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Abstract. A construction of Kähler–Einstein metrics using Galois coverings, studied byArezzo–
Ghigi–Pirola, is generalized to orbifolds. By applying it to certain orbifold covers of CPn which
are trivial set theoretically, one obtains new Einstein metrics on odd-dimensional spheres. The
method also gives Kähler–Einstein metrics on degree 2 Del Pezzo surfaces with A1- or A2-
singularities.
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1. Introduction

The aim of this paper is to explain how the methods of Arezzo, Ghigi, and Pirola [1]
can be applied to construct Kähler–Einstein metrics on compact complex orbifolds
with positive first Chern class, and then use the approach of Boyer, Galicki, and Kollár
[10] to obtain new Einstein metrics on odd dimensional spheres.

The somewhat unusual aspect is that we work with orbifolds X that admit a map
π : X → Pn which is the identity map set theoretically. Nonetheless, in the orbifold
category π is a nontrivial Galois cover, although with trivial Galois group.

The existence of Kähler–Einstein metrics on compact complex manifolds with
positive first Chern class is still a difficult problem. For surfaces and toric manifolds
a complete solution is known, due respectively to Tian [28] and Wang–Zhu [31].
Apart from these cases, there are two large classes of examples. The simplest are
homogeneous spaces, for instance Pn, quadrics, Grassmannians. In all these cases,
the first Chern class is large, meaning for instance, that it is a large multiple of a
generator of H2(X,Z). The opposite case, when the first Chern class is a small
multiple of a generator ofH2(X,Z) is also understood in many instances; see [8] for
a good overview.

A blending of these two approaches was developed in Arezzo, Ghigi, and Pirola
[1] to yield Kähler–Einstein metrics on certain manifolds X which can be realized
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as Galois covers of another manifold Y with a Kähler–Einstein metric. Since the
method relies on finite group actions, it is most successful when symmetries form a
natural part of the complex structure, for instance for double covers of Pn.

A construction of Einstein metrics on odd dimensional spheres was studied in
Boyer, Galicki, and Kollár [10]. The idea is that the quotient of an odd dimensional
sphere by a circle action is frequently a complex orbifold, and a result of Kobayashi
[18] allows one to lift a Kähler–Einstein orbifold metric from the quotient to an
Einstein metric on the sphere.

A frequently occurring case, studied by Orlik and Wagreich [24] and Boyer, Ga-
licki, and Kollár [10], appears when the quotient S2n+1/S1 is Pn as a manifold, and
the orbifold structure is given by a Q-divisor

� =
n+1∑
i=0

(
1 − 1

mi

)
Di,

where

Di = {zi = 0} for i = 0, . . . , n, Dn+1 = {z0 + · · · + zn = 0},
and the m0, . . . , mn+1 are pairwise relatively prime ramification indices. (See Sec-
tion 4 for precise definitions.) The orbifold first Chern class is

c1(P
n,�) = (n+ 1)−

n+1∑
i=0

(
1 − 1

mi

) =
n+1∑
i=0

1
mi

− 1,

where we have identified H 2(Pn,Q) with Q. Thus c1(P
n,�) is positive iff

n+1∑
i=0

1
mi

− 1 > 0. (1)

The existence result [10, Theorem 34] shows that (Pn,�) has an orbifold Kähler–
Einstein metric if in addition the following inequality is also satisfied:

n+1∑
i=0

1
mi

− 1 < n+1
n

min
i

{ 1
mi

}
. (2)

This paper started with the observation that one can apply the method of [1] to the
identity map (Pn,�) → Pn which is a Galois cover (with trivial Galois group). On
the other hand, over the affine chart Pn \ {Di ∪Dj } the same map can be viewed as
having cyclic Galois group of order

∏
k �=i,j mk . This approach improves the bound

of [10] by a factor of n, and we obtain
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Theorem 1. Let D0, . . . , Dn+1 ⊂ Pn be hyperplanes in general position, and let
m0, . . . , mn+1 be pairwise relatively prime natural numbers. Assume1 that

0 <
n+1∑
i=0

1
mi

− 1 < (n+ 1)min
i

{ 1
mi

}. (3)

Then there is an orbifold Kähler–Einstein metric on
(
Pn,

∑n+1
i=0

(
1 − 1

mi

)
Di

)
.

Set M = ∏
i mi and wi = M/mi . As shown in [10] the intersection of the unit

sphere with the Brieskorn–Pham singularity

L(m0, . . . , mn+1) := S2n+3 ∩
( n+1∑
i=0

z
mi
i = 0

)
⊂ Cn+2

is homeomorphic to S2n+1 and a Kähler–Einstein metric on the corresponding pro-
jective orbifold

(X,�X) :=
(( n+1∑

i=0

z
mi
i = 0

)
,

n+1∑
i=0

(1 − 1
mi
)[zi = 0]

)
⊂ P(w0, . . . , wn+1)

lifts to a positive Ricci curvature Einstein metric onL(m0, . . . , mn+1). The weighted
projective space P(w0, . . . , wn+1) is not well formed and it is isomorphic to the
ordinary projective space Pn+1 by the map

(z0, . . . , zn+1) �→ (x0 = z
m0
0 , . . . , xn+1 = z

mn+1
n+1 ).

Under this isomorphism we get that

(X,�X) ∼=
(( n+1∑

i=0

xi = 0
)
,

n+1∑
i=0

(1 − 1
mi
)[xi = 0]

)
⊂ Pn+1.

By eliminating the variable xn+1 we get that

(X,�X) ∼= (Pn,�).

The isometry class of the metric on the sphere determines the complex orbifold
(Pn,

∑n+1
i=0 (1− 1

mi
)Di), except possibly when (Pn,

∑n+1
i=0 (1− 1

mi
)Di) has a holomor-

phic contact structure. The latter can happen only when n is odd; see [10, Lemma 17]

1Recent results of Gauntlett, Martelli, Sparks and Yau (Obstructions to the Existence of Sasaki–Einstein
Metrics, Comm. Math. Phys. 273 (3) (2007), 803–827, see esp. (3.23)) show that (3) is also necessary for
the existence of an orbifold Kähler–Einstein metric with positive Ricci curvature. Equivalently, if the mi ’s are
pairwise relatively prime, then there is a Sasaki–Einstein metric on the link of the singularity zm0

0 +· · ·+zmn+1
n+1 =

0, if and only if (3) holds.
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for another necessary condition. (Note that n + 2 hyperplanes in general position
do not have moduli, so the numbers m0, . . . , mn+1 alone determine the complex
orbifold.)

Even with the improved bounds, the equations (3) are not easy to satisfy. Still, as in
Example 45, we get 12 new Einstein metrics on S5 corresponding to the ramification
indices

m0 = 2,m1 = 3,m2 = 5,m3 ∈ {17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59},
≥ 103 new Einstein metrics on S7, ≥ 106 new Einstein metrics on S9, ….

The above construction can be varied in many ways. For instance, one can take
more than n + 2 hyperplanes and quadrics. In all of these cases one gets an im-
provement by a factor roughly n compared to the bounds in [10], but this gives many
new cases only for n large. (As shown by Orlik and Wagreich [24], taking higher
degree hypersurfaces for theDi yields Einstein metrics on various rational homology
spheres.)

As another application, we consider singular degree 2 Del Pezzo surfaces. These
are all double covers of P2 ramified along a quartic curve. In the smooth case the
existence of Kähler–Einstein metrics was proved by Tian [28]. For singular surfaces
we get the following.

