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On the measure contraction property of metric measure spaces

Shin-ichi Ohta*

Abstract. We introduce a measure contraction property of metric measure spaces which can be
regarded as a generalized notion of the lower Ricci curvature bound on Riemannian manifolds.
It is actually equivalent to the lower bound of the Ricci curvature in the Riemannian case. We
will generalize the Bonnet—Myers theorem, and prove that this property is preserved under the
measured Gromov—Hausdorff convergence.
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1. Introduction

The notions of lower and upper ‘sectional’ curvature bounds on not necessarily Rie-
mannian metric spaces are introduced by Alexandrov by using the triangle comparison
theorems, and they are called Alexandrov spaces and CAT (K )-spaces, respectively
(see [ABN], [BGP], [G], [BBI], and the references therein). These spaces are quite
interesting objects themselves and, furthermore, they are turned out to be useful tools
to study limit spaces under the Gromov—Hausdorff convergence of sequences of Rie-
mannian manifolds with uniform lower or upper sectional curvature bounds. Now
the Alexandrov spaces and CAT (K )-spaces are ones of the most important objects in
metric geometry.

Once the importance of Alexandrov spaces and CAT (K )-spaces are understood,
a natural question arises: What about the lower bound of the ‘Ricci’ curvature? One
reason why this is a natural question is that the family of Riemannian manifolds with
uniform lower Ricci curvature and upper diameter and dimension bounds is precom-
pact in the Gromov—Hausdorff topology ([G]). In their serial papers [CC], Cheeger
and Colding investigate the structure of limit spaces under the measured Gromov—
Hausdorff convergence of sequences of Riemannian manifolds with uniform lower
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Ricci curvature bounds, and consider the convergence of the Laplacian (Fukaya’s
conjecture, [F]).

One difference between the sectional and the Ricci curvatures is the role of the
dimension. Sectional curvatures care only two-dimensional subspaces, so that we do
not need the dimension of the entire space to define Alexandrov spaces. However,
for the Ricci curvature, the dimension plays an essential role. More precisely, as a
sequence of Riemannian manifolds with a uniform lower Ricci curvature bound can
collapse to a lower dimensional space, we consider a combination of a lower Ricci
curvature bound, say K, and an upper dimension bound, say N.

Recently, a breakthrough on this topic is given by Sturm [S2] and Lott and
Villani [LV] (see also [RS]). They independently introduce mutually slightly dif-
ferent conditions. More precisely, they consider the Wasserstein space on a metric
measure space and adopt the convexity of a (family of) functional(s) on that space
as a generalized notion of the lower Ricci curvature bound. However, there remains
a problem on the treatment of the dimension. Sturm’s condition does not contain a
term of the dimension and it can be regarded as the case of N = oo. In addition
to it, Lott and Villani treat the case of N < oo, but only for K = 0. So that it is
still unclear how to define spaces with a finite upper bound on their dimensions and
with a nonzero lower Ricci curvature bound. Furthermore, some basic questions
to justify their conditions are open, for instance, whether Alexandrov spaces satisfy
these or not.

In this article, we introduce another kind of generalization of the lower Ricci cur-
vature bound, the (K, N)-measure contraction property (Definition 2.1, the (K, N)-
MCP for short). Here K € R is the lower bound of the Ricci curvature and N > 1
is the upper bound of the dimension, so that we can consider a situation which is
not covered in [S2] and [LV] (K # 0 and N < o0). This condition is defined in
terms of the contraction of a measure on a set to a point, and seems simpler and
more geometrically understandable. Indeed, we do not use the Wasserstein space to
define the (K, N)-MCP, and it is not difficult to see that Alexandrov spaces satisfy
the (K, N)-MCP (Proposition 2.8).

One of our main results is a generalization of the Bonnet—-Myers theorem. Namely,
we shall show that, if a metric measure space (X, i) satisfies the (K, N)-MCP for
some K > 0 and N > 1, then its diameter is less than or equal to /(N — 1)/K
(Theorem 4.3). Moreover, for every point x € X, the set of points at a distance of
w+/(N —1)/K from x consists of at most one point (Theorem 4.5). We also prove
a generalization of the Bishop—Gromov volume comparison theorem (Theorem 5.1).
In addition to these, we show that, for an n-dimensional Riemannian manifold, the
(K, n)-MCP is equivalent to that its Ricci curvature is bounded from below by K
(Theorem 3.2), and that the (K, N)-MCP is preserved under the measured Gromov—
Hausdorff convergence (Theorem 6.8). These results as well as the (K, N)-MCP of
Alexandrov spaces justify us to say that the (K, N)-MCP is a generalized notion of
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the lower Ricci curvature bound. Techniques developed in [RS], [S2], and [LV] play
crucial roles in our discussions.

The article is organized as follows. We give the definition of the (K, N)-MCP
and consider some basic properties, such as the doubling condition, in Section 2. In
Section 3, we treat the Riemannian case. Section 4 is devoted to a generalization of the
Bonnet—Myers theorem. We prove a generalization of the Bishop—Gromov volume
comparison theorem in Section 5. In the last section, we consider the stability of the
(K, N)-MCP under the measured Gromov—Hausdorff convergence.

After this work was completed, I learned of a related work by Sturm [S3].

2. Measure contraction property

A metric space (X, dy) is called a length space if it satisfies dx (x, y) = inf, £(y)
for all x, y € X, where £(y) denotes the length of y and the infimum is taken over
all rectifiable curves y from x to y. If, for every x, y € X, there exists a curve y
which satisfies dx(x, y) = £(y), then we say that (X, dx) is geodesic. Note that,
if a length space is complete and locally compact, then it is geodesic. A rectifiable
curve y in a metric space (X, dy) is called a geodesic if it is locally minimizing and
has a constant speed. A geodesic y : [0, /] —> X is said to be minimal if it satisfies
L(y) = dx(y(0), y()). By taking a reparametrization of a curve which attains the
distance, every two points in a geodesic metric space are joined by a (not necessarily
unique) minimal geodesic.

