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Curvature integrals on the real Milnor fibre

Nicolas Dutertre

Abstract. Let f : R
n+1 → R be a polynomial with an isolated critical point at 0 and let

ft : R
n+1 → R be a one-parameter deformation of f . We study the differential geometry of the

real Milnor fiber Cε
t = f −1

t (0) ∩ Bn+1
ε . More precisely, we express the limits

lim
ε→0

lim
t→0

1

εk

∫
Cε

t

sn−k(x) dx,

where sn−k is the (n− k)-th symmetric function of curvature, in terms of the following averages
of topological degrees: ∫

Gk
n+1

deg0 ∇(f |H ) dH,

where Gk
n+1 is the Grassmann manifold of k-dimensional planes through the origin of R

n+1.
When 0 is an algebraically isolated critical point, we study the limits

lim
ε→0

lim
t→0

1

εk

∫
Cε

t

hn−k(x) dx,

where the hn−k are positive extrinsic curvature functions. We prove that these limits are finite
and that they are bounded in terms of the Milnor–Teissier numbers of the complexification of f .

Mathematics Subject Classification (2000). 14P25, 58K15, 53C65.
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1. Introduction

Let f : C
n+1 → C be a polynomial such that f (0) = 0 and 0 is an isolated singularity

in f −1(0). Let Cε
λ = f −1(λ) ∩ B2n+2

ε be the Milnor fibre of this singularity. It can
be viewed as a 2n-dimensional manifold with boundary in R

2n+2 and therefore, with
each point of its interior, we can associate a curvature, namely the Lipschitz–Killing
curvature introduced by Fenchel in [Fe]. Let us recall what this curvature is. Given
a point x belonging to a smooth p-dimensional manifold V in R

N and a unit normal
vectorv toV atx, we will denote byπv the orthogonal projection fromV to the (p+1)-
dimensional vector space spanned by TxV and v. The image of this projection is a
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hypersurface non-singular at x, we denote by K(x, πv(V )) its Gaussian curvature
at x. The Lipschitz–Killing curvature at x is

LK(x) = c(N, p)

∫
NUxV

K(x, πv(V )) dv,

where NUxV is the unitary normal space of V at x and where c(N, p) depends only
on N and p. When V is an open bounded subset of a complex hypersurface in C

n+1,
Langevin [La1], [La3] gave a nice way to compute

∫
V

LK(x)dx using Morse theory
and orthogonal projections on complex lines. More precisely, for almost all complex
lines L ⊂ CP

n, the restriction to V of the orthogonal projection on L admits only
non-degenerate critical points. Denoting by |μ(V, L)| the number of these critical
points, we have the following equality, called the exchange formula:∫

V

(−1)nLK(x)dx = c(n)

∫
CPn

|μ(V, L)| dL,

where c(n) depends only on n. Such a result is interesting because it provides a link
between the differential geometry and the intersection theory.

Applying this principle to the Milnor fibre, Langevin [La1] obtained∫
Cε

λ

(−1)nLK(x)dx = c(n)

∫
CPn

|μ(Cε
λ, L)| dL.

A lemma due to Teissier [Te2] asserts that, as ε and λ tend to 0, the number |μ(Cε
λ, L)|

tends to μ(n+1) + μ(n), where μ(n+1) is the Milnor number of f at 0 and μ(n) the
first Milnor–Teissier number, namely the Milnor number of f restricted to a generic
hyperplane section at 0. These last two numbers are integers. Furthermore μ(n+1)

depends only on the topological type of the germ of f −1(0) at the origin. Combining
these two results, Langevin [La1] proved that

lim
ε→0

lim
λ→0

∫
Cε

λ

(−1)nLK(x) dx = 1

2
vol(S2n)

(
μ(n+1) + μ(n)

)
.

Thus Langevin’s formula states that the asymptotic behaviour of the Lipschitz–Killing
curvature of Cε

λ, more precisely the “amount” of curvature that concentrates around
the singularity, is described in terms of analytic invariants of this singularity.

Similar formulas for the other symmetric functions of curvature were announced
by Griffiths [Gr] and proved by Loeser [Lo], who showed

lim
ε→0

lim
λ→0

(−1)n−kc(n, k)

ε2k

∫
Cε

λ

cn−k(�Cλ)∧φk = μ(n−k+1)+μ(n−k), k ∈ {1, . . . , n},

where cn−k(�Cλ) is the (n−k)-th Chern form on Cλ = f −1(λ), φ is the Kähler form
on C

n+1, c(n, k) is an universal constant depending only on n and k and μ(n+1−k)
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denotes the k-th Milnor–Teissier number [Te1]. This last number is the Milnor number
of f restricted to a generic plane of codimension k. One should mention that Loeser’s
paper concerns a more general situation from which the above formulas are special
cases.

Adding up these equalities with alternating signs simplifies, and we get

1 + (−1)nμ(n+1) =
n∑

k=0

lim
ε→0

lim
λ→0

c(n, k)

ε2k

∫
Cε

λ

cn−k(�Cλ) ∧ φk,

and we recover Kennedy’s formula [Ke] for the Euler characteristic of the Milnor
fibre:

χ(Cε
λ) =

n∑
k=0

lim
ε→0

lim
λ→0

c(n, k)

ε2k

∫
Cε

λ

cn−k(�Cλ) ∧ φk.

All these results concern curvatures of the complex Milnor fibre. Let us focus now
on the real situation whose study was initiated by Risler [Ri] and the author [Du2].

Let f : R
n+1 → R be a polynomial such that f (0) = 0 and 0 is an isolated critical

point of f . Let ft : R
n+1 → R be a one-parameter deformation of f such that f −1

t (0)

is smooth near 0 for t small. The real Milnor fibre Cε
t is f −1

t (0) ∩ Bn+1
ε , where |t |

is much smaller than ε in such a way that f −1
t (0) is transverse to ∂Bn+1

ε = Sn
ε . This

definition is different from the complex one. Actually, we could have defined the
complex Milnor fibre as the set f −1

t (0) ∩ B2n+2
ε , |t | � ε. However, this is not usual

because this set has the same homotopy type as Cε
λ, namely the homotopy type of

a wedge of μ(n+1) spheres Sn, and complex geometers only consider deformations
given by f = λ. In the real case, the topology of Cε

t does depend on the deformation,
which explains our definition of the real Milnor fibre.

Risler proved that limε→0 limt→0
∫
Cε

t
|K(x)|dx (where K is the curvature, i.e.

the Jacobian determinant of the Gauss map) was finite and that it was bounded from
above by

vol(Sn)

vol(S2n)
lim
ε→0

lim
t→0

∫
f −1

t,C (0)∩B2n+2
|LK(x)|dx = 1

2
vol(Sn)

(
μ(n+1)(fC) + μ(n)(fC)

)
,

where fC (resp. ft,C) is the complexification of f (resp. ft ).
In [Du2], we studied limε→0 limt→0

∫
Cε

t
Kdvt for a deformation ft given by

ft (x) = F(t, x), where (t, x) is a coordinate system for R
n+2 and F : R

n+2 → R

is a polynomial such that for all x ∈ R
n+1, f (x) = F(0, x). We assumed that the

mapping H : R
n+2 → R

n+2 defined by H = (F, ∂F
∂x1

, . . . , ∂F
∂xn+1

) had an isolated
zero at the origin. This implies that ∇F , the gradient vector of F , has an isolated zero
at the origin as well. For t 	= 0, the set f −1

t (0) is smooth in a neighborhood of 0 (see
[Du2], Lemma 3.1) and the real Milnor fibre Cε

t is a smooth manifold with boundary
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(possibly empty). Orientating it by ∇ft , we proved a real version of Langevin’s
formula ([Du2], Theorem 5.3):

lim
ε→0

lim
t→0+

∫
Cε

t

K(x)dx = −1

2
vol(Sn)

[
deg0 ∇F+deg0 H

]+1

2

∫
Gn

n+1

deg0 ∇(f |H )dH,

lim
ε→0

lim
t→0−

∫
Cε

t

K(x)dx = −1

2
vol(Sn)

[
deg0 ∇F−deg0 H

]+1

2

∫
Gn

n+1

deg0 ∇(f |H )dH.

Here Gn
n+1 denotes the Grassmann manifold of n-dimensional vector spaces in R

n+1

and deg0H (resp. deg0∇F , deg0(f |H )) is the topological degree of H

‖H‖ around a

small sphere (resp. ∇F
‖∇F‖ , ∇(f |H )

‖∇(f |H )‖ ).

In that paper, we adapted to the real case the method developed by Langevin. We
needed the following real version of the exchange theorem. If V is an open bounded
subset of a smooth oriented hypersurface in R

n then, for almost all lines L ⊂ RP
n,

the restriction to V of the orthogonal projection on L admits only non-degenerate
critical points. To each of these points one can assign an index, the local topological
degree of the Gauss mapping at the point. Let μ(V, L) be the sum of all these indices.
We have (see [La3], [LS])

∫
V

K(x)dx =
∫

RPn

μ(V, L) dL.

Applied to Cε
t , this formula gives

∫
Cε

t

K(x)dx =
∫

RPn

μ(Cε
t , L) dL.

Then we showed that, as ε and t tend to zero, μ(Cε
t , L) tends to − deg0 ∇F ±deg0 H+

deg0 ∇(f |L⊥), where L⊥ is the orthogonal of L. Note that unlike the complex case
this last term does depend on L.

The purpose of this paper is to give real versions of the Griffiths–Loeser formulas
and of Kennedy’s formula. We will use the following notations:

• for k ∈ {0, . . . , n}, Gk
n+1 is the Grassmann manifold of k-dimensional linear

subspaces in R
n+1 and gn+1,k is its volume,

• for k ∈ {0, . . . , n}, sk is the k-th symmetric function of curvature,

• for k ∈ N, bk is the volume of the k-dimensional unit ball and ok is the volume
of the k-dimensional unit sphere.
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Figure 1. The exchange principle.

With the same assumptions as in the previous paragraph, we shall prove that (Theo-
rem 7.1): for k ∈ {1, . . . , n − 1},

ok(
n
k

)
on

lim
ε→0

lim
t→0

1

bkεk

∫
Cε

t

sn−k(x) dx

= − 1

gn+1,n−k+2

∫
Gn−k+2

n+1

deg0 ∇(f |K) dK + 1

gn+1,n−k

∫
Gn−k

n+1

deg0 ∇(f |H ) dH.

Furthermore,

lim
ε→0

lim
t→0

1

bnεn

∫
Cε

t

s0(x) dx = − 1

gn+1,2

∫
G2

n+1

deg0 ∇(f |K) dK + 1.

From this and degree formulas for χ(Cε
t ) due to Fukui [Fu], we will deduce the

following Gauss–Bonnet formula for the real Milnor fibre (Corollary 7.2): if n is
even,

χ(Cε
t ) =

n/2∑
k=0

o2k(
n
2k

)
on

lim
ε→0

lim
t→0

1

b2kε2k

∫
Cε

t

sn−2k(x) dx,

and if n is odd,

χ(Cε
t ) =

n−1
2∑

k=0

o2k+1(
n

2k+1

)
on

lim
ε→0

lim
t→0

1

b2k+1ε2k+1

∫
Cε

t

sn−2k−1(x) dx.
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In the complex case, all the curvatures involved have a constant sign, whereas
in the real case the sign of the symmetric functions of curvature may vary. How-
ever, Langevin and Shifrin [LS] defined, for a hypersurface V ⊂ R

n+1, a sequence
of positive curvatures h0, . . . , hn such that h0(x) = 1 and hn(x) = |K(x)| for all
x ∈ V . Moreover they proved that these curvatures satisfied the same reproducibil-
ity formulas as the si’s. We will work with them in order to get generalizations of
Risler’s inequality. More precisely, adding the assumption that f admits an alge-
braically isolated critical point at the origin, we shall show that (Theorem 7.1): for
k ∈ {1, . . . , n − 1},

ok(
n
k

)
on

lim
ε→0

lim
t→0

1

bkεk

∫
Cε

t

hn−k(x) dx ≤ μ(n−k+1)(fC) + μ(n−k)(fC).

Furthermore,

lim
ε→0

lim
t→0

1

bnεn

∫
Cε

t

h0(x) dx ≤ μ(1)(fC) + μ(0)(fC).

In order to establish our results, we use a method for the computation of∫
V

sn−k(x)dx and
∫
V

hn−k(x)dx, where V is a smooth bounded hypersurface in
R

n+1, due to Langevin and Shifrin [LS]. Let us explain briefly this method. The main
idea is to refine the exchange principle by studying generic projections on higher
dimensional vector spaces. Let P ∈ Gk+1

n+1, 0 ≤ k ≤ n − 1 and let πP : V → P be
the restriction of the orthogonal projection on P . Generically the set 	P of critical
values of πP is almost everywhere a k-dimensional manifold. With each regular point
y in 	P , we can associate two “curvature” indices λ(y) ∈ Z and μ(y) ∈ N. The
integrals

∫
V

sn−k(x)dx and
∫
V

hn−k(x)dx are related to these indices as follows:
∫

V

sn−k(x) dx = c(n, k)

∫
Gk+1

n+1

(∫
	P

λ(y)dy

)
dP,

∫
V

hn−k(x) dx = c(n, k)

∫
Gk+1

n+1

(∫
	P

μ(y)dy

)
dP.

Our strategy is to apply Langevin and Shifrin’s machinery to the variety C0 = f −1(0).
Since f is algebraic, 	P is a semi-algebraic set of dimension k (or empty) in the
neighborhood of 0. There exists a semi-algebraic set WP ⊂ 	P of dimension less
than k such that the indices λ(y) and μ(y) are constant on each connected component
of 	P \ WP . Writing 	P \ WP = 
XP

j and denoting by λP
j and μP

j the common

values of λ(y) and μ(y) on each XP
j , we get

1

bkεk

∫
Cε

0\{0}
sn−k(x) dx = c(n, k)

∫
Gk+1

n+1

∑
j

λP
j · vol(XP

j ∩ BP
ε )

bkεk
dP,
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1

bkεk

∫
Cε

0\{0}
hn−k(x) dx = c(n, k)

∫
Gk+1

n+1

∑
j

μP
j · vol(XP

j ∩ BP
ε )

bkεk
dP,

where BP
ε is the ball of radius ε in P . Applying Fubini’s theorem leads to

lim
ε→0

1

bkεk

∫
Cε

0\{0}
sn−k(x) dx = c(n, k)

∫
Gk+1

n+1

∑
j

λP
j · 
k(X

P
j , 0) dP,

lim
ε→0

1

bkεk

∫
Cε

0\{0}
hn−k(x) dx = c(n, k)

∫
Gk+1

n+1

∑
j

μP
j · 
k(X

P
j , 0) dP .

