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Curvature integrals on the real Milnor fibre

Nicolas Dutertre

Abstract. Let f: R""! — R be a polynomial with an isolated critical point at 0 and let
fi: R"! — R be a one-parameter deformation of f. We study the differential geometry of the
real Milnor fiber Cf = f,_] (0) N B!, More precisely, we express the limits

N |
lim lim = Sp—k(x) dx,
e—>0r—>0 ¢ ct

where s, is the (n — k)-th symmetric function of curvature, in terms of the following averages
of topological degrees:

/k dego V(f1m) dH,

n+1

where G':l 41 18 the Grassmann manifold of k-dimensional planes through the origin of R,

When 0 is an algebraically isolated critical point, we study the limits

1
lim lim —k[ hp—r(x) dx,
e—>0t—>0 & ct

where the h,_j are positive extrinsic curvature functions. We prove that these limits are finite
and that they are bounded in terms of the Milnor-Teissier numbers of the complexification of f.
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1. Introduction

Let f: C"*! — Cbeapolynomial such that f(0) = 0and 0is an isolated singularity
in £71(0). Let C£ = f~'(x) N B2"*2 be the Milnor fibre of this singularity. It can
be viewed as a 2n-dimensional manifold with boundary in R?**2 and therefore, with
each point of its interior, we can associate a curvature, namely the Lipschitz—Killing
curvature introduced by Fenchel in [Fe]. Let us recall what this curvature is. Given
a point x belonging to a smooth p-dimensional manifold V in R" and a unit normal
vector vto V atx, we will denote by 7, the orthogonal projection from V to the (p+1)-
dimensional vector space spanned by 7,V and v. The image of this projection is a
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hypersurface non-singular at x, we denote by K (x, 7, (V)) its Gaussian curvature
at x. The Lipschitz—Killing curvature at x is

LK) =cN.p) [ Kx.m(V)dv,
NUV
where NU, V is the unitary normal space of V at x and where c(N, p) depends only
on N and p. When V is an open bounded subset of a complex hypersurface in C"*+1,
Langevin [Lal], [La3] gave a nice way to compute | v LK (x)dx using Morse theory
and orthogonal projections on complex lines. More precisely, for almost all complex
lines L C CP", the restriction to V of the orthogonal projection on L admits only
non-degenerate critical points. Denoting by |u(V, L)| the number of these critical
points, we have the following equality, called the exchange formula:

/(—U"LK(X)dx =C(n)/ ln(V, L)|dL,
\4 Cpn

where c(n) depends only on n. Such a result is interesting because it provides a link
between the differential geometry and the intersection theory.
Applying this principle to the Milnor fibre, Langevin [Lal] obtained

(—1)"LK (x)dx = c(n) \u(CE, L)|dL.
ct CPpr

A lemma due to Teissier [Te2] asserts that, as ¢ and A tend to 0, the number | (C¢, L)|
tends to "D 4+ 1™ where 1 is the Milnor number of f at 0 and u™ the

first Milnor—Teissier number, namely the Milnor number of f restricted to a generic
hyperplane section at 0. These last two numbers are integers. Furthermore p+1
depends only on the topological type of the germ of f~!(0) at the origin. Combining
these two results, Langevin [Lal] proved that

e—>01—>0

1
lim lim CS(—l)”LK(x)dx = EVOI(SZ”)(/L(”“) +un™).
A

Thus Langevin’s formula states that the asymptotic behaviour of the Lipschitz—Killing
curvature of C}, more precisely the “amount” of curvature that concentrates around
the singularity, is described in terms of analytic invariants of this singularity.

Similar formulas for the other symmetric functions of curvature were announced
by Griffiths [Gr] and proved by Loeser [Lo], who showed

-1 n—k k
lim lim w/ n k(e )APK = KDL =R 1 ),
e—=>0A—0 g2k cs

where ¢, (R, ) is the (n — k)-th Chern form on C), = f’1 (A), ¢ is the Kidhler form
on C"*1, ¢(n, k) is an universal constant depending only on n and k and p**+1=%)
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denotes the k-th Milnor-Teissier number [Tel]. This last number is the Milnor number
of f restricted to a generic plane of codimension k. One should mention that Loeser’s
paper concerns a more general situation from which the above formulas are special
cases.

Adding up these equalities with alternating signs simplifies, and we get

n

1+ (D1 =3 " lim lim
k

e—>0A1—>0
=0

c(n, k)
— | ank(Qc) Ao,
&€ Ci

and we recover Kennedy’s formula [Ke] for the Euler characteristic of the Milnor
fibre:

n
... c(nk)
2= fim Jimy, =

en—k(Q2¢,) A F.
c

All these results concern curvatures of the complex Milnor fibre. Let us focus now
on the real situation whose study was initiated by Risler [Ri] and the author [Du2].

Let f: R"*! — R be a polynomial such that f(0) = 0and 0 is an isolated critical
pointof f. Let f;: R"*! — R be a one-parameter deformation of f such that ft_1 )
is smooth near O for # small. The real Milnor fibre C; is f,_l(O) N Bg“, where |¢|
is much smaller than ¢ in such a way that f,~'(0) is transverse to 3B+ = §". This
definition is different from the complex one. Actually, we could have defined the
complex Milnor fibre as the set f,f_1 0N B?"”, |t|] < . However, this is not usual
because this set has the same homotopy type as C¢, namely the homotopy type of
a wedge of ©"*1 spheres §”, and complex geometers only consider deformations
given by f = A. In the real case, the topology of C; does depend on the deformation,
which explains our definition of the real Milnor fibre.

Risler proved that limg_,¢ lim;—¢ fo |K (x)|dx (where K is the curvature, i.e.
the Jacobian determinant of the Gauss map) was finite and that it was bounded from
above by

AUICIDR f LK )ldx = 2 vol(S) (1D (fe) + P (fo).
VOl(Szn) 8—>0t~>0 (O)QBZrH—Z 2
where fc (resp. f;.c) is the complexification of f (resp. f7).

In [Du2], we studied lim,_,olim;_. fce Kdv; for a deformation f; given by

fi(x) = F(t, x), where (¢, x) is a coordinate system for R"*2 and F: R"*?> — R
is a polynomial such that for all x € R f(x) = F 0, x). We assumed that the
mapping H : R"t2 — R"*2 defined by H = (F, 2 3x1 ax F_) had an isolated
zero at the origin. This implies that VF, the gradient vector of F, Tlas an isolated zero
at the origin as well. For ¢ # 0, the set f;~ (0) is smooth in a neighborhood of 0 (see
[Du2], Lemma 3.1) and the real Milnor fibre C; is a smooth manifold with boundary
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(possibly empty). Orientating it by V f;, we proved a real version of Langevin’s
formula ([Du2], Theorem 5.3):

1 1
lim lim [ K(x)dx = —= vol(§")[ deg, VF+deg, H]—|——/ degy V(f|n)dH,
e—=0r—01 ct 2 2 G",,

1 1
lim lim [ K(x)dx = —= vol(§")[ degy VF —deg, H]—{——/ degy V(f|n)dH.
e=0r—0- ct 2 2 G,

Here G}, | denotes the Grassmann manifold of n-dimensional vector spaces in R 1

and degOH (resp. degoVF, dego(f|m)) is the topological degree of —” around a
_VF  _V(fln)

Fl» IIV(J‘IH)H)

In that paper, we adapted to the real case the method developed by Langevin. We

needed the following real version of the exchange theorem. If V is an open bounded
subset of a smooth oriented hypersurface in R” then, for almost all lines L C RP”",
the restriction to V' of the orthogonal projection on L admits only non-degenerate
critical points. To each of these points one can assign an index, the local topological
degree of the Gauss mapping at the point. Let ;(V, L) be the sum of all these indices.
‘We have (see [La3], [LS])

small sphere (resp. TVET

/K(x)dx:/ w(V,L)dL.
1% RP"

Applied to C;, this formula gives
K(x)dx = / w(Cs, L)dL.
cs RP"

Then we showed that, as & and ¢ tend to zero, j.(C?, L) tends to — deg, V F +deg, H+
degy, V(f|;1), where L= is the orthogonal of L. Note that unlike the complex case
this last term does depend on L.

The purpose of this paper is to give real versions of the Griffiths—Loeser formulas
and of Kennedy’s formula. We will use the following notations:

o fork € {0,...,n}, G’r‘l 11 is the Grassmann manifold of k-dimensional linear
subspaces in R"*! and 8n+1.k 18 its volume,

o fork € {0, ..., n}, s is the k-th symmetric function of curvature,

« for k € N, by is the volume of the k-dimensional unit ball and oy, is the volume
of the k-dimensional unit sphere.
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Figure 1. The exchange principle.

With the same assumptions as in the previous paragraph, we shall prove that (Theo-
rem7.1): fork e {1,...,n — 1},

ok o1
—— lim lim — - d
(Z)on sir%) tl—r:g) byek ‘/;te $n—k(x) dx

1 1
z_—/ degOV(flK)dK+—/ degy V(fln) dH.
8n+1n—k+2 J G T2 Bn+ln—k JGnk
Furthermore,
1 1
lim lim dx = — deg, V dK + 1.
e—=0t—0 b,e" /Cf so(x) dx 8n+1,2 /;‘;H g V(/1x) *

From this and degree formulas for x (C;) due to Fukui [Fu], we will deduce the
following Gauss—Bonnet formula for the real Milnor fibre (Corollary 7.2): if n is

even,
n/2

02k .. . 1
X(CS) = ——— lim lim —/ S _Zk(x) dx’
t kz:(:) (2nk)0” e—>01—0 bype2k c: n

and if n is odd,

n—1

2
02k+1

n

x(C7) =
k=0 (2k+1

1
lim lim ———— Sn—2k—1(x)dx.
)on £—01—0 bppy 182K+l ct "
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In the complex case, all the curvatures involved have a constant sign, whereas
in the real case the sign of the symmetric functions of curvature may vary. How-
ever, Langevin and Shifrin [LS] defined, for a hypersurface V C R"*!, a sequence
of positive curvatures hy, ..., h, such that hg(x) = 1 and h,(x) = |K(x)] for all
x € V. Moreover they proved that these curvatures satisfied the same reproducibil-
ity formulas as the s;’s. We will work with them in order to get generalizations of
Risler’s inequality. More precisely, adding the assumption that f admits an alge-
braically isolated critical point at the origin, we shall show that (Theorem 7.1): for
ke{l,...,n—1},

Ok .. .. 1 - -
X lim lim —k/ hn—i () dx < p " (fo) + nP (fo).
(k)O” e—01—0 bre ct

