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Dense subgroups with Property (T) in Lie groups
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Abstract. We characterize connected Lie groups that have a dense, finitely generated subgroup
with Property (T).
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1. Introduction

Not much is known about the structure of dense subgroups in connected Lie groups,
in contrast to discrete subgroups. However, given a class of groups, it is natural, and
sometimes possible, to study which connected Lie groups (more generally, which
locally compact groups) contain a dense embedded copy of a group in this class. For
the class of non-abelian free groups of finite rank, this study has been carried out in
[Kur], [BrG], and in [BGSS] for surface groups and, more generally, fully residually
groups. In this paper, we study the existence of dense finitely generated subgroups
of a very different type, namely with Kazhdan’s Property (T).

We begin by recalling relevant definitions. If G is a locally compact group and
π is a unitary representation into a Hilbert space H , and X ⊂ G is any subset and
ε > 0, the representation π is said to have (X, ε)-invariant vectors if there exists
v ∈ H such that ‖v‖ = 1 and supg∈X ‖π(g)v − v‖ ≤ ε. The subset X is said to
be a Kazhdan subset of G if there exists ε > 0 such that every continuous unitary
representation having (X, ε)-invariant vectors actually has nonzero invariant vectors.
The locally compact group G has Property (T) [Kaz], [HV], [BeHV] if it has a
compact Kazhdan subset. The Lie algebra of a Lie group or an algebraic group is
denoted by the corresponding Gothic letter.

In this paper, we characterize connected Lie groups that have a dense finitely
generated subgroup � with Property (T) (when viewed as a discrete group). The ex-
istence of such a dense subgroup is a strengthening of Property (T); this has been used
by Margulis and Sullivan [Mar1], [Sul] to solve the Ruziewicz Problem in dimension
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n ≥ 4, namely that the Lebesgue measure is the only mean on the measurable subsets
of the n-sphere, invariant under SOn+1.

We begin by a result that characterizes connected Lie groups with Property (T).
This is essentially due to S. P. Wang [Wang2], but we give a different formulation.
Recall that a connected Lie group is amenable if and only if its radical is cocompact.

Proposition 1. Let G be a connected Lie group. Then G has Property (T) if and only
if

(i) every amenable quotient of G is compact, and

(ii) no simple quotient of G is locally isomorphic to SO(n, 1) or SU(n, 1) for some
n ≥ 2.

In Proposition 1, Condition (i) can be shown [Cor2, Proposition 4.5.4] to be
equivalent to the following: Every isometric action of G on a Euclidean space has a
fixed point. As we have embeddings

Isom(Rn−1) ⊆ Isom(Hn
R) ⊆ Isom(Hn

C),

we get, as a consequence of Proposition 1, the following geometric characterization
of Property (T) for connected Lie groups.

Proposition 2. Let G be a connected Lie group. Then G has Property (T) if and only
if every isometric action of G on a finite-dimensional complex hyperbolic space has
a fixed point. �

Here is the main result of the paper.

Theorem 3. Let G be a connected Lie group. Then G has a dense, finitely generated
subgroup with Property (T) if and only if G has Property (T) (i.e. satisfies (i) and (ii)
of Proposition 1), and

(iii) R/Z is not a quotient of G (that is, [G, G] = G);

(iv) SO3(R) is not a quotient of G.

Remark 4. It is easy to check that, for a connected Lie group with Property (T), (iii)
together with (iv) is equivalent to Hom(G, PSL2(C)) = {1}, which means, geomet-
rically, that every isometric action on the three-dimensional real hyperbolic space is
identically trivial.

Theorem 3 can be compared to the following result.

Proposition 5. Let G be a connected Lie group. Then G has an infinite, finitely
generated subgroup with Property (T) if and only if G has at least one simple factor
not locally isomorphic to SO(3), SL2(R), SL2(C), SO(4, 1), SU(2, 1).
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Remark 6. In contrast, it is proved in [Cor2, Theorem 4.6.1] that, in SO0(4, 1) and
SU(2, 1), there exist infinite finitely generated subgroups � ⊂ �, such that (�, �)

has relative Property (T). Moreover, � cannot be chosen normal, and � is necessarily
dense.

In some “minimal” cases, an infinite subgroup with Property (T) is necessarily
dense or Zariski dense. For simplicity, let us focus on the case of non-compact simple
Lie groups with Property (T).

Proposition 7. Let G be a simple, non-compact connected Lie group, and � an
infinite, finitely generated subgroup with Property (T).

