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Witt groups of sheaves on topological spaces

Jon Woolf

Abstract. This paper investigates the Witt groups of triangulated categories of sheaves (of
modules over a ring R in which 2 is invertible) equipped with Poincaré–Verdier duality. We
consider two main cases, that of perfect complexes of sheaves on locally compact Hausdorff
spaces and that of cohomologically constructible complexes of sheaves on polyhedra. We
show that the Witt groups of the latter form a generalised homology theory for polyhedra and
continuous maps. Under certain restrictions on the ring R, we identify these constructible Witt
groups of a finite simplicial complex with Ranicki’s free symmetric L-groups. Witt spaces are
the natural class of spaces for which the rational intersection homology groups have Poincaré
duality. When the ring R is the rationals we identify the constructible Witt groups with the
4-periodic colimit of the bordism groups of PL Witt spaces. This allows us to interpret L-classes
of singular spaces as stable homology operations from the constructible Witt groups to rational
homology.
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1. Introduction

This paper investigates the Witt groups of triangulated categories of sheaves of R-
modules equipped with Poincaré–Verdier duality. We will be most interested in the
case when R = Q, however the main results in §3 and §4 hold for any commutative
regular Noetherian ring, of finite Krull dimension, in which 2 is invertible. (By ‘reg-
ular’ we mean that R has finite global dimension and that every finitely generated
module satisfies Auslander’s condition.) We consider two main cases, that of perfect
complexes of sheaves on locally compact Hausdorff spaces and that of cohomologi-
cally constructible complexes of sheaves on polyhedra. We show that the Witt groups
of the latter, the constructible Witt groups, form a generalised homology theory for
polyhedra and continuous maps.

When every finitely generated R-module can be resolved by a finite complex of
finitely generated free R-modules we identify the constructible Witt groups of a finite
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simplicial complex K with Ranicki’s free symmetric L-groups H∗(K;L•(R)) [25,
Proposition 14.5].

When R = Q we show that every Witt space has a natural L-theory, or Witt,
orientation and we identify the constructible Witt groups with the 4-periodic colimit
of the bordism groups of Witt spaces introduced in [28]. This answers Problem 6 in
[10, §IX]. It also allows us to interpret L-classes of singular spaces as stable homology
operations from the constructible Witt groups to rational homology. Before giving
further details we put these results into context.

Witt groups and L-theory. In his 1937 paper [32] Witt studied symmetric bilinear
forms over a field k, in particular defining what is now known as the Witt group
W(k) – the set of isometry classes of symmetric bilinear forms (equipped with di-
rect sum) modulo the stable equivalence relation generated by those forms with a
Lagrangian subspace. (Witt also showed that the tensor product gives W(k) a natural
ring structure, but we will ignore this for the present.) By analogy we can define the
Witt group W(R) of any commutative ring R – see e.g. [22], [23]. This algebraic
construction has been generalised to provide invariants in both algebraic geometry
and in algebraic topology.

In algebraic geometry, Knebusch defined the Witt group W(S) of a scheme S

in [21] by considering symmetric bilinear forms on locally-free coherent sheaves
(vector bundles) on S. In this context the classical Witt group W(R) of a ring R

arises as W(Spec R). Knebusch’s definitions can be used to define the Witt group of
any exact category with duality. In a more recent development [3] Balmer extended
this to define the Witt groups of any triangulated category T with duality. To obtain a
good theory he requires that 2 be invertible, i.e., that the morphisms between any two
objects are a Z[ 12 ]-module not merely an Abelian group. Balmer’s Witt groups are a
collection Wi(T) of Abelian groups indexed by Z, but which turn out to be naturally
4-periodic, i.e., Wi(T) ∼= Wi+4(T). In a series of papers Balmer and others, notably
Gille and Walter, have studied these groups for the derived category Dlf(S) of locally-
free coherent sheaves on a scheme. Knebusch’s Witt group W(S) is isomorphic to
Balmer’s zero’th Witt group W 0(Dlf(S)). Much of this work is summarised in [4, §5],
which also contains a compendious bibliography. Of particular note is [18] in which it
is shown that the Witt groups of the derived category of locally-free coherent sheaves
on a regular scheme are representable in both the stable and unstable A1-homotopy
categories.

In algebraic topology, the development by Browder, Novikov, Sullivan and Wall
of the surgery theory of high-dimensional manifolds in the 1960s culminated in
the introduction by Wall [30] of the surgery obstruction groups L∗(R). These
L-groups are defined for any ring with involution R and are 4-periodic, i.e. L∗(R) ∼=
L∗+4(R). Mishchenko and Ranicki also defined symmetric L-groups L∗(R), with
L0(R) = W(R) the classical Witt group. If 2 is invertible in R then Li(R) ∼= Li(R),
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and
Li(R) ∼= Wi(Dlf(Spec R)).

The L-groups of a ring with involution can be interpreted as the invariants associated
to a point in a wider topological theory. More precisely, given a simplicial complex K

and ring R with involution, Ranicki has shown how to associate to it certain algebraic
objects, called (R, K)-modules. Using a combinatorial version of Poincaré duality
he constructs a ‘weak chain duality’ on the category of chain complexes of (R, K)-
modules and defines the symmetric L-groups ofK to be the ‘algebraic bordism groups’
of ‘symmetric Poincaré complexes’ in this category. Furthermore he constructs a
symmetric L-theory spectrum L•(R) whose homotopy groups are the symmetric L-
groups of R. This spectrum corresponds to a generalised homology theory whose
homology groups H∗(K;L•(R)) are the symmetric L-groups of K . L-theory plays
an important rôle in surgery theory and the classification of manifolds. The definitive
account of this work is [25].

In short, in both algebraic geometry and algebraic topology one can define gen-
eralised homology theories (in the sense appropriate to each subject) for which the
classical Witt group appears as the zero’th group of a point. It is important to realise
that the dualities involved are rather different in these two cases; in algebraic geom-
etry one only has to extend vector space (free R-module) duality to vector bundles
(locally-free coherent sheaves), but in topology one requires some form of Poincaré
duality. There is another way to extend Witt groups in algebraic geometry where,
rather than considering vector bundles, one considers the derived category of coherent
sheaves equipped with Serre duality – see [4, Example 78].

This paper draws from both these theories in that we apply Balmer’s techniques,
which arose in algebraic geometry, to obtain a new description of symmetric L-theory
for polyhedra.

Survey of results. In slightly more detail, the contents of the paper are as follows.
We begin, in §2, by surveying the basic definitions and properties of Balmer’s Witt
groups of a triangulated category with duality. We elucidate the connection between
symmetric isomorphisms in a triangulated category with duality and Verdier dual
pairings, which are the analogue of symmetric bilinear forms. This section also
contains a new treatment of the appropriate functors between categories with duality,
namely functors which are symmetrically self-dual.

We apply this theory in §3 to construct Witt groups of sheaves on topological
spaces. Suppose X is a locally compact, locally connected Hausdorff space which
is countable at infinity and R a commutative regular Noetherian ring of finite Krull
dimension. Under these conditions there is a (contravariant) Poincaré–Verdier duality
functor from the derived category of sheaves of R-modules on X to itself (see [14,
Chapter 3]). If we restrict to the triangulated subcategory of perfect complexes then it
is an equivalence, and we have a triangulated category with duality in the sense of [1].
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With the further assumption that 2 is invertible, we show that its Witt groups W
p∗ (X)

form a homotopy-invariant functor which satisfies all the axioms of a generalised
homology theory apart from possibly excision.

Let K be a simplicial complex. Its realisation is naturally stratified (see §4.2), and
we denote this stratified space by KS . We can restrict our attention from the perfect
complexes to the triangulated subcategory of complexes which are cohomologically
constructible with respect to the stratification. This subcategory is also preserved
by Poincaré–Verdier duality. Its Witt groups, which we dub the constructible Witt
groups of K and denote Wc∗ (K), form a generalised homology theory for simplicial
complexes and simplicial maps. Simplicial approximation then allows us to obtain
a generalised homology theory for compact polyhedra and continuous maps. The
section ends with a brief discussion of equivariant generalisations and of related
theories defined by altering the constructibility condition.

In §4 we relate the constructible Witt groups Wc∗ (K) of a finite simplicial complex
K to Ranicki’s free symmetric L-groups H∗(K;L•(R)) by exhibiting a natural trans-
formation from the latter to the former. If every finitely generated R-module has a
finite resolution by finitely generated free R-modules then a theorem of Walter’s [31,
Theorem 5.3] shows that the natural transformation induces an isomorphism of point
groups. Hence we obtain isomorphic generalised homology theories for simplicial
complexes.

Finally, §5 explains the geometric nature of the rational (R = Q) theory. We
review Siegel’s work [28] on the bordism groups of PL Witt spaces and construct a
natural transformation from Witt bordism to the constructible Witt groups which is, in
sufficiently high dimensions, an isomorphism. Phrased another way, the constructible
Witt groups are the 4-periodic colimit of the Witt bordism groups. We use this
geometric description, and an adaptation of the construction of L-classes in [24,
§20], to view L-classes as homology operations from the bordism groups of Witt
spaces, or, by the identification of the previous section, from the constructible Witt
groups, to rational homology.

Connections with other work. The isomorphism between certain constructible Witt
groups and free symmetric L-groups constructed in §4 makes it apparent that this paper
is closely related to Ranicki’s work on L-theory. Our sheaf-theoretic approach has
the virtues that it is technically simpler (at least for those familiar with sheaves and
derived categories) and that it directly connects L-theory with the large body of work
on intersection homology, self-dual complexes of sheaves and characteristic classes
for singular spaces.