We recall that 
k(X
P
j , 0) is the density of XP

j , which does exist for XP
j is semi-

algebraic (see [KR]). The remainder of the method is technical and difficult to present
briefly. We use the Cauchy–Crofton formula for the density due to Comte [Co], the
fact that the λP

j ’s are related to Morse critical points of some projections and some

identifications between flag varieties in order to express
∫
Gk+1

n+1

∑
j λP

j ·
k(X
P
j , 0)dP

in terms of mean-values of Euler characteristics of affine sections of Cε
0. Using

degree formulas for Euler characteristics, these last mean-values are easily seen to be
mean-values of topological degrees.

The method for hn−k is roughly the same; instead of degree formulas for Euler
characteristics, we use Teissier’s lemma [Te2] which enables us to bound generically
a number of critical points in terms of the Milnor–Teissier numbers.

The last step is to prove that

lim
ε→0

lim
t→0

1

εk

∫
Cε

t

sn−k(x) dx = lim
ε→0

1

εk

∫
Cε

0\{0}
sn−k(x) dx,

lim
ε→0

lim
t→0

1

εk

∫
Cε

t

hn−k(x) dx = lim
ε→0

1

εk

∫
Cε

0\{0}
hn−k(x) dx.

Throughout the paper, we will use the following notations and conventions (some
of them have already appeared in this introduction):

• ok is the volume of Sk , bk is the volume of the unit ball in R
k .

• Gk
n+1 is the Grassmann manifold of k-dimensional linear spaces in R

n+1, gn+1,k

is its volume (see [Sa] for an explicit expression of gn+1,k).

• Ak
n+1 is the affine grassmannian of k-dimensional affine spaces in R

n+1.

• If H is a linear subspace of R
n+1, Gk

H is the Grassmann manifold of k-dimen-
sional linear spaces in H , H⊥ is its orthogonal, BH

ε is the ball of radius ε

centered at 0 in H . If K ⊂ H is a linear subspace of H , K⊥H is the orthogonal
of K in H .
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• If v1, . . . , vq are vectors in R
n+1, Span(v1, . . . , vq) is the linear space spanned

by v1, . . . , vq .

• If X ⊂ R
n+1, Sing(X) is the singular set of X, X is its topological closure, X̊ is

its interior and Bd(X) is its boundary.

• If M ⊂ R
n+1 is a submanifold, Fra(M) is the set of adapted frames for M .

• A universal constant that we do not want to specify will be denoted by “cst”.

• We will often say orthogonal projection for the restriction of an orthogonal
projection to a submanifold in R

n+1.

The paper is organized as follows: in Section 2, we present the background in dif-
ferential geometry necessary for our work. In Section 3, we study generic projections
and polar varieties. In Section 4, we give the relations between topological degrees
and Euler characteristics. Section 5 is devoted to the proof of the formulas dealing
with limε→0

1
bkε

k

∫
Cε

0\{0} sn−k(x)dx and limε→0
1

bkε
k

∫
Cε

0\{0} hn−k(x)dx. Section 6

relates limε→0 limt→0
1

bkε
k

∫
Cε

t
sn−k(x)dx and limε→0 limt→0

1
bkε

k

∫
Cε

t
hn−k(x)dx to

the previous limits. The real versions of the Griffiths–Loeser formulas and of Kenne-
dy’s formula are given in Section 7.

Several authors have worked on this subject of curvatures and invariants of sin-
gularities. Besides the ones already stated in the introduction, one can also mention
the following papers: [G-B.T], [La2], [LL], [ST], [Ne], [Va] in the complex case and
[BB],[CGM], [Du3] in the real case.

The author is grateful to Georges Comte for valuable discussions on this topic and
to David Trotman for his careful reading of this manuscript.

2. Differential geometric preliminaries

In this section, we recall differential geometric results obtained by Langevin and
Shifrin [LS] (see also [LR]). We will restrict ourselves to the case of a smooth oriented
hypersurface.

Let V ⊂ R
n+1 be an oriented hypersurface of class C2. A moving frame on an

open subset U ⊂ V n is a set of smooth mappings ei : U → R
n+1 such that for each

x in U , e1(x), . . . , en(x) form an orthonormal basis for TxV and en+1(x) is the unit
normal vector in NxV = (TxV )⊥ orienting V . Let ωi be the 1-form dual to ei (note
that ωn+1 = 0) and let ωi,j be defined by dei = ∑

ωi,j ej , where dei is seen as a
R

n+1-valued 1-form. We have ωi,j = 〈dei, ej 〉, where 〈 , 〉 denotes the usual scalar
product in R

n+1 (note that ωi,j = −ωj,i).
The (Gaussian) curvatureK is the Jacobian determinant of the Gauss mapγ : V →

Sn, γ (x) = en+1(x). We can consider den+1 as an endomorphism of TxV and we
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have

KdV = Kω1 ∧ · · · ∧ ωn = (den+1)
∗(ω1) ∧ · · · ∧ (den+1)

∗(ωn),

where (den+1)
∗ : (TxV )∗ → (TxV )∗ is the transpose map of den+1. Since den+1 =∑n

i=1 ωn+1,iei , we find that for i ∈ {1, . . . , n}, (den+1)
∗(ωi) = ωi(den+1) = ωn+1,i

and that

KdV = Kω1 ∧ · · · ∧ ωn =
n∧

i=1

ωn+1,i = (−1)n
n∧

i=1

ωi,n+1.

The endomorphism den+1 of TxV is self-adjoint and its eigenvalues k1, . . . , kn

are called the principal curvatures of V at x. The symmetric functions of curvature
s0(x), . . . , sn(x) are defined as the coefficients of the following polynomial:

det (Id +tden+1(x)) =
n∏

i=1

(1 + ki(x)t) =
n∑

i=0

si(x) · t i .

We note that sn is the curvature K and that s0(x) = 1. Langevin and Shifrin give a
geometric interpretation of the other symmetric functions.

Let x ∈ V and let l ∈ G
q
TxV be a q-plane (q = 1, . . . , n). Let L be the (q + 1)-

plane l ⊕ γ (x). Let (e1, . . . , eq) be a direct orthonormal basis of l, we orientate L

choosing (e1, . . . , eq, γ (x)) as a direct orthonormal basis. The section V ∩ L can
be viewed as a hypersurface in L. Let K(x, l) be its curvature at x. Note that if we
change the orientation of l, the orientation of L is reversed and so K(x, l) does not
change.

Proposition 2.1. Let x ∈ V and let l ∈ G
q
TxV . We have

sq(x) =
(

n

q

)
1

gn,q

∫
G

q
TxV

K(x, l) dl.

Proof. The proof is given in [LS], p560. We repeat it here with more details. Let
e1, . . . , eq; eq+1, . . . , en; en+1 be an adapted frame for V ∩ L ⊂ V ⊂ R

n+1 (i.e.
e1, . . . , eq are tangent to V ∩ L and e1, . . . , en to V ). Let us denote by E the tangent
space TxV and by A : E → E the linear map den+1 : TxV → TxV . The q-vectors
ei1 ∧ · · · ∧ eiq , 1 ≤ i1 < · · · < iq ≤ n, form an orthonormal basis of the space ∧qE

and we have

∧qA(e1 ∧ · · · ∧ eq) = K(x, l)(e1 ∧ · · · ∧ eq) +
∑

i1 	=1,...,iq 	=q

αi1,...,iq ei1 ∧ · · · ∧ eiq .

Let (v1, . . . , vn) be an orthonormal basis of eigenvectors of A, each vi being associ-
ated with the eigenvalue ki . The q-vectors vi1 ∧· · ·∧viq , 1 ≤ i1 < · · · < iq ≤ n, form
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an orthonormal basis of eigenvectors of ∧qA, each vi1 ∧ · · · ∧ viq being associated
with the eigenvalue ki1 . . . kiq . Let 〈 , 〉q denote the usual scalar product in ∧qE. We
have

∧q A(e1 ∧ · · · ∧ eq)

=
∑

1≤i1<···<iq≤n

〈e1 ∧ · · · ∧ eq, vi1 ∧ · · · ∧ viq 〉q ∧q A(vi1, . . . , viq ),

=
∑

1≤i1<···<iq≤n

〈e1 ∧ · · · ∧ eq, vi1 ∧ · · · ∧ viq 〉qki1 . . . kiq vi1 ∧ · · · ∧ viq ,

hence,

K(x, l) =
∑

1≤i1<···<iq≤n

〈e1 ∧ · · · ∧ eq, vi1 ∧ · · · ∧ viq 〉2
qki1 . . . kiq ,

=
∑

1≤i1<···<iq≤n

(
det
[〈ei, vij 〉

]
1≤i,j≤q

)2
ki1 . . . kiq .

We can write∫
G

q
TxV

K(x, l) dl =
∑

1≤i1<···<iq≤n

(∫
G

q
TxV

I (l, vi1 ∧ . . . viq ) dl

)
· ki1 . . . kiq ,

where I (l, vi1 ∧ · · · ∧ viq ) = ( det
[〈ei, vij 〉

]
1≤i,j≤q

)2 does not depend on the choice

of the direct orthonormal basis (e1, . . . , eq) of l. Since G
q
TxV is SO(TxV )-invariant,

the integral ∫
G

q
TxV

I (l, vi1 ∧ . . . viq ) dl

does not depend on the q-vector vi1 ∧· · ·∧viq . This gives the result, the multiplicative
constant being computed by taking V = Sn. �

By analogy, Langevin and Shifrin [LS] (see also [LR]) define other curvature
functions h0, . . . , hn on V .

Definition 2.2. For q = 0, . . . , n and for all x ∈ V ,

hq(x) =
(

n

q

)
1

gn,q

∫
G

q
TxV

|K(x, l)| dl.

Note that for all x ∈ V , hn(x) = |K(x)| = |sn(x)| and h0(x) = 1. In order
to study the functions sq and hq , we need a general version of Meusnier’s theorem
about surfaces. Let x ∈ V and let L be a (q + 1)-affine plane (q = 0, . . . , n)
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passing through x, L 	⊂ TxV , whose direction is the (q + 1)-vector plane l. Let πl

be the orthogonal projection on l and let (e1, . . . , eq) be a direct orthonormal basis
of Tx(V ∩ L). We orientate L in such a way that (e1, . . . , eq, πl(γ (x)) is a direct
basis for l. The section V ∩ L is a hypersurface of L, we denote by K(x, V ∩ L) its
curvature. It does not depend on the orientation chosen for Tx(V ∩ L).

Proposition 2.3.

K(x, TxV ∩ L) = ‖πl(γ (x))‖q · K(x, V ∩ L).

(Here TxV ∩ L is seen as a q-vector plane in TxV as in Proposition 2.1.)

Proof. The proof for q = n − 1 is given in [LS], p. 561. We prove the general case.
Let e′

1, . . . , e
′
q; e′

q+1; e′
q+2, . . . , e

′
n+1 be an adapted frame for V ∩ L ⊂ L ⊂ R

n+1

(e′
q+2, . . . , e

′
n+1 are normal to L) in a neighborhood of x. Furthermore we take

e′
q+1 = πl(γ )

‖πl(γ )‖ . We have

K(x, V ∩ L)

q∧
α=1

ω′
α =

q∧
α=1

ω′
q+1,α

since e′
q+1 is normal to V ∩ L in L. Hence

K(x, V ∩ L) =
q∧

α=1

ω′
q+1,α(x)(e′

1, . . . , e
′
q).

Now let e1, . . . , eq; eq+1; eq+2, . . . , en+1 be an adapted frame for V ∩ (TxV ∩ L) ⊂
V ⊂ R

n+1 such that eα = e′
α at x for 1 ≤ α ≤ q. We have

K(x, TxV ∩ L)

q∧
α=1

ωα =
q∧

α=1

ωq+1,α,

hence

K(x, TxV ∩ L) =
q∧

α=1

ωq+1,α(x)(e′
1, . . . , e

′
q).

For each 1 ≤ α ≤ q, ωn+1,α is equal to 〈den+1, e
′
α〉 at x. Since 〈en+1, e

′
α〉 = 0, we

obtain

〈den+1, e
′
α〉 = −〈de′

α, en+1〉 = −
〈
de′

α,

n+1∑
β=q+1

〈en+1, e
′
β〉e′

β

〉

= −〈en+1, e
′
q+1〉ω′

α,q+1 = 〈en+1, e
′
q+1〉ω′

q+1,α,

because 〈de′
α, e′

β〉 ≡ −〈de′
β, e′

α〉 ≡ 0 for β ≥ q + 2, the vectors e′
β being constant.

�
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We can state reproducibility formulas for the functions sq and hq .

Proposition 2.4. Let V ⊂ R
n+1 be a bounded hypersurface. Then:

∫
V

sq(x) dx = cst
∫

A
q+1
n+1

(∫
V ∩L

K(x, V ∩ L)dx

)
dL,

∫
V

hq(x) dx = cst
∫

A
q+1
n+1

(∫
V ∩L

|K(x, V ∩ L)| dx

)
dL.