Furthermore,

tim tim o [ o(oydx = u V) + 1O
e—>01t—0 by € lod

In order to establish our results, we use a method for the computation of
fv Sp—k(x)dx and fV hy,—r(x)dx, where V is a smooth bounded hypersurface in
R"*!, due to Langevin and Shifrin [LS]. Let us explain briefly this method. The main
idea is to refine the exchange principle by studying generic projections on higher
dimensional vector spaces. Let P € Gflﬂ, O<k<n—1landletmwp: V — P be
the restriction of the orthogonal projection on P. Generically the set I'p of critical
values of 7 p is almost everywhere a k-dimensional manifold. With each regular point
y in I'p, we can associate two “curvature” indices A(y) € Z and u(y) € N. The
integrals f v Sn—k(x)dx and f v hn—k (x)dx are related to these indices as follows:

f ot (¥) dx = c(n, k) / ( / A(y)dy)dp,
v 1 \Jr,

n+l1

f i (¥) dx = c(n, k) f (/ u(y)dy>dP-
v otst \Ur,

Our strategy is to apply Langevin and Shifrin’s machinery to the variety Co = f~1(0).
Since f is algebraic, I'p is a semi-algebraic set of dimension k (or empty) in the
neighborhood of 0. There exists a semi-algebraic set Wp C I'p of dimension less
than & such that the indices A(y) and w(y) are constant on each connected component
of 'p \ Wp. Writing 'p \ Wp = I_IXJP and denoting by AJP and ;LJ‘.D the common

values of A(y) and ©(y) on each X]P, we get

1 vol(X? n BP)
_f Sp—k(x) dx :c(n,k)/ Z}f 4P,
byek C\{0} Gk J brek

ntl j
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1

vol(X/ N Bf)
brek CEO

k+1 brek ’

n+l

hp_ik(x)dx = c(n, k)/
} G

uf -
J
where B is the ball of radius ¢ in P. Applying Fubini’s theorem leads to

1
lim —/ Sn_x(x)dx = c(n,k)/ AP enxP,00dP,
e~0 brek Jezvjo) Gt JZ /

1
lim — hp_ir(x)dx = c(n, k)/
G

e—0 bké‘k Cf)\{O} k+1

n+1

ul - Op(X7,0)dP.
j

We recall that Oy (X }D , 0) is the density of X ]P , which does exist for X ]P is semi-
algebraic (see [KR]). The remainder of the method is technical and difficult to present
briefly. We use the Cauchy—Crofton formula for the density due to Comte [Co], the
fact that the A J‘.D ’s are related to Morse critical points of some projections and some

identifications between flag varieties in order to express |, Gk D i~ }D -Or(X ]P ,0)dP
n+1 E

in terms of mean-values of Euler characteristics of affine sections of Cj. Using
degree formulas for Euler characteristics, these last mean-values are easily seen to be
mean-values of topological degrees.

The method for 4, _j is roughly the same; instead of degree formulas for Euler
characteristics, we use Teissier’s lemma [Te2] which enables us to bound generically
a number of critical points in terms of the Milnor-Teissier numbers.

The last step is to prove that

1 1
lim lim _k/ Sp—k(x)dx = lim —k/ Sn—k(x)dx,
e=>01—-08"% Jce e—>0¢ CE\{0}

1 1
lim lim — hy— dx = lim — hp— dx.
fim i 5 [ ok = i [ i)

Throughout the paper, we will use the following notations and conventions (some
of them have already appeared in this introduction):

« 0y is the volume of S¥, by, is the volume of the unit ball in RX.

. G,]i 1 18 the Grassmann manifold of k-dimensional linear spaces in R 8Sn+1.k
is its volume (see [Sa] for an explicit expression of g,,41.x)-

. Aﬁ 41 1s the affine grassmannian of k-dimensional affine spaces in R

« If H is a linear subspace of R"*!, G’;I is the Grassmann manifold of k-dimen-
sional linear spaces in H, H' is its orthogonal, Bf is the ball of radius &
centered at 0in H. If K C H is a linear subspace of H, K is the orthogonal
of K in H.
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e If vy, ..., vy are vectors in R+ Span(vy, ..., vy) is the linear space spanned
by vy, ..., v4.

« If X C R™*!, Sing(X) is the singular set of X, X is its topological closure, X is
its interior and Bd(X) is its boundary.

« If M C R™*! is a submanifold, Fra(M) is the set of adapted frames for M.
« A universal constant that we do not want to specify will be denoted by “cst”.

* We will often say orthogonal projection for the restriction of an orthogonal
projection to a submanifold in R*+!.

The paper is organized as follows: in Section 2, we present the background in dif-
ferential geometry necessary for our work. In Section 3, we study generic projections
and polar varieties. In Section 4, we give the relations between topological degrees
and Euler characteristics. Section 5 is devoted to the proof of the formulas dealing
with lime0 37 e o) Sn—k (¥)dx and 1m0 5 fee, o) hini (x)dix. Section 6

relates lim,_, ¢ lim;_, ¢ bk% fc;“ Sp—k (x)dx and lim,_, ¢ lim,_, ¢ bk% fcf hp—i (x)dx to
the previous limits. The real versions of the Griffiths—Loeser formulas and of Kenne-
dy’s formula are given in Section 7.

Several authors have worked on this subject of curvatures and invariants of sin-
gularities. Besides the ones already stated in the introduction, one can also mention
the following papers: [G-B.T], [La2], [LL], [ST], [Ne], [Va] in the complex case and
[BB],[CGM], [Du3] in the real case.

The author is grateful to Georges Comte for valuable discussions on this topic and
to David Trotman for his careful reading of this manuscript.

2. Differential geometric preliminaries

In this section, we recall differential geometric results obtained by Langevin and
Shifrin [LS] (see also [LR]). We will restrict ourselves to the case of a smooth oriented
hypersurface.

Let V C R"*! be an oriented hypersurface of class C2. A moving frame on an
open subset U C V" is a set of smooth mappings e; : U — R"*! such that for each
xin U, e1(x), ..., e,(x) form an orthonormal basis for 7,V and e, (x) is the unit
normal vector in N,V = (T, V)+ orienting V. Let w; be the 1-form dual to ¢; (note
that w,+1 = 0) and let w; ; be defined by de; = Za)i,jej, where de; is seen as a
R"*!.valued 1-form. We have w;,j = (de;, ej), where (, ) denotes the usual scalar
product in R"*! (note that w; j = —w; ;).

The (Gaussian) curvature K is the Jacobian determinant of the Gaussmapy : V —
S", y(x) = ep41(x). We can consider dej, 4+ as an endomorphism of 7,V and we
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have
KdV = Koy A+ Aoy = (deni1) @1) A+ A (dens 1) @n),

where (de,+1)*: (TxV)* — (T, V)* is the transpose map of de,, 1. Since de,+1 =
Yo' opt1,iei, wefind that fori € {1, ..., n}, (deyt1)*(wi) = wi(dent1) = Wpt1i
and that

n n
KdV =Ko N---ANw, = /\a)n+1’i = (—l)n /\a)i,nH.
i=1 i=1

The endomorphism de,+1 of T,V is self-adjoint and its eigenvalues k1, ..., ky
are called the principal curvatures of V at x. The symmetric functions of curvature
s0(x), ..., sy(x) are defined as the coefficients of the following polynomial:

det (Id +tde,11(x) = [ [A + ki) =) " six) - 1.

i=1 i=0

We note that s,, is the curvature K and that so(x) = 1. Langevin and Shifrin give a
geometric interpretation of the other symmetric functions.

Letx € Vandlet! € G%V be a g-plane (¢ = 1,...,n). Let L be the (g + 1)-
plane [ @ y(x). Let (ey, ..., e4) be a direct orthonormal basis of /, we orientate L
choosing (eq, ..., eq, y(x)) as a direct orthonormal basis. The section V N L can
be viewed as a hypersurface in L. Let K (x, [) be its curvature at x. Note that if we
change the orientation of /, the orientation of L is reversed and so K (x, /) does not
change.

Proposition 2.1. Letx € V and letl € G(}XV. We have

sq(x)=<n> 1/ K(x,Ddl.
q/) 8n,q JG

q
Vv

Proof. The proof is given in [LS], p560. We repeat it here with more details. Let
el,...,eq €eq+1, ..., €y ept1 be an adapted frame for VN L C V C R**! (ie.
e, ...,egaretangentto VN Landey,...,e, to V). Letus denote by E the tangent
space T,V and by A: E — FE the linear map de,+1: T,V — T, V. The g-vectors
e N Nepy, 1 <ip <---<ig <mn, form an orthonormal basis of the space A?E
and we have

NAr AN Neg) =Kx,D(er A+ Aeg) + Z o
£ ig #q

Let (vy, ..., v,) be an orthonormal basis of eigenvectors of A, each v; being associ-
ated with the eigenvalue k;. The g-vectors v;; A+ - ‘AU, I <iy <-- <ig <n,form
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an orthonormal basis of eigenvectors of AA, each v;; A --- A v;, being associated
with the eigenvalue k;, ... k;, . Let (, ), denote the usual scalar product in A7E. We
have

AN Aler A -+ Neg)

= Z (elAn-/\eq,vi]/\---/\viq)qA"A(vil,...,viq),

I<ij<--<ig=n
= E (el/\o-~/\eq,v,-l/\-~-/\v,-q)qkl-1...k,-qv,-l/\-~-/\v,-q,
I<ij<--<ig=n

hence,

Kx.)= > (et A-Aeqvig A Aviakiy ...k

I<ij<--<ig=n

= Z (det [(e,', vi/>]1§i,j§q )zkil ...kiq.

I<ij<--<ig=n

g

We can write

/GK(x,l)dlz > (/G

q
TxV 1§i1<~~-<iq§n

. I(l,vil /\...viq)dl> 'kil ...kiq,
Ty V

where I (I, vijy A+ A viq) = (det [(ei, vij)] )2 does not depend on the choice

1<i,j=<q
of the direct orthonormal basis (ey, ..., e;) of [. Since G%V is SO(T V)-invariant,
the integral

/ I(l,vil/\...viq)dl
G’{

vV

does not depend on the g-vector v;; A- - - Avj, . This gives the result, the multiplicative
constant being computed by taking V = §”". O

By analogy, Langevin and Shifrin [LS] (see also [LR]) define other curvature
functions hg, ..., h, on V.

Definition 2.2. Forg =0, ...,n andforallx € V,

1
hy(x) = (”) / K (x D)l dl.
4/ 8n.q JG%

Note that for all x € V, h,(x) = |[K(x)| = |s,(x)| and hgo(x) = 1. In order
to study the functions s, and h,, we need a general version of Meusnier’s theorem
about surfaces. Let x € V and let L be a (¢ + 1)-affine plane (¢ = 0,...,n)
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passing through x, L ¢ T,V, whose direction is the (¢ + 1)-vector plane /. Let m;
be the orthogonal projection on [ and let (e, ..., e;) be a direct orthonormal basis
of T, (V N L). We orientate L in such a way that (ey, ..., ey, (¥ (x)) is a direct
basis for /. The section V N L is a hypersurface of L, we denote by K (x, V N L) its
curvature. It does not depend on the orientation chosen for 7, (V N L).

Proposition 2.3.
K@, TxVNL) = |lmy ) Kx, VNL).

(Here T,V N L is seen as a q-vector plane in T,V as in Proposition 2.1.)

Proof. The proof for ¢ = n — 1 is given in [LS], p. 561. We prove the general case.

’ VAR . / n+1
Let T A R B T SR S be an adapted frame for VN L Cc L C R
(e; IETRER e;l 41 are normal to L) in a neighborhood of x. Furthermore we take

’ /162
€g+1 = Tm] - Wve have
q q
K. VL) N\ o=\ o).
a=1 a=1

since e/q 41 isnormal to V N L in L. Hence

q
K@, VL) = )\ o), ... e

a=1

Now letey, ..., e4; eq+41; €442, - - ., ept1 be an adapted frame for VN (T, VN L) C
V C R**! such that e, = ¢/, at x for | < a < gq. We have

q q
K@, TVNL) N\ oa= )\ 0410

Cl:l a=1

hence

q
Kx, T,VNL)= /\ wq+1,a(x)(e'1, - e;).
a=1
Foreach 1 < o < g, wp41.« is equal to (de,1, €,) at x. Since (ey41, €,,) = 0, we
obtain
n+1
(densi, ¢f) = —{del eni1) = —{defyy D lensi ef)e)
B=q+1
/ / / /
= —(en+1, eq+1>a)a,q+l = {ent1, eq+1>a)q+1,a’

because (de;,, ejs) = —(de;g, e,,) = 0 for p > q + 2, the vectors e% being constant.

a
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We can state reproducibility formulas for the functions s, and .