This is not the first attempt to give a sheaf-theoretic description of L-theory. One
could loosely describe Sections 3 and 4 as a triangulated version of Hutt’s unpub-
lished paper [20], in which he considers the symmetric and quadratic L-groups of
the category of complexes of sheaves with Poincaré–Verdier duality. However, there
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are important differences. By working directly with complexes, rather than in the
derived category, Hutt obtains distinct quadratic and symmetric L-groups. Using the
triangulated approach we require the restriction that 2 is invertible. (Although it is
possible to define Witt groups for triangulated categories of sheaves even when 2 is
not invertible, there is no known proof of the long exact sequence of a pair in this
case, and it seems doubtful that we would obtain a good theory, see [4, §1.5].) This
means that we obtain only one theory, since the quadratic and symmetric L-groups
agree when 2 is invertible. From the point of view of topology, in which we are
most interested in L•(Z) or L•(Z[π1(X)]), the restriction to rings in which 2 is in-
vertible is perhaps unfortunate. However, in compensation for this restriction, the
triangulated theory is considerably simpler and less fiddly to define. The proofs are
quite formal, often based on nothing more than well-known properties of functors
between triangulated categories of sheaves. A case in point is the proof of excision
for Witt groups of constructible sheaves in §3.5. We do not require any of the ma-
chinery of micro-supports involved in Hutt’s work, and thus we are able to obtain a
generalised homology theory for polyhedra and continuous maps without requiring
any assumptions of smoothness.

There is also a close relation, particularly in terms of technique, to Cappell and
Shaneson’s work on self-dual complexes of sheaves, see [12], and to Youssin’s more
formal version [34] for triangulated categories, in which he similarly defines a cobor-
dism relation on self-dual objects in a derived category with duality. However, this
cobordism relation, see [12, §2] for the case of sheaves and more generally [34, Defi-
nition 6.1], is stronger than the relation of Witt-equivalence introduced by Balmer [1,
Definition 2.13] which we use. Another difference is that Cappell and Shaneson work
with a fixed stratification. For this reason one would not expect their cobordism groups
to form a generalised homology theory. To obtain a topologically invariant theory we
take a limit over all stratifications compatible with a given PL structure. Taking into
account these differences, and using [1, Remark 4.25], we see that Cappell and Shane-
son’s cobordism group is a quotient of the Witt group of the triangulated subcategory
of complexes of sheaves which are constructible with respect to a fixed stratification.
In particular, their cobordism groups are always freely generated Abelian groups (see
[12, Theorem 4.7] and [34, Corollary 7.5]) whereas ours can, and frequently do, have
torsion. The relationship between Balmer’s Witt groups and Youssin’s cobordism
groups is discussed in more detail in [11]. (A potential source of confusion is that
Youssin calls his cobordism groups Witt groups. However, it should be noted that
these Witt groups are not the same as Balmer’s and, moreover, Youssin’s cobordism
group of the derived category of R-modules is not in general the Witt group of the
ring R.)

A large part of [12], and also of [6], is concerned with the computation of (in-
tersection cohomology) signatures and, more generally, L-classes, which they show
are invariant under their cobordism relation [12, Proposition 5.2]. Since their cobor-
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dism group is a quotient of our Witt group (provided we use a fixed stratification)
it follows that L-classes are also well defined on the Witt group. We give a direct
geometric construction in §5.2 showing that the L-classes arise as stable homology
operations from the constructible Witt groups to ordinary rational homology. See
also the construction of L-classes for singular varieties in [11].

Further information on the connections between surgery and L-theory, self-dual
sheaves and Witt spaces can be found in the excellent survey [19]. The reader is also
referred to [5], particularly §4, in which a bordism group �SD∗ of self-dual sheaves is
constructed. The bordism relation has both a geometric and an algebraic component,
the latter of which is similar to the cobordism relation in [12]. There is a natural
map from the bordism groups of Witt spaces to �SD∗ (through which the signature
factorises) but it is not immediately clear how the two theories are related.

Acknowledgments. I would like to thank Andrew Ranicki for suggesting the topic
of this paper to me and for patiently reading preliminary drafts and correcting my
many misapprehensions. I would also like to thank the referee and Jörg Schürmann
for their helpful comments and corrections.

2. Balmer’s Witt groups

2.1. Definitions. Let A be a triangulated category. We will assume that it satis-
fies the enriched octahedral axiom discussed in [8, Remarque 1.1.13] and [3]. As
noted in these references, this is satisfied by all known examples of triangulated
categories, in particular by derived categories. It also passes to triangulated subcat-
egories and localisations. The shift functor will be denoted � and exact triangles
written A→ B → C → �A. Throughout we assume that 2 is invertible, i.e., given
α ∈ Hom(A, B) there exists α′ with α = 2α′.

Following Balmer [1, Definition 2.2] we say a pair (D, �) is a δ-duality, where
δ = ±1, if

(1) D is an additive functor D : A → Aop such that for any exact triangle A
α−→

B
β−→ C

γ−→ �A the triangle DC
Dβ−→ DB

Dα−−→ DA
δDγ−−→ �DC is exact and

(2) � is an isomorphism of functors id
�−→ D2 with ��A = ��A and satisfying

the coherence relation
D�A ��DA = idDA (1)

(from which it follows that �DA � D�A = idD3A). We will give another
interpretation of this coherence relation in Example 2.9.

The shift functor in a triangulated category is additive but not triangulated; we
must change an odd number of signs of morphisms to regain an exact triangle from the
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shift of an exact triangle. With this in mind, it is not difficult to see that (�D,−δ�) is
a (−δ)-duality. We will call this the shifted duality. Note that the rth shifted duality
of a 1-duality (D, �) is a (−1)r -duality given by

(�rD, (−1)r(r+1)/2�).

(In fact it is easy to check that whenever (D, �) is a δ-duality then so is (D,−�)

so the sign (−)r(r+1)/2� is purely conventional. Nevertheless, it turns out to be the
more natural choice for reasons which will become apparent in Lemma 2.1 below.)
These shifted dualities will give us the higher Witt groups.

Fix a 1-duality (D, �) on A. A morphism A
α−→ DA is symmetric if the diagram

A
α ��

�(A) ����
��

��
��

DA

D2A

Dα

����������

commutes. More generally, we say a morphism is symmetric of dimension r if it
is symmetric for the rth shifted duality. If α is an isomorphism we say that A is
symmetrically self-dual via α. Symmetric morphisms α and β are said to be isometric
if there is a commutative diagram

A

η

��

α �� DA

B
β

�� DB

Dη

��

in which η is an isomorphism.

Lemma 2.1 (Balmer [1, Theorem 2.6]). Let α : A→ DA be a symmetric morphism.
Then for any choice B of cone on α we can choose a symmetric morphism β of
dimension 1 such that

A

φ(A)

��

α �� DA
α′ �� B

β

��

α′′ �� �A

�φ(A)

��
D2A

Dα
�� DA −�Dα′′

�� �DB
�Dα′

�� �D2A

(whose rows are exact triangles) commutes. Furthermore, if B ′ and β ′ are different
choices for the cone on α and the completing symmetric morphism, then β and β ′ are
isometric.

Note that β is always an isomorphism so that repeating the coning construction
starting with β gives zero.
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We define the rth monoid of symmetric morphisms Symr (A, D, �) to be the
set of isometry classes of symmetric morphisms of dimension r equipped with the
addition arising from direct sum. Taking the cone of a symmetric morphism defines
a coboundary operator

Symr (A, D, �)
d−→ Symr+1(A, D, �)

with d2 = 0.

Definition 2.2 (Cf. Balmer [1, Definition 2.13]). The rth Witt group Wr(A, D, �) is
the quotient of the monoid

ker
(
d : Symr (A, D, �)→ Symr+1(A, D, �)

)
by the submonoid im

(
d : Symr−1(A, D, �)→ Symr (A, D, �)

)
. Usually we sup-

press D and � and simply write Wr(A). The quotient is a group, with−α representing
the additive inverse of the class of α.

The Witt groups of any triangulated category with duality are naturally 4-periodic.
If α : A → DA is a symmetric morphism for (D, �), then the shift �α : �A →
�DA = �2D�A is symmetric for (�2D, �) which is the second shifted duality of
(D,−�). This defines an isomorphism

Wr(A, D, �) ∼= Wr+2(A, D,−�)

which, when repeated, yields the 4-periodicity Wr(A, D, �) ∼= Wr+4(A, D, �).

2.2. Internal structures and symmetric forms. In linear algebra we are familiar
with the correspondence between (symmetric) bilinear forms and (symmetric) maps
from a vector space to its dual. A similar interpretation is possible for the symmet-
ric morphisms defined above, provided we add extra structure to our triangulated
category.

First, we require that A be a symmetric monoidal category. In other words we
have an (additive) tensor product ⊗: A × A −→ A and functorial isomorphisms
σAB : A⊗B → B⊗A, and there is a unit 1 ∈ A with 1⊗A ∼= A for all A. Second,
there should be an internal hom functor

Hom(−,−) : Aop × A→ A

which is compatible with the tensor product in that

Hom(A, Hom(B, C)) ∼= Hom(A⊗B, C)

for all A, B and C. This should be related to morphisms in A by a functor  from A

to Abelian groups with Hom(−,−) ∼=  �Hom(−,−).
Finally we require that the duality is internal, i.e., it is represented by a dualising

object D with respect to the internal hom, so that DA = Hom(A, D).
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Remark 2.3. We can express the internal hom in terms of the tensor product and
duality as

Hom(A, B) ∼= Hom(A, D2B) ∼= Hom(A⊗DB, D) ∼= D(A⊗DB). (2)

An immediate consequence is that Hom(1, A) ∼= D(1⊗DA) ∼= D2A ∼= A. In par-
ticular the dualising object is isomorphic to the dual of the unit: D ∼= Hom(1, D) ∼=
D1.

In the presence of this extra structure we see that there is an isomorphism

� : Hom(A, DB) ∼= Hom(A, Hom(B, D)) ∼= Hom(A⊗B, D).

The following lemma expresses the key properties of this correspondence.

Lemma 2.4. The following diagrams commute:

A⊗B
�(α)

����
��

��
��

�

σAB

��

A⊗B
�(Dα�γ �β)

����
��

��
��

α⊗β

��

DA⊗A
�(idDA)

����
��

��
��

�

σDAA

��

B ⊗A

�⊗id
��

D, D, D .