• If G is locally isomorphic to Sp4(R) or SL3(R), then � is either dense, or discrete
and Zariski dense.

• If G is locally isomorphic to Sp(2, 1), then � is either relatively compact, or
dense, or discrete and Zariski dense1.

• Otherwise, and also excluding the groups given in Proposition 5, G has an
infinite discrete subgroup with Property (T), that is not Zariski dense.

This motivates the following question, which has already circulated among the
specialists for SL3(R) and seems to be hard to handle.

Question 8. Does there exist an infinite, discrete subgroup of SL3(R), Sp4(R), or
Sp(2, 1) that has Property (T), but is not a lattice?

Remark 9. Following Shalom [Sha], a locally compact group has strong Property
(T) if it has a finite Kazhdan subset.

The following implications are immediate: G has a dense finitely generated sub-
group with Property (T) ⇒ G has strong Property (T) ⇒ G has Property (T).

Shalom proves that a connected Lie group G with Property (T) has strong Prop-
erty (T) if and only if R/Z is not a quotient of G, i.e. if G is topologically perfect.
The most remarkable result is that SO3(R) has strong Property (T); this is actually a
reformulation of a deep result of Drinfeld [Dri].

Remark 10. There is no obvious generalization of Theorem 3 to all connected locally
compact groups. For instance, does

∏
d≥5 SOd(R) have a finitely generated dense

subgroup with Property (T)? The question makes sense more generally for the product
of any sequence of simple, connected compact Lie group of dimensions tending to
infinity. On the other hand, the infinite product KN of a fixed compact Lie group

1Note that G is not necessarily algebraic; however this statement makes sense if we define a Zariski dense
subset as a subset that is Zariski dense modulo the centre.
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K 	= {1} cannot have any dense finitely generated subgroup with Property (T). Let
us sketch the argument (for which we thank A. Lubotzky). If K is not connected,
then KN maps onto the infinite, locally finite group (K/K0)

N and therefore has no
dense finitely generated subgroup at all. Suppose now that K is connected, and let
� be a dense, finitely generated subgroup of KN. The density of � implies that
the projections pn of � on each factor are pairwise non-conjugate. Then Weil’s
Rigidity Theorem [Weil] implies that, for some (actually all but finitely many) of
those projections pn, we have H 1(�, ρn) 	= {0}, where ρn denotes the adjoint action
of � on the Lie algebra of K , through the projection pn. By a result of S. P. Wang
[Wang1] (see also [HV], [BeHV]), this implies that � does not have Property (T).

The only nontrivial point as regards the necessary condition in Theorem 3 is
due to Zimmer [Zim], who shows that SO3(R) has no infinite finitely generated
subgroup with Property (T). The sufficient condition, constructing a dense subgroup
with Property (T), was proved by Margulis [Mar2, Chapter III, Proposition 5.7] for G

compact.
Let us sketch the proof of the sufficient condition in Theorem 3. We proceed in

six steps. In the first step, we suppose that G is actually algebraic over Q; then we
use a standard argument to project densely a lattice into G, which is similar to that in
[Mar2].

In the second step, we reduce to the case where G has a perfect Lie algebra, and
then show, in the third step, that this implies that the subalgebra obtained by removing
simple compact factors is also perfect.

In the fourth step, we prove the following result, which is perhaps of independent
interest.

Proposition 11. Let g = s � r be a Lie algebra over R, with s semisimple and r

nilpotent. Then there exists a Lie algebra h = s�n, defined over Q, with n nilpotent,
and a surjection p : h → g which is the identity on the Levi factor s, and maps n

onto r. If, moreover, [snc, r] = r, we can impose [snc, n] = n.

The main ingredient for this proposition is the following result.

Theorem 12 (Witte [Wit]). Every real finite-dimensional representation of a real
semisimple Lie algebra has a Q-form.

Remark 13. Theorem 12 is equivalent to the following statement: if g is a perfect Lie
algebra over R with abelian radical, then g has a Q-form. The corresponding assertion
is false if we replace “abelian” by “2-nilpotent”, as there exist 2ℵ0 non-isomorphic
real Lie algebras with 2-nilpotent radical [Cor1, Proposition 1.12].

In the fifth step, we prove Theorem 3 in the particular case when G is algebraic
over R.
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Finally, in the sixth step, we prove the general case; we actually have to deal with
an extension of a real algebraic group by an infinite discrete centre.