Proposition 2.4. Let V C R"*! be a bounded hypersurface. Then:

/ sq(x)dx :cst/ ( K (x, VﬂL)dx) dL,
% AT \JvnL

n+1

/hq(x)dxzcst/ (f IK(x,VﬂL)Idx)dL.
14 Al \Jvne

Proof. The case g = n— 1isproved in [LS], p5S77. We adapt this proof to the general
case. Consider the incidence relation

[(,L) eV x AT | |x e L)
and the bundle of adapted frames

/ /A VAN . .
((x,el,...,eq,eq+l,...,en,en+1),(x,el,...,eq,eqH,...,en,en_H))

€ Fra (AZE) x Fra(V),

suchthate; =e},..., e, = e; is a frame for V. N L.
We have to compute the density dvynr A dL where dvyny is the volume element
on V N L and d L is the invariant measure on AZE We have

dvynp = Ay, a=1,...,q,
and (see [Sa], p. 202)
dL:/\a)f/\/\a)/’g’j/\/\a)’qH,j, B=1,....q,i,j=qg+2,...,n+1.

But ! is equal to ZZ:qH (e}, ex)wy (remember that w, 1 = 0), hence we get

dvynr AdL = ‘det [(¢}, ex)] 4+1=h=n ‘dvv A /\a);gj A /\w21+1,j'

g+2<i<n+l1
For each 8, we have
n+1
’r_ roI\ /
wg i = (deg, e;) = (de,s, Z (ej,et>6t>
t=q+1
n+1 n

= Y (e edwpi= Y (€}, ewp mod (w1, ..., ).

t=q+1 t=q+1
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This implies that

dvynr NdL = ‘det [(61{, Ek)] g+1<k<n ’
g+2<i<n+1

q
X ‘det [(e;,e,)] g+1<t<n ‘ dvy /\/\a)g,, /\/\a);_‘_]’j,

g+2<i<n+1

hence

g+l
dvynr NdL = ‘det [(el'-, Ek)] g+1<k<n ’ dvy A /\a)lg,, AN /\a);H,j.

g+2<i<n+1

By a result on orthogonal matrices, we get
+1
dvynr AdL = ’(e;H, en+1)‘q dvy A /\wﬁ,t A /\“)/q+1,j'

‘We see that /\a),g,t, B=1,...,q9,t =g+ 1,...,nis the measure d/ of the space
GqTxV' Moreover, /\ a)’q =gq+2,...,n+ 1, is the measure dp of the space

1
GNx(VﬁL)'

/ (/ K(x,VﬂL)dx)dL
4971 \JvnL

n+1

Nx(VNL)

+1j0 ]
Finally,

[(€fr1s en+1>|dp)|<e;+1, ens1)|"K(x, VN L)dLdx.

From Proposition 2.3 we have |(e/q+1, ent)|9K(x,VNL)=Kx, Ty VNL) =
K(x,l) withl = T,V N L. Furthermore, the integral

[l ensitldp,

Nx(VNL)

where e; 11 is an unit vector of p, does not depend neither on Ny (V N L) nor on e, 41
and is equal to

[ ew.wnap

Gn+]7q

where w is an unit vector in R"*!'~¢ and e(p) an unit vector of p. This implies the
result for K. The same argument holds for | K|. O

Langevin and Shifrin’s idea is to relate [}, s, (x)dx and [}, hy(x)dx to polar vari-
eties of generic projections and to generalize somehow the exchange formulas. First
we recall some results on polar varieties. Let P € G,’; Iy k =1,...,n, and let
wp: V — P be the orthogonal projection on P. We denote by X p the set of critical
points of mp and I'p = wp(Xp) the set of critical values. Usually Xp is called a

polar set or polar variety.
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4 zp

\
—_

Figure 2. The sets X p and ['p.

Ip

k

Lemma 2.5. For almost all P € Gn+1,

manifold of V (or is empty).

Y p is a smooth (k — 1)-dimensional sub-

Proof. We can refer to Mather’s work [Ma] on generic projections. Here we give an
alternative proof due to Slavskii [S1]. We can assumethatV = {x € R f(x) =0}
where f: R""! — Ris C? and V f does not vanishon V. Letusputg =n+1—k
and let us consider

F: Rn+l % (Rl’l-‘rl)q - Rq+l,

(X, 01, .., ) = (L AV ), .. (V).

Since V' is non-singular, it is easy to see that d F(x, vy, ..., vy) has rank g + 1 if
F(x,vi,...,vg) = 0. The set F ’1(0) is then a smooth manifold of dimension
n(g +1). Letz: R" x (R"F1)4 — (R"*1)4 be the projection (x, vy, ..., vy) >
(v1, ..., vg). Sard’s theorem implies that almost all (v, ..., vy) are regular values
of 7| p-1(g), which means that F Yoy nz Y (v,..., vy)) is a smooth manifold of
dimensionn—g = k—1foralmostall (v, ..., v,). But F=10)Nz =1 ((v1, ..., vy))
is exactly X p where P = [Span(vl, e, vq)]L. a
Lemma 2.6. For almost all P € G,’; Y the set

Yp ={x € Tp | wpl|x, is not regular at x}

is a union of submanifolds of X p of codimension greater than or equal to 1 (when
3. p is not empty).
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Proof (due to Slavskii [S1]). Let (v, ..., vy) be aregular value of the map 7 |p-1q)
defined in the previous lemma and let P be [Span(vy, ..., vq)]L. We have

o ={x eR"™ | f(x) =0, (VF(x),v1) =+ = (Vf(x),v,) = 0 and there is
w € Span(vy, ..., vg) such that (V(V f(x), v;), w) = 0 fori € {1, ...,q}}.

The last condition is equivalent to

n+1

| 3 2L 0

n+1
Olﬁ lax 3)Cﬂ ! ‘] ]1<1 j<q )

=0 wherev; = (vil,...,vl.

2 2
Let us call 8, ~ R the space of symmetric (¢ x g)-matrices and let 2; C Ru

be the subset of matrices with coranki,i =1, ..., ¢g. Itis a submanifold of R of

l+l

codimension . Let Q¢ be the set of matrices in 4§, with determinant zero, QO is

equal to Ui:l Q . We can write
Th={x eR"™ f(x) =0, (Vf(x),v1) =+ = (VF(x), 1) =0,

n+l 3 f) o, B
[ a.B=1 Txgoxg Vi Vj ]15i,j§q < QO}'

Let X5 be the critical set of 7| -1y and let U = F~1(0) \ . The mapping

n+1

o: F-1(0) - [ 3 0% f (x) o ﬂ]
. fal axaf)Xﬁ Vi 1<i,j<q

is regular on U. This is due to the fact that on U the vectors with n 4 1 components
ui,...,uq, defined by

n+1 2f n+l 32f

d
ui = (; g O L g ot ):

are linearly independent. Locally the set Qo = ®~'(R0) N U has the same structure
as Qq, that is for alli € {0,...,q}, 2 = &~ 1(Q;) N U is a submanifold of U of

codimension * +’ . Let 52; C S~2i be the subset where |§2_ is not regular. From Sard’s
1

theorem, n(Qi) has measure zero and then A = 7 (X;) U U?:l n(fZ;) has measure
Zero. If(vl, ..., V) & Athen 7 Y(vy, ..., vg))N € is a submanifold of dimension
k—1-— (’ +’) Since ¥, = 7 Y (v, ..., vg)) N Q0. the lemma is proved. O

In the following preliminary results, we will assume that V' is a smooth bounded
semi-algebraic variety.
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k

Lemma 2.7. Foralmostall P € Gn—H’

[ p is a semi-algebraic set of dimension k — 1.

Proof. The set I'p is semi-algebraic as the projection of the semi-algebraic set X p.
MoreoverdimI'p <dim ¥p = k—1. Letx beapointin X p\ E},. From the previous
lemma, there exists a semi-algebraic neighborhood U, of x, U, C Xp\ Z;,, on which
mp is a diffeomorphism and then dim wp(Uy) = k — 1. But wp(Uy) is included in
I"p hence dim I'p is greater than or equal to k — 1. O

We define now an index associated with each point x € £p C X',. For this, we
Ploy ()

consider the normal section VN (P @y (x)) and the orthogonal projection ()

of this section on the line oriented by y (x).

Pleyx)

Lemma 2.8. The point x is a non-degenerate critical point of Ty

Proof. 1t is clearly critical. We can assume that V is defined by { f = 0} around x.
Let us choose coordinates (xj, ..., x,) around x such that P+ = {xg41 = --- =

Xp+1 = 0} (¢ = n + 1 — k) and such that %(x) = VXx,4+1(x). In that case, a

local coordinates system at x for V N (Pt o y(x)) is given by (x1, ..., x4). The
implicit function theorem together with some derivative computations shows that
PLoy(x)
y(x)

Pl = Span(vy, ..., vy) where Vi € {1, ..., g}, v; = Vx; and keeping the notations
of Lemma 2.6, we see that

b4 is non-degenerate at x if and only if det [%(x)]] <ij<q # 0. Writing

02 f e AT
dx;0x; x) = a%::I dXaXp (X)v; vy

Since x ¢ X/,, we conclude that det [%(x)]lq i<q # 0. O
We define i p(x) to be the number of positive eigenvalues of ) ().
Lemma 2.9. We have (—1)'?®) = sign K (x, Ph).

Proof. According to [Du2] Lemma 2.3, one has

of (x)>q . (_1)61—i1>(x),
Xn+1

sign K (x, P1) = (—1)4 - sign (8

keeping the above coordinate system. But, in that system, %(x) is equal to

IV f(x)|l, which is strictly positive. O

Following Langevin and Shifrin, we can define the g-length and the oriented
g-length of V (this terminology appears in [LR]).
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L
p(x) \
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Figure 3. The index ip(x).
Definition 2.10. Foreach g € {0, ...,n — 1}, for almost all P € GZI;, we set

mt(P) :/r ( Z (_1)iP(X)> dy

wplsp (x)=y

and
m(P)= | d@plz,) () dy.
Lp
We define
1
L;}(V):—/ mt(P)dP,
8n+1,q+1 GZI}
and
1
Lq(V)=—/ m(P)dP.
8n+1,q+1 JGI+!

n+l1

Furthermore, we set L7 (V) = L,(V) = vol(V). We call L;(V) the oriented
g-length of V and L, (V) the g-length of V.

First we note that m ™ (P) and m (P) are well defined because dim 7 p (E}) <n-2
and almost all y in I' p are regular values of wp|x,. Forsuchay, (mp |2P)_1(y) isa
0-dimensional semi-algebraic set, hence a finite number of points. We also note that
L (V) = [, K(x)dx and Lo(V) = [, | K (x)|dx by the exchange formula.
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In order to relate the oriented g-length (resp. the g-length) to the curvature s,
(resp. hy), we have to study the local situation at a pointin X p \ X’. Let us consider
an (n —q + 1)-affine plane L (0 < g < n—1). Generically VN L is asmooth (n —¢q)-
dimensional manifold. Let P be a (¢ 4+ 1)-vector plane containing the orthogonal
of the direction of L. The intersection / = P N L is an affine line in P. In L, let
nlL : VN L — [ be the orthogonal projection on /.

