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On Frobenius-destabilized rank-2 vector bundles over curves

Herbert Lange and Christian Pauly

Abstract. Let X be a smooth projective curve of genus g ≥ 2 over an algebraically closed field
k of characteristic p > 0. Let MX be the moduli space of semistable rank-2 vector bundles
over X with trivial determinant. The relative Frobenius map F : X→ X1 induces by pull-back
a rational map V : MX1 ��� MX . In this paper we show the following results.

(1) For any line bundle L over X, the rank-p vector bundle F∗L is stable.

(2) The rational map V has base points, i.e., there exist stable bundles E over X1 such that
F ∗E is not semistable.

(3) Let B ⊂ MX1 denote the scheme-theoretical base locus of V . If g = 2, p > 2 and X
ordinary, then B is a 0-dimensional local complete intersection of length 2

3p(p
2− 1) and

the degree of V equals 1
3p(p

2 + 2).
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Introduction

Let X be a smooth projective curve of genus g ≥ 2 over an algebraically closed field
k of characteristic p > 0. Denote by F : X → X1 the relative k-linear Frobenius
map. Here X1 = X ×k,σ k, where σ : Spec(k) → Spec(k) is the Frobenius of k
(see e.g. [R], Section 4.1). We denote by MX, respectively MX1 , the moduli space
of semistable rank-2 vector bundles on X, respectively X1, with trivial determinant.
The Frobenius F induces by pull-back a rational map (the Verschiebung)

V : MX1 ��� MX, [E] �→ [F ∗E].
Here [E] denotes the S-equivalence class of the semistable bundle E. It is shown
[MS] that V is generically étale, hence separable and dominant, if X or equivalently
X1 is an ordinary curve. Our first result is

Theorem 1. Over any smooth projective curve X1 of genus g ≥ 2 there exist stable
rank-2 vector bundles E with trivial determinant, such that F ∗E is not semistable.
In other words, V has base points.
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Note that this is a statement for an arbitrary curve of genus g ≥ 2 over k, since
associatingX1 toX induces an automorphism of the moduli space of curves of genus
g over k. The existence of Frobenius-destabilized bundles was already proved in
[LP2], Theorem A.4, by specializing the so-called Gunning bundle on a Mumford-
Tate curve. The proof given in this paper is much simpler than the previous one.
Given a line bundle L over X, the generalized Nagata–Segre theorem asserts the
existence of rank-2 subbundles E of the rank-p bundle F∗L of a certain (maximal)
degree. Quite surprisingly, these subbundles E of maximal degree turn out to be
stable and Frobenius-destabilized.

In the case g = 2 the moduli space MX is canonically isomorphic to the projective
space P

3
k and the set of strictly semistable bundles can be identified with the Kummer

surface KumX ⊂ P
3
k associated to X. According to [LP2], Proposition A.2, the

rational map
V : P3

k ��� P
3
k

is given by polynomials of degree p, which are explicitly known in the cases p = 2
[LP1] and p = 3 [LP2]. Let B be the scheme-theoretical base locus of V , i.e., the
subscheme of P

3
k determined by the ideal generated by the 4 polynomials of degree

p defining V . Clearly its underlying set equals (see [O1], Theorem A.6)

supp B = {E ∈MX1
∼= P

3
k | F ∗E is not semistable}

and supp B ⊂ P
3
k \KumX1 . Since V has no base points on the ample divisor KumX1 ,

we deduce that dim B = 0. Then we show

Theorem 2. Assume p > 2. Let X1 be an ordinary curve of genus g = 2. Then the
0-dimensional scheme B is a local complete intersection of length

2

3
p(p2 − 1).

Since B is a local complete intersection, the degree ofV equals degV = p3−l(B)
where l(B) denotes the length of B (see e.g. [O1], Proposition 2.2). Hence we obtain
the

Corollary. Under the assumption of Theorem 2

degV = 1

3
p(p2 + 2).

The underlying idea of the proof of Theorem 2 is rather simple: we observe that
a vector bundle E ∈ supp B corresponds via adjunction to a subbundle of the rank-p
vector bundle F∗(θ−1) for some theta characteristic θ on X (Proposition 3.1). This
is the motivation to introduce Grothendieck’s Quot-scheme Q parametrizing rank-2
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subbundles of degree 0 of the vector bundle F∗(θ−1). We prove that the two 0-
dimensional schemes B and Q decompose as disjoint unions

∐
Bθ and

∐
Qη where

θ and η vary over theta characteristics onX and p-torsion points of JX1 respectively
and that Bθ and Q0 are isomorphic, if X is ordinary (Proposition 4.6). In particular
since Q is a local complete intersection, B also is.

In order to compute the length of B we show that Q is isomorphic to a determi-
nantal scheme D defined intrinsically by the 4-th Fitting ideal of some sheaf. The
non-existence of a universal family over the moduli space of rank-2 vector bundles
of degree 0 forces us to work over a different parameter space constructed via the
Hecke correspondence and carry out the Chern class computations on this parameter
space.

The underlying set of points of B has already been studied in the literature. In
fact, using the notion of p-curvature, S. Mochizuki [Mo] describes points of B as
“dormant atoms” and obtains, by degenerating the genus-2 curve X to a singular
curve, the above mentioned formula for their number ([Mo], Corollary 3.7, p. 267).
Moreover he shows that for a general curve X the scheme B is reduced. In this
context we also mention the recent work of B. Osserman [O1], [O2], which explains
the relationship of supp B with Mochizuki’s theory.

Acknowledgments. We would like to thank Yves Laszlo and Brian Osserman for
helpful discussions and for pointing out several mistakes in a previous version of this
paper. We also thank Adrian Langer for some advice with references. We are also
grateful to the referee for interesting comments.

1. Stability of the direct image F∗L

Let X be a smooth projective curve of genus g ≥ 2 over an algebraically closed field
of characteristic p > 0 and let F : X → X1 denote the relative Frobenius map. Let
L be a line bundle over X with

degL = g − 1+ d,
for some integer d. Applying the Grothendieck–Riemann–Roch theorem to the mor-
phism F , we obtain

Lemma 1.1. The slope of the rank-p vector bundle F∗L equals

μ(F∗L) = g − 1+ d
p
.

The following result will be used in Section 3.
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Proposition 1.2. If g ≥ 2, then the vector bundle F∗L is stable for any line bundle
L on X.

