because the “trajectory” of C
in X̂ is periodic, the induced tiling ofC is periodic. But since the anti-torus� factors
throughC, or rather, factors through the induced mapC → X, it would follow that�
itself is periodic. This would be a contradiction.

Cases (i) and (ii) of Figure 7 are handled similarly, so that the only possible
covers X̂ of X which contain a lift of cn are of type (iv). �

Note that statements similar to Lemma 6.3 can be proven for any compact CSC
containing an anti-torus.

A subgroup K of a group G is separable if K is the intersection of finite index
subgroups of G. In this case, G is referred to as K-separable. We say the subgroup
K can be separated from an element g if there is a finite index subgroupH ⊂ G such
that K ⊂ H but g /∈ H .

Note thatK is separable from g if and only if there is a finite quotientG → G =
G/N such that g /∈ K . Indeed gN �⊂ KN if g �∈ K , so we could let H = KN .
Conversely, the permutation representation ofG on the left cosets ofH gives a finite
quotient such that g �∈ H if g /∈ H .



702 D. T. Wise CMH

The following result explains that π1V is not separable from certain elements of
π1X in certain quotients, where we use the word “separable” analogously to its use in
the above discussion. In particular, π1V cannot be separated from certain elements
by a finite index subgroup.

Corollary 6.4 (π1X is notπ1V -separable). Consider the homomorphismψ : π1X →
Z induced by a �→ 0, b �→ 0, c �→ 0, x �→ 1, y �→ 1. For each n ≥ 1 we have the
inclusion

ker(ψ) ⊂ π1V 〈〈cn〉〉.
Consequently, π1V is not separable from any element of Kernel(ψ) in any quotient
in which c has finite order. In particular, for each n ≥ 1 we have

xy−1 ∈ π1V 〈〈cn〉〉.
We use 〈〈g〉〉 to denote the normal closure of the element g in the group G.

Proof. Let X̂ denote the cover of X corresponding to the normal subgroup 〈〈cn〉〉.
Let V̂ denote the component of the preimage of V in X̂ containing the basepoint.
Consider the decomposition X̂ → �X̂. By Lemma 6.3, �X̂ is a graph homeomorphic
to R. Furthermore �X̂ can be oriented so that X̂ → �X̂ is orientation preserving
on the horizontal edges, and of course, the vertical edges are sent to 0-cells. Now,
g ∈ π1V 〈〈cn〉〉 exactly when the closed path corresponding to g in X lifts to a path
ending at V̂ in X̂. Looking at the projection � : X̂ → �X̂, this is equivalent to
requiring that the path corresponding to g projects to a closed path in �X̂. But since �
is orientation preserving on HX̂, the elements of Kernel(ψ) are projected to closed
paths and we are done. �

Definition 6.5 (Clean). A CSC is clean if all attaching maps of edge spaces are
degree 1 covers. This is a special case of the notion of a clean VH -complex which
is studied in [Wis02], [Wis06].

Proposition 6.6 (Clean ⇒ virtuallyFn×Fm). LetK be a compact CSC that is clean.
ThenK has a finite cover K̂ → K such that K̂ is isomorphic to the cartesian product
of two graphs, and so π1K̂ is isomorphic to the cartesian product of free groups.

Proof. Choose a basepoint b ∈ �0
K . Any closed loop in �K based at b determines

an element of Aut(
b). This is because each edge e of �K attached to the vertices
u and v, corresponds to an edge space Cα with attaching maps of degree 1, and
therefore induces an isomorphism 
u → 
v . Likewise, a closed path based at b in
� induces an automorphism of 
b, which is the composition of isomorphisms. In
this way we obtain a homomorphism

π1(�K) → Aut(
b).
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Composing this with the projection K → �K we obtain (choosing k ∈ 
b) the
homomorphism μ, which is the composition

π1(K, k) → π1(�K, b) → Aut(
b).

Since K is compact, 
b is a finite graph, so Aut(
b) is finite as well. It follows that
the kernel of μ is of finite index in π1(K̂, k), and consequently, the cover K̂ that it
corresponds to is of finite degree. It is easy to see that

K̂ ∼= 
b × �K̂,

since we have just chosen it to be a trivial 
b bundle over �K̂ . �

Proposition 6.7 (Fn × Fm ⇒ clean). If K is a CSC, and π1(K) ∼= Fn × Fm then K
is clean. That is, the attaching maps of the edge spaces of K are all degree 1.

Sketch of proof. Consider first the case where both n and m are ≥ 2. The key point
is that a diagonal element, that is, an element which is not represented by a totally
vertical or horizontal closed geodesic path, has Z × Z as its centralizer. This is true
because for a line � that is neither vertical nor horizontal, the non-positive curvature
condition determines a unique plane containing �.

From this we conclude that the Fn and Fm factors act vertically and horizontally
or vice-versa. And then it is not difficult to show that the complex is clean and in fact
the direct product of the two graphs corresponding to Fn and Fm.

In the case where n ≥ 2 and m = 1, using the same idea we can determine that
the F1 subgroup is either vertical or horizontal, and from there it is easy to show that
it is clean and in fact a product though the second graph factor might correspond to
another F2 subgroup.

The case of F1 ×F1 is easily seen to be clean, but here neither factor is necessarily
vertical or horizontal.

Various more general results giving product decompositions for non-positively
curved spaces can be found in [BH99]. �

Corollary 6.8. π1X is isometric to F2 × F3 but not commensurable with it.