Proof. The case q = n−1 is proved in [LS], p577. We adapt this proof to the general
case. Consider the incidence relation

{
(x, L) ∈ V × A

q+1
n+1 | x ∈ L

}
and the bundle of adapted frames

(
(x, e′

1, . . . , e
′
q; e′

q+1, . . . , e
′
n; e′

n+1), (x, e1, . . . , eq; eq+1, . . . , en; en+1)
)

∈ Fra
(
A

q+1
n+1

)× Fra(V ),

such that e1 = e′
1, . . . , eq = e′

q is a frame for V ∩ L.
We have to compute the density dvV ∩L ∧dL where dvV ∩L is the volume element

on V ∩ L and dL is the invariant measure on A
q+1
n+1. We have

dvV ∩L = ∧ωα, α = 1, . . . , q,

and (see [Sa], p. 202)

dL =
∧

ω′
i ∧
∧

ω′
β,j ∧

∧
ω′

q+1,j , β = 1, . . . , q, i, j = q + 2, . . . , n + 1.

But ω′
i is equal to

∑n
k=q+1〈e′

i , ek〉ωk (remember that ωn+1 = 0), hence we get

dvV ∩L ∧ dL =
∣∣∣ det

[〈e′
i , ek〉

]
q+1≤k≤n

q+2≤i≤n+1

∣∣∣dvV ∧
∧

ω′
β,j ∧

∧
ω′

q+1,j .

For each β, we have

ω′
β,j = 〈de′

β, e′
j 〉 =

〈
deβ,

n+1∑
t=q+1

〈e′
j , et 〉et

〉

=
n+1∑

t=q+1

〈e′
j , et 〉ωβ,t =

n∑
t=q+1

〈e′
j , et 〉ωβ,t mod (ω1, . . . , ωn).
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This implies that

dvV ∩L ∧ dL =
∣∣∣ det

[〈e′
i , ek〉

]
q+1≤k≤n

q+2≤i≤n+1

∣∣∣
×
∣∣∣ det

[〈e′
i , et 〉

]
q+1≤t≤n

q+2≤i≤n+1

∣∣∣qdvV ∧
∧

ωβ,t ∧
∧

ω′
q+1,j ,

hence

dvV ∩L ∧ dL =
∣∣∣ det

[〈e′
i , ek〉

]
q+1≤k≤n

q+2≤i≤n+1

∣∣∣q+1
dvV ∧

∧
ωβ,t ∧

∧
ω′

q+1,j .

By a result on orthogonal matrices, we get

dvV ∩L ∧ dL = ∣∣〈e′
q+1, en+1〉

∣∣q+1
dvV ∧

∧
ωβ,t ∧

∧
ω′

q+1,j .

We see that
∧

ωβ,t , β = 1, . . . , q, t = q + 1, . . . , n is the measure dl of the space
G

q
TxV . Moreover,

∧
ω′

q+1,j , j = q + 2, . . . , n + 1, is the measure dp of the space

G1
Nx(V ∩L). Finally,

∫
A

q+1
n+1

(∫
V ∩L

K(x, V ∩ L) dx

)
dL

=
∫

V

∫
G

q
TxV

(∫
G1

Nx(V ∩L)

∣∣〈e′
q+1, en+1〉

∣∣dp
)∣∣〈e′

q+1, en+1〉
∣∣qK(x, V ∩ L) dLdx.

From Proposition 2.3 we have |〈e′
q+1, en+1〉|qK(x, V ∩ L) = K(x, TxV ∩ L) =

K(x, l) with l = TxV ∩ L. Furthermore, the integral∫
G1

Nx(V ∩L)

∣∣〈e′
q+1, en+1〉

∣∣ dp,

where e′
q+1 is an unit vector of p, does not depend neither on Nx(V ∩L) nor on en+1

and is equal to ∫
G1

n+1−q

|〈e(p), w〉| dp,

where w is an unit vector in R
n+1−q and e(p) an unit vector of p. This implies the

result for K . The same argument holds for |K|. �

Langevin and Shifrin’s idea is to relate
∫
V

sq(x)dx and
∫
V

hq(x)dx to polar vari-
eties of generic projections and to generalize somehow the exchange formulas. First
we recall some results on polar varieties. Let P ∈ Gk

n+1, k = 1, . . . , n, and let
πP : V → P be the orthogonal projection on P . We denote by �P the set of critical
points of πP and 	P = πP (�P ) the set of critical values. Usually �P is called a
polar set or polar variety.
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V �P

	P

P

Figure 2. The sets �P and 	P .

Lemma 2.5. For almost all P ∈ Gk
n+1, �P is a smooth (k − 1)-dimensional sub-

manifold of V (or is empty).

Proof. We can refer to Mather’s work [Ma] on generic projections. Here we give an
alternative proof due to Slavskii [Sl]. We can assume that V = {x ∈ R

n+1 |f (x) = 0}
where f : R

n+1 → R is C2 and ∇f does not vanish on V . Let us put q = n + 1 − k

and let us consider

F : R
n+1 × (Rn+1)q → R

q+1,

(x, v1, . . . , vq) �→ (
f, 〈∇f, v1〉, . . . 〈∇f, vq〉) .

Since V is non-singular, it is easy to see that dF(x, v1, . . . , vq) has rank q + 1 if
F(x, v1, . . . , vq) = 0. The set F−1(0) is then a smooth manifold of dimension
n(q + 1). Let π : R

n+1 × (Rn+1)q → (Rn+1)q be the projection (x, v1, . . . , vq) �→
(v1, . . . , vq). Sard’s theorem implies that almost all (v1, . . . , vq) are regular values
of π |F−1(0), which means that F−1(0) ∩ π−1((v1, . . . , vq)) is a smooth manifold of
dimension n−q = k−1 for almost all (v1, . . . , vq). But F−1(0)∩π−1((v1, . . . , vq))

is exactly �P where P = [Span(v1, . . . , vq)
]⊥. �

Lemma 2.6. For almost all P ∈ Gk
n+1, the set

�′
P = {x ∈ �P | πP |�P

is not regular at x}
is a union of submanifolds of �P of codimension greater than or equal to 1 (when
�P is not empty).
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Proof (due to Slavskii [Sl]). Let (v1, . . . , vq) be a regular value of the map π |F−1(0)

defined in the previous lemma and let P be [Span(v1, . . . , vq)]⊥. We have

�′
P = {x ∈ R

n+1 | f (x) = 0, 〈∇f (x), v1〉 = · · · = 〈∇f (x), vq〉 = 0 and there is

w ∈ Span(v1, . . . , vq) such that 〈∇〈∇f (x), vi〉, w〉 = 0 for i ∈ {1, . . . , q}}.
The last condition is equivalent to

det
[ n+1∑

α,β=1

∂2f (x)

∂xα∂xβ

vα
i v

β
j

]
1≤i,j≤q

= 0 where vi = (v1
i , . . . , v

n+1
i ).

Let us call Sq � R
q2+q

2 the space of symmetric (q × q)-matrices and let �i ⊂ R
q2+q

2

be the subset of matrices with corank i, i = 1, . . . , q. It is a submanifold of R
q2+q

2 of
codimension i2+i

2 . Let �0 be the set of matrices in Sq with determinant zero, �0 is
equal to

⋃q
i=1 �i . We can write

�′
P = {x ∈ R

n+1 | f (x) = 0, 〈∇f (x), v1〉 = · · · = 〈∇f (x), vq〉 = 0,[∑n+1
α,β=1

∂2f (x)
∂xα∂xβ

vα
i v

β
j

]
1≤i,j≤q

∈ �0
}
.

Let �π be the critical set of π |F−1(0) and let U = F−1(0) \ �π . The mapping

� : F−1(0) →
[ n+1∑

α,β=1

∂2f (x)

∂xα∂xβ

vα
i v

β
j

]
1≤i,j≤q

is regular on U. This is due to the fact that on U the vectors with n + 1 components
u1, . . . , uq , defined by

ui =
( n+1∑

α=1

∂2f

∂xα∂x1
(x)vα

i , . . . ,

n+1∑
α=1

∂2f

∂xα∂xn+1
(x)vα

i

)
,

are linearly independent. Locally the set �̃0 = �−1(�0) ∩ U has the same structure
as �0, that is for all i ∈ {0, . . . , q}, �̃i = �−1(�i) ∩ U is a submanifold of U of
codimension i2+i

2 . Let �̃′
i ⊂ �̃i be the subset where π |�̃i

is not regular. From Sard’s

theorem, π(�̃′
i ) has measure zero and then � = π(�π) ∪⋃q

i=1 π(�̃′
i ) has measure

zero. If (v1, . . . , vq) /∈ � then π−1((v1, . . . , vq))∩�̃i is a submanifold of dimension

k − 1 − ( i2+i
2

)
. Since �′

P = π−1((v1, . . . , vq)) ∩ �̃0, the lemma is proved. �

In the following preliminary results, we will assume that V is a smooth bounded
semi-algebraic variety.
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Lemma 2.7. For almost all P ∈ Gk
n+1, 	P is a semi-algebraic set of dimension k−1.

Proof. The set 	P is semi-algebraic as the projection of the semi-algebraic set �P .
Moreover dim 	P ≤ dim �P = k−1. Let x be a point in �P \�′

P . From the previous
lemma, there exists a semi-algebraic neighborhood Ux of x, Ux ⊂ �P \�′

P , on which
πP is a diffeomorphism and then dim πP (Ux) = k − 1. But πP (Ux) is included in
	P hence dim 	P is greater than or equal to k − 1. �

We define now an index associated with each point x ∈ �P ⊂ �′
P . For this, we

consider the normal section V ∩(P ⊥⊕γ (x)) and the orthogonal projection π
P ⊥⊕γ (x)

γ (x)

of this section on the line oriented by γ (x).

Lemma 2.8. The point x is a non-degenerate critical point of π
P ⊥⊕γ (x)

γ (x) .

Proof. It is clearly critical. We can assume that V is defined by {f = 0} around x.
Let us choose coordinates (x1, . . . , xn) around x such that P ⊥ = {xq+1 = · · · =
xn+1 = 0} (q = n + 1 − k) and such that ∇f

‖∇f ‖ (x) = ∇xn+1(x). In that case, a

local coordinates system at x for V ∩ (P ⊥ ⊕ γ (x)) is given by (x1, . . . , xq). The
implicit function theorem together with some derivative computations shows that

π
P ⊥⊕γ (x)

γ (x) is non-degenerate at x if and only if det
[ ∂2f

∂xi∂xj
(x)
]

1≤i,j≤q
	= 0. Writing

P ⊥ = Span(v1, . . . , vq) where ∀i ∈ {1, . . . , q}, vi = ∇xi and keeping the notations
of Lemma 2.6, we see that

∂2f

∂xi∂xj

(x) =
n+1∑

α,β=1

∂2f

∂xαxβ

(x)vα
i v

β
j .

Since x /∈ �′
P , we conclude that det

[ ∂2f
∂xi∂xj

(x)
]

1≤i,j≤q
	= 0. �

We define iP (x) to be the number of positive eigenvalues of πγ (x).

Lemma 2.9. We have (−1)iP (x) = sign K(x, P ⊥).

Proof. According to [Du2] Lemma 2.3, one has

sign K(x, P ⊥) = (−1)q · sign
(

∂f

∂xn+1
(x)

)q

· (−1)q−iP (x),

keeping the above coordinate system. But, in that system, ∂f
∂xn+1

(x) is equal to
‖∇f (x)‖, which is strictly positive. �

Following Langevin and Shifrin, we can define the q-length and the oriented
q-length of V (this terminology appears in [LR]).
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V

�P

	P

P

πP (x)

P ⊥ ⊕ γ (x)

x

γ (x)

P ⊥

Figure 3. The index iP (x).

Definition 2.10. For each q ∈ {0, . . . , n − 1}, for almost all P ∈ G
q+1
n+1, we set

m+(P ) =
∫

	P

( ∑
πP |�P

(x)=y

(−1)iP (x)
)

dy

and

m(P ) =
∫

	P

�(πP |�P
)−1(y) dy.

We define

L+
q (V ) = 1

gn+1,q+1

∫
G

q+1
n+1

m+(P ) dP,

and

Lq(V ) = 1

gn+1,q+1

∫
G

q+1
n+1

m(P ) dP.

Furthermore, we set L+
n (V ) = Ln(V ) = vol(V ). We call L+

q (V ) the oriented
q-length of V and Lq(V ) the q-length of V .

First we note that m+(P ) and m(P ) are well defined because dim πP (�′
P ) ≤ n−2

and almost all y in 	P are regular values of πP |�P
. For such a y, (πP |�P

)−1(y) is a
0-dimensional semi-algebraic set, hence a finite number of points. We also note that
L+

0 (V ) = ∫
V

K(x)dx and L0(V ) = ∫
V

|K(x)|dx by the exchange formula.
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In order to relate the oriented q-length (resp. the q-length) to the curvature sq
(resp. hq ), we have to study the local situation at a point in �P \�′

P . Let us consider
an (n−q+1)-affine plane L (0 ≤ q ≤ n−1). Generically V ∩L is a smooth (n−q)-
dimensional manifold. Let P be a (q + 1)-vector plane containing the orthogonal
of the direction of L. The intersection l = P ∩ L is an affine line in P . In L, let
πL

l : V ∩ L → l be the orthogonal projection on l.

Lemma 2.11. A point x in (�P \ �′
P ) ∩ L is a critical point of πL

l .

Proof. Let us assume that V = {f = 0} near x. We can choose a coordinate system
such that P = {xq+1 = · · · = xn+1 = 0} and L = {x1 = α1, . . . , xq = αq}. In
that case x is a critical point of πP if and only if ∇f (x) is a linear combination of
e1, . . . , eq+1 (ei = ∇xi). In L, x is a critical point of πL

l if and only if eq+1 is a
linear combination of e1, . . . , eq and ∇f (x). We conclude using the fact that ∇f (x)

is not in the vector space spanned by e1, . . . , eq since V and L intersect transversally
at x. �

Lemma 2.12. Such a point x is non-degenerate for πL
l . Moreover,

sign K(x, V ∩ L) = (−1)iP (x).

Proof. With the notations of the previous lemma, x is non-degenerate for πL
l if and

only if

det

[
∂2f (x)

∂xi∂xj

]
q+2≤i,j≤n+1

	= 0.