Throughout this article, without otherwise indicated, let (X, dx) be a length space,
and let ;« be a Borel measure on X such that 0 < pu(B(x,r)) < oo holds for every
x € X and r > 0, where B(x, r) (or BX(x, r)) denotes the open ball with center
x € X and radius r > 0. The closed ball with center x € X and radius » > 0 is
denoted by B(x,r) or BX(x, r). Henceforth, we denote dy (x, y) by |x — y|x for
x,y € X, and write simply X instead of (X, dx).

As in [LV], let I" be the set of minimal geodesics, say y: [0,1] — X, in X
and define the evaluation map e¢;: ' —> X by ¢;(y) := y(t) for each ¢t € [0, 1].
We regard I' as a subset of the set of Lipschitz maps Lip([0, 1], X) with the uniform
topology. A dynamical transference plan I1 is a Borel probability measure on I', and
a path {u;}ref0,1) C P2(X) given by u; = (er)«Il is called a displacement inter-
polation associated to IT, where we define $2(X) as the set of all Borel probability
measures, say [, satisfying fx [x — y|§( du(y) < oo for some (and hence all) x € X.

For K € R, we define the function s x on [0, 00) (on [0, 7/+/K) if K > 0) by

(1/vK) sin(~K1) if K >0,
sg(t) =t if K =0,

(1//—K)sinh(+/—Kt) if K <O.
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Definition 2.1. For K, N € Rwith N > 1, or with K < 0and N = 1, a metric
measure space (X, ) is said to satisfy the (K, N)-measure contraction property
(the (K, N)-MCP for short) if, for every point x € X and measurable set A C X
(provided that A C B(x, /(N — 1)/K) if K > 0) with 0 < u(A) < oo, there
exists a displacement interpolation {1;};cf0,17 C JPZ(X ) associated to a dynamical
transference plan IT = Iy 4 satisfying the following:

(1) We have g = 8y and 1 = (u|4)~ as measures, where we denote by (u|4)™
the normalization of |4, i.e., (t|a)~ 1= w(A)~' - ]a:

(2) Foreveryt € [0, 1],

s e (l {sx<rz(y>/¢N =)
=\ sk e(y) /N =)

holds as measures on X, where we set 0/0 = 1 and, by convention, we read

{sK(rawa ) }N‘l .
sk(E)/vVN =T

N-1
} M(A)dH(V)> 2.1)

if K <0and N = 1.

Remark 2.2. The case where K > 0 and N = 1 is an exceptional one because, by
Theorem 4.3 and letting N tend to 1, then X should consist of only one point. So that
we do not intend to consider such a situation.

If there exists a measurable map ®: A — I satisfyingego® = x,e1 0P = idy4,
and IT = ®,[(u|4) "], then the inequality (2.1) yields that

sk(tlx —zlx/~/N —1)
sg(x —z|lx/~N —1)

holds as measures on X. Here x4 stands for the characteristic function on A. This
is the case where, for each y € A, there exists an exactly one geodesic y € supp I1
from x to y.

N-1
du > (e o <I>)*<t{ } xA (@) du(z)) 2.2

Lemma 2.3. The inequality (2.2) is equivalent to that, for all t € [0, 1] and measur-
able sets A’ C A, we have

N—-1
. SK(t|x_Z|X/m)} dp(z). (2.3)

®A))) >
e (@A) _/:4/ {sK<|x—z|x/¢N—1>
Proof. Put W := ¢; o ® and

gy I{SK(tIx —2lx/VN=1)
T Usk(x —zlx/VN =)

N-—1
} xa(2)du(z)
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in this proof for simplicity. We first assume (2.2). For a measurable set A’ C A, we
have
1(W(A)) = (L) (W(A)) = v(¥~1(W(A) = v(A).

This implies (2.3). We next suppose (2.3). For a measurable set W C X \ W(A), we
immediately obtain u(W) > 0 = (W,v)(W). If W C W(A), then (2.3) yields that

p(W) = p (W@~ (W)) = v(¥~'(W)) = (W) (W).
This completes the proof. i

The inequality (2.3) can be regarded as a generalization of the Bishop inequality
under a lower Ricci curvature bound Ric, > K (see Theorem 3.1 below), and is a
reason why we say that (2.1) is a kind of measure contraction property. We refer [S1],
[KS1], [R1], and [R2] (see also [O]) for other kinds of measure contraction property
of metric measure spaces. Especially, an essentially similar condition to our MCP is
proposed in [CC, I, Appendix 2] (see also [G]).

Lemma2.4. (i))The (K, N)-MCP of (X, 1) impliesthe (K', N')-MCPforallK' < K
and N' > N.

(1) If (X, dx, ) satisfies the (K, N)-MCP and ifa, b > 0, then the scaled metric
measure space (X, a - dx, b - ) satisfies (K/az, N)-MCP.

Proof. (i) By calculation, we see that

{ sk(td/N = 1) }N‘l
sk(d/N—=1)

is monotone non-decreasing in K for any fixed N > 1, and is monotone non-increa-
sing in N for any fixed K € R. This (together with Theorem 4.3 and Lemma 4.4 (i)

if K > 0) completes the proof.
(ii) It is clear by the definition of the (K, N)-MCP. O

The following lemma is straightforward from the definition of the (K, N)-MCP,
and will be sharpened in Section 5.

Lemma 2.5. Suppose that (X, u) satisfies the (K, N)-MCP. Then, for every x € X
and) <r <R (<n /(N —-1)/K if K > 0), we have

WB(,R) _ R {sK<AR/¢N ) }N‘l

———— < — sup .

u(B(x,r) ~ r o<t | sg(r/v/N—1)

In particular, the set S(x,r) :={y € X | |x — y|x = r} has a null measure for any

x € X andr > 0 (provided thatr < w/(N — 1)/K if K > 0).
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Proof. The (K, N)-MCP with x = x, A = B(x, R), and t = r/R yields that

;,L(B(x, r))

ro, sk(r//N —1) | V7!
EM(B(X’R))EOgAlfsl sk(AR/~/N —1)
B ro skr/N =1 |V
_M(B(X’R))Eog;; sk(AR/N —1)
3 ro sk (/N —T1) | V7!
= w(Be R) g inf SkOR/N =)
N-1
roe {SK()\J’/\/N—U} w(BGx, R).