Theorem 2. Let S be a degree 2 Del Pezzo surface with onlyA1- orA2-singularities.
Then S has an orbifold Kähler–Einstein metric.

Remark 3. It is known that for a Fano manifold M the asymptotic Chow stability
of (M,−KM) is a necessary condition for the existence of a Kähler–Einstein metric
on M . (This idea goes back to Yau and was proved by Tian, Donaldson, Mabuchi
and others in different settings. See e.g. [29] and [16].) This may also explain
why our method breaks down for a degree 2 Del Pezzo with an An-singularity for
n ≥ 3. A plane quartic with anA3-singularity is not stable as a plane curve (see [22],
p. 80). Mapping a quartic C to the double cover S → P2 branched over C yields an
isomorphism between the space of plane quartics and the family of degree 2 Del Pezzo
surfaces. If one chooses the same polarization, C is stable iff S is. Thus a degree 2
Del Pezzo surface S with an A3-singularity (which is a double cover branched along
a quartic with an A3-singularity) is not stable. Although one should really consider
asymptotic stability to get an actual obstruction, this suggests that S might not admit
an orbifold Kähler–Einstein metric.

Remark 4. The orbifolds that we consider can not be viewed as limits of smooth
manifolds. The obstruction is in fact completely local. Deforming an orbifold which
is locally Cn/G needs deformations of Cn together with the G-action. Every such
deformation is, however, locally trivial. Even in the case of An-singularities we have
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orbifold rigidity. These are given byX0 = {(x, y, z) : xy− zn+1 = 0}, which can be
smoothed asXt = {(x, y, z) : xy− zn+1 = t r} for any r . However the link of any 3-
dimensional isolated hypersurface singularity is simply connected, so no contractible
neighborhood of the origin in the threefold X = {(x, y, z, t) : xy − zn+1 = t r} can
be written as a nontrivial quotient of anything. Therefore the family Xt can not be
viewed as an orbifold deformation of X0.

Anyone well versed in orbifolds, stacks and in the theory of Monge–Ampère
equations should have no problem developing the theory of [1] in the orbifold setting.
Nonetheless, since the theory of orbifolds has too many “well-known” but never
proved theorems and not quite correct definitions and proofs, we felt that it makes
sense to write down the arguments in some detail.

2. Analytic coverings

Let X and Y be reduced complex spaces. A map π : X → Y is called finite if it is
proper and has finite fibres. Since X is locally compact a finite to one map is proper
if and only if it is closed. Therefore a map is finite if and only if it is closed and has
finite fibres. (By contrast note that π : C \ {−1} → {y2 = x3 + x2} ⊂ C2 given by
t �→ (t2 − 1, t3 − t) is a closed map of algebraic varieties with finite fibers but π is
not proper.)

The fundamental theorem on finite maps (see [17, p. 179]) states that when X
and Y are irreducible any finite surjective map π : X → Y is an analytic covering.
This means that there is a thin subset T ⊂ Y such that

a) π−1(T ) is thin in X, and

b) the restriction π−1(Y \ T ) → Y \ T is locally biholomorphic (étale).

Put Y0 = Y \ T and X0 = π−1(Y0). Then π : X0 → Y0 is a topological covering.
We call it a regular subcover of π .

We assume that our spaces are irreducible so that “analytic covering” and “finite
holomorphic surjection” can be regarded as synonyms.

Another important fact is that an analytic covering π : X → Y with X and Y
normal is an open map (see [17, p. 135]).

Let now π : X → Y be an analytic covering among connected normal complex
spaces. Put Y ′ = {y ∈ Yreg : π−1(y) ⊂ Xreg} and X′ = π−1(Y ′). Then X′ and Y ′
are open sets with complements of codimension at least 2. Now π : X′ → Y ′ is a
finite surjective map between complex manifolds. Pick local coordinates z1, . . . , zn
on a neighbourhood U of a point in X′ and let w1, . . . , wn be coordinates around
its image in Y ′. Let wi = πi(z) be the local expression of π . The divisors locally
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defined by the equation

det

(
∂πi

∂zj

)
= 0

glue together yielding a well-defined divisor on X′. Since the complement of X′ has
codimension at least 2, the Remmert–Stein extension theorem (see e.g. [17, p. 181])
ensures that the topological closure of this divisor is a divisor in X, called the rami-
fication divisor of π , and denoted by R = R(π). It satisfies the Hurwitz formula
KY ′ = π∗KX′ + R. Write R = ∑

j rjRj with Rj distinct prime divisors on X′.
The reduced divisor Rred = ∑

j Rj is called the ramification locus. By the implicit
function theorem Rred ∩ X′ is the set of points x ∈ X′ such that π is not étale at x,
that is the set of critical points of π . Since π is finite, the image B = π(Rred) is a
divisor on Y , called the branch divisor of π .

Consider now the sets Y ′′ = Y ′ \(
Bsing ∪π(Rsing)

)
andX′′ = π−1(Y ′′). Both are

open and have complements of codimension at least 2 in X and Y respectively. We
use this notation often in the sequel. When we want to stress the dependence on π ,
we write X′′(π) and Y ′′(π). If x ∈ X′′ either x /∈ Rred or x belongs to one and only
one component Rj . In the first case we say that π is unramified at x, in the latter case
we say that the ramification order of π at x is rj + 1. The ramification order of π
at x will be denoted by ordπ(x). When π is unramified at x, we put ordπ(x) = 1.
If D ⊂ X is an irreducible divisor, then there is an open dense subset D′′ ⊂ D such
that ordπ(x) does not depend on x ∈ D′′. This common value is denoted by ordπ(D)
and it is called the ramification order of π along D.

We use some basic properties of analytic coverings and maps between them (see,
for instance, [6, Lemma 16.1]).

Lemma 5. Let x ∈ X′′. Ifπ is unramified at x, thenπ is a local biholomorphism at x.
If it has ramification orderm> 1, letRj be the component ofRred passing through x.
Then there are local coordinates z1, . . . , zn on X′′ and w1, . . . , wn on Y ′′ centred
at x and y = π(x) respectively, such that locally Rj = {z1 = 0}, B = {w1 = 0} and
π(z1, . . . , zn) = (zm1 , z2, . . . , zn).

Since the complement ofX′′ has codimension 2, Rred is the closure of Rred ∩X′′,
that is the closure of the set of points where π has ramification order > 1.

The next lemma considers the problem of lifting in the simplest case. Denote
by D(r) the disc of radius r centred at the origin, by D∗(r) the complement of {0}
in D(r), and by P(r1, . . . , rn) the polydisc centred at the origin with polyradius
(r1, . . . , rn).

Lemma 6. Let P1 = P(r1, . . . , rn), P2 = P(ρ1, . . . , ρn),Q1 = P(r
m1
1 , r2, . . . , rn),

Q2 = P(ρ
m2
1 , ρ2, . . . , ρn). Set P ∗

1 = D∗(r1) × P(r2, . . . , rn) and similarly for
P ∗

2 ,Q
∗
1,Q

∗
2. Let πi : Pi → Qi be the maps π1(z1, .., zn) = (z

m1
1 , z2, . . . , zn),
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π2(z1, .., zn) = (z
m2
1 , z2, . . . , zn). Let f : Q1 → Q2 be a holomorphic map such that

f (Q∗
1) ⊂ Q∗

2. Ifm2|m1 there are exactlym2 liftings of f (that is maps f̃ : P1 → P2

such that π2f̃ = fπ1). Any local lifting of f defined in a neighbourhood of some
point x ∈ P1 extends to one of these liftings defined on P1.