In the frame (e1, . . . , eq,
∇f

‖∇f ‖ (x), eq+2, . . . , en+1) with coordinate system

(x1, . . . , xq, x′
q+1, xq+2, . . . , xn+1),

P ⊥ is the set {x1 = 0, . . . , xq = 0, x′
q+1 = 0} and ∇f

‖∇f ‖ (x) is equal to ∇x′
q+1(x),

i.e. γ (x). As in Lemma 2.8, we see that

det

[
∂2f (x)

∂xi∂xj

]
q+2≤i,j≤n+1

	= 0,

since x /∈ �′
P . Finally, (−1)iP (x) = sign K(x, P ⊥) = sign K(x, TxV ∩ L) for

P ⊥ = TxV ∩ L. We conclude with Proposition 2.3. �

We need a last lemma which describes the structure of 	P .
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Lemma 2.13. There exists a semi-algebraic set WP ⊂ 	P with dim WP < k − 1
such that the following functions in y,

∑
x | πP |�P

(x)=y

(−1)iP (x) and �
(
πP |�P

)−1
(y),

are defined and constant on each connected component of 	P \ WP and such that
	P \ WP is a smooth manifold of dimension k − 1.

Proof. Let

WP = Sing(	P ) ∪ πP (�′
P ) ∪ πP (Bd(�P )) ∪ Bd(	P ).

Since Sing(	P ), πP (�′
P ), πP (Bd(�P )) and Bd(	P ) are semi-algebraic sets of di-

mension less than k − 1, dim WP < k − 1. Moreover, WP is a closed set in P

which contains Bd(	P ), hence 	P \ WP is an open set in 	P included in 	̊P . The
set 	P \ WP is a smooth (k − 1)-dimensional manifold for Sing(	P ) ⊂ WP and the
two functions are well-defined because πP (�′

P ) ⊂ WP . Let y be a point 	P \ WP

and let {x1, . . . , xny } be (πP |�P
)−1(y). For each j ∈ {1, . . . , ny}, we can choose

an open neighborhood Uj ⊂ �P such that πP |Uj
is a diffeomorphism and such that

(−1)iP (x) = (−1)iP (xj ) for each x ∈ Uj (the function K(x, P ⊥) is continuous in x).
Let A be the following set:

A = �P

∖ ny⋃
j=1

Uj .

It is a compact subset of �P , hence πP (A) is compact in 	P. The point y does not
belong to πP (A), for otherwise it would belong to πP (Bd(�P )). There exists an open
neighborhood V of y in 	P which does not intersect πP (A). Since y is an interior
point of 	P , we can choose V open in 	P . Then the two functions are constant on
V ∩ (	P \ WP ). �

We can state now reproducibility formulas for the oriented q-length L+
q and the

q-length Lq .

Proposition 2.14. For q ∈ {0, . . . , n} we have

L+
q (V ) = cst

∫
A

n+1−q
n+1

L+
0 (V ∩ L) dL,

and

Lq(V ) = cst
∫

A
n+1−q
n+1

L0(V ∩ L) dL.
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Proof. For q = n, this is just the Cauchy–Crofton formula because L+
0 (V ∩ L) =

L0(V ∩ L) = �{V ∩ L}. For q ≤ n − 1, we have

L+
q (V ) = 1

gn+1,q+1

∫
G

q+1
n+1

∫
	P

( ∑
x | πP |�P

(x)=y

(−1)iP (x)
)

dydP.

But it is clear that∫
	P

( ∑
x | πP |�P

(x)=y

(−1)iP (x)
)

dy =
∫

	P \WP

( ∑
x | πP |�P

(x)=y

(−1)iP (x)
)

dy.

Let us decompose 	P \ WP into the finite union of its connected components, i.e.,
	P \ WP =⋃XP

j . For each j , let us denote by λP
j the common value

∑
x | πP |�P

(x)=y

(−1)iP (x).

We have ∫
	P

( ∑
x | πP |�P

(x)=y

(−1)iP (x)
)

dy =
∑
j

λP
j · vol(XP

j ).

The Cauchy–Crofton formula in P gives

vol(XP
j ) = cst

∫
A1

P

�(XP
j ∩ l) dl,

and so

L+
q (V ) = cst

∫
G

q+1
n+1

(∫
A1

P

∑
j

λP
j · �(XP

j ∩ l)dl

)
dP.

Let y be a point in XP
j ∩ l. If V ∩L is smooth, where L is the (n−q +1)-affine plane

P ⊥ ⊕ l, then each preimage x of y by π |�P
is a non-degenerate critical point of the

orthogonal projection πL
l : V ∩ L → l, for y /∈ πP (�′

P ). Furthermore (−1)iP (x) =
sign K(x, V ∩ L). Hence we get∑

j

λP
j · �(XP

j ∩ l) =
∑

x | x non degenerate
critical point of πL

l

sign K(x, V ∩ L).

Let F be the flag variety of pairs (P, l), P ∈ G
q+1
n+1 and l ∈ A1

P . The mapping
(P, l) �→ (L, l) where L = P ⊥ ⊕ l enables us to identify F with the flag variety of
pairs (L, l), L ∈ A

n−q+1
n+1 and l ∈ G1

L. Since for almost all L ∈ A
n−q+1
n+1 , V ∩ L is

smooth, we find

L+
q (V ) = cst

∫
A

n−q+1
n+1

[ ∫
G1

L

( ∑
x | x non degenerate
critical point of πL

l

sign K(x, V ∩ L)
)

dl

]
dL.
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But we have∫
G1

L

( ∑
x | x non degenerate
critical point of πL

l

sign K(x, V ∩ L)
)
dl =

∫
V ∩L

K(x, V ∩ L)dx = L+
0 (V ∩ L),

by the exchange formula and the fact that for almost all l ∈ G1
L, πL

l is a Morse
function. �

Theorem 2.15. For q ∈ {0, . . . , n},
∫

V

sn−q(x) dx =
(

n

q

)
on

oq

L+
q (V ),

∫
V

hn−q(x) dx =
(

n

q

)
on

oq

Lq(V ).

Proof. By the reproducibility formula for sn−q , we have that

∫
V

sn−q(x) dx = cst
∫

A
n−q+1
n+1

(∫
V ∩L

K(x, V ∩ L) dx

)
dL.

Hence, by the previous proposition,
∫
V

sn−q(x)dx is equal to cst·L+
q (V ). We compute

the constant by taking V = Sn. �

This theorem leads to a geometric interpretation of
∫
V

hn−q(x)dx as explained
in [LR], p. 597. Moreover, in [LS] and [LR], it is stated in the C2-case. In that
situation, Lemma 2.7 relies on deep results of Mather on generic projections [Ma].
The semi-algebraic case allows an easier proof.

3. Generic projections and polar varieties

Let f : R
n+1 → R be a polynomial such that f (0) = 0 and 0 is an isolated critical

point of f . Let C0 be f −1(0). For any (n + 1 − q)-vector plane H , 1 ≤ q ≤ n − 1,
we denote by πH⊥ : C0 → H⊥ the orthogonal projection on H⊥. We set also Hy for
the (n + 1 − q)-affine plane parallel to H and passing through y ∈ H⊥ (H0 = H ).
Let l be a vector line in H and let ly be the line parallel to l passing through y. We

will denote by π
H,y
l : C0 ∩ Hy → ly the orthogonal projection on ly . We will show

that for a “generic” choice of H and l, the following property holds: the function
π

H,y
l admits only Morse critical points in C0 ∩Hy ∩Bn+1

ε for 0 < |y| � ε � 1. We
will establish this result studying generic projections and polar varieties.
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Lemma 3.1. For almost all H ∈ G
n+1−q
n+1 , 1 ≤ q ≤ n − 1, f |H has an isolated

critical point at 0.

Proof. Let G be the map defined by

G : R
n+1 × (Rn+1)q → R

q+1

(x, v1, . . . , vq) �→ (f ; 〈x, v1〉, . . . , 〈x, vq〉).
The set G−1(0)\({0}×(Rn+1))q is a smooth manifold of dimension n−q+(n+1)q.
Then we use the projection on (Rn+1)q and the Bertini–Sard theorem [BCR] and we
choose H = [Span(v1, . . . , vq)]⊥. We conclude recalling that {∇(f |H ) = 0} ⊂
{f |H = 0}. �

The following results are proved in the same way as Lemmas 2.5, 2.6 and 2.7,
considering the smooth manifold C0 \ {0}.

Lemma 3.2. For almost all H ∈ G
n+1−q
n+1 , 1 ≤ q ≤ n − 1, �H⊥ is a smooth

(q − 1)-dimensional or empty semi-algebraic set in the neighborhood of 0 (�H⊥ is
the critical set of πH⊥).

Corollary 3.3. For almost all H ∈ G
n+1−q
n+1 , 1 ≤ q ≤ n − 1, 	H⊥ = πH⊥(�H⊥) is

a (q − 1)-dimensional or empty semi-algebraic set in the neighborhood of 0.

In the sequel, we fix a generic (n + 1 − q)-plane H satisfying Lemmas 3.1, 3.2
and Corollary 3.3. We will assume that H = {x ∈ R

n+1 | x1 = · · · = xq = 0} and
so πH⊥(x) = (x1, . . . , xq). Therefore the set �H⊥ is

{x ∈ C0 | rank(∇f, e1, . . . , eq) < q + 1}.
For all l ∈ G1

H , there exists v ∈ Sn ∩ H such that the orthogonal projection H → l

is given by 〈v, x〉 = v∗(x). We will work with Sn ∩ H and v∗. For all v ∈ Sn ∩ H ,
we define

Tv = {x ∈ R
n+1 | f (x) = 0 and rank(∇f (x), e1, . . . , eq, v) < q + 2}.

It is clear that 0 ∈ Tv .

Proposition 3.4. For almost all v ∈ Sn ∩ H , Tv \ �H⊥ is a smooth q-dimensional
or empty semi-algebraic set in the neighborhood of 0.

Proof. Let G be the map defined by

G : R
n+1 × (Rn+1−q)n−q → R

n−q+1,

(x, uq+2, . . . , un+1) �→ (f ; 〈∇f, uq+2〉, . . . , 〈∇f, un+1〉),
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where for i ∈ {q + 2, . . . , n + 1}, ui = (0, . . . , 0; u
q+1
i , . . . , un+1

i ). If x /∈ �H⊥
then there exists j ∈ {q + 1, . . . , n + 1} such that ∂f

∂xj
(x) 	= 0. Hence X = G−1(0) \

[�H⊥×(Rn+1−q)n−q ] is a smooth [(n−q)(n+1−q)+q]-dimensional or empty semi-
algebraic set. Let ν : R

n+1×(Rn+1−q)n−q → (Rn+1−q)n−q be the projection. By the
Bertini–Sard theorem, almost every (uq+2, . . . , un+1) ∈ (Rn+1−q)n−q is a regular
value of ν|X which means that X∩ν−1((uq+2, . . . , un+1)) is a smooth q-dimensional
or empty semi-algebraic set. We choose v in [Span(uq+2, . . . , un+1)]⊥∩Sn∩H . �

Proposition 3.5. Let T ′
v be the subset of Tv \ �H⊥ where the mapping πH⊥ : Tv \

�H⊥ → H⊥ is not regular. For almost all v ∈ Sn∩H , the set T ′
v is a union of smooth

semi-algebraic sets of codimension greater than or equal to 1 in the neighborhood
of 0.

Proof. Let v ∈ Sn ∩ H be a generic vector for the previous proposition and let
(uq+2, . . . , un+1) be a (n−q)-tuple such that v ∈ [Span(uq+2, . . . , un+1)]⊥∩Sn∩H .
The set T ′

v is described as follows:

T ′
v = {x /∈ �H⊥ | f (x) = 0, 〈∇f (x), uq+2〉 = · · · = 〈∇f (x), un+1〉 = 0,

there is w ∈ H such that 〈∇f (x), w〉 = 0 and

〈∇〈∇f (x), ui〉, w〉 = 0 for i ∈ {q + 2, . . . , n + 1}}.
But at x ∈ Tv \ �H⊥ , v belongs to Vect(∇f (x), e1, . . . , eq) hence 〈∇f (x), v〉 	= 0
for otherwise 〈v, v〉 = 0. If we write the element w of H as a linear combination
of v and the ui’s, we see that at x ∈ Tv \ �H⊥ , 〈∇f (x), w〉 = 0 if and only if
w ∈ Vect(uq+2, . . . , un+1). Therefore

T ′
v = {x /∈ �H⊥ | f (x) = 0, 〈∇f (x), uq+2〉 = · · · = 〈∇f (x), un+1〉 = 0, there

is w ∈ Vect(uq+2, . . . , un+1) such that 〈∇f (x), w〉 = 0 and

〈∇〈∇f (x), ui〉, w〉 = 0 for i ∈ {q + 2, . . . , n + 1}}.
We conclude mimicking Lemma 2.6. �

Corollary 3.6. For almost all v ∈ Sn ∩ H , πH⊥(T ′
v) is a semi-algebraic set of H⊥

of dimension at most q − 1 in the neighborhood of 0.

Proof. It is clear. �

Lemma 3.7. For almost all v ∈ Sn ∩H , f |H∩{v∗=0} admits an isolated critical point
at 0.
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Proof. Let us consider the following mapping:

G : R
n+1 × R

n+1−q → R
q+2,

(x, v) �→ (f ; x1 . . . , xq, 〈v, x〉).
Since f |H has an isolated critical point, for all x ∈ f −1(0) ∩ H \ {0}, there exists
j ∈ {q+1, . . . , n+1} such that ∂f

∂xj
(x) 	= 0. We deduce that G−1(0)\({0}×R

n+1−q)

is a smooth manifold of dimension 2n−2q and we conclude using a projection. �

Corollary 3.8. For almost all H ∈ G
n+1−q
n+1 , 1 ≤ q ≤ n − 1, for almost all l ∈ G1

H ,
the following properties hold: there exists a semi-algebraic set � ⊂ H⊥ which
contains 0 and of dimension smaller than or equal to q −1 in the neighborhood of 0,
there exists 0 < ε′ � 1 such that for all 0 < ε < ε′, there exists 0 < yε � ε such
that for all y ∈ H⊥ \ � with 0 < |y| ≤ yε, C0 ∩ Hy ∩ Bn+1

ε is a manifold with

boundary and π
H,y
l admits only Morse critical points in C0 ∩ Hy ∩ Bn+1

ε .