Proof. Suppose that the contrary holds, i.e., F∗L is not stable. Consider its Harder–
Narasimhan filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ El = F∗L,
such that the quotients Ei/Ei−1 are semistable with μ(Ei/Ei−1) > μ(Ei+1/Ei)

for all i ∈ {1, . . . , l − 1}. If F∗L is not semistable, we denote E := E1. If F∗L
is semistable, we denote by E any proper semistable subbundle of the same slope.
Then clearly

μ(E) ≥ μ(F∗L). (1)

In case r = rkE > p−1
2 , we observe that the quotient bundle

Q =
{
F∗L/El−1 if F∗L is not semistable,

F∗L/E if F∗L is semistable,

is also semistable and that its dualQ∗ is a subbundle of (F∗L)∗. Moreover, by relative
duality (F∗L)∗ = F∗(L−1 ⊗ ω⊗1−p

X ) and by assumption rkQ∗ ≤ p − r ≤ p−1
2 .

Hence, replacing if necessary E and L by Q∗ and L−1 ⊗ ω⊗1−p
X , we may assume

that E is semistable and r ≤ p−1
2 .

Now, by [SB], Corollary 2, we have the inequality

μmax(F
∗E)− μmin(F

∗E) ≤ (r − 1)(2g − 2), (2)

whereμmax(F
∗E) (resp.μmin(F

∗E)) denotes the slope of the first (resp. last) graded
piece of the Harder–Narasimhan filtration of F ∗E. The inclusion E ⊂ F∗L gives,
by adjunction, a nonzero map F ∗E→ L. Hence

degL ≥ μmin(F
∗E) ≥ μmax(F

∗E)− (r − 1)(2g− 2) ≥ pμ(E)− (r − 1)(2g− 2).

Combining this inequality with (1) and using Lemma 1.1, we obtain

g − 1+ d
p
= μ(F∗L) ≤ μ(E) ≤ g − 1+ d

p
+ (r − 1)(2g − 2)

p
,

which simplifies to

(g − 1) ≤ (g − 1)

(
2r − 1

p

)
.

This is a contradiction, since we have assumed r ≤ p−1
2 and therefore 2r−1

p
< 1.

�
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Remark 1.3. We observe that the vector bundles F∗L are destabilized by Frobenius,
because of the nonzero canonical map F ∗F∗L→ L and clearlyμ(F ∗F∗L) > degL.
For further properties of the bundles F∗L, see [JRXY], Section 5.

Remark 1.4. In the context of Proposition 1.2 we mention the following open ques-
tion: given a finite separable morphism between smooth curves f : Y → X and a
line bundle L ∈ Pic(Y ), is the direct image f∗L stable? For a discussion, see [B2].

2. Existence of Frobenius-destabilized bundles

Let the notation be as in the previous section. We recall the generalized Nagata–Segre
theorem, proved by Hirschowitz, which says

Theorem 2.1. For any vector bundleG of rank r and degree δ over any smooth curve
X and for any integer n, 1 ≤ n ≤ r − 1, there exists a rank-n subbundle E ⊂ G,
satisfying

μ(E) ≥ μ(G)−
(
r − n
r

)
(g − 1)− ε

rn
, (3)

where ε is the unique integer with 0 ≤ ε ≤ r−1 and ε+n(r−n)(g−1) ≡ nδmod r .

Remark 2.2. The previous theorem can be deduced (see [L], Remark 3.14) from the
main theorem of [Hir] (for its proof, see http://math.unice.fr/~ah/math/Brill/).

Proof of Theorem 1. We apply Theorem 2.1 to the rank-p vector bundle F∗L on X1
andn = 2, whereL is a line bundle of degree g−1+d onX, with d ≡ −2g+2 modp:
There exists a rank-2 vector bundle E ⊂ F∗L such that

μ(E) ≥ μ(F∗L)− p − 2

p
(g − 1). (4)

Note that our assumption on d was made to have ε = 0.
Now we will check that any E satisfying inequality (4) is stable with F ∗E not

semistable.
(i) E is stable: Let N be a line subbundle of E. The inclusion N ⊂ F∗L

gives, by adjunction, a nonzero map F ∗N → L, which implies (see also [JRXY],
Proposition 3.2 (i))

degN ≤ μ(F∗L)− p − 1

p
(g − 1).

Comparing with (4) we see that degN < μ(E).
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(ii) F ∗E is not semistable. In fact, we claim that L destabilizes F ∗E. For the
proof note that Lemma 1.1 implies

μ(F∗L)− p − 2

p
(g − 1) = 2g − 2+ d

p
>
g − 1+ d

p
= degL

p
(5)

since g ≥ 2. Together with (4) this gives μ(E) > degL
p

and hence

μ(F ∗E) > degL.

This implies the assertion, since by adjunction we obtain a nonzero map F ∗E→ L.
Replacing E by a subsheaf of suitable degree, we may assume that inequality (4)

is an equality. In that case, because of our assumption on d, μ(E) is an integer, hence
degE is even. In order to get trivial determinant, we may tensorize E with a suitable
line bundle.

This shows the existence of a stable rank-2 vector bundle E with F ∗E not
semistable, which is equivalent to the existence of base points of V (see e.g. [O1],
Theorem A.6). �

3. Frobenius-destabilized bundles in genus 2.

From now on we assume that X is an ordinary curve of genus g = 2 and the charac-
teristic of k is p > 2. Recall that MX denotes the moduli space of semistable rank-2
vector bundles with trivial determinant over X and B the scheme-theoretical base
locus of the rational map

V : MX1
∼= P

3
k ��� P

3
k
∼=MX,

which is given by polynomials of degree p.
First of all we will show that the 0-dimensional scheme B is the disjoint union of

subschemes Bθ indexed by theta characteristics of X.

Proposition 3.1. (a) Let E be a vector bundle on X1 such that E ∈ supp B. Then
we have

(i) There exists a unique theta characteristic θ onX such that Hom(E, F∗(θ−1)) �=
0.

(ii) Any rank-2 vector bundle E of degree 0 satisfying Hom(E, F∗(θ−1)) �= 0 is a
subbundle of F∗(θ−1), i.e. the quotient F∗(θ−1)/E is torsion free.

(b) Let θ be a theta characteristic on X. Any rank-2 subbundle E ⊂ F∗(θ−1) of
degree 0 has the following properties

(i) E is stable and F ∗E is not semistable,
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(ii) F ∗(detE) = OX,

(iii) dim Hom(E, F∗(θ−1)) = 1 and dimH 1(E∗ ⊗ F∗(θ−1)) = 5,

(iv) E is a rank-2 subbundle of maximal degree.