Lemma 7. Let π1 : X1 → Y and π2 : X2 → Y be analytic coverings. For U ⊂ X1
set

F(U) = {holomorphic maps s : U → X2 such that π1 = π2 
 s}.
Then F is a Hausdorff sheaf (of sets) overX1. Assume that for any x1 ∈ X′′

1 , x2 ∈ X′′
2

with π1(x1) = π2(x2),
ordπ2(x2)| ordπ1(x1).

Then the restriction of F to X′′
1 ∩ π−1

1 Y ′′
2 (π2) is a finite topological covering. In

particular, if X′′
1 is simply connected, then for every x1 ∈ X′′

1 ∩ π−1
1 Y ′′

2 (π2) and
x2 ∈ X′′

2 such that π1(x1) = π2(x2) there is an analytic map f : X′′
1 → X2 such that

f (x1) = x2 and π1 = π2 
 f .

In fact, the above f extends to X1 by the following immediate consequence of
the Riemann Extension Theorem (see e.g. [17, p. 144])

Lemma 8. Let π1 : X1 → Y and π2 : X2 → Y be analytic coverings,X1 normal and
T ⊂ X1 a thin set. Let f 0 : X1 \T → X2 be an analytic map such that π1 = π2 
f 0.
Then f 0 extends to f : X1 → X2 such that π1 = π2 
 f .

3. The Galois group of coverings

Let π : X → Y be an analytic covering of normal complex spaces. Put Gal(π) =
{f ∈ Aut(X) : π 
 f = π}. Gal(π) is a finite subgroup of Aut(X). In fact
fix x ∈ X′′ \ R, y = π(x), and let V be a neighbourhood of y in Y such that
π−1(V ) = ⊔k

i=1 Ui with π : Ui → V a biholomorphism and x ∈ U1. Then the
stabiliser Gal(π)x is a subgroup of finite index in Gal(π). Moreover any f ∈ Gal(π)x
maps U1 to itself. Since π |U1

is injective, the restriction of f to U1 is the identity.
By the connectedness of X, f = idX, so Gal(π)x = {1} and Gal(π) is finite.

Sinceπ is Gal(π)-invariant, the Gal(π)-orbit of x ∈ X is contained inπ−1
(
π(x)

)
.

We say that an analytic covering π : X → Y is Galois if the converse holds, that is
two points ofX lie on the same fibre ofπ only if they belong to the same Gal(π)-orbit.

Lemma 9. LetX and Y be normal complex spaces, π : X → Y an analytic covering
and Y0 ⊂ Y an open subset with thin complement. Put X0 = π−1(Y0) and π0 =
π |X0

: X0 → Y0. Then the elements of Gal(π0) extend to elements of Gal(π), and if
π0 is Galois, then π is Galois too.
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Proof. The first part follows from Lemma 8. For the second part, let x, x′ ∈ X

be such that π(x) = π(x′) = y. If y ∈ Y0 there is some g ∈ Gal(π0) such that
g.x = x′. Since we have just proved that Gal(π0) = Gal(π) the Galois condition is
satisfied for these points. If instead y ∈ Y \ Y0, let π−1(y) = {x1, . . . , xk}. Choose
neighbourhoods Ui and V of xi and y respectively such that π−1(V ) = ⊔k

i=1 Ui .
Assume x = x1 ∈ U1 and x′ = x2 ∈ U2. Let {zn} be a sequence of points inX0 ∩U1
converging to x. Then yn = π(zn) converge to y. Since π is open, π(U2) = V .
Therefore there are points z′n ∈ U2 ∩ X0 such that π(z′n) = yn. By the Galois
condition onX0, there are gn ∈ Gal(π) such that z′n = gn.zn. As Gal(π) is finite, we
can extract a subsequence with gn ≡ g. Since lim z′n = x2 as π−1(y) ∩ U2 = {x2},
we get x2 = g.x1. �

If π : X → Y is a Galois covering, then Gal(π) acts freely on any regular
subcover X0. Therefore if x, x′ ∈ X0 and π(x) = π(x′), then there is a unique
g ∈ Gal(π) such that g.x = x′. In particular the cardinality of Gal(π) equals that
of the generic fibre. This condition is also sufficient: π is Galois iff | Gal(π)| equals
the cardinality of the general fibre iff Gal(π) is transitive on the general fibre.

For later reference we state the following simple lemma.

Lemma 10. Let X, Y and Z be irreducible complex spaces, and let f : X → Z,
g : Y → Z, h : X → Y be analytic coverings such that gh = f . If f is Galois,
then h is Galois too.

Proof. Thanks to Lemma 9 it is enough to consider the unramified case. Fix x ∈ X
and put y = h(x), z = f (x) = g(y). We need to show that h∗π1(X, x) is a normal
subgroup of π1(Y, y). Since g∗ : π1(Y, y) → π1(Z, z) is injective it is enough to
check that g∗h∗π1(X, x) is a normal subgroup of g∗π1(Y, y). But f being Galois
f∗π1(X, x) = g∗h∗π1(X, x) is normal in π1(Z, z), hence a fortiori in g∗π1(Y, y).

�

For a general analytic covering π : X → Y it is not possible to assign multiplic-
ity to the branching divisor in any reasonable way. In fact, different points in the
preimage of a point y ∈ B have different branching orders. A typical example is
X = {z3 − 3yz + 2x = 0} ⊂ C3 projecting on C2

x,y . Even shrinking the domain
around the origin, one cannot separate the branches with different orders.

On the other hand, when the covering is Galois, for any y ∈ Y ′′ all points in
π−1(y) have the same branching order. Therefore we can assign multiplicities to the
branch divisor according to the following rule. Let y ∈ Y ′′ ∩ B and let x be any
point in π−1(y). Then we define the multiplicity of B in y to be 1 − 1/ ordπ(x).
We still denote by B the Q-divisor given by the branching locus provided with these
multiplicities. Note that with this convention R = π∗B, that is, the ramification
divisor is the pull back of the branch divisor.
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The branching divisor of a Galois cover can be described also in the following
way. Given a prime divisor D in X, set �(D) = {γ ∈ Gal(π) : D ⊂ Fix(γ )}. For
each prime divisorD the image π(D) is a prime divisor in Y . The prime divisors for
which �(D) �= 0 are exactly the Rj . Set Bj = π(Rj ). In general different Rj ’s can
have the same image. Assume that {Bi}i∈I is the set of all images of the Rj ’s (that is
Bi �= Bk if i �= k). Then

B(π) =
∑
i∈I

(
1 − 1

|�(Ri)|
)
Bi. (4)

4. Orbifolds as pairs

As in [10], we look at orbifolds as a particular type of log pairs. (X,�) is a log pair
if X is a normal algebraic variety (or a normal complex space) and � = ∑

i diDi is
an effective Q-divisor where theDi are distinct, irreducible divisors and di ∈ Q. The
number di is called the multiplicity of� alongDi , it is denoted by multDi �. We set
multD � = 0 for every other irreducible divisor D �= Di for all i.

Let X′′(�) (or simply X′′) be the complement of Xsing ∪�sing. For x ∈ X′′ the
multiplicity of � at x is a well defined rational number. For orbifolds, we need to
consider only pairs (X,�) such that � has the form

� =
∑
i

(
1 − 1

mi

)
Di,

where the Di are prime divisors and mi ∈ N. If (X,�) is such a pair then for any
divisor D ⊂ X we put

ord�(D) = 1

1 − multD �
.