Proof. π1X is isometric to F2 × F3 because by Theorem 3.8, X̃ is isometric to the
direct product of a regular tree with valence 4 with a regular tree of valence 6.

To see that π1X is not commensurable with the direct product of two free groups,
first note that as in Proposition 6.7, if some finite cover X̂ ofX had π1(X̂) ∼= Fn×Fm,
then Fn and Fm would be vertical and horizontal. This means that they would be
subgroups of finite index of π1V and π1(H). But then there would be finite integers
q and r so that cq ∈ Fn and yr ∈ Fm and then [cq, yr ] = 1. This cannot be.
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Indeed, according to the “flat torus theorem” for cocompact actions on CAT(0)
spaces, maximal free-abelian subgroups act on a flat subspace in the same way as
lattices on En [BH99]. Therefore, if c and y had powers that commuted, then there
would be a periodic plane with a pair of axis corresponding to c̃ and ỹ. On the other
hand, the non-positive curvature condition implies that the anti-torus� is the unique
plane containing the c̃ and ỹ axes. Consequently, there are no integersm, n ≥ 1 such
that [cm, yn] = 1π1X. �

The following conjecture is surely overly ambitious, but I do not know how to
construct a counter-example.

Conjecture 6.9 (Virtually clean ⇔ no anti-torus). If a compact CSC Y has no im-
mersed anti-torus then there is a finite clean cover Ŷ → Y , and so Y has a finite cover
that is a product.

Before closing this section, we mention that Corollary 6.8 resolves negatively the
following question which was posed in [Tuc90].

Question 6.10. Suppose that K1 and K2 are finite simplicial complexes and there is
a simplicial complex K which simplicially covers both K1 and K2. Must there be a
finite simplicial complex which also simplicially covers both K1 and K2?

Corollary 6.8 asserts that both X and the direct product B2 × B3 of bouquets of
circles, have the same universal cover, but they do not have isomorphic finite covers.
Note that the above question has an affirmative answer in caseK1 andK2 are graphs
(see [Tuc90].

7. Non-residually finite examples

In this section we form a CSC D by “doubling” the example X of Section 4. The
main result of this section is that π1D is not residually finite.

We will use the following lemma in the proof of Theorem 7.2.

Lemma 7.1 (Invariant subgroup). If G is finitely generated then the subgroup

N =
⋂

[G:H ]≤n
H

is of finite index and is also fully invariant.
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Proof. To see that it is fully invariant let ψ : G → G be an endomorphism, then if
[G : H ] ≤ n then [G : ψ−1(H)] ≤ n and so

N =
⋂

[G:H ]≤n
H ⊆

⋂
[G:H ]≤n

ψ−1(H) = ψ−1
( ⋂

[G:H ]≤n
H

)
= ψ−1(N). �

The following theorem and corollary below were observed independently by Long
and Niblo in the case of an automorphism. Their motivation was proving the separa-
bility of boundary surface subgroups in a 3-manifold group [LN91]. Their proof is
slightly different.

Theorem 7.2 (Fixed subgroup of an endomorphism). Let φ be an endomorphism of
a finitely generated residually finite group G, and let Fixφ denote the subgroup of
elements fixed by φ. Then G is Fixφ-separable.

Proof. Let a ∈ G − Fixφ . Choose N �� a−1φ(a) to be normal and φ-invariant.
The map φ : G → G induces a map φ̄ : G/N → G/N . By choice of N , the fixed
subgroup of φ̄ does not contain a. It does, however, contain the image of Fixφ , and
so we are done. �

Corollary 7.3 (Fixed subgroup of double). LetM = G ∗
H=H G be the double ofG

along H . If M is residually finite then G is H -separable.

Proof. Let ι be the involution ofM which switchesG andG. Observe that Fixι = H .
Now apply the previous theorem. �

Remark 7.4 (Finite order automorphism). Note that if φ is an automorphism of finite
order, then we do not have to assume thatG is finitely generated in Theorem 7.2. This
is because given a finite index subgroup H ⊂ G, if φ has order r , then we can form
a φ-invariant finite index subgroupN by taking the intersection

⋂
0≤i<r φi(H). And

the remainder of the proof of Theorem 7.2 goes through unchanged. So for instance,
Corollary 7.3 does not require that G be finitely generated.

Main Theorem 7.5 (The double ofX is not residually finite). LetD denote the CSC
which is the double ofX along V . That is, lettingX denote an isomorphic copy ofX,
let

D = (X ∪X)/{V = V }.
Then π1D is not residually finite.

Proof. By Corollary 6.4, π1X is not π1V -separable. Let ι : D → D be the involution
interchanging X and X. Applying Corollary 7.3, to ι� : π1D → π1D we see that
π1D is not residually finite. In particular, the element (xy−1)

−1
(xy−1) maps to the

identity in any finite quotient. �
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We now obtain a slightly stronger result, but the essential argument is the same.

Theorem 7.6 (Torsion quotients). For each n ≥ 1, (xy−1)
−1
(xy−1) ∈ 〈〈cn〉〉. Thus

(xy−1)
−1
(xy−1) maps to 1 in any quotient of π1D in which the image of c has finite

order.