Proof. (a) By [LS], Corollary 2.6, we know that, for every E ∈ supp B the bundle
F ∗E is the nonsplit extension of θ−1 by θ , for some theta characteristic θ on X
(note that Ext1(θ−1, θ) ∼= k). By adjunction we get a nonzero homomorphism
ψ : E→ F∗(θ−1), which shows (i). Uniqueness of θ will be proved below.

As for (ii), we have to show thatψ is of maximal rank. Suppose it is not, then there
is a line bundle N on the curve X1 such that ψ factorizes as E → N → F∗(θ−1).

By stability of E we have degN > 0. On the other hand, by adjunction, we get a
nonzero homomorphism F ∗N → θ−1 implying p · degN ≤ −1, a contradiction.
Hence ψ : E → F∗(θ−1) is injective. Moreover E is even a subbundle of F∗(θ−1),
since otherwise there exists a subbundle E′ ⊂ F∗(θ−1) with degE′ > 0 and which
fits into the exact sequence

0 −→ E −→ E′ π−→ T −→ 0,

where T is a torsion sheaf supported on an effective divisor. Varying π , we obtain a
family of bundles ker π ⊂ E′ of dimension > 0 and det ker π = OX1 . This would
imply (see proof of Theorem 1) dim B > 0, a contradiction.

Finally, since θ is the maximal destabilizing line subbundle of F ∗E, it is unique.
(b) We observe that inequality (4) holds for the pair E ⊂ F∗(θ−1). Hence, by the

proof of Theorem 1, E is stable and F ∗E is not semistable.
Let ϕ : F ∗E → θ−1 denote the homomorphism adjoint to the inclusion E ⊂

F∗(θ−1). The homomorphism ϕ is surjective, since otherwise F ∗E would contain a
line subbundle of degree > 1, contradicting [LS], Satz 2.4. Hence we get an exact
sequence

0→ ker ϕ→ F ∗E→ θ−1 → 0. (6)

On the other hand, let N denote a line bundle on X1 such that E ⊗ N has triv-
ial determinant, i.e. N−2 = detE. Applying Corollary 2.6 in [LS] to the bundle
F ∗(E ⊗N) we get an exact sequence

0→ θ̃ ⊗ F ∗N−1 → F ∗E→ θ̃−1 ⊗ F ∗N−1 → 0,

for some theta characteristic θ̃ . By uniqueness of the destabilizing subbundle of
maximal degree of F ∗E, this exact sequence must coincide with (6) up to a nonzero
constant. This implies that F ∗N ⊗ θ̃ = θ , hence (F ∗N)2 = OX. So we obtain that
OX = det(F ∗E) = F ∗(detE) proving (ii).

By adjunction the equality dim Hom(E, F∗(θ−1)) = dim Hom(F ∗E, θ−1) = 1
holds. Moreover by Riemann–Roch we obtain dimH 1(E∗ ⊗ F∗(θ−1)) = 5. This
proves (iii).
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Finally, suppose that there exists a rank-2 subbundle E′ ⊂ F∗(θ−1) with
degE′ ≥ 1. Then we can consider the kernel E = ker π of a surjective morphism
π : E′ → T onto a torsion sheaf with length equal to degE′. By varying π and
after tensoring ker π with a suitable line bundle of degree 0, we construct a family
of dimension > 0 of stable rank-2 vector bundles with trivial determinant which are
Frobenius-destabilized, contradicting dim B = 0. This proves (iv). �

It follows from Proposition 3.1 (a) that the scheme B decomposes as a disjoint
union

B =
∐
θ

Bθ ,

where θ varies over the set of all theta characteristics of X and

supp Bθ = {E ∈ supp B | E ⊂ F∗(θ−1)}.
Tensor product with a 2-torsion point α ∈ JX1[2] ∼= JX[2] induces an isomor-

phism of Bθ with Bθ⊗α for every theta characteristic θ . We denote by l(B) and l(Bθ )

the length of the schemes B and Bθ . From the preceding we deduce the relations

l(B) = 16 · l(Bθ ) for every theta characteristic θ. (7)

4. Grothendieck’s Quot-scheme

Let θ be a theta characteristic on X. We consider the functor Q from the opposite
category of k-schemes of finite type to the category of sets defined by

Q(S) = {σ : π∗X1
(F∗(θ−1))→ G→ 0 | G coherent over X1 × S, flat over S,

deg G|X1×{s} = rk G|X1×{s} = p − 2 for all s ∈ S}/ ∼=
where πX1 : X1 × S → X1 denotes the natural projection and σ ∼= σ ′ for quotients
σ and σ ′ if and only if there exists an isomorphism λ : G→ G′ such that σ ′ = λ � σ .

Grothendieck showed in [G] (see also [HL], Section 2.2) that the functor Q is
representable by a k-scheme, which we denote by Q. A k-point of Q corresponds
to a quotient σ : F∗(θ−1) → G, or equivalently to a rank-2 subsheaf E = ker σ ⊂
F∗(θ−1) of degree 0 on X1. By Proposition 3.1 (a) (ii) any subsheaf E of degree 0 is
a subbundle of F∗(θ−1), which implies that any sheaf G ∈ Q(S) is locally free (see
also [MuSa] or [L], Lemma 3.8). Moreover we note that by Proposition 3.1 (b) (iv)
the bundle E has maximal degree as a subbundle of F∗(θ−1).

Hence taking the kernel of σ induces a bijection of Q(S) with the following set,
which we also denote by Q(S)

Q(S) = {E ↪→ π∗X1
(F∗(θ−1)) | E locally free sheaf over X1 × S of rank 2,

π∗X1
(F∗(θ−1))/E locally free, deg E |X1×{s} = 0 for all s ∈ S}/ ∼=



Vol. 83 (2008) On Frobenius-destabilized rank-2 vector bundles over curves 187

By Proposition 3.1 (b) the scheme Q decomposes as a disjoint union

Q =
∐
η

Qη,

where η varies over the p-torsion points η ∈ JX1[p]red = ker(V : JX1 → JX).
We also denote by V the Verschiebung of JX1, i.e. V (L) = F ∗L, for L ∈ JX1. The
set-theoretical support of Qη equals

supp Qη = {E ∈ supp Q | detE = η}.
Because of the projection formula, the tensor product with a p-torsion point
β ∈ JX1[p]red induces an isomorphism of Qη with Qη⊗β . This implies the relation

l(Q) = p2 · l(Q0), (8)

since X1 is assumed to be ordinary. Moreover, by Proposition 3.1 we have the set-
theoretical equality

supp Q0 = supp Bθ .