D2B ⊗A

�(Dα)

����������
A′ ⊗B ′

�(γ )

����������
A⊗DA

�(�A)

�����������

Proof. Exercise! �

It follows that this correspondence takes symmetric morphisms to symmetric bilin-
ear forms, that is β ∈ Hom(A⊗A, D) with β �σAA = β. Symmetric isomorphisms
in Hom(A, DA) correspond to non-degenerate symmetric bilinear forms, which, in
this context, are forms β with the property that

β � (γ ⊗ δ) = 0 for all δ ⇐⇒ γ = 0.

We will also say that a pairing A⊗B → D which corresponds to an isomorphism
A → DB is a Verdier dual pairing. In particular, symmetric isomorphisms yield
Verdier dual pairings.

Remark 2.5. In §3, when we look at Witt groups of sheaves on a topological space,
the relevant triangulated categories will possess all of this additional structure.

In linear algebra we are used to the situation in which the unit 1 and dualising object
D are naturally isomorphic, so that a bilinear form is a map from the tensor product
of an object with itself to the unit. Furthermore there are natural isomorphisms

D(A⊗B) ∼= DA⊗DB,

so that (2) becomes the more familiar Hom(A, B) ∼= DA ⊗ B. Neither of these
further properties will hold in the examples we consider in §3.
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2.3. Functors and duality. What functorial properties do the Witt groups have?
A general triangulated functor F : A → B between triangulated categories with
δ-dualities will not preserve symmetric morphisms, and so cannot be expected to
induce a map of Witt groups. The functor should be ‘symmetrically self-dual’ too.

Note that the functor category Funct(A, B) whose objects are triangulated functors
from A to B and whose morphisms are natural transformations inherits a δ-duality

DA,BF := DB � F �DA (3)

where δA,B = δAδB. There is an associated natural transformation (of morphisms of
functors)�A,B : id→ D2

A,B which applied to a functorF is the natural transformation

�A,B(F )(−) = �B(F �D2
A(−)) � F(�A(−)). (4)

Note that using the commutative square

F
F�A ��

�B(F )

��

FD2
A

�B(FD2
A
)

��
D2

BF
D2

B
F�A

�� D2
BFD2

A

we also have �A,B(F )(−) = D2
BF(�A(−)) � φB(F (−)).

Remark 2.6. Here we must be careful about the meaning of δ-duality since
Funct(A, B) is not naturally triangulated. (This unfortunate situation arises because
the cone on a morphism is not functorial, or, put another way, there is not necessarily
a functor which is the cone on a morphism of functors.) However, Funct(A, B) is
additive, has a well-defined shift operator and we can identify ‘exact triangles’ to be
diagrams of functors F → G→ H → �F such that

FA→ GA→ HA→ �FA

is an exact triangle in B for any A ∈ A.

We define a symmetric morphism of functors to be a morphism of functors, i.e. a
natural transformation, � : F → DA,BF such that

F
� ��

�A,BF 		��
��

��
��

� DA,BF

D2
A,BF

DA,B�



���������

commutes in Funct(A, B). As before we define symmetric morphisms of functors of
non-zero dimension using the shifted dualities on Funct(A, B).
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Remark 2.7. The definition of a symmetric isomorphism of functors is equiva-
lent to Balmer’s definition of a morphism of triangulated categories with duality
in [4, Definition 67]. He specifies that F commute with duality via an isomorphism
η : FDA→ DBF such that

F
F�A ��

�BF

��

FD2
A

ηDA

��
D2

BF
DBη

�� DBFDA

commutes. Given such an η we can define a symmetric isomorphism

F
F�A−−−→ FD2

A

ηDA−−−→ DBFDA

and, conversely, given a symmetric isomorphism we can define such an η.

Proposition 2.8. A symmetric isomorphism of functors � : F → �rDA,BF of di-
mension r induces a map of Witt groups

W ∗(F ) : W ∗(A)→ W ∗+r (B).

If � can be expressed as the boundary of a symmetric natural transformation of
dimension r + 1, i.e., it fits into a diagram in Funct(A, B) of the form of that in
Lemma 2.1, then the induced map of Witt groups is zero.

Proof. We consider the case ∗ = r = 0 since all the others are similar. Choose
a symmetric isomorphism α : A → DAA representing a class in W 0(A). We can
construct a diagram

FA

�BFA

��

Fα ��

�A

��																																			 FDAA
�DAA �� DBFD2

AA
DBF�AA �� DBFA

D2
BFA

D2
B
F�AA

�� D2
BFD2

AA
DB�DAA

�� DBFDAA
DBFα

��

DBFDAα

��

DBFA

whose top row is an isomorphism FA → DBFA and whose bottom row is its
dual. The lower triangle commutes because � is symmetric from F to DA,BF . The
upper triangle commutes because � is a natural transformation and the righthand
square commutes because α is symmetric. Hence we have constructed a symmetric
isomorphism FA→ DBFA representing a class in W 0(B). This is independent of
the choice of representative α.

If the symmetric natural transformation is a boundary we can explicitly construct
a diagram expressing the isomorphism FA → DBFA as a boundary, and hence
representing zero in the Witt group of A. �
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Example 2.9. For any triangulated category A with δ-duality the natural transforma-
tion �A : idA→ D2

A is a symmetric isomorphism of functors because(
DA,A�A ��A,A(idA)

)
(A) = DA (�A(DAA)) ��A(D2

AA) ��A(A)

= idA(D2
AA) ��A(A)

= �A(A)

using the definitions (3) and (4) and the coherence relation (1). Conversely if �A is
symmetric then it satisfies the coherence relation (1). In other words the coherence
relation precisely encodes the symmetry of the natural transformation �A. Yet another
way of phrasing this is that the identity functor is symmetrically self-dual via �A.

Lemma 2.10. If one is given symmetric natural transformations F → DA,BF and
G → DB,CG then they can be composed (in two ways, which agree) to obtain a
symmetric natural transformation

G � F → DB,CG �DA,BF → DA,C(G � F)

where, since

DB,CG �DA,BF = DC �G �D2
B � F �DA

and

DA,C(G � F) = DC �G � F �DA,

the final arrow arises from id→ D2
B. A similar remark holds for symmetric natural

transformations of other dimensions.

Proof. Exercise! �

Remark 2.11. It follows from Example 2.9 and Lemma 2.10 that there is a category
whose objects are triangulated categories with duality and whose morphisms are
symmetrically self-dual functors between them.

2.4. Exact triples and long exact sequences

Definition 2.12. Recall that a full triangulated subcategory A ⊂ B is thick if, when-
ever B ⊕B ′ ∈ A, then B, B ′ ∈ A.

The importance of this concept is that if A is a thick subcategory the quotient
category B/A, which has the same objects as B but in which all morphisms in A

become invertible, inherits a triangulated structure (with respect to which the natural
functor B→ B/A is triangulated). In this situation we say that

A→ B→ B/A (5)
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is an exact triple of triangulated categories. If, in addition, B has a duality which
preserves the subcategory A then A and B/A inherit dualities and the inclusion and
quotient functors are naturally symmetrically self-dual. We say (5) is an exact triple
of triangulated categories with duality.

Theorem 2.13 (Balmer [4, Theorem 73]). Suppose A→ B→ B/A is an exact triple
of triangulated categories with duality in each of which 2 is invertible. Then there is
a long exact sequence of Witt groups

· · · → Wr(A)→ Wr(B)→ Wr(B/A)→ Wr+1(A)→ · · · .

3. Witt groups of sheaves on a topological space

Throughout this section all topological spaces will be assumed to be Hausdorff, locally
compact, locally connected and countable at infinity. We consider Witt groups of
sheaves of R-modules on such spaces, where R is a commutative regular Noetherian
ring of finite Krull dimension in which 2 is invertible.

3.1. Perfect complexes of sheaves. The bounded derived category D(X) of sheaves
of R-modules over a space X is a triangulated category. The left derived functor⊗L

of the tensor product of sheaves (obtained by taking flat resolutions) makes D(X) into
a symmetric monoidal category. The unit is the constant sheaf with stalk R, which we
denote by OX. The right derived functor RHom(−,−) of sheaf hom is an internal
hom for this category. It is related to the morphisms in D(X) via taking the zero’th
hypercohomology, i.e.,

Hom(E , F ) ∼= H 0(X;RHom(E , F )).

These structures satisfy the properties described in §2.2. Furthermore everything is
enriched over the category of R-modules.

The bounded derived category comes equipped with a dualising object DX =
p!Opt where p : X → pt [14, Chapter 3]. However, although there is a natural
transformation

�X : id→ RHom(RHom(−, DX), DX) (6)

it is not in general an isomorphism. Indeed, even over a point and when R is a field
we require finite dimensionality for a vector space to be isomorphic to its double dual.
To fix this we pass to a subcategory. One choice of such a subcategory is the perfect
derived category Dp(X).

Definition 3.1 (Verdier [29]). Let x ∈ X and U be a paracompact neighbourhood
of x. Given E ∈ D(X) let

L(U ; E)→ (U ;I)
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be a projective resolution where E → I is an injective resolution of E . We say E is
perfect if, given U , we can find V ⊂ U such that the restriction factorises

L(U ; E)
restriction ��

��










 L(V ; E)

LU,V



�
�

�
�

�

via a bounded complex LU,V of projective modules of finite type.

For the rings which we allow the following are equivalent [29, Proposition 1.7]:

(1) E is perfect;

(2) for any x ∈ X and neighbourhood U of x there exists a smaller neighbourhood
V such that, for any n ∈ Z, the restriction Hn(U ; E)→ Hn(V ; E) has a finitely
generated image;

(3) for any x ∈ X and neighbourhood U of x there exists a smaller neighbourhood
V such that, for any n ∈ Z, the extension Hn

c (V ; E)→ Hn
c (U ; E) has a finitely

generated image.

We recall some of the properties of perfect complexes.