Proof. Consider the quotient map f : π1D → π1D/〈〈cn〉〉. It follows from Corol-
lary 6.4 that f (xy−1) ∈ f (π1V ). By symmetry, f (xy−1) = f (xy−1). Therefore
f

(
(xy−1)

−1
(xy−1)

) = 1.
We make the “symmetry” mentioned above more precise by using the fixed sub-

group proof as in Corollary 7.3. Let ι� : π1D → π1D be induced by the involution
of the double D, and let � : π1D/〈〈cn〉〉 → π1D/〈〈cn〉〉 be the induced involution
of π1D/〈〈cn〉〉. Then f (π1V 〈〈cn〉〉) ⊂ Fix� because both f (π1V ) and f (〈〈cn〉〉) are
contained in Fix�.

But if (xy−1)
−1
(xy−1) /∈ 〈〈cn〉〉 then (xy−1)〈〈cn〉〉 �= (xy−1)〈〈cn〉〉 which means

that f (xy−1) /∈ Fix� which contradicts Corollary 6.4. �

8. A CSC with no finite covers

At this stage, it is not difficult to obtain (by starting with X and using several HNN
extensions and amalgamated free products) a non-positively curved square complex
which has no finite quotients. In fact, we had implemented this in an early version
of this work [Wis]. However, it is worthwhile to get a bit more involved and obtain a
CSC with no finite covers, this being somewhat remarkable because it is geometrically
very similar to Fn × Fm, and yet algebraically very different.

Guide. The plan in this section is to take a subdivided copy X′ of X (see Figure 11),
and immerse it in a new CSCW (see Figure 12). We then immerse a subdivided copy
W ′ ofW into a CSCA1 (see Figure 13). The CSCA1 is a subcomplex of a the CSCA
that is illustrated in Figure 9. We then form a CSCM by doubling A along a vertical
subgraph. We then amalgamate several copies of M along horizontal subgraphs to
obtain our goalE, which is a CSC with no non-trivial connected finite covering space.
The reader may wish to look ahead at the complexes X′ and W since A1 and then A
is constructed “around” them.

Since our complexes will get rather large, we begin with a gluing lemma to ensure
that they are CSCs.

Lemma 8.1 (Gluing CSCs). LetX andY be CSCs with a VH -structure, letVx andVy
be connected components of VX and VY and suppose that there is an isomorphism
φ : Vx → Vy . Then the space Z = (X ∪ Y )/φ obtained by identifying Vx with Vy
using φ, is itself a CSC with a VH -structure.
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Proof. To see that Z is a CSC, note that we only have to check this locally. The
required fact is that if B and C are complete bipartite graphs, whose vertices are
divided into the classes, B0, B1 and C0, C1 respectively, then if there is a bijection
B0 = C0, then the amalgamated union (B∪C)/(B0 ∼= C0) is also a complete bipartite
graph.

The fact that the resulting complex is a VH -complex follows because the gluing
identifies vertical edges, and so the VH -structure of Z is inherited from X and Y .
Slightly more general results about constructing new CSCs from old ones by gluing
them together along certain gluing maps can be obtained, the details are similar. �

Example 8.2 (Example A). We first describe a CSC called A which admits a local
isometry X′′ → A, where X′′ is the first barycentric subdivision of X. Both the
vertical and horizontal decompositions ofA correspond to amalgamated free products.
We describe A through its vertical decomposition.

Let ρL : L → B and ρR : R → B denote the covering maps from the left and right
labeled graphs to copies of the smaller graph in the center of Figure 9. Let τ : L → R

denote the graph isomorphism between R and L induced by the obvious translation.

Figure 9. The complex A: Let ρL : L → B and ρR : R → B be the covering maps of the
central graph B by the large graphs on the left and right. The complex A has underlying graph
�A consisting of one edge and two vertices. The vertex spaces V0 and V1 are each isomorphic
copies of B. The single edge space is isomorphic to L× I and the attaching maps on either side
are modelled on ρL and ρR .

We form a CSC called A as follows: The underlying graph �A is isomorphic to I .
Let the vertex graphs corresponding to the vertices of I , denoted by V0 and V1, be
isomorphic copies of B. Let Ve denote a graph isomorphic to L and thus to R via τ .
The attaching maps of the edge space Ve × I to each of V0 and V1 are just the
compositions

Ve × {0} → L → B ∼= V0 and Ve × {1} → R → B ∼= V1.
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The horizontal decomposition of A. LetH0 andH1 be the two components ofHA,
whereH0 is the union of the horizontal edges in Ve×I corresponding to grey vertices
of Ve, and H1 is the union of the horizontal edges of Ve × I corresponding to black
vertices of Ve. Both H0 and H1 are bipartite graphs with two vertices and 6 edges.
Thus the horizontal decomposition of A is of the form A → �hA

∼= I where H0

and H1 correspond to the two vertices of �hA.
The unique edge spaceHe×I in the horizontal decomposition ofA, has attaching

maps represented by ρn : He → H0 and ρs : He → H1, and each of these maps is a
degree 7 covering map.

Lemma 8.3 (Normal closure of He). The normal closure of the image of π1He in
π1H1 is all of π1H1. Consequently, the normal closure of π1H0 in π1A is all of π1A.

Proof. The covering mapHe → H1 has degree 7. Since the corresponding subgroup
has index 7, it follows that the only subgroups containing it are itself and all of π1H1.
We will show that π1He is not a normal subgroup of π1H1 and thus since the normal
closure of π1He in π1H1 properly contains π1He, we see that it must be all of π1H1.