Lemma 2.11. A point x in (Xp \ ) N L is a critical point ofnlL.

Proof. Let us assume that V = { f = 0} near x. We can choose a coordinate system

such that P = {xy11 = --- = x341 =0}and L = {x; = ay1,...,x; = a4}. In
that case x is a critical point of p if and only if V f(x) is a linear combination of
er,...,eq+1 (e; = Vx;). In L, x is a critical point of nlL if and only if e, is a
linear combination of ey, ..., ¢; and V f(x). We conclude using the fact that V f (x)
is not in the vector space spanned by ey, ..., e, since V and L intersect transversally
at x. g

Lemma 2.12. Such a point x is non-degenerate for JTIL . Moreover,
sign K (x, VN L) = (—=1)"P™,

Proof. With the notations of the previous lemma, x is non-degenerate for JTZL if and
only if

9% f(x
det[ oAt )j| # 0.
9x:9%j 1y 1o<i j<nt1
In the frame (ey, ..., eq, Hg—‘]’iu(x), €g42, .-, eny1) with coordinate system
(-x17 ey -XQ7 -x[/]+17 xq+2’ RN xn-i—l)s
P+ is the set {x; = 0, s Xg =0, x;H = 0} and %(x) is equal to Vxéﬂ(x),
i.e. y(x). Asin Lemma 2.8, we see that
9% f(x
det[ £ >] o
0x;0x; 110 j<nt1

since x ¢ X'5. Finally, (—1)ir®) = sign K (x, P = sign K(x, T,V N L) for
PL = T,V N L. We conclude with Proposition 2.3. O

We need a last lemma which describes the structure of I'p.
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Lemma 2.13. There exists a semi-algebraic set Wp C TpwithdimWp < k — 1
such that the following functions in y,

o DP9 and g (npls,)” )

x| wplzp 0=y

are defined and constant on each connected component of I'p \ Wp and such that
['p \ Wp is a smooth manifold of dimension k — 1.

Proof. Let

Wp = Sing('p) Unp(Xp) Ump(Bd(Xp)) UBA(Tp).

Since Sing(T'p), np(E},), mp(Bd(Xp)) and Bd(I"p) are semi-algebraic sets of di-
mension less than £ — 1, dim Wp < k — 1. Moreover, Wp is a closed set in P
which contains Bd(I'p), hence I'p \ Wp is an open set in I"p included in FOP. The
set ['p \ Wp is a smooth (k — 1)-dimensional manifold for Sing(I'p) C Wp and the
two functions are well-defined because 7 p(E},) C Wp. Let ybeapointI'p \ Wp
and let {xp, ...,xny} be (nplg[,)’l(y). For each j € {1,...,ny,}, we can choose
an open neighborhood U; C Xp such that 7p|y; is a diffeomorphism and such that
(=1)iP® = (=1)i7™9) for each x € Uj (the function K (x, P1) is continuous in x).
Let A be the following set:

ny
A=3zp\JU;.
j=1

It is a compact subset of X p, hence p(A) is compact in T p. The point y does not
belong to wp (A), for otherwise it would belong to wp (Bd(X p)). There exists an open
neighborhood V of y in T p which does not intersect p(A). Since y is an interior
point of I'p, we can choose V open in I'p. Then the two functions are constant on
vnTp\ Wp). O

We can state now reproducibility formulas for the oriented g-length L; and the
q-length L.

Proposition 2.14. For g € {0, ..., n} we have

V) — +
Lq (V) =cst An-%—l—q Ly(VNL)dL,
n+1
and

Ly(V) = cst/ Lo(VNL)dL.
An+l—q

n+1
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Proof. For g = n, this is just the Cauchy—Crofton formula because L(J)r (VNL) =
Lo(VNL)=g{VNL}. Forq <n — 1, we have

Li(V)= / +1/ (—1)"1’(“) dydP.
q
8n+l,q+1 JGIT, JTp XlﬂP\Ep(X) y
But it is clear that
[ S comasf (X oo
PP " | plzp 0=y PPAWE = | mplsp (0)=y

Let us decompose I'p \ Wp into the finite union of its connected components, i.e.,
Cp\Wp=UX JP . For each j, let us denote by )»}D the common value

Z (_l)iP(x)'

x | mplsp (0)=y

3 (—1)1'P<X>) dy =" aF vol(x]).
j

x| wplzp (x)=y

‘We have

Lp

The Cauchy—Crofton formula in P gives
vol(X]) = cst/ #(X7 Ny,
Al

and so

L;’(V) = cst/

G

» (/m ZAP tt(XP ml)dl) dP.

n+1

Let y be apointin X JP NL.IfVNLis smooth, where L is the (n — g + 1)-affine plane

PL &1, then each preimage x of y by 7|, is a non-degenerate critical point of the
orthogonal projection ”l VNL— I fory¢np(X}). Furthermore (— 1ir =
sign K (x, V N L). Hence we get

doafsxfnnp= ) signK(x,VnL).
j

x | x non degenerate
critical point of rr,"

Let ¥ be the flag variety of pairs (P,[), P € GZI} and / € Al . The mapping
(P,1) — (L,]) where L = PL & [ enables us to identify & with the flag variety of
pairs (L,[), L € A, q+1 and [ € G}. Since for almost all L € A} q+] ,VNLis

smooth, we find

Li(V) :cst/An_q+1 [[Gl (Y sienk@voL) dl:| dL
n+1 L

x | x non degenerate
critical point of JT,L
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But we have
/.

by the exchange formula and the fact that for almost all [ € G IL nlL is a Morse
function. U

( 3 signK(x,VﬂL))dl: K(x, VN Lydx =LV NL),
VNL

1
L x | x non degenerate
critical point of 7{1[‘

Theorem 2.15. Forg € {0, ..., n},

/Sn— (x)dx = <n)0—"L+(V)
1% 1 q) Oq 1 '
/h (x)dx = <”)0—”L V)
y e “\g)o, T

Proof. By the reproducibility formula for s, ;, we have that

/ Sn—q(x) dx =cst/ (/ K(x,VﬂL)dx) dL.
14 A \Jvne

n+l

Hence, by the previous proposition, [}, 5,4 (x)dx is equal to cst- L;I|r (V). We compute
the constant by taking V = S”". O

This theorem leads to a geometric interpretation of f v hn—q(x)dx as explained
in [LR], p. 597. Moreover, in [LS] and [LR], it is stated in the C2-case. In that
situation, Lemma 2.7 relies on deep results of Mather on generic projections [Ma].
The semi-algebraic case allows an easier proof.

3. Generic projections and polar varieties

Let f: R"*! — R be a polynomial such that £(0) = 0 and 0 is an isolated critical
point of f. Let Co be f~1(0). For any (n + 1 — g)-vector plane H,1 < g <n — 1,
we denote by 7,1 : Co — H the orthogonal projection on H-. We set also H, for
the (n 4+ 1 — g¢)-affine plane parallel to H and passing through y € H+ (Hy = H).
Let [ be a vector line in H and let [, be the line parallel to / passing through y. We
will denote by an’y : Co N Hy — I, the orthogonal projection on /,. We will show
that for a “generic” choice of H and [/, the following property holds: the function
an’y admits only Morse critical points in Co N Hy N Bg“ forO < |yl <K e 1. We
will establish this result studying generic projections and polar varieties.
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Lemma 3.1. For almost all H € GZIi_q, 1 <qg <n-—1, flg has an isolated
critical point at 0.

Proof. Let G be the map defined by
G: Rn—H % (Rn—l—l)q — Rq—H
(x, 015 -+, vg) > (f5 {x, v1), .00, (X, 0g).

The set G~1(0)\ ({0} x (R"*1))? is a smooth manifold of dimension n —g + (n+1)q.
Then we use the projection on (R"*1)4 and the Bertini—Sard theorem [BCR] and we
choose H = [Span(vy, ..., vq)]L. We conclude recalling that {V(f|g) = 0} C
{fIm =0}. 0

The following results are proved in the same way as Lemmas 2.5, 2.6 and 2.7,

considering the smooth manifold Cy \ {0}.

Lemma 3.2. For almost all H € GZﬂ_q, 1 < g <n-—1 Xy is a smooth
(g — 1)-dimensional or empty semi-algebraic set in the neighborhood of 0 (X1 is
the critical set of wy1).

Corollary 3.3. For almost all H € GZi}fq, 1<g<n—1Ty=agi(Zy1)is

a (g — 1)-dimensional or empty semi-algebraic set in the neighborhood of 0.

In the sequel, we fix a generic (n + 1 — g)-plane H satisfying Lemmas 3.1, 3.2
and Corollary 3.3. We will assume that H = {x € RF |y = = xg = 0} and
so wyL(x) = (x1, ..., xy). Therefore the set Xy is

{x € Co| rank(V f,ey,...,e5) < g+ 1}.

For all/ € G}q, there exists v € S" N H such that the orthogonal projection H — [
is given by (v, x) = v*(x). We will work with §” N H and v*. Forallv e S"N H,
we define

T, = {x e R"™"! | f(x) = 0 and rank(V f(x), e, ..., e, v) < q +2}.
It is clear that 0 € T,.

Proposition 3.4. For almost allv € S" N H, T, \ .1 is a smooth q-dimensional
or empty semi-algebraic set in the neighborhood of 0.

Proof. Let G be the map defined by
G: Rn-i—l % (Rr1+1—q)n—q — Rn_q+l,

(x’ Ug+2,-.., uﬂ-‘rl) = (f7 (v.f’ ”q+2>, RN <Vf, uﬂ-‘rl)),
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where fori € {g +2,...,n+ 1}, u; = (0,...,0;udt' . u"™ Ifx ¢ £y.
then there exists j € {g + 1, ..., n+ 1} such that a‘(’—g(x) # 0. Hence X = G~1(0) \

[X71x (R*+1-9)"=4]is a smooth [(n—q) (n+1—q)+q]-dimensional or empty semi-
algebraic set. Let v: R" x (R"T19)"=¢ — (R"*+179)"~4 be the projection. By the

Bertini-Sard theorem, almost every (ug42, ..., Upt+1) € (RMH1=ay1—=d jg g regular
value of v|x which means that X Nv~! ((ug42, ..., ups1))is asmooth g-dimensional
or empty semi-algebraic set. We choose vin [Span(ug42, ..., unt1 ENS"NH. O

Proposition 3.5. Ler T, be the subset of T, \ X1 where the mapping wyi: T, \
Xyl — H* is not regular. For almostallv € S" N H, the set T, is a union of smooth
semi-algebraic sets of codimension greater than or equal to 1 in the neighborhood
of 0.

Proof. Let v € $" N H be a generic vector for the previous proposition and let
(g+2, ..., upnt1) bea(n—g)-tuplesuchthatv € [Span(ugy, ..., un+1)]J-ﬁS" NH.
The set T, is described as follows:

Ty={x¢ Sy | f(x)=0,(Vf(x),ugg2) ="+ = (Vf(x),ups1) =0,
there is w € H such that (V f(x), w) = 0 and
(V(Vfx),ui), w)=0fori € {g+2,....,n+1}}.

Butatx € T, \ X1, v belongs to Vect(V f(x), er, ..., e;) hence (V f(x),v) #0
for otherwise (v, v) = 0. If we write the element w of H as a linear combination
of v and the u;’s, we see that at x € T, \ g1, (Vf(x), w) = 0 if and only if
w € Vect(ug42, ..., upt1). Therefore

Ty={x ¢Sy | f(x)=0,(Vf(x),ugs2) =+ =(Vf(x), upq1) =0, there
isw € Vect(ug42, ..., up41) such that (V f(x), w) = 0 and

(V(Vf@),u;), w) =0fori € {g+2,....,n+ 1}}.