Proposition 4.1. (a) dim Q = 0.
(b) The scheme Q is a local complete intersection at any k-point e = (E ⊂

F∗(θ−1)) ∈ Q.

Proof. Assertion (a) follows from the preceding remarks and dim B = 0. By
[HL], Proposition 2.2.8, assertion (b) follows from the equality dim[E]Q = 0 =
χ(Hom(E,G)), where E = ker(σ : F∗(θ−1) → G) and Hom denotes the sheaf of
homomorphisms. �

Let NX1 denote the moduli space of semistable rank-2 vector bundles of degree 0
over X1. We denote by N s

X1
and Ms

X1
the open subschemes of NX1 and MX1 cor-

responding to stable vector bundles. Recall (see [La1], Theorem 4.1) that N s
X1

and
Ms
X1

universally corepresent the functors (see e.g. [HL], Definition 2.2.1) from the
opposite category of k-schemes of finite type to the category of sets defined by

N s
X1
(S) = {E locally free sheaf over X1 × S of rank 2 | E |X1×{s} stable,

deg E |X1×{s} = 0 for all s ∈ S}/ ∼,

Ms
X1
(S) = {E locally free sheaf over X1 × S of rank 2 | E |X1×{s} stable

for all s ∈ S, det E = π∗SM for some line bundle M on S}/ ∼,
where πS : X1 × S → S denotes the natural projection and E ′ ∼ E if and only if
there exists a line bundle L on S such that E ′ ∼= E ⊗ π∗SL. We denote by 〈E〉 the
equivalence class of the vector bundle E for the relation ∼.
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Consider the determinant morphism

det : NX1 → JX1, [E] �→ detE,

and denote by det−1(0) the scheme-theoretical fibre over the trivial line bundle on
X1. Since N s

X1
universally corepresents the functor N s

X1
, we have an isomorphism

Ms
X1
∼= N s

X1
∩ det−1(0).

Remark 4.2. If p > 0, it is not known whether the canonical morphism MX1 →
det−1(0) is an isomorphism (see e.g. [La2], Section 3).

In the sequel we need the following relative version of Proposition 3.1 (b) (ii). By
a k-scheme we always mean a k-scheme of finite type.

Lemma 4.3. Let S be a connected k-scheme and let E be a locally free sheaf of
rank-2 over X1 × S such that deg E |X1×{s} = 0 for all points s of S. Suppose that

Hom(E , π∗X1
(F∗(θ−1)) �= 0. Then we have the exact sequence

0 −→ π∗X(θ) −→ (F × idS)
∗E −→ π∗X(θ−1) −→ 0.

In particular
(F × idS)

∗(det E) = OX1×S.

Proof. First we note that by flat base change for πX1 : X1 × S → X1, we have an
isomorphism π∗X1

(F∗(θ−1)) ∼= (F × idS)∗(π∗X(θ−1)). Hence the nonzero morphism

E → π∗X1
(F∗(θ−1)) gives via adjunction a nonzero morphism

ϕ : (F × idS)
∗E −→ π∗X(θ−1).

We know by the proof of Proposition 3.1 (b) that the fibre ϕ(x,s) over any closed point
(x, s) ∈ X × S is a surjective k-linear map. Hence ϕ is surjective by Nakayama and
we have an exact sequence

0 −→ L −→ (F × idS)
∗E −→ π∗X(θ−1) −→ 0,

with L locally free sheaf of rank 1. By [K], Section 5, the rank-2 vector bundle
(F × idS)∗E is equipped with a canonical connection

∇ : (F × idS)
∗E −→ (F × idS)

∗E ⊗�1
X×S/S.

We note that �1
X×S/S = π∗X(ωX), where ωX denotes the canonical line bundle of X.

The first fundamental form of the connection ∇ is an OX×S-linear homomorphism

ψ∇ : L −→ π∗X(θ−1)⊗ π∗X(ωX) = π∗X(θ).
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The restriction of ψ∇ to the curve X × {s} ⊂ X × S for any closed point s ∈ S is
an isomorphism (see e.g. proof of [LS], Corollary 2.6). Hence the fibre of ψ∇ is a
k-linear isomorphism over any closed point (x, s) ∈ X × S. We conclude that ψ∇
is an isomorphism, by Nakayama’s lemma and because L is a locally free sheaf of
rank 1.

We obtain the second assertion of the lemma, since

(F × idS)
∗(det E) = det(F × idS)

∗E = L⊗ π∗X(θ−1) = OX1×S. �

Proposition 4.4. We assume X ordinary.

(a) The forgetful morphism

i : Q ↪→ N s
X1
, e = (E ⊂ F∗(θ−1)) �→ E

is a closed embedding.

(b) The restriction i0 of i to the subscheme Q0 ⊂ Q factors through Ms
X1

, i.e. there
is a closed embedding

i0 : Q0 ↪→Ms
X1
.

Proof. (a) Let e = (E ⊂ F∗(θ−1)) be a k-point of Q. To show that i is a closed em-
bedding at e ∈ Q, it is enough to show that the differential (di)e : TeQ→ T[E]NX1

is injective – note that Q is proper. Since the bundle E is stable, the Zariski tangent
spaces identify with Hom(E,G) and Ext1(E,E) respectively (see e.g. [HL], Propo-
sition 2.2.7 and Corollary 4.5.2). Moreover, if we apply the functor Hom(E, · ) to
the exact sequence associated with e ∈ Q

0 −→ E −→ F∗(θ−1) −→ G −→ 0,

the coboundary map δ of the long exact sequence

0 −→ Hom(E,E) −→ Hom(E, F∗(θ−1))

−→ Hom(E,G)
δ−→ Ext1(E,E) −→ · · ·

identifies with the differential (di)e. By Proposition 3.1 (b) we obtain that the map
Hom(E,E)→ Hom(E, F∗(θ−1)) is an isomorphism. Thus (di)e is injective.