2. Proofs of the results

The definition of Property (T) will not appear in the proofs below: what we will need
are the following standard properties.

• If G, H are locally compact groups, f : G → H is a continuous morphism
with dense image and if G has Property (T), then H has Property (T). This is
immediate from the definition.

• If G is a locally compact group with Property (T) and � is a closed subgroup of
finite covolume (e.g. a lattice), then � has Property (T). This is due to Kazhdan
[Kaz], see also [HV, §3.a], [BeHV].

• If G is a locally compact group with Property (T), and if G̃ is another locally
compact group lying in a central extension 1 → Z → G̃ → G → 1, then
G̃ has Property (T) if and only if its abelianization G̃ab is compact. The “only
if” part follows from the fact that non-compact amenable groups do not have
Property (T). The “if” part is due to Serre, see [HV, §2.c], [BeHV].

We will also use S. P. Wang’s characterization of connected Lie groups with Prop-
erty (T), encoded in Proposition 1.

Proof of Proposition 1. If the connected Lie group G has Property (T), then Condi-
tions (i) and (ii) are satisfied, since non-compact amenable groups, and connected
Lie groups locally isomorphic to SO(n, 1) or SU(n, 1) for some n ≥ 2 do not have
Property (T) (see [HV, §6.d]).

Conversely suppose that G does not have Property (T). Denote by R its radical,
and by Snc the sum of all noncompact simple factors in a Levi factor. If G does
not have Property (T), then by S. P. Wang’s characterization [Wang2], either (1) Snc

does not have Property (T), or (2) W = Snc[Snc, R] ∩ R is not cocompact in R. In
Case (1), (ii) is not satisfied. On the other hand, it is easily seen that W is a normal
subgroup of G. So, in Case (2), taking the quotient, we can suppose that W = 1.
So G is locally isomorphic to Snc × Rm, where Rm denotes the amenable radical
RSc = {rs | r ∈ R, s ∈ Sc}, and Snc ∩ R = 1. This implies that G is actually the
direct product of R and Snc. So either R or Snc does not have Property (T), giving
either the negation of (i) or (ii). �

Proof of Theorem 3. If G has a finitely generated dense subgroup � with Property (T),
then G has Property (T) (indeed, Property (T) is inherited by morphisms with dense
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image, as follows immediately from the definition); (iii) is also clearly satisfied (be-
cause � has finite abelianization), and also (iv) by [Zim] (see also [HV, Chapter 6,
26]). We must show that, conversely, these conditions are sufficient.

First step. Suppose that G = H(R)0, where H is a linear algebraic group defined
over Q (the subscript 0 means the connected component in the Hausdorff topology).
It is well known that H(R)0 is an open subgroup of finite index in H(R) [BoT,
Corollaire 14.5]. Consider the normal subgroup W = Snc[Snc, R] of H , where Snc

denotes the sum of all simple R-isotropic factors in a Levi factor S. Then W(R) is
cocompact in H(R) (since H(R) has Property (T)). The hypotheses (iii) and (iv) then
imply that H/W is, modulo its finite centre, a product of simple factors of C-rank ≥ 2.
This implies that S[S, R] = H , and that (H/R)(C) has Property (T). By [Wang2],
this implies that H(C) has Property (T).

Now fix a number field of degree 3 over Q, not totally real, and O its ring of
integers: for instance, O = Z[21/3]. Then, since H is perfect, by the Borel–Harish-
Chandra Theorem [BoHC], H(O) embeds as an irreducible lattice in H(R)×H(C),
which has Property (T). So its projection on G = H(R) is a dense subgroup with
Property (T). This proves the case of the first step.

Let g be the Lie algebra of g. Set s = g/r, where r is the radical. Let snc be the
sum of all factors of positive R-rank of s, and let gnc be the preimage of snc in g: this
is an ideal of g.

Second step. We reduce to the case where the Lie algebra g is perfect.
Set h = ⋂

n≥0 Dng, where Dg means the derived subalgebra of g. Then h is
an ideal in g, generating a normal Lie subgroup H (not necessarily closed) of G.
Moreover, G/H is solvable, hence trivial by the assumption (iii). This means that H

is dense in G. Accordingly, since any dense subgroup of H is dense in G, we can
replace G by H and thus suppose that g is perfect.

Third step. Let us show that if g is perfect, and if (i) and (iii) are satisfied, then gnc is
also perfect, that is, [snc, r] = r.