We conclude mimicking Lemma 2.6. O

Corollary 3.6. For almost all v € S" N H, wy1(T)) is a semi-algebraic set of H+
of dimension at most q — 1 in the neighborhood of 0.

Proof. 1t is clear. O

Lemma 3.7. Foralmostallv € S" N H, f|nn+=0) admits an isolated critical point
at 0.
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Proof. Let us consider the following mapping:

G: Rn+1 X RH*FI*(] N Rq+2’

(x,v) = (f;x1...,x4, (v, X)).

Since f|p has an isolated critical point, for all x € f ~1(0) N H \ {0}, there exists
jefg+1,...,n+1}suchthat g—){;(x) # 0. We deduce that G (0)\ ({0} x R"+179)
is a smooth manifold of dimension 2n —2¢q and we conclude using a projection. O

Corollary 3.8. For almost all H € GZI}_‘], 1 <g<n-—1, foralmostalll € GL,
the following properties hold: there exists a semi-algebraic set A C H~+ which
contains 0 and of dimension smaller than or equal to ¢ — 1 in the neighborhood of 0,
there exists 0 < & < 1 such that for all 0 < ¢ < &, there exists 0 < y, < & such

that for all y € H-\ A with 0 < |y| < ye, Co N Hy, N Bg“ is a manifold with
boundary and an’y admits only Morse critical points in Co N Hy N Bg“.

Proof. We choose H generic for Lemmas 3.1, 3.2 and Corollary 3.3. Therefore f|x
has an isolated critical point and there exists 0 < ¢’ < 1 such that forall0 < & < ¢/,
CoN H N S” is smooth. By transversality, there exists 0 < y" < ¢ such that for all y
with0 < |y| < ¥/, CoN Hy, NS} is also smooth. Then we take v € §" N H generic for
Propositions 3.4 and 3.5 and we set / = Span(v). Let A be T'y1 Ny (Ty). Itisa
semi-algebraic set in H1 of dimension at most ¢ — 1 in the neighborhood of 0, which
means that there exists 0 < y” < 1 such that A N B’Vi,frl N H' is a semi-algebraic

set of dimension at most ¢ — 1. We set y. = min (y/, y"). If y € H-\ A and
0 < |yl < yethen Co N Hy N Bg“ is a smooth manifold with boundary because

y ¢ I'yr and Co N Hy N S is smooth. Furthermore an’y is Morse in B"*! since
y ¢ (T). 0

We will need also this lemma:

Lemma 3.9. For almost all | € G;11+1 withl L H, f|ug has an isolated critical
point at Q.

Proof. Let G be the mapping defined by

G: R x (R - RY,

(e, wi; .o wg—1) B> (f; (X, wi) o (X, wg—1).
As usual, for almost all (wy,...,wy—1) € (R, Cy N {{w,x) = 0,...,
(wg—1,x) = 0} is smooth of codimension g outside H. But if x # 0 belongs

to HNCoN {{wy,x) =0,...,{wg—1,x) = 0} then rank(V f(x), eq,...,e5) =
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q + 1 and therefore rank(V f (x), wy, ..., wy—1) = g since Span(wy, ..., wy—1) C
Span(ey, ..., e;). We choose [ in such a way that H @ = [Span(wy, ..., wq_l)]l.
O

The second part of our study on polar varieties consists in localizing the results
on polar varieties of Section 2. Let k be in {0, ..., n — 1} and let P be in Gﬁii Let
mp: Co — P be the orthogonal projection on P. We recall that Xp is the set of

critical points of 7p and I'p = mp(Zp).

Lemma 3.10. For almost all P € Gﬁii, 2 p \ {0} is a k-dimensional submanifold
in the neighborhood of 0.
Proof. See Lemma 2.5. O

Gk+1

P the set

Lemma 3.11. For almost all P €
E}) ={x € ¥p | wplx, is not regular at x}

is a union of submanifolds of X p of codimension greater than or equal to 1 in the
neighborhood of 0.

Proof. See Lemma 2.6. O

Lemma 3.12. For almost all P € Gﬁii, Ip is a semi-algebraic set of dimension k
in the neighborhood of 0.

Proof. See Lemma 2.7. O

With the definition of i p(x) given in Section 2, we have:

Lemma 3.13. For almost all P € Gﬁi}, there exists a semi-algebraic set Wp C Tp
of dimension smaller than k in the neighborhood of 0 such that I'p \ Wp is a smooth

k-dimensional manifold in the neighborhood of 0 and the following functions in y,
Yo =DPY and g(wpls,) T ),
x| wplzp =y
are defined and constant on each connected component of I'p \ Wp whose closure

contains 0.

Proof. Apply Lemma 2.13 to the manifold Co N BQH \ {0}. O

In the rest of this section, we assume that f admits an algebraically isolated critical
point and we will denote by fc its complexification (the same notation will be used
for the complexification of any real algebraic mapping or set). Let us recall first two
general lemmas.
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Lemma 3.14. Let N ¢ M C RY be analytic sets and let Nc and Mc be their
respective complexifications. Assume that Mc \ Nc is a smooth complex manifold
of dimension K. Let m: RN — RP, with P < K, be an analytic mapping and let
nc be its complexification. Then for almost all o« € RP, n(al(a) N Mc\ Ncisa
smooth manifold of dimension K — P and =~ (ot) " M \ N is a smooth manifold of
dimension K — P (or empty).

Proof. Let X be the critical set of ¢y \ N and let X be the critical set of 7 pn\N-
Then ¢ (Z¢) has at most dimension P — 1 and ¢ (Zc) NRP isa subanalytic set of
dimension at most P — 1, which contains 7 (X). O

Lemma 3.15. Let g = (g1, ..., &n): R" — R" be an analytic mapping such that 0
is algebraically isolated in g~ (0). Then, for all sufficiently small regular values 8
of g,

(C{.)Cl, sy xn}

tg1(8) < dimg ——— 77

Proof. Let I'y (resp. I'g.) be the discriminant of g (resp. gc); I'y is included in
g NR™. If § does not belong to 'y, N R" then § is also a regular value of g¢ and
the result is clear. If § € (I'g. NR") \ ', § is a regular value of g and the function
A+ g1 (1) is locally constant around 8. Since dim I’ gc NR" < n, there are regular
values of gc in the neighborhood of § in R”. |

Using these two lemmas and the machinery developed in the first part of this
section, we obtain:

+1-—
Corollary 3.16. Foralmostall H € G, *

the properties of Corollary 3.8 hold. Furthermore, Coc N Hy N Bﬁ("“) is a smooth

, 1 <qg <n-—1, foralmostalll € GL,

manifold with boundary and the projection nlg’yc: Coc N Hyc N Bg("H) = lye

admits only non-degenerate critical points. The number of critical points of m; Vs

o . H
smaller than or equal to the number of critical points of T, e, O
C

4. Euler characteristics and topological degrees

Let g: (RNt 0) - (R, 0) be an analytic function with an isolated critical point
at 0. Let us assume that g|(y,—o) has also an isolated critical point.

Lemma 4.1. The function x1|4-1(0)\(0y has no critical point in a neighborhood of 0.
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Proof. Using the Curve Selection Lemma, it is easy to prove that the critical set of
X1lg-1(0y lies in {x; = 0}. Similarly the critical set of g|{x,=0y lies in g‘l(O). Hence
these two critical sets are the same. O

This lemma implies that 0 is an isolated root of the mapping G: (RV*+! 0) —
RV 0),x > (g(x), 78— (x), ..., 72— (x)).

XN 11 T XN+l

Theorem 4.2. Let §, 0 < |§| < ¢ K 1, be a regular value ofxllg—1(0)\{0}. Then, if
N — 1 is even, we have

x(g ') N{x; =8y N BYT) =1 — deg, Vg — sign(¥) - deg, G,

x((g=0n{x =8N BYY) — x({g <0} N {xy =8} n BN
= degy V(gl{x;=0})-
If N — 1 is odd, we have

x(g7 1) N {x; =8y N BN =1 — deg V(glx1=0)),
x(lg =20y n{xr =8N BN — x({g <0y N {x; =8} N BT
= deg, Vg + sign() - deg, G.

Proof. This is an immediate consequence of Fukui’s formula [Fu]. See [Du2], The-
orem 3.2 for details. O

We will use these results in the following form:

Corollary 4.3. Let §, 0 < § < & < 1, be a regular value of xi|g-1 )\ (0)- Then, if
N — 1 is even, we have

x(g7' O N{x1 = NBY ) +x (g7 O N {x1 = =8} N BYT!) = 2~ 2deg, Vg,

x({g=0N{x1 =0NSY) — x({g <0} N {x1 =0} N SY) = 2degy V(glx,=0))-
If N — 1 is odd, we have

x(g7' O N {x1 =0)NSY) =2 — 2degy V(glix,=0).

[X({g >01N{x; = 5}03?""1) — X({g <0}N{x; =8N B3N+1)]
+x(tg = 0N {xr = =81 BN — x({g <0} N {x; = =8} N BNHY)]

Proof. 1t is easy. However the reader will find in [Dul], Theorem 5.2, the argument
necessary for the proof of the second point of the case N — 1 even. O



268 N. Dutertre CMH
5. Integrals on the singular level

We recall that f: R"*! — R is a polynomial such that f(0) = 0 and 0 is an isolated
critical point of f. Let Cp be f ~1(0) and let Ci be Co N Bg’“. In this section, we
express

1
lim —- _ dx, 1=<k<n,
lim o /cg\{O} Sn—k(x) dx <k<n

in terms of mean values of topological degrees, and we bound from above

lim — hy—k(x)dx
e—0 bksk CE\{0} "

in terms of the Milnor—Teissier numbers of fc.

5.1. Study of s,_. First we study the case 1 < k < n. From Theorem 2.15,

n On 1+ e
f sk dx = () - SR\ {0)).
CE\(0} Ok

We keep the notations of Sections2and 3: P € Gﬁ]: wp: Co — P istheorthogonal

projection on P, ¥ p is the polar variety and I'p = wp (X p). We will write

mtE =/ ( > (—l)i”("))dy for0 < e < 1.
FPﬂBEP

mpls, (X)=y

Here B? is the ball of radius ¢ in P. Then, we have

L rresqop = — / e
brek k0  gnrtirt Joktt brek T
With the notations of Lemma 3.13, letus write ['p \ Wp = ]”; 1 X ]P in the neighbor-

hood of 0. Moreover, on each X/P the integer Zﬂplz,, (x):y(—l)iP(x), where y € XJ?’,

does not depend on y. We will denote it by A }D . Then the following equality holds:
rp rp
mte =" vol(XF nBf)y=) "1 - /1 #X; nin Bl
j=1 j=1 Ap
hence,

rp
m*e :/Al doaf-@xfninBfal.
P j=1
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But eri 1 Af (X JP N 1N BL) is generically the number of critical points of the
orthogonal projection JTILZ CoN LN B! — [ where L = P @ 1. By Bezout’s
theorem, this number is smaller than or equal to D = deg f(deg f — 1)" . Since
X]P N BP c BP, there exists a constant cst such that [m*¢| < cst- D - &k and

+,¢ . .
|m£—k| < cst - D, this last term does not depend neither on P nor on &. We can apply

Fubini’s theorem to get
1 1 mt:€
lim ——L; (C5\ {0 :—f lim ——-dP
e—0 bkek k ( 0 \ { }) &n+1,k+1 Glr(zj:ll e—0 bké‘k

1 LI VOl(XjP NnBF)
- AP lim —
8nt1,k+1 /Gk+1 Z 7 e>0 biek

n+1 j:l

Each set X }D is semi-algebraic of dimension &, hence by the Kurduka—Raby theorem
[KR], we obtain the following proposition:

Proposition 5.1. Fork € {1,...,n—1}, limg_g bk%L,f(Cg \ {0}) exists and equals
1 -
—— AP erxP,00dP. O
8n+1,k+1 /ijfr} ; !