Proposition 3.2 (Barthel [7, §10]). The full subcategory Dp(X) of perfect complexes
is a triangulated subcategory of D(X). It contains the constant sheaf OX and the
dualising object DX and is preserved by RHom(−, DX). Furthermore the natural
transformation �X of (6) becomes an isomorphism when restricted to Dp(X).

Proposition 3.3 (Verdier [29, Corollary 1.5]). Suppose f : X → Y is a proper
map. Then the derived pushforward Rf∗ : D(X)→ D(Y ) takes perfect complexes to
perfect complexes.

In order to obtain a theory which is functorial we will need to further restrict
our attention to objects of Dp(X) which have compact cohomological support in the
following sense:

Definition 3.4. The cohomological support of a bounded complex of sheaves is
defined to be the union of the supports of its cohomology sheaves. This is clearly a
quasi-isomorphism invariant.

It is an easy exercise to check that the full subcategory D
p
c (X) of objects with

compact cohomological support is triangulated and preserved by duality. In addition,
the natural transformation Rf! → Rf∗ becomes an isomorphism when restricted to
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objects with compact cohomological support and, by Proposition 3.3, we obtain a
functor

Rf! = Rf∗ : Dp
c (X)→ D

p
c (Y ).

Definition 3.5. The perfect Witt group W
p
r (X) of X is defined to be the Witt group

W−r (D
p
c (X)). Note the switch to homological indexing reflecting the fact that the

perfect Witt groups will turn out to be covariant functors.

3.2. Functoriality. What are the functorial properties of the perfect Witt groups
W

p∗ (X)? To answer this question we study the relationship between Verdier dual
pairings and the pushforward with proper support Rf! where f : X → Y is a con-
tinuous map. First we give a criterion for a map E → F to be an isomorphism
in D(X).

Lemma 3.6. A map E → F is an isomorphism in D(X) if, and only if, for all open
U in X the induced map Rp∗ı∗E → Rp∗ı∗F in D(pt) is an isomorphism, where

pt
p←− U

ı
↪→ X.

Proof. This follows from the fact that a map in D(X) is an isomorphism if, and only
if, it induces isomorphisms on all cohomology sheaves. �

Lemma 3.7. Given a map α : E⊗LF → DX there is an induced map

Rp∗ı∗E⊗LRp!ı∗F → Rp!ı∗
(
E⊗LF

)→ Rp!ı∗DX → Dpt

in Dp(pt) for each open U in X, where pt
p←− U

ı
↪→ X and the final map arises from

the identification ı∗DX = DU = p!Dpt and the unit Rp!p! → id of the adjunction.
The map α is a Verdier dual pairing, i.e. induces an isomorphism E → DF , if, and
only if, the induced map is a Verdier dual pairing for every open U .

Proof. This follows directly from the criterion in Lemma 3.6. �

Lemma 3.8. Given a Verdier dual pairing α : E⊗LF → DX and a map f : X→ Y

there is an induced Verdier dual pairing

Rf∗E⊗LRf!F → Rf!
(
E⊗LF

)→ Rf!DX → DY .

Proof. This follows directly from Lemma 3.7 since restriction to an open commutes
with both Rf∗ and Rf!. �
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Proposition 3.9. For any f : X → Y there is a symmetric natural transformation
χf : Rf! → DRf!D of functors Dp(X) → Dp(Y ) which is an isomorphism when
restricted to objects in D

p
c (X). This induces maps

f∗ : Wp∗ (X)→ W
p∗ (Y )

satisfying (f � g)∗ = f∗ � g∗ and id∗ = id.

Proof. Given E ∈ Dp(X) there is a natural Verdier dual pairing E⊗LDE → DX

corresponding to the isomorphism E → D2E . By Lemma 3.8 this yields a Verdier
dual pairing

Rf∗E⊗LRf!DE → DY

corresponding to a natural isomorphism Rf∗E → DRf!DE . We define the required
natural transformation χf on E by precomposing with Rf!E → Rf∗E , which is an
isomorphism if E has compact cohomological support. Symmetry follows from the
symmetry of the natural transformation id→ D2 (see Example 2.9).

The induced map f∗ : Wp∗ (X) → W
p∗ (Y ) is defined as in §2.3. Its properties

follow easily. �

Remark 3.10. If we consider the Witt groups of Dp(X) rather than D
p
c (X) we obtain

a theory ‘with closed supports’ which is functorial under proper maps.

3.3. Homotopy invariance

Proposition 3.11. Suppose h : X × I → Y is a homotopy between f : X→ Y and
g : X→ Y . Then the induced maps f∗ and g∗ from W

p∗ (X) to W
p∗ (Y ) agree.

Proof. We have maps

X × (0, 1)
� � ı ��

q
������������� X × [0, 1]

p

��

X × {0, 1}� �
j��

X.

As q is a projection with smooth fibre of dimension 1 we have q∗DX
∼= �−1DX×(0,1).

Starting with the standard Verdier dual pairing E⊗LDE → DX for E ∈ D
p
c (X) we

obtain a map

q∗E⊗Lq∗DE ∼= q∗
(
E⊗LE

)→ q∗DX
∼= �−1DX×(0,1).

This defines a symmetric natural transformation q∗ → �−1Dq∗D (of dimension−1)
of functors from D

p
c (X) to D(X× (0, 1)). It is easy to check that q∗ preserves perfect
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complexes so that the image is in the full triangulated subcategory Dp(X × (0, 1)).
It follows from Proposition 3.9 that we also have a symmetric natural transforma-
tion χı : Rı! → DRı!D of functors from Dp(X × (0, 1)) to Dp(X × [0, 1]). By
Lemma 2.10 we can compose the two to obtain a symmetric natural transformation

Rı!q∗ → �−1DRı!q∗D

of dimension−1. Note that this will not be an isomorphism, but that we can explicitly
identify the coboundary to be the natural isomorphism Rj∗j∗q∗ → D (Rj∗j∗q∗) D

given by the matrix (
�X 0
0 −�X

)
with respect to the decomposition corresponding to the two components of X×{0, 1}.
Composing with the symmetric natural isomorphism χh we exhibit χf ⊕ (−χg) as a
coboundary. Hence, by the last part of Proposition 2.8, we have f∗ − g∗ = 0. �

3.4. Relative Witt groups and long exact sequences. Suppose j : A ↪→ X is a
closed inclusion. Then Rj! : Dp

c (A)→ D
p
c (X) is the inclusion of a thick subcategory.

It follows from §2.4 that we have an exact triple of triangulated categories with duality

D
p
c (A)→ D

p
c (X)→ D

p
c (X)/D

p
c (A).

Definition 3.12. We define the relative Witt group W
p
r (X, A) to be the (−r)th Witt

group of D
p
c (X)/D

p
c (A).

An immediate consequence of Balmer’s theorem (Theorem 2.13) is that we obtain
a long exact sequence

· · · → W
p
r (A)→ W

p
r (X)→ W

p
r (X, A)→ W

p
r−1(A)→ · · · . (7)

Remark 3.13. The functoriality and homotopy invariance of the perfect Witt groups
can be extended to the relative groups.

3.5. Constructibility and excision. The axiom of a generalised homology theory
with which we have not yet dealt is excision. We would like to know that if U ⊂
A� ⊂ X (with U open and A closed) then the map

W
p∗ (X − U, A− U)→ W

p∗ (X, A)

induced by inclusion of pairs is an isomorphism. The simplest proof would be to
show that the functor

D
p
c (X − U)/D

p
c (A− U)→ D

p
c (X)/D

p
c (A)
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induced from extension by zero is an equivalence. Unfortunately, this does not seem
easy (and indeed may not be true without further assumptions). This is the same
difficulty confronted in Hutt’s paper [20] and we resolve it in a similar way, by
restricting both the types of space and of sheaves that we consider.

Henceforth all our spaces and maps will be (topologically) stratified in the sense
of [17, §1]. A space X with a given stratification S will be denoted by XS . Let
Dc(XS) denote the full triangulated subcategory of D(X) consisting of complexes of
sheaves whose cohomology is constructible with respect to S (in the sense of [17,
§1]). Recall from [17, §1] that for any stratified space XS

(1) Dc(XS) is triangulated;

(2) Dc(XS) ⊂ Dp(X);

(3) the dualising object DX ∈ Dc(XS);

(4) duality preserves Dc(XS).

It follows that both Dc(XS) and the full subcategory Dc
c(XS) of objects with compact

cohomological support are triangulated categories with duality.

Definition 3.14. For a stratified space XS we define the constructible Witt groups
Wc∗ (XS) = W∗(Dc

c(XS)).

If f : XS → YT is a stratified map then it induces a functor Rf∗ : Dc(XS) →
Dc(YT ) with a left adjoint f ∗ : Dc(YT ) → Dc(XS) and, dually, Rf! with a right
adjoint f !. The natural map Rf! → Rf∗ becomes an isomorphism on Dc

c(XS). For
the special case of a complementary pair of open and closed inclusions

US
ı

↪→ XS

j←↩ AS

we obtain ‘glueing data’:

Dc(US)
Rı∗ , Rı! ��

Dc(XS)
j∗ , j ! ��

ı∗=ı!
�� Dc(AS)

Rj!=Rj∗
��

obeying the usual relations, see, for example, [15, Chapter 5 §3.9.1].
By making small modifications to our previous arguments we can show that the

constructible Witt groups are functorial under stratified maps, and are stratified ho-
motopy invariants. (Stratified maps f, g : XS → YT are stratified homotopic if there
is a homotopy h from f to g which is a stratified map

h : X × [0, 1] → YT

where the stratification of X×[0, 1] is the product of the given stratification of X and
the obvious stratification of [0, 1] by the interior and endpoints.) Closed stratified
inclusions induce long exact sequences involving the relative groups Wc∗ (X, A) =
W∗(Dc

c(X)/Dc
c(A)).
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Lemma 3.15. If US ⊂ A�S ⊂ XS are stratified inclusions (with U open and A closed)

then we have an equivalence

Dc
c(XS−US)

Dc
c(AS−US)

Rj∗ �� Dc
c(XS)

Dc
c(AS)

j∗
��

where j : X − U ↪→ X.