To see that the subgroup corresponding to π1He is not normal, we will show that
the associated covering space is not regular. Indeed there is a closed length 2 path
in H1 which has both a lift of degree 1 and a lift of degree 6 to the covering space
He → H1. The two edges of this closed path correspond to the circled black vertices
of Figure 10. The two edges of the degree 1 lift of the closed path correspond to the
ends of edges marked by a bold 1 in Figure 10. The twelve edges in the degree 6 lift

   6 66 6 6 6

                 1

        1

   6

  6 6  6 6 6

Figure 10. He → H1 is not regular: The graph above represents a cross section (near one end)
of the vertical edge space Ve × I . The horizontal graph H1 corresponds to the black vertices in
the graph above. The two circled black vertices determine a closed cycle of length 2 in H1. It
is easy to check that the two ends of edges labeled by a bold 1 determine a degree 1 lift of the
closed cycle, and that the twelve ends of edges labeled by bold 6 determine a degree 6 lift of the
closed cycle.
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of the closed path correspond to the ends of edges marked by a bold 6 in Figure 10.
To see that π1(A) is the normal closure of π1(H0), note that

π1(A) = π1(H0) ∗π1(He) π1(H1). �

Lemma 8.4 (Local isometryX → A). LetX′′ denote the first barycentric subdivision
ofX. There is a VH -immersionX′′ → A. Furthermore, the path xy−1 inX projects
to a path in H0 ⊂ A which is the concatenation of four distinct edges.

Let X′ denote the vertical subdivision of X, and let X′′ denote the horizontal
subdivision of X′, so X′′ is the first barycentric subdivision of X.

In order to describe the VH -immersion X′′ → A, we first describe a VH -
immersion X′ → W , where W is a certain CSC described below. Afterwards, we
describe a VH -immersionW ′ → A whereW ′ denotes the horizontal subdivision of
W . The desired VH -immersionX′′ → A is then obtained by taking the composition
X′′ → W ′ → A.

We first subdivide X vertically by subdividing VX and adding a horizontal edge
in the middle of each square of X. We call the resulting complex X′. The vertical
decomposition of the complexX′ is illustrated in Figure 11. Note that the edges ofX′
are oriented away from the new vertices of X′.

Figure 11. The vertical decomposition of the vertical subdivision X′ of X.

The vertical decomposition of W is illustrated in Figure 12. There is an obvious
VH -immersion X′ → W which preserves the labels of vertical edges of X′ and W .
One can think of this immersion as the quotient ofX′ obtained by identifying certain
horizontal edges of X′.

We now form the horizontal subdivision W ′ of W , and describe an immersion
W ′ → A. To understand this immersion, consider the subcomplex A1 of A obtained
by removing the interior of each vertical bold black edge of A, and removing the
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I can see from the color changes that the black vertices
are the new vertices and the grey ones are the old ones

Figure 12. The vertical decomposition of W .

interior of each square having a bold black vertical edge on its boundary. The vertical
decomposition of this subcomplex is depicted in Figure 13. Note that there are two
edge spaces each of which is attached at both ends to the subgraphs of V0 and V1 not
containing any bold black edge. There is an obvious VH -immersion W ′ → A1 and
thus an immersion X′′ → W ′ → A1 → A.

Figure 13. The vertical decomposition of the subcomplex A1 of A.

Remark 8.5. In order to suppress mentioning the basepoints in the arguments con-
cerning π1 of the various spaces below (all of which are constructed from copies
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of A), whenever π1 is mentioned we will assume that an edge of V0(A) has been
contracted and that the resulting vertex is the basepoint.

Example 8.6 (The complex M). Let M denote the CSC which is the double of A
along V0. So

M = (A ∪ A)/{V0 = V0}.
Note that �hM

∼= I and that �vM is a bouquet of 2 edges. See Figure 14 for a depiction
of the 1-skeleton of M . Let H0(M) denote the component of HM which equals
H0 ∪H0.

Figure 14. The 1-skeleton ofM: The lower graph of the figure above represents the 1-skeleton
ofM . The subgraphH0(M) ofM1 is represented by the twelve horizontal edges at the top ofM1.
The path ω is represented by an immersion intoH0(M) of the cycle of length 8 illustrated by the
top graph of the figure. The immersion ω → H0(M) factors through the subgraph of H0(M)

indicated by the graph in the middle of the illustration, in the obvious way.

Observe that there is a VH -immersion

X
⋃
V=V

X → A
⋃
V0=V0

A = M.

We let ω denote the path in H0(M) obtained by taking the projection of the path
(xy−1)

−1
(xy−1)′ in the double of X. By Theorem 7.6, the element of π1M repre-

sented by ω is trivial whenever the element c of π1M has finite order. For later use,
note that as in Figure 14, ω is the concatenation of two paths in H0 and H0 each
consisting of 4 distinct edges.

Lemma 8.7. π1M = 〈〈
π1

(
H0(M)

)〉〉
.

Proof. π1M = 〈π1A∪π1A〉 = 〈〈〈π1H0〉〉π1A∪〈〈π1H0〉〉π1A

〉 ⊂ 〈〈π1(H0∪H0)〉〉π1M =
〈〈π1(H0(M))〉〉π1M. �

Let V0(M) denote the component of VM containing the basepoint 0 of A. In
addition, let 0 ∈ A ⊂ M be chosen as the basepoint of M .
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Lemma 8.8 (Generators for π1(H0(M))). The group π1(H0(M)) is generated by
elements represented by closed paths of the form: ab−1cd−1wx−1yz−1, where a, b,
c, d denote distinct edges of H0 and w, x, y, z denote distinct edges of H0.