Proof. We choose H generic for Lemmas 3.1, 3.2 and Corollary 3.3. Therefore f |H
has an isolated critical point and there exists 0 < ε′ � 1 such that for all 0 < ε ≤ ε′,
C0 ∩ H ∩ Sn

ε is smooth. By transversality, there exists 0 < y′ � ε such that for all y

with 0 < |y| ≤ y′, C0 ∩Hy ∩Sn
ε is also smooth. Then we take v ∈ Sn ∩H generic for

Propositions 3.4 and 3.5 and we set l = Span(v). Let � be 	H⊥ ∩ πH⊥(T ′
v). It is a

semi-algebraic set in H⊥ of dimension at most q −1 in the neighborhood of 0, which
means that there exists 0 < y′′ � 1 such that � ∩ Bn+1

y′′ ∩ H⊥ is a semi-algebraic

set of dimension at most q − 1. We set yε = min (y′, y′′). If y ∈ H⊥ \ � and
0 < |y| ≤ yε then C0 ∩ Hy ∩ Bn+1

ε is a smooth manifold with boundary because

y /∈ 	H⊥ and C0 ∩ Hy ∩ Sn
ε is smooth. Furthermore π

H,y
l is Morse in Bn+1

ε since
y /∈ π(T ′

v). �

We will need also this lemma:

Lemma 3.9. For almost all l ∈ G1
n+1 with l ⊥ H , f |H⊕l has an isolated critical

point at 0.

Proof. Let G be the mapping defined by

G : R
n+1 × (Rq)q−1 → R

q,

(x, w1; . . . , wq−1) �→ (f ; 〈x, w1〉 . . . , 〈x, wq−1〉).
As usual, for almost all (w1, . . . , wq−1) ∈ (Rq)q−1, C0 ∩ {〈w1, x〉 = 0, . . . ,

〈wq−1, x〉 = 0} is smooth of codimension q outside H . But if x 	= 0 belongs
to H ∩ C0 ∩ {〈w1, x〉 = 0, . . . , 〈wq−1, x〉 = 0} then rank(∇f (x), e1, . . . , eq) =
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q + 1 and therefore rank(∇f (x), w1, . . . , wq−1) = q since Span(w1, . . . , wq−1) ⊂
Span(e1, . . . , eq). We choose l in such a way that H ⊕ l = [Span(w1, . . . , wq−1)]⊥.

�

The second part of our study on polar varieties consists in localizing the results
on polar varieties of Section 2. Let k be in {0, . . . , n − 1} and let P be in Gk+1

n+1. Let
πP : C0 → P be the orthogonal projection on P . We recall that �P is the set of
critical points of πP and 	P = πP (�P ).

Lemma 3.10. For almost all P ∈ Gk+1
n+1, �P \ {0} is a k-dimensional submanifold

in the neighborhood of 0.

Proof. See Lemma 2.5. �

Lemma 3.11. For almost all P ∈ Gk+1
n+1, the set

�′
P = {x ∈ �P | πP |�P

is not regular at x}
is a union of submanifolds of �P of codimension greater than or equal to 1 in the
neighborhood of 0.

Proof. See Lemma 2.6. �

Lemma 3.12. For almost all P ∈ Gk+1
n+1, 	P is a semi-algebraic set of dimension k

in the neighborhood of 0.

Proof. See Lemma 2.7. �

With the definition of iP (x) given in Section 2, we have:

Lemma 3.13. For almost all P ∈ Gk+1
n+1, there exists a semi-algebraic set WP ⊂ 	P

of dimension smaller than k in the neighborhood of 0 such that 	P \WP is a smooth
k-dimensional manifold in the neighborhood of 0 and the following functions in y,∑

x | πP |�P
(x)=y

(−1)iP (x) and �(πP |�P
)−1(y),

are defined and constant on each connected component of 	P \ WP whose closure
contains 0.

Proof. Apply Lemma 2.13 to the manifold C0 ∩ Bn+1
ε \ {0}. �

In the rest of this section, we assume that f admits an algebraically isolated critical
point and we will denote by fC its complexification (the same notation will be used
for the complexification of any real algebraic mapping or set). Let us recall first two
general lemmas.
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Lemma 3.14. Let N ⊂ M ⊂ R
N be analytic sets and let NC and MC be their

respective complexifications. Assume that MC \ NC is a smooth complex manifold
of dimension K . Let π : R

N → R
P , with P ≤ K , be an analytic mapping and let

πC be its complexification. Then for almost all α ∈ R
P , π−1

C
(α) ∩ MC \ NC is a

smooth manifold of dimension K − P and π−1(α) ∩ M \ N is a smooth manifold of
dimension K − P (or empty).

Proof. Let �C be the critical set of πC|MC\NC
and let � be the critical set of π|M\N .

Then πC(�C) has at most dimension P − 1 and πC(�C) ∩ R
P is a subanalytic set of

dimension at most P − 1, which contains π(�). �

Lemma 3.15. Let g = (g1, . . . , gn) : R
n → R

n be an analytic mapping such that 0
is algebraically isolated in g−1(0). Then, for all sufficiently small regular values δ

of g,

�g−1(δ) ≤ dimC

C{x1, . . . , xn}
(g1C, . . . , gnC)

.

Proof. Let 	g (resp. 	gC
) be the discriminant of g (resp. gC); 	g is included in

	gC
∩ R

n. If δ does not belong to 	gC
∩ R

n then δ is also a regular value of gC and
the result is clear. If δ ∈ (	gC

∩ R
n) \ 	, δ is a regular value of g and the function

λ �→ �g−1(λ) is locally constant around δ. Since dim 	gC
∩R

n < n, there are regular
values of gC in the neighborhood of δ in R

n. �

Using these two lemmas and the machinery developed in the first part of this
section, we obtain:

Corollary 3.16. For almost all H ∈ G
n+1−q
n+1 , 1 ≤ q ≤ n− 1, for almost all l ∈ G1

H ,

the properties of Corollary 3.8 hold. Furthermore, C0C ∩HyC
∩B

2(n+1)
ε is a smooth

manifold with boundary and the projection π
H,yC

lC
: C0C ∩ HyC

∩ B
2(n+1)
ε → lyC

admits only non-degenerate critical points. The number of critical points of π
H,y
l is

smaller than or equal to the number of critical points of π
H,yC

lC
. �

4. Euler characteristics and topological degrees

Let g : (RN+1, 0) → (R, 0) be an analytic function with an isolated critical point
at 0. Let us assume that g|{x1=0} has also an isolated critical point.

Lemma 4.1. The function x1|g−1(0)\{0} has no critical point in a neighborhood of 0.
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Proof. Using the Curve Selection Lemma, it is easy to prove that the critical set of
x1|g−1(0) lies in {x1 = 0}. Similarly the critical set of g|{x1=0} lies in g−1(0). Hence
these two critical sets are the same. �

This lemma implies that 0 is an isolated root of the mapping G : (RN+1, 0) →
(RN+1, 0),x �→ (g(x),

∂g
∂xN+1

(x), . . . ,
∂g

∂xN+1
(x)).

Theorem 4.2. Let δ, 0 < |δ| � ε � 1, be a regular value of x1|g−1(0)\{0}. Then, if
N − 1 is even, we have

χ
(
g−1(0) ∩ {x1 = δ} ∩ BN+1

ε

) = 1 − deg0 ∇g − sign(δ) · deg0 G,

χ
({g ≥ 0} ∩ {x1 = δ} ∩ BN+1

ε

)− χ
({g ≤ 0} ∩ {x1 = δ} ∩ BN+1

ε

)
= deg0 ∇(g|{x1=0}).

If N − 1 is odd, we have

χ
(
g−1(0) ∩ {x1 = δ} ∩ BN+1

ε

) = 1 − deg0 ∇(g|{x1=0}),

χ
({g ≥ 0} ∩ {x1 = δ} ∩ BN+1

ε

)− χ
({g ≤ 0} ∩ {x1 = δ} ∩ BN+1

ε

)
= deg0 ∇g + sign(δ) · deg0 G.

Proof. This is an immediate consequence of Fukui’s formula [Fu]. See [Du2], The-
orem 3.2 for details. �

We will use these results in the following form:

Corollary 4.3. Let δ, 0 < δ � ε � 1, be a regular value of x1|g−1(0)\{0}. Then, if
N − 1 is even, we have

χ
(
g−1(0)∩ {x1 = δ} ∩BN+1

ε

)+χ
(
g−1(0)∩ {x1 = −δ} ∩BN+1

ε

) = 2 − 2 deg0 ∇g,

χ
({g ≥ 0} ∩ {x1 = 0} ∩ SN

ε

)− χ
({g ≤ 0} ∩ {x1 = 0} ∩ SN

ε

) = 2 deg0 ∇(g|{x1=0}).
If N − 1 is odd, we have

χ
(
g−1(0) ∩ {x1 = 0} ∩ SN

ε

) = 2 − 2 deg0 ∇(g|{x1=0}),

[
χ
({g ≥ 0} ∩ {x1 = δ} ∩ BN+1

ε

)− χ
({g ≤ 0} ∩ {x1 = δ} ∩ BN+1

ε

)]
+ [χ({g ≥ 0} ∩ {x1 = −δ} ∩ BN+1

ε

)− χ
({g ≤ 0} ∩ {x1 = −δ} ∩ BN+1

ε

)]
= 2 deg0 ∇g.

Proof. It is easy. However the reader will find in [Du1], Theorem 5.2, the argument
necessary for the proof of the second point of the case N − 1 even. �
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5. Integrals on the singular level

We recall that f : R
n+1 → R is a polynomial such that f (0) = 0 and 0 is an isolated

critical point of f . Let C0 be f −1(0) and let Cε
0 be C0 ∩ Bn+1

ε . In this section, we
express

lim
ε→0

1

bkεk

∫
Cε

0\{0}
sn−k(x) dx, 1 ≤ k ≤ n,

in terms of mean values of topological degrees, and we bound from above

lim
ε→0

1

bkεk

∫
Cε

0\{0}
hn−k(x) dx

in terms of the Milnor–Teissier numbers of fC.

5.1. Study of sn−k . First we study the case 1 ≤ k < n. From Theorem 2.15,
∫

Cε
0\{0}

sn−k(x) dx =
(

n

k

)
· on

ok

L+
k (Cε

0 \ {0}).

We keep the notations of Sections 2 and 3: P ∈ Gk+1
n+1, πP : C0 → P is the orthogonal

projection on P , �P is the polar variety and 	P = πP (�P ). We will write

m+,ε =
∫

	P ∩BP
ε

( ∑
πP |�p (x)=y

(−1)iP (x)
)

dy for 0 < ε � 1.

Here BP
ε is the ball of radius ε in P . Then, we have

1

bkεk
L+

k (Cε
0 \ {0}) = 1

gn+1,k+1

∫
Gk+1

n+1

m+,ε

bkεk
dP .

With the notations of Lemma 3.13, let us write 	P \WP =⋃rP
j=1 XP

j in the neighbor-

hood of 0. Moreover, on each XP
j the integer

∑
πP |�p (x)=y(−1)iP (x), where y ∈ XP

j ,

does not depend on y. We will denote it by λP
j . Then the following equality holds:

m+,ε =
rP∑

j=1

λP
j · vol(XP

j ∩ BP
ε ) =

rP∑
j=1

λP
j ·
∫

A1
P

(�XP
j ∩ l ∩ BP

ε ) dl,

hence,

m+,ε =
∫

A1
P

rP∑
j=1

λP
j · (�XP

j ∩ l ∩ BP
ε ) dl.
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But
∑rP

j=1 λP
j · (�XP

j ∩ l ∩ BP
ε ) is generically the number of critical points of the

orthogonal projection πL
l : C0 ∩ L ∩ Bn+1

ε → l where L = P ⊥ ⊕ l. By Bezout’s
theorem, this number is smaller than or equal to D = deg f (deg f − 1)n−k . Since
XP

j ∩ BP
ε ⊂ BP

ε , there exists a constant cst such that |m+,ε| ≤ cst · D · εk and
|m+,ε|

εk ≤ cst · D, this last term does not depend neither on P nor on ε. We can apply
Fubini’s theorem to get

lim
ε→0

1

bkεk
L+

k (Cε
0 \ {0}) = 1

gn+1,k+1

∫
Gk+1

n+1

lim
ε→0

m+,ε

bkεk
dP

= 1

gn+1,k+1

∫
Gk+1

n+1

rP∑
j=1

λP
j · lim

ε→0

vol(XP
j ∩ BP

ε )

bkεk
dP .

Each set XP
j is semi-algebraic of dimension k, hence by the Kurduka–Raby theorem

[KR], we obtain the following proposition:

Proposition 5.1. For k ∈ {1, . . . , n−1}, limε→0
1

bkε
k L

+
k (Cε

0 \ {0}) exists and equals

1

gn+1,k+1

∫
Gk+1

n+1

rP∑
j=1

λP
j · 
k(X

P
j , 0) dP . �

Now we have to compute 
k(X
P
j , 0) for a generic (k + 1)-plane P . We will

use the Cauchy–Crofton formula for the density due to Comte [Co], which can be
summarized in this way in the semi-algebraic case:

Proposition 5.2. Let X be a semi-algebraic set in R
N whose closure contains 0,

d-dimensional in the neighborhood of 0. For every d-dimensional vector plane Q in
R

N , we denote by πQ : X → Q the orthogonal projection on Q. There exists a dense
open semi-algebraic set EX in Gd

N such that for all Q ∈ EX, the following holds:

(1) The complement of the discriminant of πQ is a dense open semi-algebraic set
of Q. We call local polar profiles its connected components whose closure
contains 0. We denote them by K

Q
1 , . . . , K

Q
nQ

.