Proof. We have j∗Rj∗ ∼= id and there is a triangle

Rı!ı! → id→ Rj∗j∗ → �Rı!ı!

in Dc
c(X) where ı : U ↪→ X. Since U ⊂ A� we see that Rı!ı! ∼= 0 as an endofunctor

of Dc
c(XS)/Dc

c(AS) and so Rj∗j∗ ∼= id too. �

We immediately obtain

Corollary 3.16. The constructible Witt groups satisfy excision for stratified maps.

3.6. Constructible Witt groups of polyhedra. Let K be a simplicial complex. Its
realisation is naturally stratified (see §4.2), and we denote this stratified space by KS .
(The underlying topological space is just the realisation |K| but we want to remember
the stratification.) We write Dc(KS) for the constructible derived category of sheaves
on KS . The realisation of a simplicial map K → L is a stratified map with respect
to these natural stratifications. Furthermore

Lemma 3.17. If simplicial maps f, g : K → L are contiguous then their realisations
|f | and |g| are stratified homotopic.

Proof. We can reduce to the case when K consists of a single simplex. Interpolating
linearly between f and g then gives the desired stratified homotopy. �

Since the constructible Witt groups are stratified homotopy invariant functors (see
§3.5) it follows from this lemma that we obtain combinatorial homotopy invariant
functors K �→ Wc

i (KS) from the category of simplicial complexes and simplicial
maps.

Theorem 3.18. For a commutative regular Noetherian ring R of finite Krull di-
mension in which 2 is invertible the constructible Witt groups form a combinatorial
generalised homology theory on simplicial complexes and maps.

Proof. We have already seen that the constructible Witt groups define combinatorial
homotopy invariant functors. It remains to check that they satisfy excision and that
there is a relative long exact sequence associated to any pair. Excision follows from
Corollary 3.16 since the realisation of a simplicial map is stratified. The long exact
sequences for pairs arise as in §3.4. �
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Note that whenever K ′ is a refinement of a simplicial complex K then there is an
induced inclusion Dc(KS) ↪→ Dc(K ′S) of triangulated categories with duality.

Definition 3.19. Suppose X is a compact polyhedron, i.e. a compact Hausdorff topo-
logical space with a chosen family of compatible triangulations, any two of which
have a common refinement. We define the constructible derived category

Dc
c(X) = colim|K|=XDc(KS).

This is a triangulated category and inherits a duality. (It is unfortunate, but seem-
ingly unavoidable, that the term ‘triangulated’ is used here in both the geometric and
categorical senses.) We denote the Witt groups of this category by Wc∗ (X) and call
them the constructible Witt groups of X. They are independent of any particular
triangulation. In fact

Theorem 3.20. For a commutative regular Noetherian ring R of finite Krull dimen-
sion in which 2 is invertible the constructible Witt groups Wc

i (−) form a generalised
homology theory on compact polyhedra and continuous maps. In particular they are
homotopy invariant functors.

Proof. First of all we need to consider functoriality. Suppose f : X → Y is a
continuous map of compact polyhedra. Given any triangulations K and L of X

and Y respectively the simplicial approximation theorem says that we can find a
refinement K ′ and a simplicial approximation K ′ → L of f . Furthermore any
two such approximations are combinatorially homotopic. Since the constructible
Witt groups of simplicial complexes are combinatorial homotopy invariant functors
it follows that the constructible Witt groups of polyhedra are homotopy invariant
functors.

Excision and the existence of long exact sequences for pairs now follow from the
combinatorial analogues. �

Remark 3.21. Note that it follows that if K is a triangulation of the compact poly-
hedron X then the inclusion Dc

c(KS) ↪→ Dc
c(X) induces isomorphisms Wc

i (KS) ∼=
Wc

i (X) for all i.

Remark 3.22. Since constructible sheaves are perfect Dc
c(X) includes in D

p
c (X) and

thence there are maps Wc∗ (X) → W
p∗ (X). The extent to which these fail to be

isomorphisms measures the failure of the perfect Witt groups to be a generalised
homology theory. Indeed, since the direct sum of two sheaves is locally constant
if, and only if, both summands are locally constant, we see that Dc(K) is a thick
subcategory of D

p
c (X). It follows from Theorem 2.13 that there is a long exact

sequence

· · · → Wc
i (X)→ W

p
i (X)→ W−i (D

p
c (X)/Dc

c(X))→ Wc
i−1(X)→ · · ·
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relating the constructible and perfect Witt groups of a polyhedron. Unfortunately I
do not know of an example in which the relative term is non-zero.

3.7. Products. In this section we assume that R is a field. For any stratified space,
and thence for a polyhedron X, the derived tensor product⊗L preserves constructible
complexes. Thus given polyhedra X and Y we can define an external tensor product

� : Dc
c(X)× Dc

c(Y )→ Dc
c(X × Y ),

(E , F ) �→ p∗E⊗Lq∗F ,

where p and q are the projections onto X and Y respectively.
The product category Dc

c(X)×Dc
c(Y ) inherits a product duality given by (E , F ) �→

(DXE , DY F ). The dualising object DX×Y
∼= DX � DY (this is essentially the

Künneth theorem – see [17, §1.12] or [10, p. 181]). Hence, using [27, Corollary 2.0.4],
we have

D(E � F ) ∼= RHom(E � F , DX×Y )

∼= RHom(E � F , DX � DY )

∼= RHom(E , DX) � RHom(F , DY )

∼= DE � DF .

In other words � intertwines the product duality with the standard Poincaré–Verdier
duality on Dc

c(X×Y ). It follows that the external tensor product is a map of categories
with duality and so induces maps

Wc
i (X)×Wc

j (Y )→ Wc
i+j (X × Y ).

These are easily seen to factorise through the tensor product so that we have a graded
product

Wc∗ (X)⊗Wc∗ (Y )→ Wc∗ (X × Y ).

In particular Wc∗ (X) is always a Wc∗ (pt)-module. This product can be extended to
relative groups.

3.8. Generalisations and related theories. We briefly touch upon some of the
possible generalisations and other theories which can be constructed using similar
techniques. The first remark is that everything can be done equivariantly. Suppose that
a group G acts (piecewise-linearly) upon a polyhedron X. Then there is an equivariant
constructible derived category DG,c(X) of sheaves on X (see [9]), equipped with an
equivariant Poincaré–Verdier duality. The G-equivariant constructible Witt groups
of X are the Witt groups of this category. Rewriting our previous arguments, using
the technology of functors between equivariantly constructible derived categories of
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sheaves developed in [9], we see that these are functorial for equivariant maps, are
equivariant homotopy invariants etc. (The hard work is in the construction of the
equivariant derived category, once we have that the definition and properties of the
Witt groups are routine.)

In a different direction, we can define new theories by restricting the allowed
stratifications. For a complex algebraic variety V the Witt groups of the derived
category DC−c(V ) of sheaves whose cohomology is constructible with respect to a
stratification of V by complex algebraic varieties are considered in [33], [11]. The
Riemann–Hilbert correspondence provides us with an alternative description for these
groups as the Witt groups of the derived category of regular holonomic D-modules
on V .

One can also study the constructible Witt groups Wc∗ (XS) of a stratified space
(with fixed stratification) in their own right, rather than using them as a tool to obtain
a stratification-invariant theory as we have done. This is the approach taken in [12],
where they obtain a powerful ‘decomposition theorem up to cobordism’ [12, Theo-
rem 4.7] by identifying a set of generators of their cobordism group which correspond
to irreducible self-dual perverse sheaves supported on the strata.

4. L-theory and constructible Witt groups

We relate the constructible Witt groups of a simplicial complex to the free symmetric
L-groups, showing that, under certain conditions, they are isomorphic.

In this section R will be a commutative ring and K a finite simplicial complex.

4.1. (R, K)-modules and L-theory. In [26] Ranicki and Weiss define an (R, K)-
module to be a finitely generated free R-module A with a direct sum decomposition

A =
⊕
σ∈K

A(σ)

into free R-modules. A map of (R, K)-modules is an R-module morphism α : A→
B such that

α(A(σ)) ⊂
⊕
τ≥σ

B(τ).

(Here we regard σ ≤ τ if σ is a face of τ .) More concisely, if we regard K as a category
with objects the simplices and morphisms the face inclusions, then an (R, K)-module
is a functor from Kop to free R-modules and a map of (R, K)-modules is a natural
transformation. The category (R, K)-Mod of (R, K)-modules is a full subcategory
of the functor category Funct(Kop, R-Mod).
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Example 4.1. Define a chain complex �(X) of (R, K)-modules by

�(X)i(σ ) =
{

R, i = − dim σ,

0, i �= − dim σ.

Thus �(X)(U) is the group of simplicial cochains on U re-graded as a chain complex.
The differentials are the coboundary maps.

The category (R, K)-Mod is additive and has a natural chain duality in the sense
of [25, Definition 1.1], i.e. a functor T which takes an (R, K)-module to a bounded
complex of (R, K)-modules:

T (A) = HomR(Hom(R,K)(�(X), A), R)

(with the (R, K)-module structure given by

T (A)i(σ ) =
{⊕

τ≥σ HomR(A(τ), R), i = − dim σ,

0, i �= − dim σ)

and a natural transformation e : T 2 → 1 satisfying

(1) e(T A) � (T (e(A)) = 1 and

(2) e(A) is a chain equivalence.

Example 4.2. For σ ∈ K define an (R, K)-module Cσ by

Cσ (τ) =
{

R, τ = σ,

0, τ �= σ.

Then T Cσ is the chain complex of (R, K)-modules with

(T Cσ )i(τ ) =
{

R, τ ≤ σ and i = − dim τ,

0, otherwise.

and differentials given by the coboundary maps.