Proof. Observe thatπ1(H0(M)) is generated by elements represented by closed paths
of length 2 beginning at the basepoint. It is therefore sufficient to show that every
closed path of length 2 beginning at the basepoint is the product of two length 8 paths
of the form indicated above. Note that we use the fact that H0 (and hence H0) has
more than 4 edges. By symmetry, it is sufficient to indicate how this is done for one
such path of length 2.

ab−1 = (ae−1cd−1wx−1yz−1)(zy−1xw−1dc−1eb−1)

and
wx−1 = (wv−1yz−1ab−1cd−1)(dc−1ba−1zy−1vx−1). �

Example 8.9 (The CSC E with no finite covers). We will form a CSC by amalga-
mating several copies of M along their H0(M) subspaces.

First letK be a graph which is isomorphic toH0(M)with basepoint corresponding
to the basepoint ofH0(M). Let {σ1, . . . , σr} denote the full set of length 8 generators
ofπ1K which are of the form indicated in Lemma 8.8. Choose r copies {M1, . . . ,Mr}
of M . For each i let H0(Mi) denote the subspace of Mi corresponding to H0(M).
For each i let ωi be the path in Mi corresponding to the path ω in M .

For each i, choose a graph isomorphism ψi : H0(Mi) → K which sends ωi to σi .
Now let E be the union of the Mi identified along H0(Mi) using the maps ψi .

That is,
E = K ∪ψi Mi.

Note that by Lemma 8.8, π1K is generated by the σi and therefore π1K is gener-
ated by the ωi , because σi = ωi in E. Furthermore, E is a CSC by Lemma 8.1.

Theorem 8.10 (E has no finite covers). The fundamental group of E has no non-
trivial torsion quotient. In particular, π1E has no non-trivial finite quotient.

Proof. First observe that π1E is the normal closure of π1K . This is because π1E =〈 ⋃
π1Mi

〉
and by Lemma 8.7 for each i, π1Mi = 〈〈π1H0(Mi)〉〉.

Thus it is sufficient to show that π1K is trivialized in every finite quotient. But for
each i, the element ωi is trivial in any finite quotient, and so since π1K is generated
by the ωi , we see that π1K is trivial in any finite quotient.

The proof that π1E has no torsion quotients is almost the same, but we use
Theorem 7.6 to show that ωi is trivialized in any torsion quotient. �

We close this section with an application of Theorem 7.5.
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Theorem 8.11 (Non-residually finite manifold). There exists a closed non-positively
curved manifold whose fundamental group is not residually finite.

Proof. In [Hu95], it is shown that any compact non-positively curved complex, is a
retract of a closed non-positively curved manifold. Applying this to the example D
of Theorem 7.5 yields the result. �

9. Non-virtually torsion-free examples

In this section we give some examples of non-virtually torsion-free groups which
are either biautomatic or the fundamental group of a compact non-positively curved
2-complex (or both). We also show that two well-known questions concerning the
residual finiteness of word-hyperbolic groups are equivalent. We close this section by
outlining a possible approach towards finding a non-residually finite, word hyperbolic
group.

Lemma 9.1. Let g ∈ G − {1G} have the property that g belongs to the kernel of
any finite quotient. Suppose that for some n, g is not in the kernel of the quotient
G → G/〈〈gn〉〉. Then G/〈〈gn〉〉 is not virtually torsion-free.

Proof. We show by contradiction that g is contained in every finite index subgroup
of G = G/〈〈gn〉〉. Suppose g /∈ H where [G : H ] < ∞, then using the left coset
representation, we obtain a finite quotient G → F such that g is not sent to the
identity in F . But now, consideration of the map G → G → F shows that the
element g ∈ G gets sent to the identity. �

The following proposition implies that two well-known questions popularized by
Gromov, concerning residual properties of word-hyperbolic groups, are equivalent.

Proposition 9.2. If all word-hyperbolic groups are virtually torsion-free, then all
word-hyperbolic groups are residually finite.

Note that the converse is true because a given word-hyperbolic group has only
finitely many different torsion elements up to conjugacy. One can deduce this easily
from the properties of the action on the Rips Complex of the group (see [Aea91]).
Thus, if the group is residually finite, then one may separate each of these finitely
many conjugacy classes from the identity in a finite quotient, and the kernel of this
homomorphism is torsion-free and of finite index.

A related result was proven more recently in [KW00], where we showed that every
word-hyperbolic group is residually finite if and only if every word-hyperbolic group
has a proper finite index subgroup.
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Before giving the proof, we quote a special case of a result of Delzant, Gromov,
Ol’shanskı̆. See [Del96], [Gro87], [Ol’93].

Theorem 9.3. Let G be word-hyperbolic. For each infinite order element g ∈ G,
there exists n > 1 such that G/〈〈gn〉〉 is itself word-hyperbolic and g �= 1.

Proof of Proposition 9.2. What we actually do is show that if one had a non-residually
finite word-hyperbolic group, then one could construct a non-virtually torsion-free
word-hyperbolic group. So suppose G is word hyperbolic, and suppose that g ∈ G
does not survive in any finite quotient of G. Then if g is of finite order, then G itself
is not virtually torsion-free. If g is of infinite order, then we apply Theorem 9.3 to
form a quotient G → G/〈〈gn〉〉 = G such that G is word hyperbolic, and such that g
is non-trivial in G. But now Lemma 9.1 shows that G is not virtually torsion-free.