Now we have to compute O (X jP ,0) for a generic (k + 1)-plane P. We will
use the Cauchy—Crofton formula for the density due to Comte [Co], which can be
summarized in this way in the semi-algebraic case:

Proposition 5.2. Let X be a semi-algebraic set in RN whose closure contains 0,
d-dimensional in the neighborhood of 0. For every d-dimensional vector plane Q in
RYN, we denote by mg: X — Q the orthogonal projection on Q. There exists a dense
open semi-algebraic set Ex in Gjlv such that for all Q € &y, the following holds:

(1) The complement of the discriminant of ¢ is a dense open semi-algebraic set
of Q. We call local polar profiles its connected components whose closure
contains 0. We denote them by K IQ e K,,QQ.

(2) Foralli € {1,...,nq}, the cardinal of the fibre nél(y) does not depend on y
ifyek l-Q and y is close enough to 0. We call this integer multiplicity of the
polar profile and denote it by el.Q.

Moreover, we have

o

1

O4(X,0) = —/ Y el 0uKL, 0)dO. O
8N.d JGY i
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Applied to X JP , this gives

np,Q,j
1 P,0 P,0
OXxF,0) = > e K2, 0)dO,
Jst Jst
8k+1.k JGY, ]

P,
e.l.Q

where the K fliQ’s are the polar profiles and the g

’s are the multiplicities of

JTI-P’QZ XJP — Q. Hence for a fixed P, we obtain
rp 1 rp P,Q,j
P P _ P P#Q P#Q
oAl enx],0) = - /k S S alelil ekl 0)d0.
o +Lk JGh ST T

Now let us fix a k-plane Q in P and let us set [ = Q=F. As in Section 3, we
denote by [, the line parallel to / passing by y and H, the (n — k + 1)-affine plane

Pt o ly. Fory € KJ.ITi’Q close to O (i.e. |y| < ¢), (yrjP’Q)_l(y) is included in

X JP and therefore is disjoint from np(E}) (see the notations in Sections 2 and 3).

Each point in 71131 [(JTJ.P’ Q)—l (y)] is a non-degenerate critical point of the projection
an’y: Ci N Hy — [y (by Corollary 3.8, we can assume that Cj N Hy, is smooth).
Let 21, ..., Q4 be the connected components, whose closure contains 0, of the

complement of the union of the discriminants of the projections ]TJ-P’Q. These con-

. . P , .
nected components are the non-empty intersections ﬂ;’; 1 K; l.’,Q where i; ranges in
AT

{1,...,np o} The set U%:l Qg is a dense semi-algebraic set in Q. For each
B efl,...,a}, Qg isequal to mji | Qpck”e KjPl]Q. Let yg be a point in Q4 close
; i ,

to 0, then using Lemma 2.12 we have
P, .
Z Af -ej’l.Q = Z sign K (x, C5 N Hy,).
j,i ‘ Q‘HCKjI:,Q x | x non degenel;?;

critical point of 7,

Let us denote by /g this integer depending only on B. Since

P
Ok 2 0= > Ox(2.0),
ﬁ\gﬂckfl:Q
we get
P PO PO 0y _ N3P PO
DA e S OuKGE 0 =) A e Y OuRp,0)
Ji Jii ﬂlQ}gCKfliQ

= 3wl en9p.0)

— P
Jtog QpCK; ;

=) I O(2p.0).
s
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Finally this gives

rp 1

AP erxT,0) = / Ig - Or(Qp,0)dQ,

Zl ! 8k+1.k G’;,Z g g

J= B
and

1 1

lim —— L (CE\{0}) = / (f 15-Ok(Q ,O)dQ) dPp.
e—0 bk k270 Bn+1k+1 8k+1,k JGiEH kazﬂ: g !

The mapping Q — [ = Q- identifies G(P, k) with G(P, 1), hence

: 1 + e _ 1
lim = L{ (G5 \ 10D = /GM (/G Zlﬁ.®k(szﬂ,0)d1> dPp.

. 1
8n+1.k+1* 8k+1.1 JGkt! A

Let ' be the flag variety of pairs (P,[), P € G’,‘lﬂ and [ € G}D. The mapping
(P,1) — (H,l) where H= PL- @l and P = H' &1 enables us to identify ¥’ with
the flag variety of pairs (H,[), H € GZI_IIH and/ € G;,. With the notations used
above, we see that H+ = Q C P. Finally, we find

lim ——L#(C5 \ 0) [ ( |
m — =
e—0 brek kA0 En+1,k+1 * 8k+1,1 GZ4_-11{+1 G

where I ; is defined as follows. There exi~sts a semi-algebraic set Y c Ht of
dimension smaller than k such that, if H+\ ¥ = U%Zl Qg is the decomposition of

Tny dl) dH,

1
H

H+ \ 3. into its connected components, then for yg close to 0 in 4, the following
sum:
> signK(x, C§N Hy,)

x | x non degenerate

e . H.y,
critical point of 7, G

does not depend on the choice of yg. Denoting it by Ig, we set

Iy = Ig - Ox(Q.0).
B
By Corollary 3.8, we know that for almost every pair (H, [), there exists a semi-
algebraicset A ¢ H+,dim A < k, such thatforall y ¢ A close enough to 0, CoNH,y

is a smooth manifold with boundary and an’y : C5 N Hy — 1y is a Morse function.
In that case, if n — k is even, one has

Y signK(x,C§ N Hy) = x(Hy N C§) — x(Hy N C§ N {z/" = 3)).
x | x non degenerate
critical point of JT,H’)‘
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Figure 4. The case n =2 and k = 1.

If n — k is odd, one has

Z sign K (x, Cj N Hy)

x | x non degenerate

critical point of 7,

=—{x(Hy,NB:N{f >0} — x(H,N B, N{f <0}}
+{x(H, N B.N{f =0)n{x" =)
— x(HyN BN {f <0} {x/" =sp).

Here § is a small regular value of an’y (18] < [¥]). These two equalities require some
explanations. By Lemma 2.3 in [Du2], we can relate the sign of K (x, Cj N Hy) to the
Morse index of an’y at x. Then we can apply Morse theory to an’y CoNHy — 1,
as is done in the proof of Lemma 5.1 in [Du2]. However, as in this lemma, we have
to take care about the critical points on f -1y n Hy, N S} and on Hy, N S7. If we
write / = Span(v), then by Lemma 3.7, f|gnv+=0) has an isolated critical point at 0.
This implies that U*|Cgm g has an isolated critical point at 0 by Lemma 4.1. But with

our notations, v* lcgnm is :|:an 0. Ci N Hy — ly. We can apply the same arguments
as [Dul], Lemma 4.1, to get rid of these critical points on the boundary.

We will study in detail the case n —k even. Since dim A < k, the set ngl Qg\A
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is dense in HL and then

li Lﬁ(cs {0}
81—1;1%)17](8]‘ k(o
1

En+1,k+1 * 8k+1,1

/ / Y x(Hy, N CHO(Rp. 0)dIdH
Gn—k+l Gl
n+l H ﬂ

: /
8n+1,k+1 * 8k+1,1JG"*+!

n+1

H,
./Gl ZX(HW NCoN{m, " = 8))Or(Qp.0)dIdH.
H B

Let us compute the second term on the right-hand side. The manifold with boundary
Hy, N CqN {nZH’y # = 8} has dimension n —k — 1, which is odd. Its Euler characteristic
is half the Euler characteristic of its boundary. If yg and § are sufficiently small,
this last Euler characteristic is the Euler characteristic of H N C5 N {v* = 0}. By
Lemma 3.1 and Lemma 3.7, f|y and f|pn{y+=0; have an isolated critical point at
the origin. Denoting H N {v* = 0} by [ (the orthogonal of / in H) and applying
Corollary 4.3, we get

H,y
X (Hy, N Cs N {m, " = 8)) = 1 — degy V(f 1)

Since Zﬂ Or(L28,0) = 1, we have

1
=1- / / dego V(fllLH)dldH
8n+1k+1 " 8k+1,1 JGn A+ JGl,

1
=1- f / degy V(f|x)dKdH.
8n+1k+1 " 8k+1,1 Jor it Jont

Let § be the flag variety of pairs (H, K), H € GZ;II‘H and K € G’I’i_k. This variety
n—k

is a bundle over G, i each fibre being a G }c il Hence, we find

/n,m /,,k deg, V(f|K)deH:/nk/1 degy V(flk)dldK
¢ G G G

n+1 n+1

g [, det V(fIx) K.

Gr1+1

So our second term equals

1

1o [ degy V(flR)dK.
Bn+1n—k JGI K
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Let us have a look now at the first integral:

! + X(H C£)®k(SZ ,0) dldH.
En+1,k+1 * 8k+1,1 GZ;’{“ G}q Xﬂ: 8 0 P

The sets €21, .. ., 2o depend on the pair (H, /) but x (Hy, N C;) depends only on yg
and H. We can write

8n—k+1,1
En+1,k+1 - 8k+1,1

o
7= / ) > X (Hy, N CHOK(Qp. 0)dH
G211+] ﬂ:]

/{; ’ )
gn—.—l,n k+1 nn ]lc+1 Z yﬁ 0 ﬁ H

where, with an abuse of notation, the €2;’s are the connected components of H L \ F”H L
whose closure contains O (771 is the orthogonal projection on H~+ and Iy, . isits
discriminant).

Let us compute Zgzl x (Hy, N C3)Ok (2, 0). First, replacing HE\ Iz, . by
H+ \ (I‘;,Hl U —FHHL), we can assume that for all k € {1, ..., «}, there exists
J €{1,...,a} such that —2; = ;. Here the notation —X for X C H~+ means the
symmetric of X by the symmetry whose center is the origin. We have

1 1
Or(R23,0) = lim — vol(Qg N BY) = lim —— vol(5 N Sk 1.
k( b ) agr%)bkek VO( p 8) sER)Ok_lek_l VO( p € )

But vol(2p N S{™") is equal to 1 [1 4(2p N S{™" N1)dl and therefore
H

Or(2p,0) = lim 1(QsNStnnal.