We will write Com(R, K) for the category of bounded chain complexes of (R, K)-
modules and chain maps. Since we are working with chain complexes, and not
cochain complexes as elsewhere in this paper, � will denote the right shift functor,
i.e., for A ∈ Com(R, K) we have (�A)i = Ai−1. The chain duality T extends to a
duality on Com(R, K) with � � T = T ��−1 (see [25, p. 26]).
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Definition 4.3. An n-dimensional symmetric Poincaré complex is an element A ∈
Com(R, K) together with a collection of maps

{φs ∈ Hom(T A, �s−nA) : s ≥ 0}
such that φ0 is an (R, K)-module chain equivalence (i.e. φ0(σ ) is a quasi-isomorphism
of chain complexes of R-modules for each σ ) and, for s ≥ 0,

φs + (−1)s+1e(�s−nA) ��s−nT (φs) = ∂�s−nA � φs+1 + φs+1 � ∂T A.

The idea is that φ0 is an (R, K)-module chain equivalence which is symmetric up to
a homotopy φ1, which in turn is symmetric up to a homotopy φ2, and so on.

Definition 4.4. The free symmetric L-group Hn(K;L•(R)) is an Abelian group gen-
erated by the n-dimensional symmetric Poincaré complexes modulo the algebraic
cobordism relation defined in [25, Definition 1.7]. It is the homology group of the
symmetric L-theory spectrum L•(R) in [25, Proposition 14.5].

A simplicial map f : K → L induces a pushforward f∗ from (R, K)-Mod to
(R, L)-Mod given by

(f∗A)(σ) =
⊕

f (τ)=σ

A(τ)

or, equivalently considering A ∈ Funct(Kop, R-Mod), by composing with the map
f op : Kop → Lop. This yields a map f∗ : H∗(K;L•(R))→ H∗(L;L•(R)), making
the free symmetric L-groups functorial. In fact they form a generalised homology
theory – see [25, §12–14].

4.2. Combinatorial and constructible sheaves. In order to relate the free sym-
metric L-groups to the constructible Witt groups we need to establish a relationship
between (R, K)-modules and constructible sheaves. This is done by relating both to
combinatorial sheaves on K , which we now describe.

We can topologise K by defining a subset of simplices to be open if, and only if, it
is upwardly closed, i.e., a set U is open if, and only if, τ ∈ U whenever there is some
σ ≤ τ with σ ∈ U . There is a unique smallest open set containing any simplex σ ,
namely the star st(σ ) =⋃

τ≥σ τ . The stars form a base for this topology.
We will use the term combinatorial sheaf on K to describe a sheaf of finitely gen-

erated R-modules in this topology and denote the category of combinatorial sheaves
by Sh(K).

Lemma 4.5. Combinatorial sheaves are precisely functors from K to the category
of finitely generated R-modules. Maps of combinatorial sheaves are natural trans-
formations.
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Proof. A combinatorial sheaf E is equivalent to the following data: a finitely gener-
ated R-module E(st(σ )) for each basic open set st(σ ) and a set of compatible maps
E(st(σ ))→ E(st(τ )), one for each inclusion st(τ ) ⊂ st(σ ). Since st(τ ) ⊂ st(σ ) if,
and only if, τ ≥ σ it is clear that the assignment

σ �→ E(st(σ ))

defines a functor. Conversely, a functor defines a combinatorial sheaf. The final
statement follows easily. �

The geometric realisation |K| of K has a natural stratification with strata the Sσ

where Sσ = |σ |−|∂σ |. As in §3.6, when we want to emphasize that |K| is a stratified
space we denote it by KS . We say a sheaf E of finitely generated R-modules on KS

is constructible if the restriction E |Sσ is constant for each σ ∈ K and denote the
subcategory of constructible sheaves of finitely generated R-modules by Shc(KS).

There is a continuous map s : KS → K given by x �→ σ where x ∈ Sσ .

Lemma 4.6. The category of combinatorial sheaves on K is equivalent, indeed
isomorphic, to the category of constructible sheaves on KS via:

ShKS

s∗ ��
ShK.

s∗
��

Proof. For E ∈ Shc(KS) we have (s∗E)σ = s∗E(st(σ )) = E(|st(σ )|) and for F ∈
Sh(K) we have (s∗F )x = Fsx = Fσ = F (st(σ )) where x ∈ Sσ . In particular, note
that s∗F is a constructible sheaf. Hence we have, on the one hand, (s∗s∗F )σ =
s∗F (|st(σ )|) = F (st(σ )) = Fσ and, on the other, (s∗s∗E)x = (s∗E)σ = E(|st(σ )|)
where x ∈ Sσ . Now there is clearly a map

E(|st(σ )|)→ Ex

and, since |st(σ )| is a union of contractible strata on each of which E is constant, it is
an isomorphism. Hence s∗s∗ and s∗s∗ are both the identity. �

The pullback s∗ extends to a triangulated functor

s∗ : D(K)→ Dc(KS) (8)

where D(K) is the bounded derived category of Sh(K). Note that we do not need,
or claim, that this is an equivalence because Dc(KS) consists of cohomologically
constructible complexes and is not necessarily equivalent to D(Shc(KS)).
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4.3. From L-groups to Witt groups. We now explain how to construct a natural
transformation from the free symmetric L-groups to the constructible Witt groups.

Lemma 4.7. There is a fully faithful functor from (R, K)-Modop to ShK which takes
an (R, K)-module A to the combinatorial sheaf A with

A(U) =
⊕
σ∈U

Hom(A(σ), R)

(with restriction maps given by the obvious projections). Furthermore this functor is
natural in the sense that it takes the pushforward f∗A of an (R, K)-module under a
simplicial map f to the pushforward f∗A of the corresponding combinatorial sheaf.

Proof. This follows immediately from the above description of the category of com-
binatorial sheaves as functors from K to R-Mod and the fact that (R, K)-modules
form a full subcategory of Funct(Kop, R-Mod). �

Clearly we can extend this to a functor taking chain complexes of (R, K)-modules
to cochain complexes of combinatorial sheaves. Composing this with the functor (8)
from D(K) to Dc(KS) we obtain a functor

F : Com(R, K)op → Dc(KS).

Suppose that R is regular, Noetherian and of finite Krull dimension so that there
is a Poincaré–Verdier duality functor D : Dc(KS)op → Dc(KS). Then we have

Lemma 4.8. The functor F commutes with duality, i.e., F � T = D � F .

Proof. The statement of the lemma needs clarification since the Poincaré–Verdier
dual is only defined up to isomorphism in Dc(KS). Thus, in order to make sense
of the statement, we need to specify representative complexes of sheaves for each
D �F(A). Note that it is sufficient to do this for each (R, K)-module of the form Cσ

with

Cσ (τ) =
{

R, τ = σ,

0, τ �= σ.

and that it suffices to prove that F � T (Cσ ) = D � F(σ) for each σ ∈ K .
We have F(Cσ ) = j∗j∗OKS

where j : |σ̄ | ↪→ KS is the inclusion and OKS
the

constant sheaf with stalk R on KS . Hence D�F(Cσ ) is isomorphic to the pushforward
j∗D|σ | of the dualising complex on |σ |. We can choose to represent it by the complex
s∗C of sheaves where C−i is the combinatorial sheaf with

C−i (st(τ )) = {i-chains on st(τ ) ∩ σ }
and with the boundary maps as differentials (see [17, §1.12]). From Example 4.2 we
see this is precisely F � T (Cσ ). �



Vol. 83 (2008) Witt groups of sheaves on topological spaces 315

Suppose now, in addition to R being regular, Noetherian and of finite Krull dimen-
sion, that 2 is invertible so that the constructible Witt groups form a generalised
homology theory by Theorem 3.20.

Theorem 4.9. F induces a natural transformation H∗(−;L•(R))→ Wc∗ (−).

Proof. We sketch the proof leaving the reader to check the details. Recall that the free
symmetric L-group Hn(K;L•(R)) is given by the cobordism classes of n-dimensional
symmetric Poincaré complexes in Com(R, K). Using Lemma 4.8 we see that an n-
dimensional symmetric Poincaré complex maps under F to a complex of sheaves
in Dc(KS) equipped with a morphism to the (−n)th shift of its Poincaré–Verdier
dual. The conditions in Definition 4.3 guarantee that this map will be a symmetric
isomorphism. Thus it generates a class in Wc

n(KS). Furthermore we can check that
cobordant symmetric Poincaré complexes give rise to the same class in Wc

n(KS).
Naturality follows from the last part of Lemma 4.7. �

Corollary 4.10. Assume that R is a regular Noetherian ring of finite Krull dimen-
sion in which 2 is invertible and further that we can resolve any finitely generated
R-module by a finite complex of finitely generated free R-modules. Then for a finite
simplicial complex K there is a natural isomorphism H∗(K;L•(R))→ Wc∗ (K).

Proof. The free symmetric L-groups are a generalised homology theory. By The-
orem 3.20 the assumption on R guarantees that the constructible Witt groups are
defined and are also a generalised homology theory. Since K is a finite simplicial
complex it is sufficient to check that we obtain an isomorphism for a point.

Let T be the triangulated category obtained by inverting chain equivalences in the
category Com(R, pt) of complexes of finitely generated free R-modules. Walter’s
theorem [31, Theorem 5.3] tells us that

H∗(pt;L•(R)) ∼= W−n(T).

Since, by assumption, every finitely generated module has a finite resolution by
finitely generated free R-modules the inclusion of T into the derived category of
finitely generated modules, i.e. into Dc(pt), is an equivalence. Hence we also have
W−n(T) ∼= W−n(Dc(pt)) ∼= Wc

n(pt) as required. �

The conditions of the corollary are satisfied if, for example, R is a principal ideal
domain, a polynomial ring over a field or a Noetherian local ring and 2 is invertible
in R. In particular, they are satisfied when R = Q and this is the case we study in the
next section.