((eryR)« M, B(x, 1)) (B(x, 1))

((er/r) "' [B(x, M)

IT(supp IT)

= — in
Ro<x<1 [sg(AR//N —1)

Here the third equality follows from (ep)+I1 = 8, and (e1)+I1 = (1|B(x,r)) . Indeed,

it implies e, g (y) € B(x, r) for [1-a.e. y. This completes the proof. O

In particular, the (K, N)-MCP implies the (local) doubling condition. Namely,
forany R > 0 (R <n /(N —1)/Kif K > 0),r € (0, R], and x € X, we have

W(B(x, r)
Bk A AN ,
W(B(x.rj2) — KNR

where Cx y.r < 00 is a constant depending only on K, N, and R. The doubling
condition implies that every bounded closed ball in X is totally bounded. Therefore,
if X is complete, then it is proper (i.e., all bounded closed sets are compact) and hence
geodesic.

Corollary 2.6. If (X, u) satisfies the (K, N)-MCP and if it contains more than two
points, then the measure [ is non-atomic.

Corollary 2.7. If (X, n) satisfies the (K, N)-MCP, then the Hausdorff dimension
of X is less than or equal to N.

Proof. Lemma 2.5 yields that the function f(x) := lim sup,_, rNu(B(x,r))"! on
X is locally bounded. By [AT, Theorem 2.4.3], this implies that the N-dimensional
Hausdorff measure #" on X is also locally bounded. Therefore the Hausdorff
dimension of X is not greater than N. O

We end this section with a proposition which asserts that Alexandrov spaces
satisfy the MCP. As the Alexandrov space is considered as a metric space with a
lower ‘sectional’ curvature bound, this proposition supports us for saying that the
(K, N)-MCP is a generalized notion of a lower ‘Ricci’ curvature bound. See [BBI],
[BGP], and [KS1] for the definition of and terminologies on Alexandrov spaces.
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Proposition 2.8. Let X be an n-dimensional, complete Alexandrov space with cur-
vature > K, and H" be the n-dimensional Hausdorff measure on X. Then (X, H")
satisfies the (n — 1)K, n)-MCP.

Proof. This easily follows from [KS1, Lemma 6.1], we give an outline of the proof
for completeness. For a point x € X and a measurable set A C X, we define a map
X = CD){A: A — ' by CIDX(y) := y, where y: [0, 1] — X is an arbitrarily
chosen minimal geodesic from x to y. Then we see that ®¥ is measurable as in the
proof of [KS1, Proposition 6.1], and we put I1 := (®X)*[(1]4) 1. The condition (1)
in Definition 2.1 is clearly satisfied and the condition (2) follows from the curvature
condition just as in [KS1, Lemma 6.1]. O

3. Riemannian case

In this section, we consider the Riemannian case. See, for example, [Cl] for fun-
damentals on Riemannian geometry. Let (M, g) be an n-dimensional, complete
Riemannian manifold without boundary and denote by d, (or |- —-|¢) and v, the Rie-
mannian distance and the Riemannian measure, respectively, on M induced from g.
In addition, Ric, stands for the Ricci tensor with respect to g and the inequality
Ric, > K means that Ric, (&, &) > K holds for every p € M and § € §, M, where
SpM C T, M is the unit tangent sphere at p € M. For a point p € M and a unit
tangent vector & € S, M, we set

c() :=sup{r > 0| |p —ye(r)lg =7},
where we define y; (r) := exp,, r§. Define, for p € M,

C(p) = {ye(c(®)) | § € S,M},

D(p):={r§ 1§ €M, 0<r <c)}CTM,

D(p) = exp, D(p).
The set C(p) is called the cut locus of p. Recall that exp,: D(p) — D(p) gives
a diffeomorphism and that we can represent dv,(q) = (expp)s«[Ap(r; &)drd&] on
D(p), where g = y¢(r) and A, (r; &) denotes the density of the Riemannian measure
on S(p, r) induced from g. Recall that we set S(p,r) :={q e M | |p —qls =T}.

The classical Bishop comparison theorem asserts the following ([BC], cf. [Cl, Theo-
rem 3.8]).

Theorem 3.1. If (M, g) satisfies Ric, > K, then we have

1 dAy(r; &) <n- 1)s/K(r/\/n -1
Ay(r; &) dr - sg(r//n—1)
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foralls € SyM andr € (0, c(§)). In particular, the function

Ap(r; &)
sg(r/«/n — 1)”_1

is monotone non-increasing inr € (0, c(§)).

Given a point p € M and a measurable set A C M, as in the proof of Propo-
sition 2.8, we define a map ®¥ = @M A — T by CI>MA(q) = y, where

: [0, 1] — M is an arbitrarily chosen m1n1mal geodesic from ptog. As C(p)
has a null measure, the map @I’;’{ 4 1s measurable and is uniquely determined up to a
modification on a null measure set.

Theorem 3.2. Let (M, g) be an n-dimensional, complete Riemannian manifold with-
out boundary with n > 2. Then a metric measure space (M, dg, vg) satisfies the
(K, n)-MCP if and only if Ricg > K holds.

Proof. We first assume Ric, > K and fix a point p € M and a measurable set
A C M. We shall show that the map oM = dJM defined as above satisfies (2.3)
with N = n which implies the (K, n)-MCP. It follows from Theorem 3.1 that, for
any ¢ € [0, 1] and measurable subset A’ C A,

vg (e (@) 4(A)) = tA,(tr; &) dr d&

/expp (AHND(p)
t _ 1 n—l
z/ tiL ”)} A, (r; &) dr dé
exp, (AnnD(p) L sk (r/~/n—1)

:/ t{sK(r|p—q|g/\/n—1>}"—ldv @
csk(p = qlg/v/n—1) o

Therefore ®M satisfies the inequality (2.3).