(2) For all i ∈ {1, . . . , nQ}, the cardinal of the fibre π−1
Q (y) does not depend on y

if y ∈ K
Q
i and y is close enough to 0. We call this integer multiplicity of the

polar profile and denote it by e
Q
i .

Moreover, we have


d(X, 0) = 1

gN,d

∫
Gd

N

nQ∑
i=1

e
Q
i · 
d(K

Q
i , 0) dQ. �
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Applied to XP
j , this gives


k(X
P
j , 0) = 1

gk+1,k

∫
Gk

P

nP,Q,j∑
i=1

e
P,Q
j,i · 
k(K

P,Q
j,i , 0) dQ,

where the K
P,Q
j,i ’s are the polar profiles and the e

P,Q
j,i ’s are the multiplicities of

π
P,Q
j : XP

j → Q. Hence for a fixed P , we obtain

rP∑
j=1

λP
j · 
k(X

P
j , 0) = 1

gk+1,k

∫
Gk

P

rP∑
j=1

nP,Q,j∑
i=1

λP
j · e

P,Q
j,i · 
k(K

P,Q
j,i , 0) dQ.

Now let us fix a k-plane Q in P and let us set l = Q⊥. As in Section 3, we
denote by ly the line parallel to l passing by y and Hy the (n − k + 1)-affine plane

P ⊥ ⊕ ly . For y ∈ K
P,Q
j,i close to 0 (i.e. |y| � ε), (π

P,Q
j )−1(y) is included in

XP
j and therefore is disjoint from πP (�′

P ) (see the notations in Sections 2 and 3).

Each point in π−1
P [(πP,Q

j )−1(y)] is a non-degenerate critical point of the projection
π

H,y
l : Cε

0 ∩ Hy → ly (by Corollary 3.8, we can assume that Cε
0 ∩ Hy is smooth).

Let �1, . . . , �α be the connected components, whose closure contains 0, of the
complement of the union of the discriminants of the projections π

P,Q
j . These con-

nected components are the non-empty intersections
⋂rP

j=1 K
P,Q
j,ij

where ij ranges in

{1, . . . , nP,Q}. The set
⋃α

β=1 �β is a dense semi-algebraic set in Q. For each

β ∈ {1, . . . , α}, �β is equal to
⋂

j,i | �β⊂K
P,Q
j,i

K
P,Q
j,i . Let yβ be a point in �β close

to 0, then using Lemma 2.12 we have∑
j,i | �β⊂K

P,Q
j,i

λP
j · e

P,Q
j,i =

∑
x | x non degenerate

critical point of π
H,yβ

l

sign K(x, Cε
0 ∩ Hyβ ).

Let us denote by Iβ this integer depending only on β. Since


k(K
P,Q
j,i , 0) =

∑
β | �β⊂K

P,Q
j,i


k(�β, 0),

we get∑
j,i

λP
j · e

P,Q
j,i · 
k(K

P,Q
j,i , 0) =

∑
j,i

λP
j · e

P,Q
j,i ·

∑
β | �β⊂K

P,Q
j,i


k(�β, 0)

=
∑
j,i

∑
β | �β⊂K

P,Q
j,i

λP
j · e

P,Q
j,i · 
k(�β, 0)

=
∑
β

Iβ · 
k(�β, 0).
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Finally this gives

rP∑
j=1

λP
j · 
k(X

P
j , 0) = 1

gk+1,k

∫
Gk

P

∑
β

Iβ · 
k(�β, 0) dQ,

and

lim
ε→0

1

bkεk
L+

k (Cε
0\{0}) = 1

gn+1,k+1 · gk+1,k

∫
Gk+1

n+1

(∫
Gk

P

∑
β

Iβ ·
k(�β, 0)dQ

)
dP.

The mapping Q → l = Q⊥ identifies G(P, k) with G(P, 1), hence

lim
ε→0

1

bkεk
L+

k (Cε
0 \ {0}) = 1

gn+1,k+1 · gk+1,1

∫
Gk+1

n+1

(∫
G1

P

∑
β

Iβ ·
k(�β, 0)dl

)
dP.

Let F ′ be the flag variety of pairs (P, l), P ∈ Gk+1
n+1 and l ∈ G1

P . The mapping
(P, l) → (H, l) where H = P ⊥ ⊕ l and P = H⊥ ⊕ l enables us to identify F ′ with
the flag variety of pairs (H, l), H ∈ Gn−k+1

n+1 and l ∈ G1
H . With the notations used

above, we see that H⊥ = Q ⊂ P . Finally, we find

lim
ε→0

1

bkεk
L+

k (Cε
0 \ {0}) = 1

gn+1,k+1 · gk+1,1

∫
Gn−k+1

n+1

(∫
G1

H

IH,l dl

)
dH,

where IH,l is defined as follows. There exists a semi-algebraic set �̃ ⊂ H⊥ of
dimension smaller than k such that, if H⊥ \ �̃ = ⋃α

β=1 �β is the decomposition of

H⊥ \ �̃ into its connected components, then for yβ close to 0 in �β , the following
sum: ∑

x | x non degenerate

critical point of π
H,yβ

l

sign K(x, Cε
0 ∩ Hyβ )

does not depend on the choice of yβ . Denoting it by Iβ , we set

IH,l =
∑
β

Iβ · 
k(�β, 0).

By Corollary 3.8, we know that for almost every pair (H, l), there exists a semi-
algebraic set � ⊂ H⊥, dim � < k, such that for all y /∈ � close enough to 0, Cε

0 ∩Hy

is a smooth manifold with boundary and π
H,y
l : Cε

0 ∩ Hy → ly is a Morse function.
In that case, if n − k is even, one has∑

x | x non degenerate

critical point of π
H,y
l

sign K(x, Cε
0 ∩ Hy) = χ(Hy ∩ Cε

0) − χ(Hy ∩ Cε
0 ∩ {πH,y

l = δ}).
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P

	P

Q

�P

Cε
0

H

l

P ⊥

Hyβ

yβ

lyβ

Cε
0 ∩ Hyβ

Figure 4. The case n = 2 and k = 1.

If n − k is odd, one has

∑
x | x non degenerate

critical point of π
H,y
l

sign K(x, Cε
0 ∩ Hy)

= − {χ(Hy ∩ Bε ∩ {f ≥ 0}) − χ(Hy ∩ Bε ∩ {f ≤ 0})}
+ {χ(Hy ∩ Bε ∩ {f ≥ 0} ∩ {πH,y

l = δ})
− χ(Hy ∩ Bε ∩ {f ≤ 0} ∩ {πH,y

l = δ})}.

Here δ is a small regular value of π
H,y
l (|δ| � |y|). These two equalities require some

explanations. By Lemma 2.3 in [Du2], we can relate the sign of K(x, Cε
0 ∩Hy) to the

Morse index of π
H,y
l at x. Then we can apply Morse theory to π

H,y
l : Cε

0 ∩ Hy → ly
as is done in the proof of Lemma 5.1 in [Du2]. However, as in this lemma, we have
to take care about the critical points on f −1(0) ∩ Hy ∩ Sn

ε and on Hy ∩ Sn
ε . If we

write l = Span(v), then by Lemma 3.7, f |H∩{v∗=0} has an isolated critical point at 0.
This implies that v∗|Cε

0∩H has an isolated critical point at 0 by Lemma 4.1. But with

our notations, v∗|Cε
0∩H is ±π

H,0
l : Cε

0 ∩ H0 → l0. We can apply the same arguments
as [Du1], Lemma 4.1, to get rid of these critical points on the boundary.

We will study in detail the case n−k even. Since dim � < k, the set
⋃α

β=1 �β \�
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is dense in H⊥ and then

lim
ε→0

1

bkεk
L+

k (Cε
0 \ {0})

= 1

gn+1,k+1 · gk+1,1

∫
Gn−k+1

n+1

∫
G1

H

∑
β

χ(Hyβ ∩ Cε
0)
k(�β, 0) dldH

− 1

gn+1,k+1 · gk+1,1

∫
Gn−k+1

n+1

∫
G1

H

∑
β

χ
(
Hyβ ∩ Cε

0 ∩ {πH,yβ

l = δ})
k(�β, 0) dldH.

Let us compute the second term on the right-hand side. The manifold with boundary

Hyβ ∩Cε
0 ∩{πH,yβ

l = δ} has dimension n−k−1, which is odd. Its Euler characteristic
is half the Euler characteristic of its boundary. If yβ and δ are sufficiently small,
this last Euler characteristic is the Euler characteristic of H ∩ Cε

0 ∩ {v∗ = 0}. By
Lemma 3.1 and Lemma 3.7, f |H and f |H∩{v∗=0} have an isolated critical point at
the origin. Denoting H ∩ {v∗ = 0} by l⊥H (the orthogonal of l in H ) and applying
Corollary 4.3, we get

χ(Hyβ ∩ Cε
0 ∩ {πH,yβ

l = δ}) = 1 − deg0 ∇(f |l⊥H ).

Since
∑

β 
k(�β, 0) = 1, we have

1

gn+1,k+1 · gk+1,1

∫
Gn−k+1

n+1

∫
G1

H

∑
β

χ
(
Hyβ ∩ Cε

0 ∩ {πl
yβ

= δ})
k(�β, 0) dldH

= 1 − 1

gn+1,k+1 · gk+1,1

∫
Gn−k+1

n+1

∫
G1

H

deg0 ∇(f |l⊥H ) dldH

= 1 − 1

gn+1,k+1 · gk+1,1

∫
Gn−k+1

n+1

∫
Gn−k

H

deg0 ∇(f |K) dKdH.

Let G be the flag variety of pairs (H, K), H ∈ Gn−k+1
n+1 and K ∈ Gn−k

H . This variety

is a bundle over Gn−k
n+1, each fibre being a G1

k+1. Hence, we find
∫

Gn−k+1
n+1

∫
Gn−k

H

deg0 ∇(f |K) dKdH =
∫

Gn−k
n+1

∫
G1

k+1

deg0 ∇(f |K) dldK

= gk+1,1

∫
Gn−k

n+1

deg0 ∇(f |K) dK.

So our second term equals

1 − 1

gn+1,n−k

∫
Gn−k

n+1

deg0 ∇(f |K) dK.



274 N. Dutertre CMH

Let us have a look now at the first integral:

� = 1

gn+1,k+1 · gk+1,1

∫
Gn−k+1

n+1

∫
G1

H

∑
β

χ(Hyβ ∩ Cε
0)
k(�β, 0) dldH.

The sets �1, . . . , �α depend on the pair (H, l) but χ(Hyβ ∩ Cε
0) depends only on yβ

and H . We can write

� = gn−k+1,1

gn+1,k+1 · gk+1,1

∫
Gn−k+1

n+1

α∑
β=1

χ(Hyβ ∩ Cε
0)
k(�β, 0) dH

= 1

gn+1,n−k+1

∫
Gn−k+1

n+1

α∑
β=1

χ(Hyβ ∩ Cε
0)
k(�β, 0) dH,

where, with an abuse of notation, the �i’s are the connected components of H⊥\	π
H⊥

whose closure contains 0 (πH⊥ is the orthogonal projection on H⊥ and 	π
H⊥ is its

discriminant).
Let us compute

∑α
β=1 χ(Hyβ ∩ Cε

0)
k(�β, 0). First, replacing H⊥ \ 	π
H⊥ by

H⊥ \ (	π
H⊥ ∪ −	π

H⊥ ), we can assume that for all k ∈ {1, . . . , α}, there exists

j ∈ {1, . . . , α} such that −�k = �j . Here the notation −X for X ⊂ H⊥ means the
symmetric of X by the symmetry whose center is the origin. We have


k(�β, 0) = lim
ε→0

1

bkεk
vol(�β ∩ Bk

ε ) = lim
ε→0

1

ok−1εk−1 vol(�β ∩ Sk−1
ε ).

But vol(�β ∩ Sk−1
ε ) is equal to εk−1

∫
G1

H⊥
�(�β ∩ Sk−1

ε ∩ l)dl and therefore


k(�β, 0) = 1

ok−1
lim
ε→0

∫
G1

H⊥
�(�β ∩ Sk−1

ε ∩ l) dl.

Since �(�β ∩ Sk−1
ε ∩ l) is smaller than or equal to 2 for all l ∈ G1

H⊥ , we have


k(�β, 0) = 1

ok−1

∫
G1

H⊥
lim
ε→0

[
�(�β ∩ Sk−1

ε ∩ l)
]
dl

and
∑
β

χ(Hyβ ∩Cε
0)
k(�β, 0) = 1

ok−1

∫
G1

H⊥

[∑
β

χ(Hyβ ∩Cε
0) lim

ε→0
�(�β∩Sk−1

ε ∩l)
]
dl.

On �β , χ(Hyβ ∩ Cε
0) does not depend on yβ provided it is sufficiently small.

Let C0(	H⊥) be the tangent cone of 	H⊥ at 0 (see [KR] for the definition of
the tangent cone). Since 	H⊥ = −	H⊥ , C0(	H⊥) is an homogeneous set, i.e, if
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u 	= 0 belongs to C0(	H⊥), then R · u is included in C0(	H⊥). Let PC0(	H⊥) be
its projectivisation in G1

H⊥ , we have dim PC0(	H⊥) < k − 1 for dim C0(	H⊥) ≤
dim 	H⊥ < k. Let l be a line not belonging to PC0(	H⊥), we can decompose it in
the following way: l = l+ 
 {0} 
 l−. We assert that there exist ε = ε(l+) and �β

such that l+ ∩ BH⊥
ε ⊂ �β . Let us suppose that is not true. Then for all ε > 0 and

for all β, there is xβ,ε in l+ such that |xβ,ε| < ε and xβ,ε /∈ �β . But for ε small

enough, l+ ∩ BH⊥
ε is not included in 	H⊥ because otherwise l+ would be included

in C0(	H⊥) and l would belong to PC0(	H⊥). Hence for ε small enough, there exist
β0 = β0(ε) and x′

β0,ε
in �β0 such that x′

β0,ε
∈ l+ ∩ BH⊥

ε . Let I be the interval in
l+ with extremities x′

β0,ε
and xβ0,ε. If I ∩ 	H⊥ = ∅ then, since I is connected and

I ∩ �β0 	= ∅, I is included in �β0 , which is impossible for xβ0,ε /∈ �β0 . So I ∩ 	H⊥

and l+ ∩ BH⊥
ε ∩ 	H⊥ are not empty. Finally, for ε small enough, there exists xε in

l+ ∩BH⊥
ε ∩	H⊥ and so l+ ⊂ C0	H⊥ , which contradicts the fact that l /∈ PC0(	H⊥).