Avoiding Theorem 9.3, we may argue as follows: Given a groupGwith an element
g ∈ G that maps to the identity in any finite quotient, we may construct a new group
K = 〈G, t | [g, t]n〉 which is easily seen to be word hyperbolic for n ≥ 2. Now
[g, t] has order n, but [g, t] is contained in every proper normal finite index subgroup
since g does. Thus K is not virtually torsion-free, since if it had a torsion-free finite
index subgroup it would have a torsion-free normal finite index subgroup. �

The method used above to construct a non-virtually torsion-free group from a non-
residually finite group is a bit trickier to implement in the case of automatic groups
or CAT(0) groups which are not word hyperbolic. One difficulty is that a version of
Theorem 9.3 does not exist in this case.

Define the turning angle of a geodesic path γ at a point p ∈ γ to be the distance
between α and β in Link(p), where α and β are the points in Link(p) corresponding
to the incoming and outgoing rays of γ at p. Note that Link(p) has the path metric
locally isometric to the “angle metric” but we do not cap the distance by π .

Example 9.4. Here we give an example of an automatic group G and an element
b ∈ G such that there are no automatic G/〈〈bn〉〉 quotients. Consider the group G,
presented by:

〈a, b, t | [a, b], at = a2b〉.
It is isomorphic to

〈a, β, t | [a, β], at = β〉,
which is automatic since the standard 2-complex of this presentation is a non-positively
curved square complex (see [GS90]).

However, for all n > 0 the quotient Q = G/〈〈bn〉〉 is not automatic. One can
prove this by first noting that the subgroup generated by 〈an, t〉 is isomorphic to the
Baumslag–Solitar group presented by 〈α, t | αt = α2〉. Then by using standard meth-
ods, one deduces that Q has an exponential isoperimetric function and is therefore
not automatic (see [ECH+92]).
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Lemma 9.5 (Modding out by n-th powers for CAT(0) groups). Suppose that X is a
non-positively curved 2-complex, and that π1X has an element g whose conjugacy
class is represented by a closed geodesic path γ which has a point with a large
turning angle θ > π . Then for large n, the element g survives in the quotient
π1X → π1X/〈〈gn〉〉, and π1X/〈〈gn〉〉 is the fundamental group of a 2-dimensional
non-positively curved orbihedron.

Proof. We choose n so that for a regular Euclidean polygon P with n sides, and
thus interior angle (n−2)π

n
, we would have (n−2)π

n
+ θ ≥ 2π . In other words, we

choose n ≥ 2π
θ−π . We first subdivide X so that γ is contained in the 1-skeleton.

Now we attach P along γ n to X, so that each vertex of P corresponds to the point
of γ with large turning angle. The group Zn acts on P in the obvious way, and so
since the attaching map of P is Zn-equivariant we can form the non-positively curved
orbihedron Y = X ∪ P/Zn. To see that Y is a non-positively curved orbihedron,
note that the link condition is still satisfied at the vertex of X where γ has the large
turning angle. Furthermore, the interior of P , and in particular the cone point, is
modelled onP/Zn. The fundamental group ofX∪P/Zn, is isomorphic toπ1X/〈〈γ 〉〉.
(See [Sta91], [Hae91], [Cor92], [BH99] for information about non-positively curved
orbihedra) �

In order to use Lemma 9.5 to understand the non-virtually torsion-free group of
Example 9.7, we will need the following lemma.

A group G is Hopfian if every surjective endomorphism G → G is an automor-
phism. It is a theorem of Malćev [LS77], that a finitely generated residually finite
group is Hopfian. We give a version of this below.

Lemma 9.6 (Non-Hopf element). Let G be a finitely generated group, and let
φ : G → G be a surjective endomorphism. Suppose that g ∈ Kernel(φ), then g
is contained in every finite index subgroup of G.

Proof. Suppose that g where contained outside a finite index subgroupH ⊂ G, then
by Lemma 7.1 there would be a φ-invariant finite index normal subgroupN such that
g /∈ N . But then if we consider the diagram below,

G

��

φ �� G

��
G/N

φ̄

�� G/N

since φ̄ is a surjective endomorphism of finite groups, we see that φ̄ is an auto-
morphism, and so g is not mapped to the identity by φ̄. But since the diagram is
commutative, and we assumed that φ(g) = 1G, this is a contradiction. �
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Here is an example which is obtained using Lemma 9.5.

Example 9.7 (A CAT(0) example). A relatively simple example of a group which
acts properly discontinuously and cocompactly on a CAT(0) space, but is not virtually
torsion-free, may be constructed by adapting the following non-Hopfian example of
[Wis96a]:

G = 〈a, b, s, t | [a, b] = 1, as = (ab)2, bt = (ab)2〉.
One can see that G is non-Hopfian by considering the endomorphism ψ of G

induced by a �→ a2 , b �→ b2, s �→ s, t �→ t . A non-trivial element ofG which is in
the kernel of ψ is γ = [(ab)s−1

, (ab)t
−1].

Following [Wis96a], the presentation for G given above is equivalent to the fol-
lowing presentation by using a couple of Tietze transformations:

G = 〈a, b, c, s, t | c = ab, c = ba, as = c2, bt = c2〉.
Now to see that G is π1 of a non-positively curved 2-complex C, we just use the

standard 2-complex of the second presentation given above. We metrize the edges
a, b, s, and t as length 1 intervals, and we metrize the edge c as length 1

2 . The cells
of the complex C are metrized as Euclidean isosceles triangles and rectangles as in
Figure 15 below.

a
b
c
s
t

Figure 15. C has a non-positively curved metric.