Next we consider the converse, so that we suppose that (M, dg, v,) satisfies the
(K,n)-MCP. Fix p € M, & € S, M, and an orthonormal basis {ey, ..., e,} in T,M
with ey = &. We denote by k; the sectional curvature of the plane spanned by e
and e¢; foreachi = 2, ..., n. Fora small r > 0, it follows from

sg(r) _l 52 4
sK(2r)_2(1+ ;T or ))
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that

AiE) L k00,
Ap(2r; &) 2n E(H , tov ))

- k
sl 4) o
=2

1 n
=5 [1 + Zkirz} + 0@
i=2

- Zn_lfl{l + Ricg (8, )r*} + O().

On the other hand, it is not difficult to observe that the (K, n)-MCP implies

Ap(ri§) _ { Sk (r/v/n =) }"“
A,2r;&) ~ IsxQr/v/n—1) '

and hence we have

2sg (r/a/n—1)
sxkQr//n—1)

n—1
r2} —14+00?)

n—1
Ric, (£, &)r? > { } —14 0@

=11
{ +n—1
=Kr* +0@).

Dividing both sides by 72 and letting r tend to zero, we consequently obtain
Ric,(§,6) = K.
This completes the proof. O

The following are easily derived from Lemma 2.4(i) and Corollary 2.7 together
with the theorem above.

Corollary 3.3. Let (M, g) be an n-dimensional, complete Riemannian manifold with-
out boundary.

(1) If (M, g) satisfies Ricy, > K andn < N, then (M, dg, vg) satisfies the (K, N)-
MCP.

(ii) If a metric measure space (M, dg, v,) satisfies the (K, N)-MCP, then we have
n<N.
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4. Bonnet-Myers theorem

In this section, we shall show a generalization of the Bonnet-Myers theorem ([M]),
that is, the (K, N)-MCP with K > Oand N > 1 implies that the diameter is less than
or equal to m+/(N — 1)/K. By rescaling the distance, we may assume K = N — 1
(Lemma 2.4 (ii)). For x € X and s, > 0 with s < ¢, we define A(x;s,t) =
B(x, 1)\ B(x, s), where we set B(x, 0) := ). The symbol 6, (5) denotes a function
depending only on o and B with lims_, 6y g(8) = 0. Before beginning the proof
of the Bonnet—Myers theorem, we prove a useful lemma which holds for general K
and N.

Lemma 4.1. Ler (X, ) satisfy the (K, N)-MCP and, for 0 <r <r’ < o0 (0 <
r<r <aJ(IN—D/KifK > 0), let t: (r,r') —> (0, 1] be a C'-function
satisfying t/ ()l + t(l) > 0 for all l € (r,r"). Then we have, for any point x € X,
any measurable set A C A(x;r,r’) with0 < u(A) < oo, and for T1 = Ty 4 as in
Definition 2.1,

dp > (ez)*[{r/(ﬁ(y))ﬂ(y) +7(e()}

y {SK(T(E(J/))E(V)/«/N -D
sg(t(y)/¥N —=1)

as measures. Here e; : I' —> X denotes a map defined by e (y) := e () (¥).

4.1)

N—1
} M(A)dl'l()/)}

Proof. Choose an arbitrary measurable set W C X. It suffices to show

w(W) > /'(W) [{r’(f(y))ﬁ(y) +7(t(»))}

» {SK(T(E(V))K(V)/«/N -
sg(t(y)/v'N —1)

In the case of K > 0, without loss of generality, we may assume

W CBx,n/(N—-1)/K —¢)

for some ¢ > 0. Take a large M € N, set § := (+' —r)/M and r,,, := r + mé for
0 <m < M, and put

N—1
} M(A)} dIl(y).

T = e\ (W)N{y €T leo(y) =x, e1(y) € ACS it )}
and Wy, := e, (I'y;) for 1 <m < M. The hypothesis on t says that

[t =7 DI+ ) >0,
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and hence W, N W,,, = @ holds if m # m’.
For each 1 <m < M, we denote by k,, € N U {0} the number satisfying

ki +1 ki
Fm—1 Fm—1
T(rm)| —— Fm < T 1)rm—1 < T(rm)| —— Ym.

'm 'm

Moreover, for each 1 < m < M, we can choose a,,, by, € [Fm—1, rm] With a,, < b,
and k), > ky, such that

Trm—1)rm-1 < T(rm)<b_m

m

ky,+1
) m < T(m—1)rm-1 + T(rm)(s2 4.2)

as well as
/ { sk (2 (rm) ) [v/N — 1)}1“ 416
r, sk((y)/VN —=1) “3)
by — am / {SK(t(rm)E(V)/«/N—1)}N_1dn( ) .
=t —rm Je, | sk€o) /YN = 1) "

where we put
I, =e;'(W)N{y €T |eo(y) =x, e1(y) € AX; am, bm)} C T
Note that, for all € (ay, by) and 0 < k <k,

T(rm)rm ( Qm kl am kol am k
by, (E) € (T(rm)rm (a) s T(rm)Fm (E) )

C (T(rm—l)rm—h T(rm)rm),

and hence

Ko
Win > || €(c 11 /)@ (Thn) - (disjoint union).
k=0
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Therefore we have, by the (K, N)-MCP,

M M - ky
TUESWIEEDY [Zu(ea(rm)rm/bm><am/bm>k<F;n>)]
m=1 k=0

Il

SK({T(rm)+9(3)}€(y)/\/ﬁ) N—1
X // { SK(E(V)/\/—_I) } //L(A)dl_[(y)j|

f: |:T(rm)rm 1 - (am/bm)k +
=1 b 1- (am/bm)

X/ {HSK(f(rm)E(V)/vN—l)
; sk(t(y)/vN —1)