(b) We consider the composite map

α : Q i−→ N s
X1

det−→ JX1
V−→ JX,

where the last map is the isogeny given by theVerschiebung on JX1, i.e.V (L) = F ∗L
for L ∈ JX1. The morphism α is induced by the natural transformation of functors
α : Q⇒ JX, defined by

Q(S) −→ JX(S), (E ↪→ π∗X(F∗(θ−1))) �→ (F × idS)
∗(det E).
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Using Lemma 4.3 this immediately implies that α factors through the inclusion of the
reduced point {OX} ↪→ JX. Hence the image of Q under the composite morphism
det � i is contained in the kernel of the isogeny V , which is the reduced scheme
JX1[p]red, since we have assumed X ordinary. Taking connected components we
see that the image of Q0 under det � i is the reduced point {OX1} ↪→ JX1, which
implies that i0(Q0) is contained in N s

X1
∩ det−1(0) ∼=Ms

X1
. �

In order to compare the two schemes Bθ and Q0 we need the following lemma.

Lemma 4.5. (1) The closed subscheme B ⊂Ms
X1

corepresents the functor B which
associates to a k-scheme S the set

B(S) = {E locally free sheaf over X1 × S of rank 2 | E |X1×{s} stable for all s ∈ S,
0→ L→ (F × idS)

∗E →M→ 0 for some locally free sheaves L,M

over X × S of rank 1, deg L|X×{s} = − deg M|X×{s} = 1 for all s ∈ S,
det E = π∗SM for some line bundle M on S}/ ∼ .

(2) The closed subscheme Bθ ⊂ Ms
X1

corepresents the subfunctor Bθ of B
defined by 〈E〉 ∈ Bθ (S) if and only if the set-theoretical image of the classifying
morphism of L

�L : S −→ Pic1(X), s �−→ L|X×{s},

is the point θ ∈ Pic1(X).

Proof. We denote by MX the algebraic stack parametrizing rank-2 vector bundles
with trivial determinant over X. Let Mss

X and Ms
X denote the open substacks of MX

parametrizing semistable and stable bundles. We similarly denote the corresponding
stacks of bundles overX1. The Shatz stratification [Sh] of MX induced by the degree
of the first piece of the Harder–Narasimhan filtration reduces in the case of rank-2
vector bundles to a filtration of the stack MX

Mss
X ⊂M≤1

X ⊂M≤2
X ⊂ · · · ⊂M≤nX ⊂ · · · ⊂MX

by open substacksM≤nX . It follows from the semicontinuity of the Harder–Narasimhan
filtration ([Sh], Section 5) that, for every integer n, there is a closed reduced substack
Mn
X of M≤nX parametrizing vector bundles having a maximal destabilizing line sub-

bundle of degree n. Note that Mn
X is the complement of M≤n−1

X in M≤nX . It can
be shown (see e.g. [He], Folgerung 2.1.10) that the stacks Mn

X and MX are smooth.
Let V : MX1 →MX denote the morphism of stacks induced by pull-back under the
Frobenius map F : X→ X1. It follows from [LS], Corollary 2.6, that the restriction
of V to the open substack Mss

X1
determines a morphism of stacks

Vss : Mss
X1
−→M≤1

X .
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We will use the following facts about the stack MX.
• The pull-back of OP3(1) by the natural map Mss

X →MX
∼= P

3 extends to a line
bundle, which we denote by O(1), over the moduli stack M≤1

X and Pic(M≤1
X ) =

Z · O(1). Moreover, for any positive integer l, there is a natural isomorphism
H 0(M≤1

X ,O(l))
∼= H 0(MP3,OP3(l)) (see [BL], Propositions 8.3 and 8.4).

• The closed substack M1
X is the base locus of the linear system |O(1)| over the

stack M≤1
X (see Proposition A).

In order to prove part (1) it will be enough to show that the functor B defined in
the lemma coincides with the fibre product functor B ×Ms

X1
Ms
X1

– we recall that

Ms
X1

universally corepresents the functor Ms
X1

.
We now compute the fibre product functor B ×Ms

X1
Ms
X1

. Let S be a k-scheme

and consider a vector bundle E ∈Ms
X1
(S). Since the subscheme B is defined as the

base locus of the linear system V ∗|OP3(1)|, we obtain that 〈E〉 ∈ [
B×Ms

X1
Ms
X1

]
(S)

if and only if E lies in the base locus of Vss∗|O(1)| – here we use the isomorphism
|OP3(1)| ∼= |O(1)|, or equivalently Vss(E) := (F × idS)∗E ∈ M≤1

X (S) lies in the
base locus of |O(1)|, which is the closed substack M1

X.
We now consider the universal exact sequence defined by the Harder–Narasimhan

filtration over M1
X:

0→ L→ (F × idS)
∗E →M→ 0,

withL, M locally free sheaves overX×S such that deg L|X×{s} = − deg M|X×{s} = 1

for any s ∈ S. This shows that the two sets
[
B ×Ms

X1
Ms
X1

]
(S) and B(S) coincide.

This proves (1).
As for (2), we add the condition that the family E is Frobenius-destabilized by the

theta-characteristic θ . �

Remark 4.6. Note that in Lemma 4.5 we do not need to assume X ordinary.

Proposition 4.7. We assume X ordinary. There is a scheme-theoretical equality

Bθ = Q0

as closed subschemes of MX1 .

Proof. Since Bθ and Q0 corepresent the two functors Bθ and Q0 it will be enough
to show that there is a canonical bijection between the set Bθ (S) and Q0(S) for any
k-scheme S. We recall that

Q0(S) = {E ↪→ π∗X1
(F∗(θ−1)) | E locally free sheaf over X1 × S of rank 2,

π∗X(F∗(θ−1))/E locally free, det E ∼= OX1×S}/ ∼=
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Note that the property det E ∼= OX1×S is implied as follows: by Proposition 4.4 (b)
we have det E ∼= π∗SL for some line bundle L over S and by Lemma 4.3 we conclude
that L = OS .

First we show that the natural map Q0(S) −→Ms
X1
(S) is injective. Suppose that

there exist E , E ′ ∈ Q0(S) such that 〈E〉 = 〈E ′〉, i.e. E ′ ∼= E ⊗ π∗S (L) for some line
bundle L on S. Then by Lemma 4.3 we have two inclusions

i : π∗X(θ) −→ (F × idS)
∗E , i′ : π∗X(θ)⊗ π∗S (L−1) −→ (F × idS)

∗E .