Our assertion is proven. It clearly implies that l ⊂ �β ∪ {0} ∪ −�β .
Let us compute

∑
β χ(Hyβ ∩ Cε

0) limε→0 �(�β ∩ Sk−1
ε ∩ l) for l /∈ PC0(	H⊥).

Since there exists β such that l ⊂ �β ∪ {0} ∪ −�β , this sum is equal to

χ(Hyβ ∩ Cε
0) + χ(Hyβ′ ∩ Cε

0), where �β ′ = −�β.

Let us suppose that H = {x1 = 0, . . . , xk = 0}, in that case H⊥ = {xk+1 =
0, . . . , xn+1 = 0} = Span(e1, . . . , ek). Suppose that l = Span(e1) = {x2 = · · · =
xk = 0} in H⊥. Since l ⊂ �β ∪ {0} ∪ �β ′ , we can choose yβ and yβ ′ of the form
yβ = (δ, 0, . . . , 0) and yβ ′ = −yβ = −(δ, 0, . . . , 0), where 0 < δ � ε � 1. Then,
we have

Hyβ ∩ Cε
0 = Cε

0 ∩ {x1 = δ, x2 = 0, . . . , xk = 0}
and

Hyβ′ ∩ Cε
0 = Cε

0 ∩ {x1 = −δ, x2 = 0, . . . , xk = 0}.
By Lemma 3.1 and Lemma 3.9, f |H and f |H⊕l have an isolated critical point at 0.
We can apply Corollary 4.3 and get

χ(Hyβ ∩Cε
0)+χ(Hyβ′ ∩Cε

0) = 2−2 deg0 ∇(f |{x2=0,...,xk=0}) = 2−2 deg0 ∇(f |H⊕l).

Finally, we find:

∑
β

χ(Hyβ ∩ Cε
0)
k(�β, 0) = 2

ok−1

∫
G1

H⊥

(
1 − deg0 ∇(f |H⊕l)

)
dl

= 1 − 2

ok−1

∫
G1

H⊥
deg0 ∇(f |H⊕l) dl
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and

� = 1 − 1

gn+1,n−k+1 · gk,1

∫
Gn−k+1

n+1

∫
G1

H⊥
deg0 ∇(f |H⊕l) dldH.

Let H be the flag variety of pairs (K, H), K ∈ Gn−k+2
n+1 and H ∈ Gn−k+1

K . This

variety is a bundle over Gn−k+1
n+1 , each fibre being a G1

k . Hence, we have

∫
Gn−k+1

n+1

∫
G1

H⊥
deg0 ∇(f |H⊕l) dldH =

∫
Gn−k+2

n+1

∫
Gn−k+1

K

deg0 ∇(f |K) dHdK

= gn−k+2,n−k+1

∫
Gn−k+2

n+1

deg0 ∇(f |K) dK,

and

� = 1 − gn−k+2,n−k+1

gn+1,n−k+1 · gk,1

∫
Gn−k+2

n+1

deg0 ∇(f |K) dK

= 1 − 1

gn+1,n−k+2

∫
Gn−k+2

n+1

deg0 ∇(f |K) dK.

We can study the case of n − k odd in the same way, using the second part of
Corollary 4.3. We have proved:

Theorem 5.3. For 1 ≤ k < n,

lim
ε→0

1

bkεk
L+

k (Cε
0 \ {0}) = − 1

gn+1,n−k+2

∫
Gn−k+2

n+1

deg0 ∇(f |K) dK

+ 1

gn+1,n−k

∫
Gn−k

n+1

deg0 ∇(f |H ) dH. �

Corollary 5.4. For 1 ≤ k < n,

lim
ε→0

1

bkεk

∫
Cε

0\{0}
sn−k(x)dx = −

(
n

k

)
· on

ok

· 1

gn+1,n−k+2

∫
Gn−k+2

n+1

deg0 ∇(f |K) dK

+
(

n

k

)
· on

ok

· 1

gn+1,n−k

∫
Gn−k

n+1

deg0 ∇(f |H ) dH. �

It remains to consider the case k = n. Here, we have

lim
ε→0

1

bnεn

∫
Cε

0\{0}
s0(x)dx = lim

ε→0

vol(C0 ∩ Bn+1
ε )

bnεn
= 
n(C0, 0).
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We use the Cauchy–Crofton formula for the density:


n(C0, 0) = 1

gn+1,n

∫
Gn

n+1

nP∑
j=1

eP
j · 
n(K

P
j , 0) dP,

where the Kj ’s are the polar profiles and ej ’s are the multiplicities of πP : C0 → P .
Let 	P be the discriminant of πP . As before, we can assume that 	P = −	P and so
for all j ∈ {1, . . . , nP }, there exits i ∈ {1, . . . , nP } such that KP

j = −KP
i . We have


n(K
P
j , 0) = 1

on−1

∫
G1

P

[
lim
ε→0

�(KP
j ∩ Sn−1

ε ∩ l)
]
dl,

and

nP∑
j=1

eP
j · 
n(K

P
j , 0) = 1

on−1

∫
G1

P

[ nP∑
j=1

eP
j . lim

ε→0
�(KP

j ∩ Sn−1
ε ∩ l)

]
dl.

Let l be a line not belonging to PC0(	P ), then there exist j and k in {1, . . . , nP }
such that KP

k = −KP
j and such that l ⊂ KP

j ∪ KP
k ∪ {0}. Let us assume that

P = {xn+1 = 0} and that l = Span(e1) = {x2 = · · · = xn = 0} in P . Let
y = (δ, 0, . . . , 0), 0 < δ � ε � 1, be in KP

j ∩ l. Then −y belongs to KP
k ∩ l.

Moreover eP
j is equal to �π−1

P (y) and eP
k to �π−1

P (−y), hence eP
j is equal to �Cε

0 ∩
{x1 = δ, x2 = 0, . . . , xn = 0} and eP

k to �Cε
0 ∩ {x1 = −δ, x2 = 0, . . . , xn = 0}. By

Corollary 4.3, we find that

eP
j + eP

k = 2 − 2 deg0 ∇(f |{x2=0,...,xn=0}) = 2 − 2 deg0 ∇(f |l⊕P ⊥),

nP∑
j=1

eP
j lim

ε→0
�(KP

j ∩ Sn−1
ε ∩ l) = 2 − 2 deg0 ∇(f |l⊕P ⊥),

and, finally,


n(C0, 0) = 1 − 1

gn+1,n · gn,1

∫
Gn

n+1

∫
G1

P

deg0 ∇(f |l⊕P ⊥) dldP .

The same argument as above shows that:

Theorem 5.5.


n(C0, 0) = 1 − 1

gn+1,2

∫
G2

n+1

deg0 ∇(f |K) dK. �
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5.2. Study of hn−k . We study the case 1 ≤ k < n. Theorem 2.15 gives
∫

Cε
0\{0}

hn−k(x) dx =
(

n

k

)
· on

ok

Lk(C
ε
0 \ {0}).

With the notations used in Subsection 5.1., we can prove that

1

bkεk
Lk(C

ε
0 \ {0}) = 1

gn+1,k+1

∫
Gk+1

n+1

mε(P )

bkεk
,

where

mε(P ) =
∫

	∩BP
ε

�(πP |�P
)−1(y) dy

for 0 < ε � 1. With the method applied in the previous subsection, we get:

Proposition 5.6. For k ∈ {1, . . . , n − 1}, limε→0
1

bkε
k Lk(C

ε
0 \ {0}) exists and equals

1

gn+1,k+1

∫
Gk+1

n+1

rP∑
j=1

μP
j · 
k(X

P
j , 0) dP,

where μP
j is the integer �(πP |�P

)−1(y), which does not depend on the choice of the

point y in XP
j , provided y is close enough to 0. �

Then, everywhere replacing λP
j by μP

j , we obtain

lim
ε→0

1

bkεk
Lk(C

ε
0 \ {0}) = 1

gn+1,k+1 · gk+1,1

∫
Gn−k+1

n+1

∫
G1

H

JH,l dldH,

where JH,l is defined as follows. There exists a semi-algebraic set �̃ ⊂ H⊥ of
dimension smaller than k such that, if H⊥ \ �̃ = ⋃α

β=1 �β is the decomposition of

H⊥ \ �̃ in its connected components, then for yβ close to 0 in �β , the following
integer:

�
{
x | x non degenerate critical point of π

H,yβ

l

}
does not depend on the choice of yβ . Denoting it by Jβ , we set

JH,l =
∑
β

Jβ · 
k(�β, 0).

By Corollary 3.16, we know that for almost all pairs (H, l), there exists a semi-alge-
braic set � ⊂ H⊥, dim � < k, such that for all y not in � and close to 0, Cε

0 ∩Hy and

C0C ∩HyC
∩B

2(n+1)
ε are smooth manifolds with boundary and π

H,y
l : Cε

0 ∩Hy → ly
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and π
H,yC

lC
: C0C ∩ HyC

∩ B
2(n+1)
ε → lyC

are Morse functions. Furthermore, the
following inequality holds:

�
{
x | x non degenerate critical point of π

H,y
l

} ∩ Bn+1
ε

≤ �
{
z | z non degenerate critical point of π

H,yC

lC

} ∩ B2(n+1)
ε .

Let us express the right hand side of the inequality in terms of the Milnor–Teissier
numbers. For convenience we will assume that H = {x1 = 0, . . . , xk = 0} and
that l = Vect(ek+1) = {xk+2 = 0, . . . , xn+1 = 0}. Thus, our right-hand side is the
number of elements in

{fC = 0} ∩ {x1 = y1, . . . , xk = yk} ∩
{

∂fC

∂xk+2
= 0, . . . ,

∂fC

∂xn+1
= 0

}
∩ B2(n+1)

ε ,

where 0 < ‖(y1, . . . , yk)‖ � ε � 1. Generically this is the dimension of the algebra

C{x1, . . . , xn+1}(
f, x1, . . . , xk,

∂fC

∂xk+2
, . . . ,

∂fC

∂xn+1

) .

Applying Teissier’s lemma [Te] to fC|H , it follows that this dimension is equal to
μ(n−k+1)(fC) + μ(n−k)(fC). This enables us to bound Jβ generically and since∑

β 
k(�β, 0) = 1, we get:

Theorem 5.7. For k ∈ {1, . . . , n − 1},

lim
ε→0

1

bkεk
Lk(C

ε
0 \ {0}) ≤ μ(n−k+1)(fC) + μ(n−k)(fC). �

Corollary 5.8. For k ∈ {1, . . . , n − 1},

lim
ε→0

1

bkεk

∫
Cε

0\{0}
hn−k(x) dx ≤

(
n

k

)
· on

ok

· (μ(n−k+1)(fC) + μ(n−k)(fC)
)
. �

It remains to study the case k = n, i.e. to bound 
n(C0, 0) in terms of the
Milnor–Teissier numbers. We will not go into details but just mention that using the
Cauchy–Crofton formula for the density and the fact that generically eP

j ≤ e(fC)

(e(fC) is the multiplicity of fC), we get:

Theorem 5.9.


n(V, 0) ≤ e(fC) = μ(1)(fC) + μ(0)(fC). �
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6. Integrals on the Milnor fibre and on the singular level

We recall that (t, x1, . . . , xn+1) is a coordinate system in R
2+n and that F : R

2+n → R

is a polynomial such that for all x ∈ R
n+1, f (x) = F(0, x). We assume that

H = (
F, ∂F

∂x1
, . . . , ∂F

∂xn+1

)
has an isolated zero at 0 which implies that ∇F also

has an isolated zero at 0. We denote by ft : R
n+1 → R the deformation given

by ft (x) = F(t, x). Let C0 = f −1(0), Cε
0 = C0 ∩ Bn+1

ε , Ct = f −1
t (0) and

Cε
t = Ct ∩ Bn+1

ε .

Proposition 6.1. For k ∈ {1, . . . , n}, one has:

lim
ε→0

lim
t→0

1

εk

∫
Cε

t

sn−k(x)dx = lim
ε→0

1

εk

∫
Cε

0\{0}
sn−k(x) dx,

lim
ε→0

lim
t→0

1

εk

∫
Cε

t

hn−k(x)dx = lim
ε→0

1

εk

∫
Cε

0\{0}
hn−k(x) dx.

Proof. We prove the result for sn−k . For 0 < ε′ < ε, we will denote by C
ε,ε′
t the

set Ct ∩ {ε′ ≤ ω ≤ ε}, where ω =
√

x2
1 + · · · + x2

n+1. Then for 0 < ε′ � ε � 1,

C
ε,ε′
0 is a smooth manifold with boundary (possibly empty). This implies that for

0 < t � ε′, C
ε,ε′
t is also a smooth manifold with boundary.

The proof decomposes into three steps.

First step. If 0 < ε′ � ε, i.e. ε′ = �(ε), then

lim
ε→0

1

εk

∫
Cε

0\{0}
sn−k(x)dx = lim

ε→0

1

εk

∫
C

ε,ε′
0

sn−k(x) dx.

We have

1

εk

∫
Cε

0\{0}
sn−k(x) dx = 1

εk

∫
C

ε,ε′
0

sn−k(x) dx + 1

εk

∫
Cε′

0 \{0}
sn−k(x) dx.

The second term of the right-hand side can be written as follows:

1

εk

∫
Cε′

0 \{0}
sn−k(x)dx =

(
ε′

ε

)k ( 1

ε′k

∫
Cε′

0 \{0}
sn−k(x) dx

)
.