Furthermore, it follows from (4.2) and (4.3) that

N-1
} +9(5)}M(A)dn()/)}-

i |:T(rm)rm 1 - (am/bm)k;”+1
b 1 - (am/bm)

sk (T(rm)e(y)/v/N = 1) }N“ } }
+6(5 A)dIl
/FH sk()/VN =1) @A) ditty)

i[ T (ro)rm 1 = am /D) by — am

b L= (am/bm) Tm —rm-1

m=1

X

=1

/ HSK(f(rm)E(V)/vN -D
T

3

X

N—1
} +9(3)}M(A)dn(y)}

sk(l(y)/~N —1)
M
Z T(rm)rm_f(rm DFm— 1—‘[(}‘ )8
o m — Fm—1 "

X

/ HSK(T(rm)ﬁ(V)/vN -D

sk(L(y)/v/N —1)
, sk(T@yNLy) /N =1) }N“
V4 V4 V4 A)dIl
—>/F{r( M) + ( (y))}{ O I =T) w(A)dII(y)

as M diverges to the infinity. We remark that, to see

/ {sK(mm)e(yWN ) }Nl
T skly)/~N—1)

N-1
} +9(3)}M(A)dn(y)}

lim t(r,)d n(A)dI(y) =0

M— o0



Vol. 82 (2007) On the measure contraction property of metric measure spaces 817

in the last implication, we used the fact that

f T(K(y)){SK(T(E(V))E(V)/\/N -1
r sg(y)/vN —=1)

< /FM(A)dH(V) =pu(A) < o0

N-—1
} w(A)dIl(y)

holds if K < 0, and that

/ () isN_l(rw(y))z(wa )
r sy—1(y)/~/N =1)
sin(z(Jx — ylx)lx — ylx) |V
= — d
IRG y"‘){ sin(lx — y1x) } e
. N-—1
{ﬁsqu —ylx/2) } dut)

sin(]x — y|x)

N-—1
} w(A)dII(y)

< wlAN B /2) + [

ANA(x;m/2,m)

1 [sin(lx — ylx/2) | V!
< w(B(x,7/2)) +20VFD/2 / —{—} du(y)
( ) A2, 2 1 sin(lx — y|x)

< (B, 7w/2)) + 2NV (A(x; /4, 7/2))

< X

holds if K = N — 1 > 0. We used the (N — 1, N)-MCP in the fourth implication.
This completes the proof. O

Next we prove a key lemma in this section.

Lemma 4.2. Let (X, ) satisfy the (N — 1, N)-MCP. Then, for any x € X and
s,t € [0, /2] with s < t, we have

n(AGs s, 1) = w(AGsm —t,m — ).

Proof. Takealarge M € Nandsetd = (t —s)/M andt, :=s+mdfor0 <m < M.
For 1 <m < M, we define a function t,,,: (m — ty, T — t;y—1) —> (0, 1] by

l—m+ty_1+ty
7 .

() =
Note that

Tn(T —tw) - (T —ty) =tym—1, Tn(T —tp—1) - (T —t—1) = tm,

d
ﬁ[rm(l)l] =1.
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Applying Lemma 4.1 to each A,, := (x; w — t,, T — t,—1) and 7, we have

M=

(A s, D) =Y w(AG tui. )

3
X

(L))
/F {sN 1@ (E()E) NN =T >} W(Am) dTea, (1)

SN—1t(y)/VN = 1)

/ {s1n(rm(|x —ylx)lx —ylx) }N_l du(y)
Ay sin(Jx — y|x)

/ {sm(lx—ylx—n+tm 1+ tm)
A sin(|x — y|x)

N—1
f “ sin(zr — |x — Y|X)} +9(8)] du(y)
4, sin(|x — y|x)

w(Am) +6(8)

3
L

o

3
X

N-—1
} du(y)

o

3
X

o

1

3
I

M-

3
I}

,bL(A()C; T =17 — s))
as M diverges to the infinity. O

Theorem 4.3. (Bonnet—-Myers theorem) If a metric measure space (X, |4) satisfies the
(K, N)-MCP for some K > 0 and N > 1, then we have diam X < 7 /(N — 1)/K.

Proof. 1t suffices to consider the case of K = N — 1. Suppose that there exist two
points x, y € X with [x — y|x = 7w +¢ forsome ¢ > 0. Since X is a length space, for
any small § € (0, £), we can take a unit speed curve y: [0, 7 + ¢ + 8'] —> X such
thaty (0) = x, y(m +&+8') = y,and that §’ € [0, §]. If we put z5 := y (¢ +28 +6'),
then we find

e+28<|x—zslx <e+28+8, m—-28—68 <|zs—ylx <m—24.

Put
T—e—25—168
fim ——————, A = e;(supp Iz, B(y.5))-

Then it follows from the (N — 1, N)-MCP that

- B 5 N1
(A > z{ S‘:iff(("yy_ Rk } 1(BG, 8)) (e Ty 5. (A)

e+8+08\[sin(r —e—25—8) V!
Z<1_ -3 ){ sin(r — 38 — &) } w(B(y,9)
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e+ 28\ [sin(r — & — 38) N-1
= (1 n —8>{ sin(r — 48) } w(B(y.9))

B (1 B 8+28){sin(8+38)
B T -3 sin(48)

N—1
} w(B(y.9)).
On one hand, we observe

AC B(zs,t(lzs — ylx +8)) C B(x, e +25 + 8" +1(w — §))
= B(x, m).

On the other hand, for any & € supp I1; g(y,s), We see

lx =&@|x =[x =&§()[x — (I —1)€E)
>@@+e)—8—(—=0)(zs —ylx +9)
>a+e—56—U—-0@—9)
=r+e—-8—(c+8+5)
=7 =266

>m —36

and hence A C B(x,m) \ B(x, 7 — 38). Thus we have, by Lemma 4.2 and the
doubling condition (Lemma 2.5 with K = 0),

n(A) < (A w =38, 1) < u(B(x.30)) <3V u(Bx. ).

Therefore we obtain, since N > 1,

w(B(x,8)) - 3_N<] e +25>{sin(§ + 38) }N—l N
w(B(y,d)) T—48 sin 48

as § tends to zero. However, this is a contradiction because we can exchange the roles
of x and y. O

Recall that we set S(x,7r) ={y e X | |[x —y|x =r}forx € X andr > 0.