1
Ok—1 ¢=0 Gl

Since f(25 N S(f_] N 1) is smaller than or equal to 2 for all / € G}ii’ we have

O (2, 0) = / lim [8(Qs N SE~' N D]dl
G

Ok—1 Zi e—0

and

1 . _
Z X (Hy,NC§) O (2, 0) = / [Z X (Hy,NCE) lim #(Q2pNS% ‘ml)] dl.
5 0k—1 Jg! 5 e—0

On Q2g, x (Hy, N C{) does not depend on yg provided it is sufficiently small.
Let Co(I'1) be the tangent cone of I'y;1 at O (see [KR] for the definition of
the tangent cone). Since 'y = —I'y1, Co(I'yL) is an homogeneous set, i.e, if
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u # 0 belongs to Co(I'y;1), then R - u is included in Co(I'y1). Let PCy(I'y1) be
its projectivisation in G}#’ we have dim PCy(I';1) < k — 1 for dim Cp(I'y1) <
dim 'y < k. Let ! be a line not belonging to PC(I'; L), we can decompose it in
the following way: [ = [ L1 {0} L /™. We assert that there exist ¢ = (/™) and Qg
such that [T N B TcQ g. Let us suppose that is not true. Then for all & > 0 and
for all B, there is xg ¢ in I™ such that |xg,el < € and xg . ¢ Qp. But for & small
enough, I+ N B * is not included in T L because otherwise /™ would be included
in Co(I'y ) and [ would belong to PCy(I" ;). Hence for & small enough, there exist
Bo = Pole) and x},  in Qp, such that x , € I* N BI". Let I be the interval in
I with extremities xl’go’ e and xg, .. If I NIy = @ then, since I is connected and
I NQp, # ¥, I isincluded in Qg,, which is impossible for xg, . ¢ Qg,. So I NIy
and [T N Bf ‘nr gL are not empty. Finally, for ¢ small enough, there exists x in
In B{:HL NT L andsol™ C Gyl 1, which contradicts the fact that I ¢ PCo(TjyL).
Our assertion is proven. It clearly implies that / C Q5 U {0} U —Qg.

Let us compute g x (Hy, N CH) lime 0 8(2p N SE~1 N 1) for I ¢ PCo(T ).
Since there exists 8 such that/ C Qg U {0} U —Qg, this sum is equal to

x(Hy, N Cy) + x(Hy,, NCj), where Qg = —Qp.

/3/
Let us suppose that H = {x; = 0,...,x; = 0}, in that case HLt = {xk+1 =
0,...,x,4+1 = 0} = Span(ey, ..., er). Suppose that /| = Span(e;) = {x; =--- =
xx = 0} in HL. Sincel C Qp U {0} U Qg/, we can choose yg and yg of the form
yg=(,0,...,0) andy}gr =—yg=—(5,0,...,0), where 0 < § < ¢ < 1. Then,
we have

Hy, NCy=CiN{x1 =8x=0,...,x =0}

and
Hyﬁ,ﬂC(ﬁ:CSﬂ{xl =-68,x=0,...,x =0}

By Lemma 3.1 and Lemma 3.9, f|g and f|ng; have an isolated critical point at 0.
We can apply Corollary 4.3 and get

X (Hy, NCH)+x (Hy, NCH) = 2—2degy V(flixy=0....0=0)) = 2—2degy V(f|He1)-

Finally, we find:

2
3 x(Hy, N €O 0 = = [ (1= degy Vflian)
B

Ok-1JG! |

=1—

/Gl degy V(flrer) dl

ok-1JG! |
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and
1

I=1- / k / degy V(flpar) dldH.
G~ +1 Gl
n+1 HL

8n+1,n—k+1 * 8k, 1

Let # be the flag variety of pairs (K, H), K € GZ;IIH and H € G'[’{kH. This
variety is a bundle over GZ;]fH, each fibre being a G ,i Hence, we have

/Gnk+1 /G},L degy V(flne) dldH = /Gnm /G’;(Hl degy V(flx)dHdK

n+1 n+l1

= Gn—k+2.n—k+1 / degy V(flk) dK,
ank+2

n+1

and
=1 8n—k+2.n—k+1 / degy V(1) dK
8n+1n—k+1 " 8k,1 JGk+2
1
=1——/ degy V(flx) dK.
8n+1,n—k+2 JGih+2 0

We can study the case of n — k odd in the same way, using the second part of
Corollary 4.3. We have proved:

Theorem 5.3. For1 <k < n,

1 1
lim —L+(C8\{0})=——/ degy V(flk)dK
8—>0bk8k k+-0 8n+1,n—k+2 G:’Ljrll‘Jr2 g0
1
—/ dego V(1) dH. o
En+1n—k JGr7*

n+1

Corollary 5.4. For1 <k <n,

1 n\ oy 1
lim _/ ook (1)l = —( )‘— - —/ degy V(f1x) dK
e—0 bké‘k CE{0) " k Ok Gn+tl.n—k+42 JGrH+2 €0

n+1
+<>_; /
k) or gutin—kJc

It remains to consider the case k = n. Here, we have

kdegOV(f|H)dH. ]

n—
n+l1

. 1 . vol(Co N B+
lim so(x)dx = lim ———— = 0,,(Cy, 0).
e—>0 bn8n CS\{O} e—>0 bné‘n
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We use the Cauchy—Crofton formula for the density:

np
/ Ze}’ .@,(KF,0)dP,

n+l j:]

1

En+1,n

0,(Co,0) =

where the K;’s are the polar profiles and e;’s are the multiplicities of wp: Cop — P.
Let I' p be the discriminant of 7 p. As before, we can assume that 'p = —I"p and so
forall j € {1,...,np}, thereexitsi € {1, ..., np} such that KJ.P = —Kl.P. We have

@,,(KP,O) = /G [hn%u(lgf nsi~tnn]d,

On—1 }D e—

and

np np

P Py — P oy P A~ -l
Y el 0.k 0) = /G;[z;ej.slg%ﬁ(lfj s ﬂl)]dl.
]:

j=1

On—1

Let [ be a line not belonging to PCy(I'p), then there exist j and k in {1,...,np}
such that K,f = —KjP and such that [ C KJ.P U K,f U {0}. Let us assume that
P = {x;+1 = 0} and that [ = Span(e;) = {x3 = --- = x, = 0} in P. Let
y=(0,...,0,0 <8 e < 1,bein K/ Ni. Then —y belongs to K} N 1.

Moreover ef is equal to ﬁn;l(y) and e,f to ﬁn;l(—y), hence ef is equal to #1Cj N

{x1=8,xp=0,...,x, :0}ande,f tottCSﬂ{xl =—-8,x=0,...,x, =0}. By
Corollary 4.3, we find that

ef +ef =2—2degy V(fl{ry=0....5,=0)) = 2 — 2degy V(fligp1),

np
D¢l limu(K NSy N =2~ 2degy V(fligpo),
e—>0

j=1
and, finally,
1
©,(Co.0) =1 - ———— degy V(fljgps) dldP.
8n+l.n - 81 JGr, JG),
The same argument as above shows that:
Theorem 5.5.
0,(Cp,0)=1- / degy V(flx)dK. O
8n+1,2 JG?

n+1
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5.2. Study of h,,_;. We study the case 1 < k < n. Theorem 2.15 gives

/ By (x) dx = <Z> -2 LR (CEN (0.
CE\{(0} Ok

With the notations used in Subsection 5.1., we can prove that

1 1 (P
LGN (0) = —/ m (5

byek Snt1k+1 JGktl byek

where
mS(P>=f EGtplz,) () dy
rnef
for 0 < ¢ <« 1. With the method applied in the previous subsection, we get:
Proposition 5.6. Fork € {1,...,n— 1}, lim,_q bk%l‘k (C5 \ {0}) exists and equals
;/ iuf’.@k(x!’ 0)dP
Ent+1.k+1 JGht! / ’ ’

n+1 ]:1

where ,uJP is the integer #§(mwp |2P)_1 (v), which does not depend on the choice of the
point y in X jP , provided y is close enough to 0. O

Then, everywhere replacing A f by M]P , we obtain

1 1
lim —— L (CE\ {0}) = / / JudldH,
=0 brek 0 Bn+1k+1 " 8k+1,1 Jor k1 Jgl,

where Jp; is defined as follows. There exi~sts a semi-algebraic set Y c Ht of
dimension smaller than k such that, if H+ \X = U%ZI Qg is the decomposition of

H+ \ ¥ in its connected components, then for yg close to 0 in Qg, the following
integer:

.. . H,
ﬁ{x | x non degenerate critical point of 7, Y }

does not depend on the choice of yg. Denoting it by Jg, we set

Tap =) Jg- Ou82.0).
B
By Corollary 3.16, we know that for almost all pairs (H, [), there exists a semi-alge-
braic set A ¢ Ht,dim A < k, such that for all ynotin A and close to 0, CS N Hy, and
CocNHy:N B,32 1) are smooth manifolds with boundary and an’y :CoNHy — Iy
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and nlg’y C: Coc N Hy- N Bg2 (D, Iy are Morse functions. Furthermore, the
following inequality holds:

ﬁ{x | x non degenerate critical point of an’y } N B;’H
.. . H
< #{z | z non degenerate critical point of nlc’yc} n B2+,
Let us express the right hand side of the inequality in terms of the Milnor—Teissier
numbers. For convenience we will assume that H = {x; = 0,...,x; = 0} and

that [ = Vect(ex+1) = {xk4+2 = 0, ..., xy,41 = 0}. Thus, our right-hand side is the
number of elements in

0 d
Ue=00nta =y o= w25 =0, UE —ofn g2,
0Xk42 0xp+1

where O < ||(y1, ..., Yx)|| < & < 1. Generically this is the dimension of the algebra

Cl{x1, ..., Xne1)
afc afc \°
(f’xl"""xk’ axk+2"."axn+l)

Applying Teissier’s lemma [Te] to fc |, it follows that this dimension is equal to
w KD (o) + w0 (fe). This enables us to bound Jg generically and since
ZB Ok (28,0) = 1, we get:

Theorem 5.7. Fork e {1,...,n —1},

1
lim — Li(C5\ {0)) < n" D (o) + n" P (fo). O
e—0 bkek

Corollary 5.8. Fork € {1,...,n— 1},

) 1 ny o _ -
lim — hp_r(x)dx < ( ) L (M(" k+l)(f<c) + u(n k)(fC))- 0O
e—0 bye CE\{0) k Ok

It remains to study the case k = n, i.e. to bound ®,(Cp, 0) in terms of the
Milnor-Teissier numbers. We will not go into details but just mention that using the
Cauchy—-Crofton formula for the density and the fact that generically e JP < e(fo)
(e(fc) is the multiplicity of fc), we get:

Theorem 5.9.
0, (V,0) < e(fo) = 'V (fe) + 1O (fo). O
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6. Integrals on the Milnor fibre and on the singular level

Werecall that (¢, x1, .. ., X,+1) iS acoordinate system in R2*+" and that F: R*T" — R
is a polynomial such that for all x € R**1 f(x) = F(0,x). We assume that

H = (F , g fl 3)?,111 ]) has an isolated zero at 0 which implies that VF also

has an isolated zero at 0. We denote by f;: R"*! — R the deformation given
by fi(x) = F(t,x). Let Cyp = f’l(O), C; = ConN Bg“, C, = ffl(O) and
Cf = C, N B

Proposition 6.1. Fork € {1, ..., n}, one has:

1 1
lim li d —1 _ dx,
ob 0 ek ,/cf Sn—k(x)dx = In 0 gk /cg\{O} Sk () dx

1 1
lim lim —/ n—k(x)dx = hm = / hy_r(x)dx.
; C5\ 0}

e—>01—0 gk e—>0¢&
Proof. We prove the result for s,_¢. For 0 < & < &, we will denote by C; “ the
set C;N{e < w < ¢}, where w = xlz—i—---—i—x,fﬂ. Then for0 < ¢’ € ¢ K 1,

CS’S, is a smooth manifold with boundary (possibly empty). This implies that for

0 <t < ¢, C> is also a smooth manifold with boundary.
The proof decomposes into three steps.