The assumption on the multiplicities of� amounts to saying that the order is always
a nonnegative integer.

Definition 11. An orbifold chart on X compatible with � is a Galois covering
ϕ : U → ϕ(U) ⊂ X such that

(1) U is a domain in Cn and ϕ(U) is open in X;

(2) the branch locus of ϕ is �red ∩ ϕ(U);
(3) for any x ∈ U ′′(ϕ) such that ϕ(x) ∈ Di , ordϕ(x) = mi .

Conditions (2) and (3) are equivalent to

B(ϕ) = � ∩ ϕ(U). (5)

Definition 12. An orbifold is a log pair (X,�) such that X is covered by orbifold
charts compatible with �.

(For a slightly more general approach, see [13, §14].)
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Let X be a normal complex space and π : U → X a Galois cover where U is
smooth. As discussed earlier, the branch divisor B(π) of π is defined and we get
a log pair (X,B(π)). If U is simply connected, (which we can always assume by
shrinkingU suitably) then by Lemma 7 the log pair (X,B(π)) determinesπ : U → X

up to biholomorhisms. Thus we recover the classical definition of orbifolds (as in [4]
for example).

Example 13. Let X be a complex manifold and D = ∑
i∈I Di a divisor with local

normal crossing. By this we mean that for any point x ∈ X there is a holomorphic
coordinate system (V , z1, . . . , zn) such that D ∩ V = {z ∈ V : z1 . . . zk = 0}. If
Di ∩ V �= ∅ then Di ∩ V is the union of some of the hypersurfaces {zj = 0}. (D is
said to be a divisor with global normal crossing if, in addition, each Di is smooth.)
For any i ∈ I , fix an integer mi > 1 and put � = ∑

i (1 − 1/mi)Di . We claim that
(X,�) is an orbifold. Indeed, fix a coordinate system as above and put m′

j = mi if
{zj = 0} ⊂ Di ∩ V . Set

ϕ : U → V, ϕ(x1, . . . , xn) = (x
m′

1
1 , . . . , x

m′
k

k , xk+1, . . . , xn). (6)

Then (U, ϕ) is an orbifold chart onX compatible with� and so (X,�) is an orbifold.

In the same way, the usual definition of orbifold map is equivalent to the following
one.

Definition 14. For a finite holomorphic map f : X → Y the map f : (X,�X) →
(Y,�Y ) is an orbifold map if

ord�Y (f (D)) || ord�X(D) · ordf D (7)

for every divisor D ⊂ X.
An orbifold automorphism is an orbifold map that is invertible with inverse an

orbifold map. The group of automorphisms of (X,�) is denoted by Aut(X,�).

Definition 15. An orbifold Galois covering f : (X,�X) → (Y,�Y ) is an orbifold
map such that f : X → Y is a Galois analytic cover and Gal(f ) ⊂ Aut(X,�X).

By the degree of an orbifold Galois cover we mean its degree as an analytic cover.

Lemma 16. Let f : (X,�X) → (Y,�Y ) be an orbifold map. Then given x ∈ X

and y = f (x) ∈ Y there are orbifold charts (U, ϕ) and (V ,ψ) around x and y
respectively such that f has a lifting f̃ : U → V . If, in addition, f : X → Y is an
orbifold Galois covering then f̃ : U → V is also a Galois covering.
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Proof. Choose the chart (U, ϕ) such that U is simply connected and f
(
ϕ(U)

) ⊂
ψ(V ). If D ⊂ U is any divisor then

ordf 
ϕ D = ordf ϕ(D) · ordϕ D = ordf ϕ(D) · ord�X ϕ(D).

By the definition of orbifold maps,

ord�Y (f 
 ϕ)(D) || ordf ϕ(D) · ord�X ϕ(D),

hence we conclude that ord�Y (f 
 ϕ)(D) divides ordf 
ϕ D. Thus the assumption
of Lemma 7 is satisfied and so f 
 ϕ lifts to f̃ : U → V . Assume next that
f : (X,�X) → (Y,�Y ) is an orbifold Galois covering. By restricting U we can
assume that for any σ ∈ Gal(f ) either σϕ(U) = ϕ(U) or σϕ(U) ∩ ϕ(U) = ∅. Pick
u1, u2 ∈ U such that f ϕ(u1) = f ϕ(u2). Then there is a Galois automorphism σ of
f such that ϕ(u1) = σ(ϕ(u2)) and σϕ(U) = ϕ(U). Since Gal(f ) ⊂ Aut(X,�X),
ord�X D = ord�X σ(D) for any divisor D. Hence applying Lemma 7 we conclude
that σ : ϕ(U) → ϕ(U) lifts to a biholomorphism σ̃ of U such that σ̃ (u2) = u1.
Moreover f ϕσ̃ = f σϕ = f ϕ. Therefore σ̃ ∈ Gal(f ϕ). This shows that in the
commutative diagram

U
f̃ ��

ϕ

��

V

ψ

��
ϕ(U)

f
�� ψ(V ),

(8)

the composite f 
 ϕ is Galois. But f ϕ = ψf̃ and by Lemma 10 f̃ is a Galois
cover. �

Example 17. Let (X,�) be any orbifold, and let (X, 0) denote the orbifold structure
on X with trivial branching divisor. It is a nontrivial result that (X, 0) is an orbifold,
that is, X has quotient singularities (see [25]). (We use mainly the case when X is
smooth, and then the orbifold charts of (X, 0) are simply the manifold charts of X.)

The identity map idX : (X,�) → (X, 0) is trivially an orbifold Galois covering.
In fact it is both an orbifold map and a Galois analytic cover, and Gal(idX) = {idX} ⊂
Aut (X,�).

If f : (X,�) → (Y,�Y ) is an orbifold Galois covering the orbifold ramification
divisor of f is defined as

Rorb(�X,�Y , f ) = R(f )+�X − f ∗�Y .

With this definition the logarithmic ramification formula

KX +�X = f ∗(KY +�Y )+ Rorb(�X,�Y , f )
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is automatically satisfied. To understand the geometric meaning of Rorb it is useful
to look at the open set

X′′(�X,�Y , f ) = Xreg ∩ f−1(Yreg \ (�Y ∪ B(f ))sing
) \ (�X ∪ R(f ))sing.

This means that x ∈ X′′ = X′′(�X,�Y , f ) if (a)X is smooth at x, (b) Y is smooth at
y = f (x), (c) x belongs to at most one componentD of�X+R(f ) and in this case x
is a smooth point of D, (d) y belongs to at most one component D′ of �Y + B(f )

and in this case it is a smooth point of D′. As usual the complement of this set has
codimension 2. Let D be any smooth divisor passing through x and D′ a smooth
component passing through y. Assume first that f is unbranched at x and that locally
�X = (1 − 1/p)D and �Y = (1 − 1/q)D′. Then there is a local diagram like
(8), with p = degϕ and q = degψ . Put k = deg f̃ . Since f is unbranched we
can assume that its restriction to ϕ(U) is a biholomorphism onto ψ(V ). Therefore
p = qk. If p = 1, then q = k = 1, and as expected multx Rorb = 0. If p > 1, then
necessarily D′ = f (D) because of (7) and f ∗D′ = D, since f is étale. Therefore
Rorb = (1/q − 1/p)D = (k − 1)/p · D. If instead ordx(f ) = m > 1, then
again D′ = f (D), R(f ) = (m − 1)D, f ∗D′ = mD, pm = qk and Rorb =
(m/q − 1/p)D = (k − 1)/p · D once more. Roughly the orbifold ramification
divisor is the ramification of the lifting f̃ divided the degree of the local chart ϕ.