Composing with the projectionσ : (F×idS)∗E → π∗X(θ−1)we see that the composite
map σ � i′ is identically zero. Hence the two subbundlesπ∗X(θ) andπ∗X(θ)⊗π∗S (L−1)

coincide, which implies π∗S (L) = OX1×S .
Therefore the two sets Q0(S) and Bθ (S) are naturally subsets of Ms

X1
(S).

We now show that Q0(S) ⊂ Bθ (S). Consider E ∈ Q0(S). By Proposition 3.1 (b)
the bundle E |X1×{s} is stable for all s ∈ S. By Lemma 4.3 we can take L = π∗X(θ)
and M = π∗X(θ−1), so that 〈E〉 ∈ Bθ (S).

Hence it remains to show that Bθ (S) ⊂ Q0(S). Consider a sheaf E with
〈E〉 ∈ Bθ (S) – see Lemma 4.5 (2). As in the proof of Lemma 4.3 we consider
the canonical connection ∇ on (F × idS)∗E . Its first fundamental form is an OX×S-
linear homomorphism

ψ∇ : L −→M ⊗ π∗X(ωX),
which is surjective on closed points (x, s) ∈ X× S. Hence we can conclude that ψ∇
is an isomorphism. Moreover taking the determinant, we obtain

L⊗M = det(F × idS)
∗E = π∗SM,

for some line bundle M on S. Combining both isomorphisms we deduce that

L⊗L = π∗X(ωX)⊗ π∗SM.
Hence its classifying morphism �L⊗L : S −→ Pic2(X) factorizes through the in-
clusion of the reduced point {ωX} ↪→ Pic2(X). Moreover the composite map of �L

with the duplication map [2]

�L⊗L : S �L−→ Pic1(X)
[2]−→ Pic2(X)

coincides with �L⊗L. We deduce that �L factorizes through the inclusion of the
reduced point {θ} ↪→ Pic1(X). Note that the fibre [2]−1(ωX) is reduced, sincep > 2.
Since Pic1(X) is a fine moduli space, there exists a line bundle N over S such that

L = π∗X(θ)⊗ π∗S (N).
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We introduce the vector bundle E0 = E ⊗ π∗S (N−1). Then 〈E0〉 = 〈E〉 and we have
an exact sequence

0 −→ π∗X(θ) −→ (F × idS)
∗E0

σ−→ π∗X(θ−1) −→ 0,

since π∗SM = π∗SN2. By adjunction the morphism σ gives a nonzero morphism

j : E0 −→ (F × idS)∗(π∗X(θ−1)) ∼= π∗X1
(F∗(θ−1)).

We now show that j is injective. Suppose it is not. Then there exists a subsheaf
Ẽ0 ⊂ π∗X1

(F∗(θ−1)) and a surjective map τ : E0 → Ẽ0. Let K denote the kernel of τ .

Again by adjunction we obtain a map α : (F × idS)∗Ẽ0 → π∗X(θ−1) such that the
composite map

(F × idS)
∗E0

τ∗−→ (F × idS)
∗Ẽ0

α−→ π∗X(θ−1)

coincides withσ . Here τ ∗ denotes the map (F×idS)∗τ . Sinceσ is surjective, α is also
surjective. We denote by M the kernel of α. The induced map τ̄ : π∗X(θ) = ker σ →
M is surjective, because τ ∗ is surjective. Moreover the first fundamental form of the
canonical connection ∇̃ on (F × idS)∗Ẽ0 induces an OX×S-linear homomorphism
ψ∇̃ : M→ π∗X(θ) and the composite map

ψ∇ : π∗X(θ) τ̄−→M
ψ∇̃−→ π∗X(θ)

coincides with the first fundamental form of ∇ of (F × idS)∗E0, which is an iso-
morphism. Therefore τ̄ is an isomorphism too. So τ ∗ is an isomorphism and
(F × idS)∗K = 0. We deduce that K = 0.

In order to show that E0 ∈ Q0(S), it remains to verify that the quotient sheaf
πX1(F∗(θ−1))/E0 is flat over S. We recall that flatness implies locally freeness
because of maximality of degree. But flatness follows from [HL], Lemma 2.1.4, since
the restriction of j toX1×{s} is injective for any closed s ∈ S by Proposition 3.1 (a).

�

Since Q0 represents the functor Q0, we obtain the following

Corollary 4.8. The scheme Bθ represents the functor Bθ defined in Lemma 4.5.

Combining Proposition 4.7 with relations (7) and (8), we obtain

Corollary 4.9. We have

l(B) = 16

p2 · l(Q).
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5. Determinantal subschemes

In this section we introduce a determinantal subscheme D ⊂ NX1 , whose length will
be computed in the next section. We also show that D is isomorphic to Grothendieck’s
Quot-scheme Q. We first define a determinantal subscheme D̃ of a variety JX1×Z
covering NX1 and then we show that D̃ is a P

1-fibration over an étale cover of
D ⊂ NX1 .

Since there does not exist a universal bundle overX1×MX1 , following an idea of
Mukai [Mu], we consider the moduli space MX1(x) of stable rank-2 vector bundles on
X1 with determinant OX1(x) for a fixed point x ∈ X1. According to [N1] the variety
MX1(x) is a smooth intersection of two quadrics in P

5. Let U denote a universal
bundle on X1 ×MX1(x) and denote

Ux := U|{x}×MX1 (x)

considered as a rank-2 vector bundle on MX1(x). Then the projectivized bundle

Z := P(Ux)

is a P
1-bundle over MX1(x). The variety Z parametrizes pairs (Fz, lz) consisting of

a stable vector bundle Fz ∈MX1(x) and a non-trivial linear form lz : Fz(x)→ kx on
the fibre of Fz over x defined up to a non-zero constant. Thus to any z ∈ Z one can
associate an exact sequence

0→ Ez → Fz → kx → 0

uniquely determined up to a multiplicative constant. Clearly Ez is semistable, since
Fz is stable, and detEz = OX1 . Hence we get a diagram (the so-called Hecke
correspondence)

Z

π

��

ϕ �� MX1
∼= P

3

MX1(x)

with ϕ(z) = [Ez] andπ(z) = Fz. We note that there is an isomorphism ϕ−1(E) ∼= P
1

(see e.g. [Mu], (3.7)) and that π(ϕ−1(E)) ⊂MX1(x) ⊂ P
5 is a conic for any stable

E ∈Ms
X1

(see e.g. [NR2]). On X1 × Z there exists a “universal” bundle, which we
denote by V (see [Mu], (3.8)). It has the property

V |X1×{z}
∼= Ez, for all z ∈ Z.