Consider the adjoint action of G on the quotient g/Dgnc. This defines a morphism
f : G → GL(g/Dgnc), such that f (G) is amenable. Therefore, the Lie group
f (G) is also amenable, hence compact. This implies that g/Dgnc is a compact Lie
algebra [Hel, Chap. 2, §5], that is, the direct product of an abelian Lie algebra
and a semisimple compact Lie algebra. Since g is perfect, this implies that g/Dgnc

is semisimple. Since gnc/Dgnc is an abelian ideal in g/Dgnc, we conclude that
Dgnc = gnc.

Fourth step. We begin with the following standard lemma.

Lemma 14. Let g be a Lie algebra, and n a nilpotent ideal. Let π denote the
projection g → g/[n, n]. Let X ⊆ g satisfy: π(X) generates g/[n, n]. Then X

generates g.
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Proof. Argue by induction on the length of the descending central series of n. If n

is abelian, the result is trivial. Otherwise, let z be the least nonzero term of the
descending central series of n. By induction hypothesis, X generates g modulo z. On
the other hand, z is contained in [n, n], that is, z is generated by some elements of the
form [n, n′], for some n, n′ ∈ n. Since z is central in n, these elements can be chosen
modulo z, so that they can be taken in the subalgebra generated by X. This implies
that z is contained in the subalgebra generated by X, so that X generates g. �

Proof of Proposition 11. Let v be a complementary s-subspace of [r, r] in r. By [Wit],
we can fix a Q-form of s, together with a Q-form of v, so that the representation of s

on v is defined over Q. By Lemma 14, r is generated by v as a Lie algebra. Let m be
such that r is m-nilpotent, and let n be the free m-nilpotent Lie algebra generated by
the vector space v. The action of s on v, which is defined over Q, extends naturally
to an action on n, also defined over Q. On the other hand, by the universal property
of the embedding v → n, the identity map v → v extends to a Lie algebra morphism
of n onto r, which is actually a morphism of s-modules: indeed, every s ∈ s gives
a derivation on n, whose image is a derivation of r which coincides, in restriction
to v, with ad(s). Since r is generated by v, this implies that they coincide on all of r.
Therefore, the surjection n → r extends to a surjection s � n → s � r.

If [s, r] = r, the condition [snc, n] = n is immediate, since then [snc, n] contains v.
�

In view of the second and third steps, the hypotheses are now: gnc is perfect, and g

has no simple factor s isomorphic to so(3), so(n, 1) or su(n, 1).

Fifth step. Suppose that G = H(R)0, where H is a connected linear algebraic group
defined over R such that h = g is perfect. Choose p : ĥ → h as in Proposition 11,
and let p ⊂ ĥ×h be its graph. Using [Bo, Corollary 7.9] twice, ĥ is the Lie algebra of
a simply connected linear algebraic group Ĥ defined over Q, and p is the Lie algebra
of a R-closed subgroup P ⊂ Ĥ × H . Since p ∩ h = {0}, by [Bo, Corollary 6.12],
P ∩ H is finite. Since p is onto, the projection of P(R) into H(R) is Zariski dense;
thus W = P ∩ H is normal in H . Replacing H by H/W if necessary, we assume
that W = {1}. Since the projection p → ĥ is onto, the projection of P(R) on Ĥ (R)

contains an open subgroup for the Hausdorff topology, but this topology is connected
since we have chosen Ĥ simply connected. Hence P is the graph of a morphism of
Ĥ onto H , still denoted by P .

By the first step, Ĥ (R)has a finitely generated dense subgroup �̂ with Property (T).
It follows that P(�̂) ∩ G is a dense subgroup with Property (T) in G.

Sixth step. We now conclude. We have reduced to the case where g is perfect.
Therefore, we have to show that every connected Lie group satisfying the hypotheses
recalled before the fifth step has a dense finitely generated subgroup with Property (T).
As these hypotheses only depend on the Lie algebra g, we can suppose that G is simply
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connected. Indeed, otherwise we can project a dense subgroup with Property (T) from
its universal covering. Since g is perfect, there exists a linear algebraic R-group H

with Lie algebra g, so that there exists a discrete, central subgroup Z of G such that
G/Z is isomorphic to H(R)0. By the fifth step, H(R)0 = G/Z has a dense subgroup
� with Property (T).

Let �̃ be the preimage of � in G. Define Zn as the kernel of the natural morphism
Dn(�̃) → Dn(�), so that we have, for all n, an exact sequence:

1 → Zn → Dn(�̃) → Dn(�) → 1.