Let (X,�) be an orbifold and � ⊂ Aut(X,�) a finite subgroup. We want to
define a quotient orbifold (Y,�′). By Cartan’s lemma [11] Y = X/� is a normal
analytic space and the canonical projection π : X → Y is an analytic covering. The
support of the branch divisor�′ is defined to be π(�)∪B(π), while the multiplicities
are specified as follows. LetD be an irreducible component ofπ(�)∪B(π). IfD is a
component of π(�) and not of B(π), then we assign toD the multiplicity multx(�),
where x is any point inX′′(�) such that π(x) ∈ D is a smooth point of π(�)∪B(π).
IfD is a component ofB(π) and not ofπ(�) then we assign toD the same multiplicity
it has as a component of B(π), that is 1 − 1/ ordπ(x) for any x ∈ X′′(π) such that
π(x) ∈ D is a smooth point of π(�) ∪ B(π). Finally, if D is a common component
of π(�) and B(π) then we assign to it the multiplicity

1 − 1 − multx �

ordπ(x)

for any x ∈ X′′(�) ∩X′′(π) such that π(x) ∈ D is a smooth point of π(�) ∪B(π).
Proposition 18. Let (X,�) be an orbifold, and � ⊂ Aut(X,�) a finite subgroup.
Let Y = X/� be the quotient analytic space, and �′ the Q-divisor defined above.
Then (Y,�′) is an orbifold and the canonical projection

π : (X,�X) −→ (Y,�′) (9)

is an orbifold Galois covering.
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Proof. We need to show that Y is covered by orbifold charts compatible with�′. Fix
y ∈ Y , x ∈ π−1(y) and let ϕ : U → ϕ(U) be an orbifold chart with x ∈ ϕ(U). If
the stabiliser �x is trivial we can assume that γ ϕ(U) ∩ ϕ(U) = ∅ for any γ �= e.
Then π : ϕ(U) → Y is a biholomorphism onto its image. Put ψ = πϕ : U → Y .
We claim that ψ is an orbifold chart on Y compatible with �′. In fact ψ is Galois
since π is a biholomorphism on ϕ(U), and π∗B(ψ) = B(ϕ) = � ∩ ϕ(U). On the
other hand B(π)∩ψ(U) = ∅ since π : ϕ(U) → ψ(U) is biholomorphic. Therefore
on ψ(U) the divisor �′ coincides with B(ψ). This proves that ψ : U → Y is an
orbifold chart. If �x �= {e} take a chart ϕ : U → ϕ(U) ⊂ X such that ϕ(U)
be a �x-invariant neighbourhood of x. Lemma 16 ensures that also in this case
ψ = πϕ : U → ψ(U) ∼= ϕ(U)/�x is a Galois covering. It is easy to verify that
B(ψ) = �′ on ψ(U). Finally that π is an orbifold Galois covering is clear: a lifting
of π : ϕ(U) → ψ(U) is given by the identity map U → U , so π is an orbifold map,
while Gal(π) = � ⊂ Aut(X,�) by assumption. �

5. Basic estimates for orbifold Kähler–Einstein metrics

In this section we collect the orbifold versions of some fundamental results due to
Aubin, Bando–Mabuchi and Tian, that are needed in the existence criteria in the next
section. Most of the proofs are the same as in the case of a manifold and we just give
appropriate references. For the basic definitions of differential geometry on orbifolds
see [4], [3], [9] and [7] . Some information on Sobolev spaces and Laplace operators
on orbifolds can be found e.g. in [12].

Remark 19. Note that if X is a complex manifold and � is a non trivial branch-
ing divisor, then smoothness in the orbifold sense is rather different from ordinary
smoothness. For example, f (z) = |z| is not smooth in the ordinary sense, but it
belongs to C∞(C,�), where � is the divisor concentrated at the origin with multi-
plicity 1/2. In fact the inclusions C∞(X) � C∞(X,�) and

∧k(X) �
∧k(X,�) are

in general strict.

Definition 20. A Fano orbifold is a compact complex orbifold (X,�) such that
−(KX +�) is ample.

By the Baily–Kodaira imbedding theorem [3] this is equivalent to the fact that
c1(X,�) contains an orbifold Kähler metric.

The following is the orbifold analogue of Bonnet–Myers Theorem. It follows,
for example, from the Bishop volume comparison Theorem for orbifolds, see [7,
Proposition 20, Corollary 21].
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Theorem 21. LetX be anmdimensional orbifold and g a Riemannian orbifold metric
on X with Ric(g) ≥ ε(m− 1)g for some ε > 0. Then diam(X, g) ≤ π/

√
ε.

Theorem 22 ([23, Theorem B]). Let (X, g) be a Riemannian orbifold of dimension
m > 2 with Ric(g) ≥ −(m− 1)ε2g for some ε ≥ 0. Then there is a constant C > 0
depending only on m and ε · diam(X, g) such that

‖∇u‖L2 ≥ C
vol(X, g)1/m

diam(X, g)
‖u‖L2m/(m−2) (10)

for any u ∈ W 1,2(X) with
∫
X
u dvolg = 0.

Combining the last two theorems one gets the following uniform Sobolev embed-
ding.

Corollary 23. Let (X,�) be an n-dimensional Fano orbifold. For any ε > 0 there
is a constant C = C(ε) > 0 such that for any metric ω in the class 2πc1(X,�) with
Ric(ω) ≥ εω and any u ∈ W 1,2(X,�)

‖u‖L2n/(n−1) ≤ C‖u‖2
W 1,2 . (11)

If (X,�) is a Kähler orbifold, ω ∈ ∧1,1(X,�) is a closed smooth form and
ϕ ∈ C∞(X,�), put ωϕ = ω + i ∂∂̄ϕ. We write ωϕ > 0 to mean that it is a Kähler
metric. If ω is such that

〈[ω]n, [X]〉 =
∫
X

ωn > 0

and ϕ ∈ C∞(X,�), put

Iω(ϕ) = 1

〈[ω]n, [X]〉
∫
ϕ(ωn − ωnϕ), (12)

Jω(ϕ) =
1∫

0

Iω(sϕ)

s
ds, (13)

F 0
ω(ϕ) = Jω(ϕ)− 1

〈[ω]n, [X]〉
∫
ϕωn. (14)

Lemma 24.

Jω(ϕ) = 1

〈[ω]n, [X]〉
n−1∑
k=0

k + 1

n+ 1

∫
M

i ∂ϕ ∧ ∂̄ϕ ∧ ωk ∧ ωn−k−1
ϕ , (15)

Iω(ϕ)− Jω(ϕ) = 1

〈[ω]n, [X]〉
n−1∑
k=0

n− k

n+ 1

∫
X

i ∂ϕ ∧ ∂̄ϕ ∧ ωk ∧ ωn−k−1
ϕ . (16)
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If ω > 0 and ωϕ > 0, then Iω(ϕ), Jω(ϕ) and Iω(ϕ) − Jω(ϕ) are nonnegative and
vanish only if ϕ is constant. Moreover Jω ≤ Iω ≤ (n+ 1)Jω.