316 J. Woolf CMH

5. Rational coefficients, Witt spaces and L-classes

We work in the PL-category – all spaces in this section are polyhedra and all maps
are piecewise linear. We discuss properties of the constructible Witt groups in the
special case when the ring R is the rationals Q. All coefficients in homology and
cohomology groups are also rational.

In §5.1 we interpret the corresponding generalised homology theory Wc∗ (−;Q)

geometrically as the bordism theory of Witt spaces. Then, in §5.2, we show that the
constructible Witt groups form the natural domain of definition for L-classes.

5.1. Witt spaces and bordism. Let X be an n-dimensional polyhedron. X is a (PL)
n-pseudomanifold if there is a closed subspace Y with dim Y ≤ n−2 such that X−Y is
an n-manifold which is dense in X. An n-pseudomanifold with (collared) boundary
is a pair (X, ∂X) such that X − ∂X and ∂X are pseudomanifolds, of respective
dimensions n and n− 1, and a neighbourhood of ∂X in X is (PL)-homeomorphic to
∂X × [0, 1).

Remark 5.1. In terms of triangulations, X is an n-pseudomanifold if, for any tri-
angulation, X is the union of the n-simplices and each (n − 1)-simplex is a face of
exactly two n-simplices. (X, ∂X) is an n-pseudomanifold with boundary if, for any
triangulation, X is the union of the n-simplices, each (n− 1)-simplex is a face of at
most two n-simplices, and the set of (n− 1)-simplices which are the face of only one
n-simplex forms an (n− 1)-pseudomanifold ∂X.

A pseudomanifold X is orientable if, and only if, X − Y is orientable. If X is an
oriented pseudomanifold we denote the oppositely oriented pseudomanifold by X.
A compact oriented n-pseudomanifold carries a fundamental class [X] ∈ Hn(X) so
there is a well defined pairing

Hi(X)⊗Hn−i (X)→ Hn(X)
〈−,[X]〉−−−−−→ Q. (9)

Thus we can ask, for what class of pseudomanifolds is this non-degenerate, i.e., does
Poincaré duality hold? Of particular interest are those X for which local Poincaré
duality holds (from which the global version follows), namely the rational homology
manifolds.

The intersection cohomology groups IH∗(X) of a pseudomanifold X were intro-
duced in [16] to study singular spaces. Their key property is that there is an analogous
pairing

IH i (X)⊗ IHn−i (X)→ Hn(X)
〈−,[X]〉−−−−−→ Q. (10)

for a compact, oriented n-pseudomanifold X, which is non-degenerate for a wider
class of spaces than (9). In particular there is an interesting class of spaces for which
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the local (and hence the global) version of this intersection cohomology Poincaré
duality holds; these are the Witt spaces.

Definition 5.2 (Siegel [28, I.2]). The link of a point x in an n-pseudomanifold X

is an (n − 1)-pseudomanifold. It is unique up to PL-homeomorphism and is PL-
homeomorphic to the join Sd(x)−1 ∗ L(x) where L(x) is a pseudomanifold, again
unique up to PL-homeomorphism, of dimension l(x) = n− d(x)− 1. The pseudo-
manifold X is a Witt space if IH l(x)/2(L(x)) = 0 for all x ∈ X with l(x) even. A Witt
space with boundary is a pseudomanifold with boundary (X, ∂X) where X is a Witt
space (in which case it follows that ∂X is also a Witt space).

Remark 5.3. If we stratify X, for instance by choosing a triangulation, then it is a
Witt space if, and only if, for every (2k + 1)-codimensional stratum S the middle
dimensional intersection cohomology IHk(L(S)) of the link L(S) of the stratum
vanishes. There is no condition on strata of even codimension.

Examples 5.4. Clearly any manifold is a Witt space. Any pseudomanifold which can
be stratified with only even dimensional strata, for instance any complex projective
variety, is also a Witt space.

Definition 5.5. Given a pair (X, A) let Witt/(X, A) be the category of Witt spaces
over (X, A) whose objects are compact oriented Witt spaces with boundary (W, ∂W),
equipped with a map of pairs f : (W, ∂W)→ (X, A). The morphisms are commuting
diagrams

(W, ∂W)

f 		





�� (W ′, ∂W ′)

f ′����
��

��
��

(X, A).

Definition 5.6. Objects (W, ∂W) and (W ′, ∂W ′) in Witt/(X, A) which share a com-
mon, but oppositely oriented, boundary component V can be glued together to form
a new Witt space

(W ∪V W ′, (∂W − V ) � (∂W ′ − V ))

over (X, A).

Definition 5.7. Isomorphism classes of Witt spaces over (X, A) form a monoid under
disjoint union �. It is graded by dimension. The bordism group of Witt spaces
�Witt∗ (X, A) is the quotient of this monoid by the submonoid generated by spaces
(W, ∂W) such that there exist (W ′, ∂W ′) ∈Witt/(A, A) and (V , ∂V ) ∈Witt/(X, X)

with
∂W ′ = ∂W and W ∪∂W W ′ = ∂V .
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This is an Abelian group: (W, ∂W)× [0, 1] is a Witt space with boundary

W ∪∂W (∂W × [0, 1]) ∪∂W W.

Hence the class of (W, ∂W) � (W, ∂W) is zero in the bordism group.

The bordism groups of Witt spaces form a generalised homology theory in the
usual way. Siegel [28] identifies the point groups as follows. Given a 4k-dimensional
Witt space X (for k > 0) the intersection pairing

IH2k(X)⊗ IH2k(X)→ Q

defines a non-degenerate symmetric rational bilinear form IX. The assignment

X �→ [IX] ∈ W(Q)

descends to an isomorphism �Witt
4k
∼= W(Q) from the bordism group of 4k-dimen-

sional Witt spaces for k > 0. Apart from �Witt
0 , all the other bordism groups vanish:

�Witt
i
∼=

⎧⎪⎨
⎪⎩

Z, i = 0,

W(Q), i = 4k, k > 0,

0, otherwise.

(The appearance of the rational Witt group W(Q) explains the name Witt spaces.)

Remark 5.8. The structure of the rational Witt group is well-known; see, for example,
[4, Example 42] or the classic [23]. It is

W(Q) ∼= Z
⊕

primes p

W(Zp)

where

W(Zp) ∼=

⎧⎪⎨
⎪⎩

Z2, p = 2,

Z2 ⊕ Z2, p = 1 mod 4,

Z4, p = 3 mod 4.

The inital Z corresponds to the signature of the form.

Siegel’s result allows us to interpret the constructible Witt groups of a polyhedron
geometrically. We work relative to a fixed polyhedron X. Let f : Y → X be a
compact i-dimensional pseudomanifold over X. In [17] Goresky and MacPherson
construct an object �C(Y ) ∈ Dc

c(Y ) whose hypercohomology is the intersection
cohomology of Y . When Y is a compact oriented Witt space they also construct a
symmetric Verdier dual pairing

�C(Y )⊗ �C(Y )→ �−iDY (11)

or, equivalently, a symmetric isomorphism �C(Y )→ �−iD�C(Y ).
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Remark 5.9. Unfortunately, there are several indexing conventions for the intersec-
tion cohomology complex �C(X) on a pseudomanifold X which differ by shifts. For
us �C(X) will be an extension of the constant sheaf QU on the nonsingular part U of
X placed in degree 0. This is in contrast to the convention in [17] where �C(X) is an
extension of �dim XQU . Our convention has the advantage that the ith intersection
cohomology group is the ith hypercohomology of �C(X):

IH i (X) = Hi(X;�C(X))

For a reduced space the above symmetric isomorphism is unique up to sign (cor-
responding to the two choices of orientation). We refer to this as the Goresky–
MacPherson isomorphism.

Definition 5.10. If Y → X is a compact oriented i-dimensional Witt space over X

then the derived pushforward of the symmetric isomorphism �C(Y )→ �−iD�C(Y )

yields a representative for a class in Wc
i (X) which we denote [Y ]W . In particular, if

X is itself a Witt space, then it carries a Witt orientation [X]W ∈ Wc
dim X(X).

Lemma 5.11. Suppose Z→ X is a compact oriented (i+1)-dimensional Witt space
over X with boundary ∂Z = Y . Then [Y ]W = 0 ∈ Wc

i (X).

Proof. This follows from Poincaré–Lefschetz duality for intersection cohomology.
More formally, let ı : Z − ∂Z ↪→ Z and j : ∂Z ↪→ Z be the inclusions. By
Proposition 3.9 there is a natural symmetric morphism Rı! → Rı∗ of functors
Dc(Z−∂Z)→ Dc

c(Z). As in §3.3 we can explicitly identify the cone as a symmetric
isomorphism

Rj∗j∗Rı∗ → �DRj∗j∗Rı∗D. (12)

Since Z − ∂Z is a Witt space we have a symmetric isomorphism

�C(Z − ∂Z)→ �−i−1D�C(Z − ∂Z) (13)

in Dc(Z − ∂Z). Standard results show that Rj∗j∗Rı∗�C(Z − ∂Z) ∼= Rj∗�C(∂Z).
Further the symmetric isomorphism

Rj∗�C(∂Z)→ �−iDRj∗�C(∂Z)

arising from (12) and (13) is, by the uniqueness alluded to in Remark 5.9, the Goresky–
MacPherson isomorphism for ∂Z. The result follows from the second part of Propo-
sition 2.8. �

Corollary 5.12. For a compact polyhedron X there are natural maps

�Witt
i (X)→ Wc

i (X) (14)

which are isomorphisms for i > dim X.
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Proof. The existence of the maps follows directly from the above lemma. Both �Witt∗
and Wc∗ are generalised homology theories. It follows from [2, Theorem 5.6] that

Wc
i (pt) ∼=

{
W(Q), i = 0 mod 4,

0, i �= 0 mod 4.