Consider the commutator γ = [(ab)s−1
, (ab)t

−1]. Substituting c for ab, we
can rewrite γ as γ = [cs−1

, ct
−1] and thus think of γ as a path in C. Figure 16

illustrates that γ is homotopic to a closed geodesic, which we will call γ ′. To see
that γ ′ is a local geodesic, observe that the turning angle of γ ′ at each point that is
sent to the 0-cell of C is either π + 2arcsin(1/4) − 2arctan(1/8) > 3.39 > π or
π + 2arcsin(1/4) ∼ 3.646 > π .

Incidentally, note that the lengths of the edges s and t can be varied independently
and the metrics of the corresponding rectangles can be varied accordingly, so that the
resulting metric on C is still non-positively curved. As we change the metric on C
by increasing the lengths of s and t and the associated rectangles, each of the four
turning angles of γ ′ approaches π + 2arcsin(1/4) ∼ 3.646.
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Figure 16. The geodesic γ ′ homotopic to γ .

By Lemma 9.6, we see that γ is contained in every finite index subgroup of G.
By Lemma 9.5, we see that the quotient G/〈〈γ 13〉〉 is the fundamental group of a
non-positively curved 2-complex of groups.

Example 9.8. Let n ≥ 2 and let G be as in Example 9.7, and form the group
J = 〈G, t | [γ, t]n〉. Then J is the fundamental group of a non-positively curved
orbihedron, and J is not virtually torsion-free.

Proof. The element [γ, t] is contained in every finite index subgroup because γ is.
Now we vary the construction of Lemma 9.5 slightly to obtain the result. First we
add a loop t at the basepoint to C such that t has the same length as γ ′. Next we
let P be a regular polygon with 4n sides, and we attach P to C ∪ t along [γ ′, t]n in
the obvious way. It is easy to see that C ∪ t ∪ (P/Z4n) is non-positively curved. The
resulting orbihedron has π1 = J . Since [γ, t] survives in the quotient (it has order n)
we see by Lemma 9.1 that J is not virtually torsion-free. �

The difficulty with the preceding examples is that there are not many general results
except for certain small cancellation conditions, providing automaticity for groups
acting on CAT(0) 2-complexes. Therefore we construct the following example.

Theorem 9.9 (A non-virtually torsion-free biautomatic group). There is a group G
such that

(1) G is not virtually torsion-free;

(2) G is a C(4)–T (4) group;

(3) G acts cocompactly and properly discontinuously on a CAT(0) square complex;

(4) G is biautomatic.

Proof. LetD be the CSC of Theorem 7.5. Let γ denote the closed horizontal geodesic
path (xy−1)

−1
(xy−1) in the 1-skeleton ofD which represents an element of π1D that

is trivial in every finite quotient. We will use γ to refer to the word (xy−1)
−1
(xy−1).
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We form the group G = (π1(D) ∗ t)/〈〈[γ, t]n〉〉. Combining Lemma 9.5 with
Theorem 7.5, we see that G is not virtually torsion-free.

To see thatG is aC(4)–T (4) group, note thatG isπ1 of the complexL = D∪t∪P
where P is a polygon with 10n sides, that is attached toD∪ t along the combinatorial
path [γ, t]n. It is easily verified that L satisfies the C(4)–T (4) small cancellation
condition.

To see thatG acts cocompactly on a CAT(0) square complex we first representG as
the fundamental group of a non-positively curved orbihedron, by taking the quotient
L → L/Zn where Zn acts on P as in Lemma 9.5. We now subdivide L/Zn so that it
is a square complex. We subdivide the t edge of L/Zn so that it is of length 2, and we
subdivide P/Zn so that it is isomorphic to the direct product I2 × I4. The cone point
of order n of P/Zn is therefore at the vertex at its center. The resulting subdivisionL′
of L, is a non-positively curved square orbihedron, and therefore its universal cover
is a CAT(0) square complex.

ThatG is biautomatic follows either by [GS90] becauseG is a C(4)–T (4) group,
or by the results of [NR98] becauseG acts properly discontinuously and cocompactly
on a CAT(0) square complex. �

Remark 9.10 (Word-hyperbolic suggestion). One possible way of using the method
of this paper to work towards finding a non-residually finite word-hyperbolic group
is as follows:

(1) Find a word hyperbolic group G and a malnormal subgroup M such that G is
not M-separable.

(2) Prove that M is quasiconvex.

(3) Double G along M to obtain a non-residually finite word hyperbolic group as
in Corollary 7.3. See [BF95].

Part (3) of the plan is already clear.
Part (2) should not be difficult. In fact, there is currently no known example

of a finitely generated malnormal subgroup of a word-hyperbolic group that is not
quasiconvex. In fact, ifM ⊂ Gwere a f.g. malnormal subgroup of a word-hyperbolic
group that is not quasiconvex, thenM would be distorted, and thus the doubleG∗MG
would be a nice example of a non-word hyperbolic group with no Baumslag–Solitar
subgroups.

Part (1) is where the difficulty lies in this approach. To begin with, I know of
no (finitely presented) residually finite group G which is not M-separable (for M a
f.g. malnormal subgroup). I therefore pose this as a problem. Examples of word-
hyperbolic groups which are not subgroup separable with respect to an arbitrary
subgroup are easy to construct, yet in all examples that I am aware of, the subgroup
is very far from being malnormal.
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Problem 9.11. Is there a (finitely presented) residually finite group G and a f.g.
malnormal subgroup M , such that G is not M-separable?