Lemma 4.4. Let (X, p) satisfy the (N — 1, N)-MCP for some N > 1.

(i) Forevery x € X, the set S(x, ) has a null measure.

(i) Ifx,y € X satisfies |x — y|x = m, then we have, for any ¢ € (0, 7/2),

w(B(x, &) = u(B(y, e)).
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Proof. (i) We can suppose that S(x, w) # ¢, in particular, X contains more than
two points. Fix an arbitrary ¢ > 0 and let {xl} | be a maximal 2¢-discrete set in

S(x, 3¢),i.e., {x,}l: C S(x,3¢e), |xi —xjlx > 28 holds ifi # j,and {B(x;, 28)}[21
covers S(x, 3¢). Note that B(x;, €)’s are mutually disjoint. For any y € S(x, 7),
there exists a point z € S(x, 3¢) such that |y — z|x < 7 — 2¢, and |z — x;|x < 2¢
holds for some i. For such i, we observe

ly —xilx <ly —zlx + |z = xilx <,

ly = xilx = [y —xlx — Ix —xilx =7 — 3e.

Namely, we see y € A(x;; m — 3¢, ). Combining this with Lemma 4.2, we obtain

w(SCx, 7)) </L(UA(xl, ~3e,m)

M

M
<Y w(AGim = 3e,m) < Y u(B(xi, 3¢))
i=1

i=1

<3NZ“ B(xl,s) _3N <UB(XH8))

i=1
< 3N/L(B(x, 48)) — 0

as ¢ tends to zero by Corollary 2.6. This completes the proof.
(ii) It is a straightforward corollary to Lemma 4.2 through Theorem 4.3 and (i) of
this lemma. Indeed, we have

n(B(x.e) = w(AGx; m — e, 1) = u(X \ Bx, w — ) = n(B(y. e).
The converse inequality is obtained similarly. O

We remark that Lemma 4.4(i) is not covered by Lemma 2.5. Now we obtain a
result concerning the maximal diameter situation.

Theorem 4.5. If a metric measure space (X, ) satisfies the (K, N)-MCP for some
K > 0and N > 1, then, for any x € X, the set S(x, w/(N — 1)/K) consists of at

most one point.

Proof. Suppose that K = N — 1 and that there exist two points y, z € S(x, ) satis-
fying ¢ := |y — z|x/2 > 0. Then, by Lemma 4.4, Theorem 4.3, and by Lemma 4.2,
we obtain

2u(B(x, ) = u(B(y, &) + u(B(z, &) = u(B(y. &) U B(z, ¢))
< u(AG;w —e,m) < (B, e)).
This contradicts to w(B(x, €)) > 0, and hence we complete the proof. O
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5. Bishop—-Gromov volume comparison theorem

This section is devoted to proving an analogue of the Bishop—Gromov volume com-
parison theorem. See [Cl, Theorem 3.10] for the Riemannian case.

Theorem 5.1. (Bishop—Gromov volume comparison theorem) Let (X, i) be a metric
space satisfying the (K, N)-MCP. Then, for any x € X, the function

u(B(x,r))/{ /OrsK(ﬁ)N_]ds}

is monotone non-increasing inr € (0,00) (r € (0, 7/(N —1)/K) if K > 0).

Proof. The proofis based on the discretization of that in the Riemannian case (roughly
speaking, the integration of the Bishop inequality). Take » > 0. By Theorems 4.3
and 4.5, we can suppose r < m+/(N —1)/K if K > 0. For a small t € (0, 1)
and any I,m € N with [ < m, it follows from the (K, N)-MCP with x = x,
A=At 177 ), and r = "™ that

,u(A(x; t"r, tm_]r))

o el e isK(stmlr/«/N—l)
- t<s<1 | sg(st!=lr/s/N = 1)

tm—l ﬂ—l N-1
= | (G o (55)
t<s<l N —1 t<s<1 N —1

X ,u(A(x; tlr, tl_lr)).

N—-1
} M(A(x; i, tl_lr))

Thus we have, foralll < j <m — 1,

o0

;L(A(x;tjr, tj_lr)) E /' inf sK(st"_lr/\/N—l)N_1
4 t<s<l
1=m

[e.0]
< { Z/L(A(x; i'r, ti_lr))}tj sup sK(stj_lr/\/N — I)N_1
i=m t<s<l

= u(BGx, " ')t/ sup s (st/'r//N =DV

t<s<l
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Therefore we obtain

,u(B(x, tlilr))
m—1

= u(B(x, tm_lr)) + Z n(A(x; tr, tj_lr))
=l

r m—1 i— N—-1 00 i—1 N—1
: sti=1y : st
< |1+ t/ su s<—> }/{ t infs( ) H
X ,u(B(x, tm_lr))
- 00 i N-1 00 i—1 N-1
; sti=1r ; st'7r
< t/ sup s /{ t' inf s (—) }]
{; i K( N—l) } 2t =
X M(B(x,tm 1r)),
and hence
00 i— N-—1
. . ti-1
;L(B(x,tl_lr))/! Z(ﬂ_lr —t/r) sup sK< L ) }
j=l t<s<l N —1

© . sti=lr \V!
f,u(B(x,tmlr))/{Z([llr_tlr)ti?£1SK< N—l) }

i=m

This completes the proof by letting # tend to 1 as well as [ and m go to the infinity. O

6. Stability and compactness

In this section, we consider the behavior of the (K, N)-MCP under the measured
Gromov-Hausdorff convergence. The Wasserstein space will play a crucial role. See
[F] and [KS2] for the measured Gromov—Hausdorff convergence, and see [LV], [S2],
and [V] for the Wasserstein space.

6.1. Measured Gromov-Hausdorff topology. We first recall the Gromov—Haus-
dorff distance between compact metric spaces. See [G] for more details. For two
closed subsets A and A’ in a metric space Z, the Hausdor{f distance d 5 between them
is defined by

dg(A, A):=infle > 0| AC B(A',¢), A" C B(A, ¢)}.