Siegel’s result then shows that (14) holds when X is a point. A standard induction
over the number of simplices in a triangulation of X completes the proof. �

We can rephrase the connection between constructible Witt groups and Witt bor-
dism as follows. Note that the product of two Witt spaces is also a Witt space and the
(external) product structure on Witt groups discussed in §3.7 arises from the evident
product

Witt/(X, A)×Witt/(Y, B)→Witt/(X × Y, A× Y ∪X × B). (15)

The 4-periodicity of the constructible Witt groups arises from taking the product with
the class of CP2 in �Witt

4 (pt) ∼= Wc
4 (pt). It follows from the above corollary that the

sequence
�Witt

i (X)→ �Witt
i+4(X)→ �Witt

i+8(X)→ · · ·
arising from taking products with CP2 stabilises, and that

Wc
i (X) ∼= colimk→∞Wc

i+4k(X) ∼= colimk→∞�Witt
i+4k(X). (16)

Thus, stably, up to Witt-equivalence, every symmetrically self-dual complex of
sheaves is ‘of geometric origin’, i.e. arises as the pushforward of the intersection
cohomology complex on a Witt space. Bordism invariants of Witt spaces over X

which are stable under product with CP2 correspond to Witt-equivalence invariants
of self-dual complexes of sheaves in Dc

c(X).

5.2. L-classes. As an example of the utility of the geometric interpretation of the
constructible Witt groups as bordism groups we show how it can be used to view
L-classes as homology operations from the rational constructible Witt groups to ra-
tional homology. It should be noted that this is not the only way to proceed; a more
sophisticated approach to the definition of L-classes is taken in [12, §5] (based on
[13]), and this could be used to give alternative proofs of the results below. We work
in the PL category; see [16] and [6] for analogous accounts of L-classes for Whitney
stratified Witt spaces.

Mimicking the approach to defining combinatorial Pontrjagin classes for rational
homology manifolds in [24, §20] we obtain the following analogue of [24, Lem-
mas 20.3 and 20.4]. (We have stated a relative version of the result but this is an easy
extension, see [24, p. 242].)
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Proposition 5.13. Let (W, ∂W) be an oriented n-dimensional PL Witt space with
boundary, Si the standard PL i-sphere and f : (W, ∂W)→ (Si, p) a PL map where
p ∈ Si . Then for all q not in some proper closed PL subspace of Si the fibre f−1(q)

is an oriented PL Witt subspace (with boundary) of W of dimension dim W − i and
with trivial normal bundle. Furthermore, the signature σ(f−1(q)) is independent of
the choice of q and only depends on the homotopy class of f .

Hence, using simplicial approximation, we obtain a well-defined map

[(W, ∂W), (Si, p)] → Z

and thence, using the fact that the cohomotopy set [(W, ∂W), (Si, p)] is a group for
2i > n+ 1 and the rationalisation

[(W, ∂W), (Si, p)] ⊗Q→ Hi(W, ∂W ;Q) (17)

of the Hurewicz map is an isomorphism in this range, a map

Hi(W, ∂W ;Q) ∼= [(W, ∂W), (Si, p)] ⊗Q→ Q.

By the same argument as [24, Lemma 20.4] this is a homomorphism and so defines a
class Li(W, ∂W) in Hi(W, ∂W ;Q) called the ith L-class. The L-classes of a smooth
manifold are Poincaré dual to the Hirzebruch L-classes of the tangent bundle, see
[24, §20].

It follows from this definition that Li(W, ∂W) is the unique homology class
such that for any normally non-singular codimension i subspace V ⊂ (W − ∂W)

with trivial normal bundle 〈 [V ], Li(W, ∂W)〉 = σ(V ). Here [V ] ∈ Hi(W, ∂W) is
‘Poincaré dual’ to the normally non-singular subspace V . An important consequence
(following immediately from the geometric definition of the coboundary map) is
that

∂Li(W, ∂W) = Li−1(∂W) ∈ Hi−1(∂W) (18)

cf. the analogue for Whitney stratified Witt spaces in [6, §2].
L-classes for 2i ≤ n + 1 can be defined, and shown to satisfy (18), by taking

products of (W, ∂W) with spheres.
To compare L-classes it makes sense to work relative to a fixed base, i.e. to work

in Witt/(X, A). The ith L-class defines a map (which we rather sloppily also refer to
as the ith L-class but denote by Li rather than Li)

Witt/(X, A)→ Hi(X, A),

(f : (W, ∂W)→ (X, A)) �→ f∗Li(W).

Lemma 5.14. (1) For f : (W, ∂W)→ (X, X) we have Li (∂W) = 0 in Hi(X). In
particular the L-classes are bordism invariants of Witt spaces.
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(2) For (W, ∂W) and (W ′, ∂W ′) in Witt/(X, A) we have

Li (W ∪V W ′) = Li (W)+Li (W
′)

in Hi(X, A).

Proof. (1) There is a commutative diagram of long exact sequences

. . . �� Hi+1(W, ∂W)

f∗
��

∂ �� Hi(∂W) ��

f∗
��

Hi(W) ��

f∗
��

. . .

. . . �� Hi+1(X, X)
∂ �� Hi(X) �� Hi(X) �� . . .

in which Hi+1(X, X) = 0. By (18) we have Li(∂W) = ∂Li+1(W) so that Li (∂W) =
f∗Li(∂W) = f∗∂Li+1(W) = ∂f∗Li+1(W) = 0.

(2) Consider the evaluation of Li (W ∪V W ′) on a class in Hi(X, A) represented
by a map to (Si, p). This is given by taking the signature of the inverse image of
some q �= p under a PL map in the homotopy class of the composite

(W ∪V W ′, (∂W − V ) � (∂W ′ − V ))

��

f

����������

(X, A) �� (Si, p).

The fibre g−1(q) will be the disjoint union of the Witt subspaces (g|W)−1(q) and
(g|W ′)−1(q) and g|W and g|W ′ will be homotopic to f |W and f |W ′ respectively. The
result now follows from the fact that the signature of a disjoint union is the sum of
the signatures of the components. �

Corollary 5.15. Li descends to a map �Witt∗ (X, A)→ Hi(X, A).

Proof. We need to check that Li vanishes on the submonoid of null-bordant spaces.
Recall that (W, ∂W) is null-bordant if there exists (W ′, ∂W ′) ∈ Witt/(A, A) with
∂W ′ = ∂W , and (V , ∂V ) ∈ Witt/(X, X) with W ∪∂W W ′ = ∂V . Then, using
Lemma 5.14,

0 = Li (∂V ) = Li (W ∪∂W W ′) = Li (W)+Li (W
′) = Li (W). �

Proposition 5.16. The L-classes form a set of stable homology operations. In other
words



Vol. 83 (2008) Witt groups of sheaves on topological spaces 323

(1) (naturality) they commute with pushforwards:

�Witt∗ (X, A)
Li ��

f∗
��

H∗(X, A)

f∗
��

�Witt∗ (Y, B)
Li �� H∗(Y, B)

where f : (X, A)→ (Y, B) and,

(2) (stability) they commute with boundary maps:

�Witt∗ (X, A)
Li ��

∂

��

H∗(X, A)

∂

��
�Witt∗−1(A)

Li−1 �� H∗−1(A).

Furthermore they are natural with respect to products in the sense that

�Witt∗ (X, A)⊗�Witt∗ (Y, B)

L⊗L

��

�� �Witt∗ (X × Y, A× Y ∪X × B)

L
��

H∗(X, A)⊗H∗(Y, B) H∗(X × Y, A× Y ∪X × B)

commutes, where L = ⊕iLi : �Witt∗ → H∗ denotes the total L-class, and the hori-
zontal maps are that induced by (15) and the Künneth isomorphism respectively.

Proof. Naturality with respect to maps follows easily from the geometric definition.
Stability is a direct consequence of (18). (Note that this notion of stability is equivalent
to the usual definition in terms of the corresponding reduced homology theory and
suspensions.)

To prove naturality of the L-classes with respect to products we proceed as
follows. For each sphere Si choose a basepoint pi and another, distinct, point
qi such that qi ∧ qj = qi+j where ∧ denotes the smash product. Given maps
f i : (W, ∂W) → (Si, pi) and f j : (W ′, ∂W ′) → (Sj , pj ), representing classes
respectively in Hi(W, ∂W) and Hj(W ′, ∂W ′), the composition

f i+j : W ×W ′ → Si × Sj → Si ∧ Sj ∼= Si+j .

of the product f i × f j and the quotient represents the corresponding class in
Hi+j (W ×W ′, ∂(W ×W ′)) under the Künneth isomorphism. Furthermore, since
qi and qj are distinct from the basepoints, we have

(f i+j )−1(qi+j ) = (f i)−1(qi)× (f j )−1(qj ).
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The signature is multiplicative and it follows that

〈[f i+j ], Li+j (W ×W ′)〉 = 〈[f i], Li(W)〉 · 〈[f j ], Lj (W
′)〉.

An appeal to the Künneth theorem completes the proof of naturality with respect to
products. �

We make some simple remarks about L-classes. It is clear that

Li : �Witt
k (X, A)→ Hi(X, A)

vanishes for i < 0 and for i > k. For W ∈Witt/(pt,∅) it is easy to identify L0(W) =
σ(W). For i-dimensional (W, ∂W) ∈Witt/(X, A) the ith L-class Li (W) is the image
of the fundamental class of W under Hi(W, ∂W)→ Hi(X, A). Finally, since rational
homology is torsion-free, the L-classes of any torsion element in �Witt∗ (X, A) must
vanish. Some computations of L-classes for singular spaces can be found in [6].

Lemma 5.17. L-classes are stable under the map �Witt∗ (X)→ �Witt∗+4(X) induced by
product with CP2, i.e.

�Witt∗ (X)
×CP2

��

Li �����������
�Witt∗+4(X)

Li�����������

Hi(X;Q)

commutes.

Proof. This follows from the naturality of the total L-class under products and
L0(CP2) = σ(CP2) = 1. �

An immediate consequence is that we can define the L-classes of elements in the
constructible Witt groups via

Wc
i (X) ∼= colimk→∞�Witt

i+4k(X)
Li−−→ Hi(X;Q)

using (16). We leave the reader to prove the analogue of Proposition 5.16.
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