Proof. For (15) see [27, Lemma 2.2] or [1, Lemma 2.1]. For (16) expand ωn − ωnϕ .
The last statements follow diagonalising simultaneously ω and i ∂∂̄ϕ. �

Lemma 25. If λ is a positive constant then

F 0
λω(λϕ) = λF 0

ω(ϕ). (17)

Let ω0 be a closed (1, 1)-form with 〈[ω0]n, [X]〉 > 0. Given ϕ01, ϕ12 ∈ C∞(X,�),
put ω1 = ω0 + i ∂∂̄ϕ01, ϕ02 = ϕ01 + ϕ12. Then

F 0
ω0
(ϕ02) = F 0

ω0
(ϕ01)+ F 0

ω1
(ϕ12). (18)

(Same proof as in [30, pp. 60f].)

Lemma 26 ([30, p. 59]). If ϕt is a differentiable family of smooth functions on (X,�)
then

d

dt
Jω(ϕt ) = 1

〈[ω]n, [X]〉
∫
X

ϕ̇t (ω
n − ωnt ), (19)

d

dt
F 0
ω(ϕt ) = − 1

〈[ω]n, [X]〉
∫
X

ϕ̇tω
n
t . (20)

Assume now that ω is a Kähler orbifold metric in the canonical class, that is
ω ∈ 2πc1(X,�). Let f = f (ω) ∈ C∞(X,�) be the unique function such that

Ric(ω)− ω = i ∂∂̄f (ω),
∫
X

ef (ω) =
∫
X

ωn. (21)

Put V = 〈[ω]n, [X]〉 = n! vol(X) and define Aω, Fω : C∞(X,�) → R by

Aω(ϕ) = log

[
1

V

∫
X

ef (ω)−ϕωn
]
, Fω(ϕ) = F 0

ω(ϕ)− Aω(ϕ). (22)

Using the notation of Lemma 25 if ω0, ω1 and ω2 are Kähler metrics, then

Fω0(ϕ02) = Fω0(ϕ01)+ Fω1(ϕ12). (23)

For G ⊂ Aut(X,�) a subgroup of isometries of (X,�,ω) put

PG(X,�,ω) = {ϕ ∈ C∞(X,�) : ωϕ > 0, and ϕ is G-invariant}. (24)
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If G = {1} we simply write P(X,�,ω).
In order to construct a Kähler–Einstein metric on (X,�) the continuity method

is applied: fix a Kähler metric ω in the canonical class and consider the well-known
equations

(ω + i ∂∂̄ϕt )
n = ef−tϕt ωn (∗)t

for a smooth family of functions in C∞(X,�). Yau’s estimates hold for orbifold
metrics, and in particular the Calabi conjecture is true, which implies that (∗)0 admits
a unique solution. Denote by � the negative definite ∂̄-Laplacian on functions (that
is � = −∂̄∗∂̄) and by −λj its eigenvalues.

Lemma 27 ([2, Theorem 4.20, p. 116]). Let ω be a Kähler metric on the compact
orbifold (X,�). If Ric(ω) ≥ ε > 0, then λ1 ≥ 1.

It follows that the times t for which (∗)t is solvable form an open subset S ⊂ [0, 1]
and that solutions ϕt are smooth in t , see [30, pp. 63–66]. Given a C0-estimate for
the solutions, Yau’s estimates ensure that S is closed, thus yielding the solution up to
t = 1, which is a Kähler–Einstein metric.

Proposition 28. Let ϕt be a solution to (∗)t for t ∈ [0, T0). Then Iω(ϕt )− Jω(ϕt ) is
nondecreasing and F 0

ω(ϕt ) ≤ 0.

Proof. Differentiating (∗)t with respect to t one gets

(�t + t)ϕ̇t = −ϕt . (25)

Therefore

d

dt

(
Iω(ϕt )− Jω(ϕt )

)

= 1

V

∫
X

ϕt (ϕt + t ϕ̇t )ω
n
t = (1 − t2)

1

V

∫
X

ϕ2
t ω

n
t + 1

V

∫
X

|∂̄ ϕ̇t |2ωt .

This gives the first result. For the second use (20) and (25):

d

dt
tF 0
ω(ϕt ) = F 0

ω(ϕt )− t

V

∫
X

ϕ̇tω
n
t = F 0

ω(ϕt )+ 1

V

∫
X

(�t ϕ̇t + ϕt )ω
n
t = Jω(ϕt ).

Since Jω ≥ 0, the result follows. �

The following estimates depend on the uniform Sobolev embedding (Lemma 23)
and their proof uses Moser iteration.
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Theorem 29 ([30, p. 67ff]). If ϕt is a family of solutions to (∗)t on the time interval
[0, T0), then there is a constant C = C(T0) > 0 such that for any t < T0

‖ϕt‖∞ ≤ C
(
1 + Jω(ϕt )

)
, (26)

0 ≤ − inf
X
ϕt ≤ C

(
1

V

∫
X

(−ϕt )ωnt + C

)
, (27)

Fω(ϕt ) ≤ −Aω(ϕt ) ≤ C(1 − t) ≤ C. (28)

Lemma 30 ([5, §6]). Let (X,�) be a Fano orbifold, ωKE a Kähler–Einstein metric
and ω a metric in the canonical class. Then there is g ∈ Aut(X,�) such that
ω = g∗ωKE + i ∂∂̄ψ with ψ orthogonal to ker(�g∗ωKE + 1) in L2(X, ωnKE).

Proposition 31 ([29, Proposition 5.3]). Let (X,�) be a Fano orbifold and ωKE a
Kähler–Einstein metric in the canonical class. If ω = ωKE + i ∂∂̄ψ is a Kähler
metric, withψ ⊥ ker(�KE +1) and

∫
X
e−ψωKEn = 0, there is a solution {ϕt }t∈[0,1]

of (∗)t with ϕ0 = 0 and ϕ1 = −ψ .

Theorem 32 ([15, Theorem 2.2]). If a Fano orbifold (X,�) admits a Kähler–Einstein
metricωKE , thenFω is bounded from below onP(X,�,ω) for anyω in the canonical
class.

Proof. Thanks to (23) it is enough to bound FωKE . Given ϕ ∈ P(X,�,ωKE) put
ω = ωKE + i ∂∂̄ϕ and let g and ψ be as in Lemma 30. Using again (23) it is
enough to bound Fg∗ωKE(ψ). Take a path as in Lemma 31. Thanks to Proposition 28
Fg∗ωKE(ψ) = −Fω(−ψ) = −Fω(ϕ1) = F 0

ω(ϕ1) ≥ 0. �

Remark 33. These estimates are enough to prove one half of Tian’s fundamental
theorem, namely that properness of Fω implies the existence of a Kähler–Einstein
metric (see [30, p. 63]).

The following normalisation of potentials is useful:

QG(X,�,ω) = {ϕ ∈ PG(X,�,ω) : Aω(ϕ) = 0}. (29)

For any ϕ ∈ PG(X,�,ω), ϕ + Aω(ϕ) ∈ QG(X,�,ω).

Proposition 34. Let (X,�) be a Fano orbifold, ω ∈ 2πc1(X,�) a Kähler metric
andG a compact group of isometries of (X,�,ω). If there are constantsC1, C2 > 0
such that

Fω(ϕ) ≥ C1 sup
X

ϕ − C2 (30)

for any ϕ ∈ QG(X,�,ω), then (X,�) admits a Kähler–Einstein metric.
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Proof. Let ϕt be a solution of (∗)t on [0, T0). Since ϕt + Aω(ϕt )∈QG(X,�,ω)

Fω(ϕt ) = Fω
(
ϕt + Aω(ϕt )

)
≥ C1 sup

X

(
ϕt + Aω(ϕt )

) − C2

= C1 sup
X

ϕt + C1Aω(ϕt )− C2.