Let L denote a Poincaré bundle on X1 × JX1. By abuse of notation we also
denote by V and L their pull-backs to X1 × JX1 × Z. We denote by πX1 and q the
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canonical projections

X1
πX1←− X1 × JX1 × Z q−→ JX1 × Z.

We consider the map m given by tensor product

m : JX1 ×MX1 −→ NX1, (L,E) �−→ L⊗ E.
Note that the restriction of m to the stable locus ms : JX1 ×Ms

X1
−→ N s

X1
is an

étale map of degree 16. We denote by ψ the composite map

ψ : JX1 × Z
idJX1×ϕ−→ JX1 ×MX1

m−→ NX1, ψ(L, z) = L⊗ Ez.
Let D ∈ |ωX1 | be a smooth canonical divisor on X1. We introduce the following

sheaves over JX1 × Z
F1 = q∗(L∗ ⊗ V∗ ⊗ π∗X1

(F∗(θ−1)⊗ ωX1))

and

F0 = ⊕y∈D
(
L∗ ⊗ V∗|{y}×JX1×Z

)⊗ k⊕p.
The next proposition is an even degree analogue of [LN], Theorem 3.1.

Proposition 5.1. (a) The sheaves F0 and F1 are locally free of rank 4p and 4p − 4
respectively and there is an exact sequence

0 −→ F1
γ−→ F0 −→ R1q∗(L∗ ⊗ V∗ ⊗ π∗X1

(F∗(θ−1))) −→ 0.

Let D̃ ⊂ JX1×Z denote the subscheme defined by the 4-th Fitting ideal of the sheaf
R1q∗(L∗ ⊗ V∗ ⊗ π∗X1

(F∗(θ−1))). We have set-theoretically

supp D̃ = {(L, z) ∈ JX1 × Z | dim Hom(L⊗ Ez, F∗(θ−1)) = 1},
and dim D̃ = 1.

(b) Let δ denote the l-adic (l �= p) cohomology class of D̃ in JX1 × Z. Then

δ = c5(F0 − F1) ∈ H 10(JX1 × Z,Zl).
Proof. We consider the canonical exact sequence over X1 × JX1 × Z associated to
the effective divisor π∗X1

D

0→ L∗ ⊗ V∗ ⊗ π∗X1
F∗(θ−1)

⊗D−→ L∗ ⊗ V∗ ⊗ π∗X1
(F∗(θ−1)⊗ ωX1)

→ L∗ ⊗ V∗|π∗X1
D
⊗ k⊕p → 0.
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By Proposition 1.2 the rank-p vector bundle F∗(θ−1) is stable and since

1− 2

p
= μ(F∗(θ−1)) > μ(L⊗ E) = 0 for all (L,E) ∈ JX1 ×MX1,

we obtain

dimH 1(L∗ ⊗ E∗ ⊗ F∗(θ−1)⊗ ωX1) = dim Hom(F∗(θ−1), L⊗ E) = 0.

This implies
R1q∗(L∗ ⊗ V∗ ⊗ π∗X1

(F∗(θ−1)⊗ ωX1)) = 0.

By the base change theorems the sheaf F1 is locally free. Taking direct images by q
(note that q∗(L∗ ⊗ V∗ ⊗ π∗X1

F∗(θ−1)) = 0 because it is a torsion sheaf), we obtain
the exact sequence

0 −→ F1
γ−→ F0 −→ R1q∗(L∗ ⊗ V∗ ⊗ π∗X1

(F∗(θ−1))) −→ 0.

with F1 and F0 as in the statement of the proposition. Note that by Riemann–Roch
we have

rk F1 = 4p − 4 and rk F0 = 4p.

It follows from the proof of Proposition 3.1 (a) that any nonzero homomorphism
L ⊗ E −→ F∗(θ−1) is injective. Moreover by Proposition 3.1 (b) (iii) for any sub-
bundle L⊗ E ⊂ F∗(θ−1) we have dim Hom(L⊗ E,F∗(θ−1)) = 1, or equivalently
dimH 1(L∗ ⊗ E∗ ⊗ F∗(θ−1)) = 5. Using the base change theorems we obtain the
following series of equivalences

(L, z) ∈ supp D̃ ⇐⇒ rk γ(L,z) < 4p − 4 = rk F1

⇐⇒ dimH 1(L∗ ⊗ E∗ ⊗ F∗(θ−1)) ≥ 5

⇐⇒ dim Hom(L⊗ E,F∗(θ−1)) ≥ 1

⇐⇒ dim Hom(L⊗ E,F∗(θ−1)) = 1.

Finally we clearly have the equality suppψ(D̃) = supp Q. Since dim Q = 0 and
since ϕ−1(E) ∼= P

1 for E stable, we deduce that dim D̃ = 1. This proves part (a).
Part (b) follows from Porteous’ formula, which says that the fundamental class

δ ∈ H 10(JX1×Z,Zl) of the determinantal subscheme D̃ is given (with the notation
of [ACGH], p. 86) by

δ = �4p−(4p−5),4p−4−(4p−5)(ct (F0 − F1))

= �5,1(ct (F0 − F1))

= c5(F0 − F1). �
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Let M be a sheaf over a k-scheme S. We denote by

Fittn[M] ⊂ OS

the n-th Fitting ideal sheaf of M .
We now define the 0-dimensional subscheme D ⊂ N s

X1
, which is supported on

supp Q, by defining a scheme structure DE for every E ∈ supp Q. Note that

D =
∐

E∈supp Q

DE.

Consider a bundle E ∈ N s
X1

with E ∈ supp Q, i.e.

dim Hom(E, F∗(θ−1)) ≥ 1 ⇐⇒ dimH 1(E∗ ⊗ F∗(θ−1)) ≥ 5.

The GIT-construction of the moduli space N s
X1

realizes N s
X1

as a quotient of an open
subset U of a Quot-scheme by the group P GL(N) for some N . It can be shown (see
e.g. [La2], Section 3) that U is a principal P GL(N)-bundle for the étale topology
over N s

X1
. Hence there exists an étale neighbourhood τ : U → U of E over which

the P GL(N)-bundle is trivial, i.e., admits a section. The universal bundle over the
Quot-scheme restricts to a bundle E over X1 × U . Choose a point E ∈ U over E.
We denote by D

E
the connected component supported atE of the scheme defined by

the Fitting ideal sheaf

Fitt4[R1π
U∗(E

∗ ⊗ π∗X1
F∗(θ−1))].