More generally, for two compact metric spaces X and Y, we define the Gromov—
Hausdorff distance dg g between them by

don(X,Y) := zi,‘;,f ) df (e(X), ¥(Y)),
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where the infimum is taken over all metric spaces Z and isometric embeddings
¢o: X — Zand ¢ : Y —> Z. If we denote by C the isometric classes of compact
metric spaces, then (C, dg ) is a complete metric space. The topology of € induced
from dgpy is called the Gromov—Hausdorf{f topology. It is convenient to estimate
the Gromov—Hausdorff distance in terms of the g-approximating map. For metric
spaces X and X', a (not necessarily continuous) map ¢: X —> X’ is called an
g-approximating map for ¢ > 0 if it satisfies EX,(QD(X), ¢) D X' and if

llp(x) — oWy — |x —ylx| <&

holds for all x, y € X. Note that a O-approximating map is nothing but an isometry.

Lemma 6.1. Let X,Y € C and ¢ > 0.
(G) Ifdgu(X,Y) < &, then there exists a 2e-approximating map from X to Y.
(1) If there exists an g-approximating map from X to Y, then dgpg (X, Y) < 2e.

In particular, a sequence {X;}7°, C C converges to X € C if and only if there
exists a sequence of ¢;-approximating maps ¢; : X; —> X with lim;_, o, &; = 0. For
the later use, we recall an easily proved lemma.

Lemma 6.2. Let {X;}72, C C be a sequence of compact, geodesic metric spaces
converging to a compact metric space X € C in the Gromov—Hausdorff topology
with a sequence {&;}7°, tending to zero and e;-approximating maps {¢;};°,. For
a sequence of minimal geodesics y; : [0,1] — X;, i € N, if the sequences of
end points {¢; (y;(0)}72, and {@;i(yi(1)}2, converge to some points x,y € X,
respectively, then a subsequence of {¢; o y;}7°, converges to a minimal geodesic

from x to y uniformly.

We next recall the measured Gromov—Hausdorff convergence introduced in [F].

Definition 6.3. (Measured Gromov—Hausdorff convergence, [F]) A directed system
of metric measure spaces {(Xy, o) }ae 1S Said to converge to a metric measure space
(X, ) in the sense of the measured Gromov—Hausdorff convergence if there exists a
directed system of positive numbers {g, }qe.4 satisfying the following conditions:

(1) {eq}aen converges to zero;

(2) For each o € 4, we have a Borel, measurable, and &,-approximating map
Ou: Xg — X

(3) A directed system of push-forward measures {(¢y)«(Ua)}e converges to u
weakly, i.e., for any f € C(X), we have

lim / F (@) (1)) = / fdp.
aEA X X

Here C(X) denotes the set of all continuous functions on X.
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If we define CM as the isomorphic classes of all compact metric spaces equipped
with Radon measures, then the measured Gromov-Hausdorff convergence gives a
topology on CM, and we call it the measured Gromov—Hausdor{f topology. We
know that this topology is Hausdorff ([F, Proposition 2.7]) and that the projection
CM(V) — C is proper, where we set

CMV) :={(X,n) € CM | u(X) =V}

for V > 0 ([F, Proposition 2.10]). For K e R, N > 1,V > 0, and D > 0, we define
CM(K,N,V,D) C CM(V) as the isomorphic classes of compact metric measure
spaces (X, i) in CM (V) satisfying the (K, N)-MCP and diam X < D. The follow-
ing is an easy corollary of Gromov’s precompactness theorem ([G, Proposition 5.2])
by virtue of Theorem 5.1.

Theorem 6.4. Let {(X;, 1)}, C CM(K, N, V, D). Then it has a subsequence
which is convergent in the measured Gromov—Hausdorff topology.

If we denote by (X, u) € CM that limit space, then we immediately observe
m(X) <V and diam X < D. To show that (X, i) also satisfies the (K, N)-MCP,
we need to recall the Wasserstein space and some results in [LV].

6.2. Wasserstein spaces. Let X be a complete, separable metric measure space, and
recall that 2(X) denotes the set of all Borel probability measures, say u, satisfying
f x lx = y|§( du(y) < oo for some (and hence all) x € X. Given two probability
measures /1, v € P2(X), a Borel measure ¢ on X x X is called a coupling of ;1 and v
if, for any measurable set A C X, we have g(A x X) = u(A) and g(X x A) = v(A).
For example, the product measure 1 x v is a coupling of p and v. We define the
L2-Wasserstein distance dy on P%(X) by

1/2
dw (e, v) ;= inf {(/ [x — y|§(dq(x, y)) ’q : coupling of u and v}
XxX

for i, v € P2(X), and we call (P2(X), dw) the L-Wasserstein space over X. Then
(P2(X),dw) is a complete and separable metric space (see [S2, Proposition 2.10]).
Furthermore, (P2(X), dw) is compact or a length space if and only if so is X, re-
spectively. In particular, if X is compact and geodesic, then so is (£%(X), dw).

Proposition 6.5 (cf. [V, Theorem 7.12]). A sequence {u;}72, C P2(X) converges

to u € P*(X) with respect to dy if and only if p; converges to u weakly and
lim sup/ Ix — y|% dpi(y) =0 (6.1)
R—00 jeN JX\B(x,R)

holds for some (and hence every) point x € X.
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We observe that (6.1) automatically holds true if X is bounded. The following
two results obtained in [LV] will play key roles in our discussions.

Proposition 6.6 ([LV, Proposition 4.1, Corollary 4.3]). If¢: X —> X' isa Borel, ¢-
approximating map, then ¢s: (P*(X), dw) —> (P>(X'), dw) is &-approximating
with

& = 4e + {e(2diam X + ¢)}1/2,
In particular, if a sequence of compact metric spaces {X;}°, converges to a com-
pact metric space X in the Gromov—Hausdorff topology equipped with Borel, ¢;-
approximating maps ¢;, i € N, then the sequence {(P*(X;), dw)}:2, converges to

(P2(X), dw) in the Gromov—Hausdorff topology with &;-approximating maps (¢;)s.