(31)

Using (28)

C1 sup
X

ϕt ≤ Fω(ϕt )− C1Aω(ϕt )+ C2 ≤ C3 + C2 + C1C3.

Hence supX ϕt is uniformly bounded. But F 0(ϕt ) ≤ 0, so Jω(ϕt ) ≤ F 0
ω(ϕt )+ supϕt

is bounded and (26) yields the required bound of the C0 norm. �

Lemma 35 ([1, Lemma 2.3]). Let (X,�) be a Fano orbifold, and ω ∈ 2πc1(M) a
Kähler metric. Then for any β > 0 there are constants C1, C2 > 0 such that for any
ϕ ∈ Q(X,�,ω)

log

[
1

V

∫
X

e−(1+β)ϕωn
]

≥ C1 sup
X

ϕ − C2. (32)

Corollary 36. If there are constants C1, C2 > 0 and β > 0 such that

Fω(ϕ) ≥ C1 log

[
1

V

∫
X

e−(1+β)ϕωn
]

− C2 (33)

for any ϕ ∈ QG(X,�,ω), then (X,�) admits a Kähler–Einstein metric.

6. Existence theorems

A current on an orbifold (X,�) is a collection of Gal(ϕ)-invariant currents on any
uniformiser (U, ϕ), satisfying the usual compatibility condition with respect to injec-
tions of uniformisers. In case X is smooth, orbifold differential forms on (X,�) are
more than ordinary differential forms on X. By duality orbifold currents on (X,�)
are less than ordinary currents on X: they are the continuous functionals on

∧k(X)
that can be extended to the larger space

∧k(X,�). For positive (p, p)-currents there
is no difference between the two notions, since every positive current has measure
coefficients, and every orbifold differential form has continuous coefficients. If γ is a
continuous hermitian form on a compact orbifold (X,�), an orbifold Kähler current
is a closed positive (orbifold) current T of bidegree (1,1) such that for some positive
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constant c, T ≥ cγ in the sense of orbifold currents, that is 〈T − cγ, η〉 ≥ 0 for any
positive η ∈ ∧n−1,n−1(X,�). The definition does not depend on the choice of γ ,
since X is compact.

If (X,�) is a Fano orbifold, G ⊂ Aut(X,�) is a compact subgroup and ω is a
G-invariant Kähler form in 2πc1(X,�), put

P 0
G(X,�,ω) = {χ ∈ C0(X) : ω + i ∂∂̄χ is a Kähler orbifold current}.

Proposition 37. (a) Any χ ∈ P 0
G(X,�,ω) is the C0-limit of a sequence ϕn ∈

PG(X,�,ω).
(b) The functionals Iω, Jω, F 0

ω and Fω can be extended to P 0
G(X,�,ω) and the

extensions are continuous with respect to the C0-topology.

(See Propositions 2.2 and 2.3 in [1].)

Lemma 38 ([1, Lemma 2.6] ). Ifπ : (X,�X) → (Y,�Y ) is an orbifold map between
compact orbifolds, the direct image π∗T of a Kähler current T on (X,�) is a Kähler
current on (Y,�Y ).

Proof. First of all observe that if f : (X,�X) → (Y,�Y ) is an orbifold map of
degree d and α ∈ ∧2n(Y,�Y ), then

∫
X
f ∗α = d · ∫

Y
α. Next let γX and γY be

continuous hermitian forms on (X,�X) and (Y,�Y ) respectively. Since π∗γY is
continuous and γX is positive definite, there is c1 > 0 such that γX ≥ c1π

∗γY .
If T is a Kähler current on (X,�), by definition T ≥ c2γX for some c2 > 0, so
T ≥ cπ∗γY with c = c1c2 > 0. We want to prove that for any positive form
η ∈ ∧n−1,n−1(Y,�Y ), 〈π∗T , η〉 ≥ c · degπ · 〈γY , η〉. Choose orbifold charts (V ,ψ)
on (Y,�Y ) and (Ui, ϕi) on (X,�) such that π−1

(
ψ(V )

) = ⊔
i ϕi(Ui). Denote by

T̃i , η̃ and γ̃Y the local representations in the orbifold charts and by π̃i : Ui → V the
liftings of π . We can assume supp(η) ⊂ ψ(V ). Then

〈π∗T , η〉 = 〈T , π∗η〉 =
∑
i

〈T̃i , π̃∗
i η̃〉

| Gal(ϕi)|

≥
∑
i

c · 〈π̃∗
i γ̃Y , π̃

∗
i η̃〉

| Gal(ϕi)|

=
∑
i

c

| Gal(ϕi)|
∫
Ui

π̃∗
i (γ̃Y ∧ η̃)

= c ·
(∑

i

deg π̃i
| Gal(ϕi)|

)
·
∫
V

(γ̃Y ∧ η̃).
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Since ∑
i

deg π̃i
| Gal(ϕi)| = degπ

| Gal(ψ)|
we finally get

〈π∗T , η〉 ≥ c · degπ
∫

ψ(V )

(
γY ∧ η),

and this proves the lemma. �

Lemma 39 ([1, Lemma 2.7]). Letπ : (X,�) → (Y,�Y ) be an orbifold map between
n-dimensional Kähler orbifolds. Let ωY be a Kähler metric on (Y,�Y ) and χ ∈
P 0(Y,�Y , ωY ) a continuous potential such that π∗χ ∈ C∞(X,�). Then

F 0
π∗ωY (π

∗χ) = F 0
ωY
(χ). (34)

Theorem 40. Let (X,�X) and (Y,�Y ) be Fano orbifolds, π : (X,�) → (Y,�Y )

an orbifold Galois covering of degree d with G = Gal(π), ωY a Kähler–Einstein
metric on (Y,�Y ) and ω ∈ 2πc1(X,�) a G-invariant Kähler metric. Assume that
numerically Rorb(π) ≡ −β(KX +�X) for some β ∈ Q+. Then there is a constant
C such that for any ϕ ∈ PG(X,�,ω)

F 0
ω(ϕ) ≥ 1

1 + β
log

[
1

V

∫
X

e−(1+β)ϕπ∗ωnY
]

− C. (35)

The proof is identical to that of Theorem 2.2 in [1] and depends on the previous
lemmata. Notice that a G-invariant orbifold Kähler metric ω always exists since,
according to Definition 15, G ⊂ Aut (X,�).

Theorem 41. Let (X,�), (X1,�1), . . . , (Xk,�k) be n-dimensional Fano orbifolds.
Assume that each (Xi,�i) admits a Kähler–Einstein metric and that πi : (X,�) →
(Xi,�i) are orbifold Galois coverings such that

(1) the groups Gal(πi) are all contained in some compact subgroup of Aut (X,�);

(2) Rorb(πi) ≡ −βi(KX +�) for some βi ∈ Q+.

Define η ∈ C∞(X,�) by

1

k

k∑
i=1

π∗
i ω

n
i = η ωn, (36)

put c := sup{λ ≥ 0 : η−λ ∈ L1(X, ωn)} and β := min βi . If

1

c
< β, (37)

then (X,�) admits a Kähler–Einstein metric.
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The proof is the same as that of Theorem 2.3 and Proposition 2.4 in [1].