Then (Zn) is a decreasing sequence of subgroups of Z. Moreover, since � has
Property (T), for every n, Dn(�) has finite index in �. Accordingly, for each n such
that Dn(�̃)/Dn+1(�̃) is infinite, we have rk(Zn+1) < rk(Zn) (where the rank of an
abelian group A is by definition the dimension of the vector space A ⊗Z Q). This
implies the existence of n such that Dn(�̃) has finite abelianization. Therefore, by
Serre’s Theorem on central extensions [HV, Théorème 12], Dn(�̃) has Property (T).
We finally claim that Dn(�̃) is dense in G: this follows from the fact that �̃ is dense
in G and G is topologically perfect. The proof of Theorem 3 is now complete. �

Proof of Proposition 5. Suppose that G has such a simple factor S; through a Levi
factor, S embeds in G as a (non-necessarily closed) subgroup of G. If S has Property
(T), then it has a dense (hence infinite) subgroup with Property (T) (this follows from
Theorem 3, since we have excluded SO(3)). Otherwise, S is locally isomorphic to
SU(n, 1) (n ≥ 3) or SO(n, 1) (n ≥ 5). Then S has a compact subgroup K locally
isomorphic to SU(n) (n ≥ 3) or SO(n) (n ≥ 5). By [Mar2, chap. III, Proposition
5.7] (or Theorem 3), K has a dense (hence infinite) finitely generated subgroup with
Property (T).

Conversely, if G contains an infinite subgroup � with Property (T), then, since
� is not virtually solvable, the projection of � modulo the radical is infinite, so that
we are reduced to the case when G is semisimple; we assume this now. Similarly,
the projection of � modulo the centre is infinite. So now we suppose that G is
a connected, centre-free semisimple Lie group, hence a direct product of simple
factors. The projection into at least one factor, say, S, must be infinite. It then
suffices to show that S cannot be locally isomorphic to one of the five groups quoted
in the proposition. Since each of these five groups has the Haagerup Property [HV,
§6.d], i.e. acts properly on a Hilbert space, � must be contained in a maximal compact
subgroup. Thus � maps into SO3(R) with infinite image, and this is in contradiction
with Zimmer’s result already used above [Zim]. �

Proof of Proposition 7. Let G be a simple connected Lie group, locally isomorphic
to SL3(R), Sp4(R), or Sp(2, 1), and � an infinite finitely generated subgroup with
Property (T). Projecting modulo the centre, we can suppose that G is center-free and
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thus is the Hausdorff unit component of an algebraic group. Let H be the Zariski
closure of �.

First case: suppose that H 	= G. Then H has a simple factor S that is not one of
the five groups quoted in Proposition 5.

Observe that dim(S) < dim(G). If G is SL3(R), then this implies dim(S) < 8
and thus S is one of the five groups quoted in Proposition 5, contradiction. If G is
PSp4(R), then dim(G) = 10 and we must have dim(S) = 8, otherwise we contradict
again Proposition 5. But passing to the complexification, we get an embedding of
the simple 8-dimensional subalgebra sl3 into the simple 10-dimensional simple Lie
algebra sp4(� so5), and this does not exist (the root system A2 does not embed in the
root system B2), a contradiction. If G is PSp(2, 1), then H has the Haagerup Property
(see [Cor1, Theorem 1.10 and Remark 4.5]), i.e. has a unitary representation with
almost invariant vectors, whose coefficients vanish at infinity. This forces � to be
relatively compact.

Second case: suppose that � is Zariski dense. Then the Lie algebra of its Hausdorff
closure is normalized by all of G, hence is either trivial or all of g, i.e. � is either
discrete or dense.

Finally, suppose that G is non-compact with Property (T), and is not locally
isomorphic to Sp(2, 1), SL3(R), or Sp4(R). If G has R-rank one, then it is locally
isomorphic to Sp(n, 1) (n ≥ 3) or F4(−20) and therefore contains a proper, closed
subgroup H locally isomorphic to Sp(2, 1). If G has rank at least 2, then it follows
from the classification of root systems that G contains a closed subgroup H locally
isomorphic to either SL3(R) or Sp4(R). In all cases, H contains a lattice �: this is
an infinite non-Zariski-dense, discrete subgroup with Property (T) of G. �

Acknowledgments. I thank Alain Valette for a careful reading of the paper and useful
corrections.
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