We have proved in the previous section that limε′→0
1
ε′k
∫
Cε′

0 \{0} sn−k(x) dx exists and

is finite. Since as ε tends to 0, ε′ and ε′
ε

tend to 0, it is easy to see that

lim
ε→0

1

εk

∫
Cε′

0 \{0}
sn−k(x) dx = 0.
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Second step. If 0 < |t | � ε′ � ε, then

lim
ε→0

lim
t→0

1

εk

∫
Cε

t

sn−k(x)dx = lim
ε→0

lim
t→0

1

εk

∫
C

ε,ε′
t

sn−k(x) dx.

As above, we have

1

εk

∫
Cε

t

sn−k(x) dx = 1

εk

∫
C

ε,ε′
t

sn−k(x) dx +
(

ε′

ε

)k( 1

ε′k

∫
Cε′

t

sn−k(x) dx

)
.

Applying the argument of Proposition 5.1 to Cε′
t instead of Cε

0 \ {0}, we find that∣∣∣∣ 1

ε′k

∫
Cε′

t

sn−k(x) dx

∣∣∣∣ ≤ cst · deg ft (deg ft − 1)n−k.

But deg ft is smaller than deg F , hence∣∣∣∣ 1

ε′k

∫
Cε′

t

sn−k(x) dx

∣∣∣∣ ≤ cst · deg F(deg F − 1)n−k.

Since
(

ε′
ε

)
tends to 0, this proves the second step.

Third step. If 0 < |t | � ε′ � ε, then

lim
t→0

∫
C

ε,ε′
t

sn−k(x) dx =
∫

C
ε,ε′
0

sn−k(x) dx.

In order to prove this equality, we will first show that

lim
t→0

∫
C

ε,ε′
t

K(x) dx =
∫

C
ε,ε′
0

K(x) dx,

and then we will use the reproducibility formula for sn−k (Proposition 2.4).
Let us explain briefly why the above equality is true. Let W = F−1(0) and for

0 < ε′ � ε � 1, let Wε,ε′ = W ∩ {ε′ ≤ ω ≤ ε}. For δ such that 0 ≤ |δ| � ε′, let
D

ε,ε′
δ be the smooth manifold with boundary Wε,ε′ ∩ {t = δ}. The restriction of the

projection π : R
2+n → R

1+n, (t, x) �→ x to the manifold D
ε,ε′
δ is a diffeomorphism

onto C
ε,ε′
δ .

Let us recall that for all v ∈ Sn and for x ∈ R
n+1, v∗(x) = 〈v, x〉. We will also

denote by v∗ the function R
2+n → R, (t, x) �→ 〈v, x〉. For all v ∈ Sn, we define the

following polar set:

Zv = {(t, x) ∈ Wε,ε′ | rank(∇t, ∇F, v) < 3}.
Using techniques similar to the ones developed in Section 3 and in [Du2] p. 854–855,
we can prove the following results.
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Lemma 6.2. There exists an open dense semi-algebraic set O in Sn such that for all
v ∈ O, Zv is empty or a smooth semi-algebraic curve in a neighborhood of D

ε,ε′
0 .

Lemma 6.3. For all v ∈ O, there exists δ′ with 0 < δ′ � ε′ such that for all δ with
0 ≤ |δ| ≤ δ′, the critical points of v∗|

D
ε,ε′
δ

lying in the interior of D
ε,ε′
δ are Morse

critical points.

The last lemma has this direct corollary.

Lemma 6.4. For all v ∈ O, there exists t ′ with 0 < t ′ � ε′ such that for all t with
0 ≤ |t | ≤ t ′, the critical points of v∗|

C
ε,ε′
t

lying in the interior of C
ε,ε′
t are Morse

critical points.

Let γt be the Gauss mapping:

γt : C
ε,ε′
t → Sn,

x �→ ∇ft (x)

‖∇ft (x)‖ .

Let us fix v in the open dense semi-algebraic set O \ (γ0(C0 ∩ Sn
ε ) ∪ γ0(C0 ∩ Sn

ε′)).

Let {pt
1, . . . , p

t
rt
} be the set of points in the interior of C

ε,ε′
t that are sent to v or −v

by γt . Let Iv,t be defined by Iv,t = ∑rt
i deg(γt , p

t
i ) where deg(γt , p

t
i ) is the local

topological degree of γt at the point pt
i . By the exchange formula, we have

∫
C

ε,ε′
t

K(x) dx = 1

2

∫
Sn

Iv,t dv.

By Bezout’s theorem, |Iv,t | is lower than deg F ·(deg F −1)n and then, by Lebesgue’s
theorem,

lim
t→0

∫
C

ε,ε′
t

K(x) dx = 1

2

∫
Sn

lim
t→0

Iv,t dv.

It remains to prove that limt→0 Iv,t = Iv,0. Observe that the set π(Zv) has a finite
number of connected components Zv,1, . . . , Zv,r which are either 0-dimensional or 1-
dimensional. Furthermore these connected components do not intersect the boundary
of C

ε,ε′
0 because v /∈ γ0(C0 ∩ Sn

ε )∪ γ0(C0 ∩ Sn
ε′). Hence for t such that 0 ≤ |t | � ε′,

they do not intersect the boundary of C
ε,ε′
t . Furthermore each of the Zv,i’s intersects

C
ε,ε′
t in exactly one point and the union of these intersection points is exactly the set

{pt
1, . . . , p

t
rt
}. Therefore, rt is equal to r and we can write {pt

i } = Zv,i ∩C
ε,ε′
t ,where

pt
i tends to p0

i as t tends to 0. Since for t sufficiently small, deg(γt , p
t
i ) = deg(γ0, p

0
i ),

it is easy to conclude that limt→0 Iv,t = Iv,0.
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Zv,1 Zv,2

C
ε,ε′
t

C
ε,ε′
0

Figure 5. The sets Zv,i .

By the reproducibility formula for sn−k , we have that for 0 ≤ |t | � ε′ � ε:

∫
C

ε,ε′
t

sn−k(x) dx = cst ·
∫

An−k+1
n+1

(∫
C

ε,ε′
t ∩L

K(x, C
ε,ε′
t ∩ L) dx

)
dL.

Using Bezout’s theorem and the exchange formula, we see that
∣∣∣∣
∫

C
ε,ε′
t ∩L

K(x, C
ε,ε′
t ∩ L) dx

∣∣∣∣
is bounded by a constant which does not depend neither on t nor on L. Applying
Lebesgue’s theorem, we obtain

lim
t→0

∫
C

ε,ε′
t

sn−k(x) dx = cst ·
∫

An−k+1
n+1

(
lim
t→0

∫
C

ε,ε′
t ∩L

K(x, C
ε,ε′
t ∩ L) dx

)
dL.

Replacing R
1+n by the affine subspace L in the above study, we find that

lim
t→0

∫
C

ε,ε′
t ∩L

K(x, C
ε,ε′
t ∩ L) dx =

∫
C

ε,ε′
0 ∩L

K(x, C
ε,ε′
t ∩ L) dx.

This ends the proof of the third step and the proof of the proposition. �

7. Curvature integrals on the real Milnor fibre

In this section we state our main results. First we state real versions of the Griffiths–
Loeser formulas.
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Theorem 7.1. For k ∈ {1, . . . , n − 1},
ok(
n
k

)
on

lim
ε→0

lim
t→0

1

bkεk

∫
Cε

t

sn−k(x) dx = − 1

gn+1,n−k+2

∫
Gn−k+2

n+1

deg0 ∇(f |K) dK

+ 1

gn+1,n−k

∫
Gn−k

n+1

deg0 ∇(f |H ) dH,

ok(
n
k

)
on

lim
ε→0

lim
t→0

1

bkεk

∫
Cε

t

hn−k(x) dx ≤ μ(n−k+1)(fC) + μ(n−k)(fC).

Furthermore,

lim
ε→0

lim
t→0

∫
Cε

t

s0(x) dx = − 1

gn+1,2

∫
G2

n+1

deg0 ∇(f |K) dK + 1,

lim
ε→0

lim
t→0

∫
Cε

t

h0(x) dx ≤ μ(1)(fC) + μ(0)(fC) = e(fC).

Proof. Use Corollary 5.2, Theorem 5.3, Corollary 5.6, Theorem 5.7 and the results
of Section 6. �

Let us recall the main result we proved in [Du2]:

1

gn+1,n

lim
ε→0

lim
t→0

∫
Cε

t

sn(x) dx = − [ deg0 ∇F + sign(t) deg0 H
]

+ 1

gn+1,n

∫
Gn

n+1

deg0 ∇(f |K) dK,

where the mappings F and H are defined in the introduction. Using this, Theorem 7.1
and the formula for χ(Cε

t ) given in [Du2] Theorem 3.2 , we obtain real versions of
Kennedy’s formula, that is to say Gauss–Bonnet type formulas for the real Milnor
fibre.

Corollary 7.2. If n is even, then

χ(Cε
t ) =

n/2∑
k=0

o2k(
n
2k

)
on

lim
ε→0

lim
t→0

1

b2kε2k

∫
Cε

t

sn−2k(x) dx.

If n is odd, then

χ(Cε
t ) = 1

2
χ(C0 ∩ Sn

ε ) =
n−1

2∑
k=0

o2k+1(
n

2k+1

)
on

lim
ε→0

lim
t→0

1

b2k+1ε2k+1

∫
Cε

t

sn−2k−1(x) dx.
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Proof. Let us prove first the case n even. Theorem 3.2 in [Du2] states that

χ(Cε
t ) = 1 − deg0 ∇F − sign(t) deg0 H.

We have

1

gn+1,n

lim
ε→0

lim
t→0

∫
Cε

t

sn(x) dx = − [ deg0 ∇F + sign(t) deg0 H
]

+ 1

gn+1,n

∫
Gn

n+1

deg0 ∇(f |K) dK.

By Theorem 7.1, we know that for k ∈ {1, . . . , n−2
2

}
:

o2k(
n
2k

)
on

lim
ε→0

lim
t→0

1

b2kε2k

∫
Cε

t

sn−2k(x) dx = − 1

gn+1,n−2k+2

∫
Gn−2k+2

n+1

deg0 ∇(f |K) dK

+ 1

gn+1,n−2k

∫
Gn−2k

n+1

deg0 ∇(f |H ) dH,

and that

lim
ε→0

lim
t→0

∫
Cε

t

s0(x)dx = − 1

gn+1,2

∫
G2

n+1

deg0 ∇(f |K)dK + 1.

Adding these n
2 + 1 equalities, we obtain that

n/2∑
k=0

o2k(
n
2k

)
on

lim
ε→0

lim
t→0

1

b2kε2k

∫
Cε

t

sn−2k(x) dx = 1 − [ deg0 ∇F + sign(t) deg0 H
]
.

The term in the right-hand side of this equality is χ(Cε
t ). If n is odd, Theorem 3.2 in

[Du2] states that
χ(Cε

t ) = 1 − deg0 ∇f.

By Theorem 7.1, we know that for k ∈ {0, . . . , n−3
2

}
:

o2k+1(
n

2k+1

)
on

lim
ε→0

lim
t→0

1

b2k+1ε2k+1

∫
Cε

t

sn−2k−1(x) dx

= − 1

gn+1,n−2k+1

∫
Gn−2k+1

n+1

deg0 ∇(f |K) dK

+ 1

gn+1,n−2k−1

∫
Gn−2k−1

n+1

deg0 ∇(f |H ) dH,

and that

lim
ε→0

lim
t→0

∫
Cε

t

s0(x)dx = − 1

gn+1,2

∫
G2

n+1

deg0 ∇(f |K) dK + 1.
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Adding these n+1
2 equalities, we obtain that

n−1
2∑

k=0

o2k+1(
n

2k+1

)
on

lim
ε→0

lim
t→0

1

b2k+1ε2k+1

∫
Cε

t

sn−2k−1(x) dx = 1 − deg0 ∇f.

The term in the right-hand side of this equality is χ(Cε
t ). Since Cε

t is an odd-
dimensional manifold with boundary, we have that χ(Cε

t ) = 1
2χ(Ct ∩ Sn

ε ). But C0
intersects Sn

ε transversally if 0 < ε � 1, hence C0 ∩ Sn
ε is diffeomorphic to Ct ∩ Sn

ε

for 0 < |t | � ε � 1. This proves the third equality of the corollary. �

We end this paper with two remarks. In [BB], the authors define spherical densities

̃i(X, x), i = 1, . . . , N − 1, for a point x belonging to a definable set X ⊂ R

N .
They are generalizations of the classical density. Michel Coste asked the author about
the relations between these densities and our limits of curvature integrals. Using the
following formula ([Ar], [Wa]):

χ({f ≤ 0} ∩ Sn
ε ) = 1 − deg0 ∇f (= 1

2χ({f = 0} ∩ Sn
ε ) if n is odd),

the spherical Gauss–Bonnet formula ([BB], Theorem 1.2, [Sa], p. 302–303) and the
spherical kinematic formula ([BB], Theorem 4.4), it is possible to express the mean-
values

∫
Gk

n+1
deg0 ∇(f |H )dH in terms of the 
̃i({f ≤ 0}, 0) and 
̃i({f = 0}, 0).

For example, if n + 1 = 2,

∫
G1

2

deg0 ∇(f |H )dH = 2π

(
1

2
− 
̃2({f ≤ 0}, 0)

)
,

and if n + 1 = 3,

∫
G2

3

deg0 ∇(f |H )dH = 2π
(
1 − 
̃2({f = 0}, 0)

)
.

This makes the link between the spherical densities and the limits of curvature integrals
on the real Milnor fibre.

We have restricted ourselves to the case of a polynomial. Except for Bezout’s
inequality, everything works in the analytic case. It is possible to prove Proposition 5.1
in the analytic case (even in the subanalytic case) using a more sophisticated argument
based on the Thom–Mather first isotopy lemma as is done in [CGM] (see also [CY],
p. 157). However the spirit of this paper is to apply techniques of integral geometry
to singularity theory rather than to focus on the category of functions we work with.
That is why we have chosen to present our results only in the algebraic case.
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