Remark 42. If k = 1, then c is the infimum of the complex singularity exponents
(that is of the log canonical thresholds, see [14] and [19]) of the pairs (U, ϕ∗Rorb),
where (U, ϕ) runs over all orbifold charts. On the other hand if there are enough
coverings and the intersection of the ramification divisors Rorb(πi) is empty, then
c = +∞ and (37) is automatically satisfied.

7. Applications

Here we exhibit some concrete examples where Theorem 41 can be used to prove the
existence of Kähler–Einstein metrics on orbifolds.

Theorem 43. Let X be a Fano manifold,
∑N
i=1Di a divisor with local normal

crossing and ω a Kähler–Einstein metric on X. Given integers mi > 1 put � =∑
i (1 − 1/mi)Di . If � ≡ −δKX with δ ∈ (0, 1) and

mi − 1 <
δ

1 − δ
(38)

for any i = 1, . . . , N , then (X,�) is a Fano orbifold and has an orbifold Kähler–
Einstein metric.

Proof. (X,�) is a Fano orbifold because KX + � ≡ (1 − δ)KX and δ < 1. As
observed in Example 17 the map id : (X,�) → X is an orbifold Galois cover and
we want to apply Proposition 41 to it. The ramification divisor is just Rorb = � so

Rorb(id) ≡ −β(KX +�)

with β = δ/(1 − δ). It remains to check that (38) implies (37). Let x be any point
in X. Choose a system of coordinates (V , z1, . . . , zn) on X as in Example 13 and let
(U, ϕ) be the corresponding orbifold chart for (X,�) as in (6). Then on ϕ(U) = V

Rorb = � =
k∑

j=1

(
1 − 1

m′
j

)
{zj = 0} (39)

so that in the notation of (36), η(z) = γ (z)|f (z)|2 onU , wheref (z) = z
m′

1−1
1 . . . z

m′
k−1

k

and γ is a smooth positive function. Set cx = sup{λ ≥ 0 : ∫
U

|f |−2λ < +∞}. Since

∫
U

|f |−2λ = const ·
k∏

j=1

∫
D

|z|−2λ(m′
j−1) (40)
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where D is the disk in C, we get that |f |−2λ ∈ L1
loc on U iff λ < 1/(m′

j − 1). So
cx = min{1/(m′

j − 1) : 1 ≤ j ≤ k},

c = inf
x∈X cx = min

i

1

mi − 1
(41)

and
1

c
= max(mi − 1) <

δ

1 − δ
= β. (42)

�

Example 44. Let some divisorsDi ∈ |OPn(di)|, and some integers mi > 1 be given
for i = 1, . . . , N . Letm1 be the greatest of themi’s. Put� = ∑

i (1 − 1/mi)Di and

δ =
∑
i di

(
1 − 1

mi

)
n+ 1

. (43)

Assume that

(1)
∑
i Di is local normal crossing;

(2) δ < 1;

(3) m1(1 − δ) < 1.

Then (Pn,�) admits an orbifold Kähler–Einstein metric of positive scalar curvature.

Example 45 (Compare [10, Note 36]). LetDi ben+2 hyperplanes in general position
in Pn: Di = {zi = 0} for i = 0, . . . , n, Dn+1 = {z0 + · · · + zn = 0}. Set

� =
n+1∑
i=0

(
1 − 1

mi

)
Di.

Then (Pn,�) has an orbifold Kähler–Einstein metric as soon as

1 <
n+1∑
i=0

1

mi
< 1 + (n+ 1)min

i

1

mi
(44)

As in [10], many numerical examples come from Euclid’s or Sylvester’s sequence
(cf. [26, A000058]). This is defined by the recursion relation

ck+1 = c1 . . . ck + 1 = c2
k − ck + 1

beginning with c1 = 2. The sequence grows doubly exponentially, and it starts as

2, 3, 7, 43, 1807, 3263443, 10650056950807, . . . .
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It is easy to see that

n∑
i=1

1

ci
= 1 − 1

cn+1 − 1
= 1 − 1

c1 . . . cn
.

We get many new examples by taking

(m0 = c1,m1 = c2, . . . , mn = cn+1 − 2,mn+1).

Then
n∑
i=0

1

mi
= 1 + 1

(cn+1 − 1)(cn+2 − 2)
.

Thus our conditions are satisfied as long as

cn+1 − 2 < mn+1 < n(cn+1 − 1)(cn+2 − 2)

and mn+1 is relatively prime to the other mi .

Another case when Theorem 41 works is for degree 2 Del Pezzo surfaces S. Here
we consider the case when S is allowed to have cyclic quotient singularities. These are
necessarily of the form C2/Znwhere the group action is given by (u, v) �→ (εu, ε−1v)

where ε is a primitive n-th root of unity. The Zn-invariant functions are generated by
un, vn, uv. This singularity is denoted by An−1.

For any degree 2 Del Pezzo surface S the anticanonical class is ample and it
gives a degree 2 cover π : S → P2. If H denotes the hyperplane class on P2,
then −KS = π∗H . The double cover π ramifies along a quartic curve C, thus
R = 1

2π
∗C = π∗2H , β = 2 and to apply Theorem 41 we need to ensure that η−λ be

integrable for λ ≤ 1
2 . The singularities of π lie over the singularities of C, an An−1-

singularity of S lies over anAn−1-singularity ofC (cf. [6, p. 87]) and we can find local
coordinates (x, y) on P2 such that S is locally isomorphic to some neighbourhood of
the origin in the affine surface {(x, y, t) ∈ C3 : t2 = x2 + 4yn}, the map π being
given simply by π(x, y, t) = (x, y). An orbifold chart is given by ϕ : U ⊂ C2 → S

where ϕ(u, v) = (un−vn, uv, un+vn). Thus ϕ∗π∗(dx∧dy) = n(un+vn) ·du∧dv
and η(u, v) = const · |un + vn|2. It is easy to see by direct integration or by blowing
up (see e.g. [20, Proposition 6.39, p. 168]) that for n ≥ 2, |un + vn|−2λ is integrable
if and only if λ < 2

n
. Thus Theorem 41 applies as long as 1

2 < c = 2
n

, that is for
n < 4. This proves Theorem 2.

One can also give a different proof of the following result of Mabuchi and Mukai
[21, Corollary C].

Theorem 46. A diagonalizable singular Del Pezzo surface of degree 4 admits an
orbifold Kähler–Einstein metric.
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A quartic Del Pezzo surface S is the intersection of two quadrics in P4, S =
Q1 ∩Q2. It is said to be diagonalizable if bothQ1 andQ2 can be put simultaneously
in diagonal form. If S is singular then in suitable coordinates it is given by equations

h0 := x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = 0 and h1 := λ2x

2
2 + λ3x

2
3 + λ4x

2
4 = 0.

If two of the λi coincide then S is a quotient of P1 × P1 and so has an orbifold
Kähler–Einstein metric (see [21, p. 136]). Thus assume that theλi are distinct nonzero
complex numbers. For i = 2, 3, 4, the equation λih0 − h1 = 0 does not involve xi ,
and by dropping the xi variable we get smooth quadrics

Qi = {(λih0 − hi = 0)} ⊂ P3.

The map πi : S → Qi given by forgetting xi is a double cover ramified over the
hyperplane section S∩{xi = 0}. Since theQi are smooth two-dimensional quadrics,
they are Kähler–Einstein. On the other hand, the divisors Rorb(πi) are disjoint, so η
is strictly positive on all S, c = ∞ and Theorem 41 yields that S admits an orbifold
Kähler–Einstein metric.
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