Perhaps Problem 9.11 is as difficult as the question of residual finiteness for word-
hyperbolic groups. In both cases, the difficulties appear to stem from an avoidance of
‘long cylinders’. I hope that some progress on Problem 9.11 will yield some insight.
Of course the main goal would be to find a word hyperbolic solution to Problem 9.11.

10. A collection of problems about CSCs

We close with a set of problems about CSCs. The CSC territory has proven to
be a natural testing ground for the possibility of generalizing various properties of
word-hyperbolic groups to biautomatic or CAT(0) groups. Unless stated otherwise,
all CSCs below are assumed to be compact. Most of the problems center around
algorithmic questions. Two of the problems in [Wis96b] were solved before anybody
knew I had asked them: Namely, it has been shown that CSCs are quasi-isometrically
rigid, (proven in [Ahl02] using results from [KL97] and [MSW03]), and that there
are CSCs with infinite simple fundamental groups [BM97]. In the second case, we
can still ask for:

Problem 10.1. Give an elementary proof and construction of CSCs with infinite
simple fundamental group.

Problem 10.2. Does there exist an algorithm which determines whether two CSCs
have isomorphic finite covers? Does there exist an algorithm which determines
whether two CSCs have commensurable fundamental groups?

Problem 10.3. Is the isomorphism problem solvable for fundamental groups of
CSCs?

A notable special case of Problem 10.2 is:

Problem 10.4. Is there an algorithm which determines whether a CSC is virtually
clean?

Problem 10.5. Is there an algorithm which determines whether a CSC has residually
finite fundamental group? Linear fundamental group?

Problem 10.6. Is there an algorithm that determines whether a CSC contains an
immersed anti-torus?
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Problem 10.7. Given a CSC X, is there an algorithm which takes as input vertical
and horizontal paths v and h, and determines whether or not ṽ and h̃ are the axes of
an anti-torus in X̃?

Problem 10.8. Given vertical and horizontal paths v and h, is the subgroup 〈vn, hn〉
isomorphic to either F2 or Z

2 for sufficiently large n? In particular, suppose that ṽ
and h̃ are the axes of an anti-torus. Is it possible for 〈vn, hn〉 ∼= F2 for some n?

Some very interesting partial results on the above three problems where obtained
by Rattaggi in [Rat05].

Every CSC that is not a graph, contains a Z
2 subgroup in its fundamental group.

In fact, such subgroups correspond to period flats, and these periodic flats are dense in
the set of flats [Wis05], [Wis96b]. Call a CSC elementary if it is virtually the product
of two graphs one of which has euler characteristic ≥ 0. (So the fundamental group
is either Fn or Fn × Z.)

Problem 10.9. If the CSC X is non-elementary, does π1X contain an F2 × F2
subgroup? Is there an algorithm to determine if F2 × F2 embeds in π1X? For CSCs
X and Y , is there an algorithm to determine if there is an immersion Y � X? To
determine if π1Y embeds as a subgroup of π1X?

The first part of the above problem has been answered by Rattaggi–Robertson in
[RR05]. They produced a marvellous CSC R such that the only non-trivial product
embedded in π1R is isomorphic to Z

2.
A group is coherent if all its finitely generated subgroups are finitely presented.

A well-known group that is not coherent is F2 × F2.

Problem 10.10. Let X be a non-elementary CSC. Is π1X incoherent?

A partial result towards Problem 10.10 is made in [BW99] where it is shown that
ifX contains no v and h such that 〈v, h〉 ∼= F2, then every finitely presented subgroup
of π1X is either free or equals π1Y where Y is a compact CSC and Y � X is an
immersion.

Problem 10.11. Compute Out(π1X) for a CSC X.

Problem 10.12. Does every non-elementary CSC have a proper (infinite index?)
finitely generated subgroup that is not isomorphic to either Fn or Z

2?

On the other hand we can ask specifically:

Problem 10.13. Is there a CSC which contains a closed surface (quasiconvex?)
subgroup of genus ≥ 2?
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Note that surface groups do embed in non-compact CSCs. Indeed, they act freely
on the product of two trees as does the fundamental group of any non-positively
curved directed VH -complex [Wis06].

Another striking property of F2 × F2 is that it has finitely generated subgroups
with undecidable membership problem.

Problem 10.14. Is there a non-elementary CSC X such that π1X has decidable
membership problem for each finitely generated subgroup?

Problem 10.15. Is π1X hopfian for every CSC X?

Problem 10.16. Describe CSCs with ‘interesting’ self-immersions X � X. This
implies that π1X is not cohopfian and can also lead to interesting ‘self-similar’ con-
structions of anti-tori.

I have proven that every directed non-positively curved VH -complex Y is a
subcomplex of a CSC X. This motivates:

Problem 10.17. Let Y be a compact non-positively curved VH -complex. Is there
always a CSC X such that π1Y embeds as a subgroup in π1X?

Problem 10.18. Does every CSC immerse π1-injectively (quasiconvexly?) in a
closed non-positively curved cubulated manifold. How many dimensions are needed?

I suspect the following problem about the main example in this paper has a negative
solution, but have been unable to solve it:

Problem 10.19. Let X be the six square CSC presented in Example 4.1. Is π1X

residually finite?

Acknowledgement. I am very grateful to the referee for his numerous and helpful
corrections which greatly improved this paper.
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