Proposition 6.7 ([LV, Proposition 2.10]). Let X be a compact geodesic metric space.
Then any minimal geodesic in (P> (X), dw ) is given by the displacement interpolation
associated to some dynamical transference plan.

6.3. Stability and compactness. Now we prove the stability of the (K, N)-MCP
under the measured Gromov—Hausdorff convergence. The idea of the proof is as
follows. If we consider the dynamical transference plan I1 = Il 4 as a family of
geodesics in X, then, as it contains uncountably many geodesics, it is impossible to
control the behaviors of all of them simultaneously. However, we can regard it as one
geodesic from d, to (u]4)~ in the Wassestein space (fZ(X ), dw), and then usual
techniques are applicable. All spaces in this subsection are assumed to be compact.

Theorem 6.8 (Stability). A measured Gromov—Hausdorf{f limit, with a positive total
mass, of a sequence of metric measure spaces satisfying the (K, N)-MCP also satisfies
the (K, N)-MCP.

Proof. We first assume K < 0. Let {(X;, u;)}72, C CM be a sequence of metric
measure spaces satisfying the (K, N)-MCP. We suppose that it converges to some
metric measure space (X, ©) with w(X) > 0 in the measured Gromov—Hausdorff
topology, so that we have a sequence {¢;};°, tending to zero and a Borel, measurable,
and ¢;-approximating map ¢; : X; —> X, i € N, as in Definition 6.3.

Fix a point x € X and a measurable set A C X with w(A) > 0. For each (large)
i € N, we choose a point x; € (pi_l(}f_?x(x, €;)) and put A; = <pl._1(A). We remark
that, by the definition of the ¢;-approximating map, ¢, Y(BX(x, &)) is not an empty
set. Moreover, as w(A) > 0, we know u; (A;) = ((¢;i)«mi)(A) > 0 and hence A;
in not empty for large i. By the (K, N)-MCP, for each i € N, we have a dynamical
transference plan I1; = Il,,; 4, such that the displacement interpolation associated to
it satisfies the conditions (1) and (2) in Definition 2.1. Note that

((Pi)*((eo)*ni) = (@i)x0x; = O¢;(x;) —> Ox
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and, by Proposition 6.5,

(@)« ((eD)TT;) = (@)«(ila)™ = (@)« ()lla) = (rla)~

in (P2(X),dw) as i diverges to the infinity, respectively. Thus it follows from
Lemma 6.2 and Proposition 6.6 that a subsequence of {(¢;)«[(e;)«I1i1}sc[0,17, 1 €
N, converges to a minimal geodesic {v;};c[0,1] between 6, and (u|4)”. Again we
denote this convergent subsequence by {(¢;)«[(e;)«I1;1}/c[0,17, i € N. Moreover,
Proposition 6.7 implies that {v;},¢[0.1] is the displacement interpolation associated to
some dynamical transference plan IT = I, 4 which clearly satisfies (eg)«I1 = &,
and (e1)IT = (ula)~.
Now we consider the condition (2) in Definition 2.1. We fix ¢ € (0, 1) and put

i (et)*<t {swawa )
sk (L)/VN =1
. (e;)*<t {swz(wa -1
sk (L)/VN =1

on X; and X, respectively. Since (¢;).[(er)«I1;] converges to (e;).I1 weakly and X;
converges to X in the Gromov—Hausdorff topology, we find that (¢;).(v;) converges
to v weakly as i diverges to the infinity. The (K, N)-MCP of (X;, ;) yields that
Wi > v; holds as measures for every i. Therefore we have © > v and hence (X, ®)
satisfies the (K, N)-MCP. This completes the proof in the case of K < 0.

If K > 0, then we take A C BX(x, /(N — 1)/K) and set, for eachi € N,

A; =o' (A) N BXi (x;, /(N = 1)/K).

Then a completely similar discussion proves the theorem. O

N—1
} Wi (Ai)dni()/)>,

N-—1
} M(A)dH(J/))

Combining this stability with Theorem 6.4, we obtain the compactness of the
family

CM(K,N,V',V,D):={X € CM(K,N,V,D) | u(X) =V},
where 0 < V/ < V.

Theorem 6.9 (Compactness). For any K € R, N > 1, V > V' > 0, and any
D > 0, the set CM(K, N, V', V, D) is compact in the measured Gromov—Hausdorff
topology.

In particular, the family CM (K, N, 1, 1, D) (i.e., spaces with probability mea-
sures) is compact.
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6.4. Non-compact case. The discussion in the previous subsection is also applicable
to the non-compact case by weakening the measured Gromov—Hausdorff convergence
to the pointed one. We suppose that all metric spaces appearing in this subsection are
complete.

Definition 6.10 (Pointed measured Gromov—Hausdorff convergence). A directed sys-
tem of pointed metric measure spaces {(Xy, o, Za)}aes 1S Said to converge to a
pointed metric measure space (X, w, z) in the sense of the pointed measured Gromov—
Hausdorff convergence if there exist two directed systems {ey }ye4 and {ry}qe.4 sat-
isfying the following:

(1) {eq}aen tends to zero and {ry }uec4 diverges to the infinity;

(2) For each ¢ € 4, we have a Borel, measurable, and &,-approximating map
Yo - BX“(ZOU Fo) — BX(Za Ta)s

(3) A directed system of push-forward measures {(¢y)+«(iLe)}aca coOnverges to u
vaguely, i.e., for any f € Co(X), we have

lim/ fd((q)a)*(ﬂa)) =/ fdu.
acA Jx X

Here Co(X) denotes the set of all continuous functions on X whose supports
are compact.

Theorem 6.11. A pointed measured Gromov—Hausdorff limit, with positive total
mass, of a sequence of pointed metric measure spaces satisfying the (K, N)-MCP
also satisfies the (K, N)-MCP.

Proof. Take a point x € X and a measurable set A C X. As X is proper, we can
apply the discussion in the proof of Theorem 6.8 to each A N B(x, m), m € N. This
completes the proof. O
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