First step. If 0 < ¢/ K« ¢,i.e. &/ = o(¢), then

1 1
lim —/ Sp—r(x)dx = lim —f Sp—k(x)dx.
e=0 ¢ Jegyo) e=0 ek Jep

We have
1

1
= Sn—k(x)dx = —/ Sn—k(x)dx —|— Sp_k(x)dx.
& Jcp\(o)

g\ (0}

The second term of the right-hand side can be written as follows:

1 e\ /1
x , Sp—k(X)dx = | — /k Sn—k(x)dx ).
&> Jep\(o) € Co \{0}

We have proved in the previous section that lim,/_, 8#,( f ¢\ 1oy Sn—k (x) dx exists and

5 \{0}
. . . / . .
is finite. Since as ¢ tends to 0, &’ and % tend to 0, it is easy to see that



Vol. 83 (2008) Curvature integrals on the real Milnor fibre 281

Second step. If 0 < |t| € &/ K ¢, then

e—>01r—0 Sk e—>0r—0 ¢

1 1
lim lim —/ Sp—r(x)dx = lim lim —/ Sn—k(x) dx.
(o3 cyt

As above, we have

1 1 g\ /1
= Sn_k(x)dx = = Sk (X)) dx + | — — |, Sn—k(x)dx ).
& Jee et Jeoe e e’ Jee

Applying the argument of Proposition 5.1 to Cf/ instead of C§ \ {0}, we find that

1
oF /CS/ Sp—k(x)dx

t

< cst - deg f;(deg f; — )" K.

But deg f; is smaller than deg F, hence

1
oF /CE’ Sn—k(x)dx

t

< cst - deg F(deg F — 1)" .

Since (%/) tends to 0, this proves the second step.

Third step. If 0 < |t| < &' < ¢, then

t—0

lim CSn—k(x)dx = / L Sn—k(x) dx.
(o lorss
In order to prove this equality, we will first show that

lim /K(x)dx:/ CK(x)dx,
t—0 Ctg'g CcEe

0

and then we will use the reproducibility formula for s,,_; (Proposition 2.4).

Let us explain briefly why the above equality is true. Let W = F~1(0) and for
0<ée ekl let W& =WnN{e <w< e} Forédsuchthat 0 < |§] <« €, let
Dg’a be the smooth manifold with boundary wee' N {t = &}. The restriction of the
projection 77 : R>*"* — R!*" (¢, x) — x to the manifold D§’8/ is a diffeomorphism
onto CE’S,.

Let us recall that for all v € §” and for x € R"*!, v*(x) = (v, x). We will also
denote by v* the function R 5 R, (¢, x) > (v, x). For all v € §", we define the
following polar set:

Zy = {(t,x) € W& | rank(Vt, VF, v) < 3).

Using techniques similar to the ones developed in Section 3 and in [Du2] p. 854-855,
we can prove the following results.
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Lemma 6.2. There exists an open dense semi-algebraic set O in S such that for all
v e 0O, Z, is empty or a smooth semi-algebraic curve in a neighborhood of DS’E .

Lemma 6.3. For all v € O, there exists 8 with 0 < §' < &’ such that for all § with
0 < |8] < &, the critical points of v*lDE,g/ lying in the interior of DE’S are Morse
critical points.

The last lemma has this direct corollary.

Lemma 6.4. For all v € O, there exists ' with 0 < t’ K &' such that for all t with

0 < |t| < 1/, the critical points of v*| ... lying in the interior of C;** are Morse

Cs,s
t
critical points.

Let y; be the Gauss mapping:

V! Cf’E/ —- S,
V fi(x)
IV £l

Let us fix v in the open dense semi-algebraic set O \ (yo(Co N SZ) U yo(Co N S;‘,)).

Let {p}, ..., pﬁt} be the set of points in the interior of C; " that are sent to v or —v
by ¥. Let I, ; be defined by I,, = "' deg(y:, p!) where deg(y;, p!) is the local
topological degree of y; at the point ptf . By the exchange formula, we have

1
CK(x)dx = —/ Iy dv.
co* 2 Jgn

By Bezout’s theorem, |/, ;| is lower than deg F - (deg F' —1)" and then, by Lebesgue’s
theorem,

1
lim K(x)dx = 5/ lim 1, ; dv.

t—0 C;S,e sn t—>

It remains to prove that lim;_,¢ I, ; = I, 0. Observe that the set 7 (Z,,) has a finite
number of connected components Z,, 1, .. ., Z,  which are either O-dimensional or 1-
dimensional. Furthermore these connected components do not intersect the boundary

of Cg’g/ because v ¢ y9(Co N S?) U yo(Co N S%). Hence for 7 such that 0 < 1| < ¢/,
they do not intersect the boundary of C; ' Furthermore each of the Z v.i S intersects
c; ' in exactly one point and the union of these intersection points is exactly the set
{pl..... p.}. Therefore, r; is equal to r and we can write {p}} = Z, ; N Cf’g/,where

pf tends to p? ast tends to 0. Since for ¢ sufficiently small, deg(ys, plf ) = deg(yp, p?),
it is easy to conclude that lim; o I, ; = I.0.
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;

Figure 5. The sets Z,, ;.

By the reproducibility formula for s,,_;, we have that for 0 < |f| € &' K &:

/ ,sn_k(x)dxzcst-/ (/ ) K(x,Cf’S,ﬂL)dx>dL.
ce* AnAT] CENL

Using Bezout’s theorem and the exchange formula, we see that

‘/ K@, CP N L)dx
C;fNL

is bounded by a constant which does not depend neither on ¢ nor on L. Applying
Lebesgue’s theorem, we obtain

lim /sn_k(x)dxzcst-/ <lim/ / K(x,Cf’a/ﬂL)dx>dL.
t—0 cot AZJ:IIH t—0 cHonL

Replacing R'*” by the affine subspace L in the above study, we find that

lim [ K, CE¥ NL)dx =/ . K(x,CP N L)dx.
=0 Jc¢nL cEonL
This ends the proof of the third step and the proof of the proposition. O

7. Curvature integrals on the real Milnor fibre

In this section we state our main results. First we state real versions of the Griffiths—
Loeser formulas.
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Theorem 7.1. Fork e {1,...,n — 1},

1 1
o imtim g [ i = — oo [ de VU4
(D)on e=>01=0 bre Je " 8n+1.n—k+2 J G A+2 °
1
+ _/ degy V(f|u)dH,
8n+1,n—k JG7k

n+l1

L 1 _ _
W"}ER)}IH%WL M-k () dx < "D (fo) + 170 (fo).
k) On - t

Furthermore,
lim lim so(x)dx = — / degy V(flk)dK + 1,
e—>01—0/Jce 8n+1,2 JG2 |

lim lim [ ho(x)dx < uP(fo) + 1O (fo) = e(fo).

e—>01—0 Ct

Proof. Use Corollary 5.2, Theorem 5.3, Corollary 5.6, Theorem 5.7 and the results
of Section 6. O

Let us recall the main result we proved in [Du2]:

lim lim sp(x)dx = — [dego VF + sign(t) deg, 17]
8n+1,n 6010 Jce

b [ e V(fin)dK,

gn+1’n n+1

where the mappings F and H are defined in the introduction. Using this, Theorem 7.1
and the formula for x (C;) given in [Du2] Theorem 3.2 , we obtain real versions of
Kennedy’s formula, that is to say Gauss—Bonnet type formulas for the real Milnor

fibre.
Corollary 7.2. Ifn is even, then

n/2

0% . .. 1
C?) = —— lim lim ——- - dx.
(€)= ) e i o [ sv-ao d

If n is odd, then
n—1

1 >\ 0%+l 1
x(CH = =x(CoNSH = ———— lim lim—/ Sp—2k—1(x)dx.
t 2 ’ 1; (2/&1)0" e=01=0 by y1826F1 e "
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Proof. Let us prove first the case n even. Theorem 3.2 in [Du2] states that

x(C?) =1 —deg, VF — sign(t) deg, H.
We have

1 _
lim lim | s,(x)dx = — [degy VF + sign(r) deg, H |
8n+l,n 6010 Jce

1
[, vk,
8n+1,n -
By Theorem 7.1, we know that for k € {1, e %}
0% i lim — f (x)d ! / deg, V(f|x) dK
im lim ——— Snok(x)dx = — — e K
(5 )on 6010 boge?* Jee ™ En+1n—2k+2 J G 2k+2 20
1
+—/ degy V(fln)dH,
8n+1,n=2k JGu 3*
and that
lim lim so(x)dx = — / degy, V(flx)dK + 1.
e—>01—0 Jce 8n+1,2 JG2 |

Adding these 5 + 1 equalities, we obtain that

n/2
0% .. .. 1 / . —
——— lim lim —— Sp—ok(x)dx =1 — | degy VF + sign(t) deg, H |.
1; (2nk)0n e—>01—>0 bype2k ct " [ 0 0 ]

The term in the right-hand side of this equality is x (C;). If n is odd, Theorem 3.2 in
[Du2] states that

x(CH) =1—deg, Vf.
By Theorem 7.1, we know that for k € {0, e %}

O2%k+1 4. .. 1 /
———— lim lim ———— Sn—2k—1(x)dx
(2kn+1)0" e—>01—0 bppy182k+] ct "
: ./
- dego V(f1x) dK
8n+1,n—2k+1 JGr ! °
1
L degy V(f|n)dH,
8n+1,n-2k—1 JGr 3!

and that

lim lim so(x)dx = —

deg, V dK + 1.
by . gn+1,2/2 ego V(flk)dK +

Gn+l
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Adding these % equalities, we obtain that

n—1

2

U i lim ;/ Sn_zk_1(x)dx = 1 — degy V f.
G/ )On 6010 by 182k H1 Joe " 0
k=0 \2k+1 t
The term in the right-hand side of this equality is x(C;). Since C; is an odd-
dimensional manifold with boundary, we have that x (C;) = % x(C: N SY). But Cy
intersects S) transversally if 0 < ¢ < 1, hence Cy N S} is diffeomorphic to C; N S}

for 0 < |t| <« ¢ < 1. This proves the third equality of the corollary. O

We end this paper with two remarks. In [BB], the authors define spherical densities
(:)l- (X,x),i =1,..., N — 1, for a point x belonging to a definable set X C RN,
They are generalizations of the classical density. Michel Coste asked the author about
the relations between these densities and our limits of curvature integrals. Using the
following formula ([Ar], [Wa]):

X{f <O)NSY) =1—degy VS (= Lx({f =0} N SY)ifnis odd),

the spherical Gauss—Bonnet formula ([BB], Theorem 1.2, [Sa], p. 302-303) and the

spherical kinematic formula ([BB], Theorem 4.f1), it is possible to express the mean-

values ka 1 degy V(f|ng)dH in terms of the ©;({ f < 0},0) and ®;({f = 0}, 0).
n+

For example, if n + 1 = 2,
1 -
/1 degy V(fln)dH = 27T<§ — O({f =0}, 0)>,
G2
andifn +1 =23,

/G degy V(f1m)dH =27 (1= Ba((f =0},0).

3

This makes the link between the spherical densities and the limits of curvature integrals
on the real Milnor fibre.

We have restricted ourselves to the case of a polynomial. Except for Bezout’s
inequality, everything works in the analytic case. Itis possible to prove Proposition 5.1
in the analytic case (even in the subanalytic case) using a more sophisticated argument
based on the Thom—Mather first isotopy lemma as is done in [CGM] (see also [CY],
p- 157). However the spirit of this paper is to apply techniques of integral geometry
to singularity theory rather than to focus on the category of functions we work with.
That is why we have chosen to present our results only in the algebraic case.
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