Lemma 5.2. Let τ : U → U be an étale map and y ∈ U , x ∈ U such that τ(y) = x.
Let� ⊂ U be a 0-dimensional scheme supported at y. Then the restriction of τ to�
induces an isomorphism of � with its scheme-theoretical image in � = τ(�) ⊂ U ,
i.e.

τ |� : �
∼−→ � ⊂ U.

Proof. We denote by A = O
U,y

, B = OU,x the local rings at the points y, x and
by mA,mB their maximal ideals. Let I ⊂ mA denote the ideal defining the scheme
�. Since dim� = 0 there exists an integer n such that mn

A ⊂ I . The natural map
B ↪→ A � A/I factorizes as follows

β : B � B/mn
B

α−→ A/mn
A � A/I.

Note that α is an isomorphism, since τ is étale (see e.g. [Mum], Corollary 1 of
Theorem III.5.3). This shows that β is surjective, hence τ |� is an isomorphism. �
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Proposition–Definition 5.3. ForE ∈ suppQ we define DE as the scheme-theoretical
image τ(D

E
) ⊂ N s

X1
under the étale map τ . Then the scheme DE does not depend

on the étale neighbourhood τ : U → U of E and the point E.

Proof. Consider for i = 1, 2 étale neighbourhoods τi : Ui → U such that universal
bundles Ei exist over X1 × Ui , and points Ei ∈ Ui lying over E ∈ U . Because of
Lemma 5.2 it will be enough to show that the schemes D

E1
and D

E2
are isomorphic.

Consider the fibre product U = U1×U U2 and the pointE = (E1, E2) ∈ U . The
two projections πi : U → Ui for i = 1, 2 are étale. Moreover (idX1 × πi)∗Ei ∼ E ,
where E denotes the universal bundle overX1×U . Since the formation of the Fitting
ideal and taking the higher direct image R1π

U∗ commutes with the flat base changes
π1 and π2 (see [E], Corollary 20.5), we obtain for i = 1, 2

π−1
i

[
Fitt4(R

1π
U1∗(E

∗
i ⊗ π∗X1

F∗(θ−1))
] ·O

U
= Fitt4(R

1π
U∗(E

∗ ⊗ π∗X1
F∗(θ−1))).

This shows that the connected components supported at E of the fibres π−1
i (D

Ei
)

equal D
E

. Applying Lemma 5.2 to πi and D
E

we obtain isomorphisms πi : DE
→

D
Ei

and we are done. �

Lemma 5.4. (a) Let S be a k-scheme and E a sheaf overX1×S with 〈E〉 ∈ N s
X1
(S).

We suppose that the set-theoretical image of the classifying morphism of E

�E : S −→ N s
X1
, s �−→ E |X1×{s}

is a point. Then there exists an Artinian ringA, a morphism ϕ : S −→ � := Spec(A)
and a locally free sheaf E0 over X1 ×� such that

(1) E ∼ (idX1 × ϕ)∗E0

(2) the natural map O� −→ ϕ∗OS is injective.

(b) There exists a universal family E0 over X1 ×D .

Proof. (a) Since the set-theoretical support of im �E is a point x ∈ N s
X1

, there exists
an Artinian ring A such that �E factorizes through the inclusion � := Spec(A) ↪→
N s
X1

. As explained above there exists an étale neighbourhood τ : U → U of x such

that there is a universal bundle Euniv overX1×U . Choose y ∈ U such that τ(y) = x
and denote by � ⊂ U the connected component supported at y of the fibre τ−1(�).
By Lemma 5.2 there is an isomorphism τ : � ∼−→ �. Denote by E0 the restriction
of Euniv to X1 ×� ∼= X1 ×�. This shows property (1). As for (2), we consider the
ideal I ⊂ A defined by Ĩ = ker(OSpec(A)→ ϕ∗OS), where Ĩ denotes the associated
OSpec(A)-module. If I �= 0, we replace A by A/I and we are done.

(b) We take � = DE and � = D
E

and proceed as in (a). �
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Proposition 5.5. The subscheme D ⊂ N s
X1

represents the functor D which asso-
ciates to any k-scheme S the set

D(S) = {E locally free sheaf over X1 × S of rank 2 | deg E |X1×{s} = 0

for all s ∈ S,Fitt4[R1πS∗(E∗ ⊗ π∗X1
(F∗(θ−1)))] = 0}/ ∼ .

Proof. Consider a sheaf E over X1 × S with 〈E〉 ∈ N s
X1
(S). Then 〈E〉 is an element

of
[
D ×N s

X1
N s
X1

]
(S) if and only if the classifying map�E : S → N s

X1
factorizes as

S
ϕ−→ D ⊂ N s

X1
. By Lemma 5.4 (b) there exists a universal family E0 overX1×D

and we have E ∼ (idX1×ϕ)∗E0. Since D is defined (over an étale cover) by a Fitting
ideal and since the formation of the Fitting ideal commutes with any base change,
we deduce that

[
D ×N s

X1
N s
X1

]
(S) = D(S). Since N s

X1
universally corepresents

the functor N s
X1

, this shows that D corepresents the functor D . The existence of a
universal family E0 over X ×D implies that D represents the functor D . �

Proposition 5.6. There is a scheme-theoretical equality

D̃ = ψ−1D .

Proof. In order to show that the subschemes D̃ andψ−1D of JX1×Z coincide, it is
enough to show that the two subsets Mor(S, D̃) and Mor(S, ψ−1D)of Mor(S, JX1×
Z) coincide for any k-scheme S. Consider � ∈ Mor(S, JX1 × Z) and denote
E� := (idX1×�)∗(L⊗V). By definition of D̃ we have� ∈ Mor(S, D̃) if and only
if Fitt4[R1πS∗(E∗�⊗π∗X1

(F∗(θ−1)))] = 0. On the other hand� ∈ Mor(S, ψ−1(D))
if and only if ψ � � ∈ Mor(S,D). The latter set equals D(S) by Proposition 5.5.
Since (ψ ��)∗E0 ∼ E�, we are done. �

Proposition 5.7. There is a scheme-theoretical equality

D = Q.

Proof. We note that D(S) and Q(S) are subsets of N s
X1
(S) (the injectivity of the

map Q(S)→ N s
X1
(S) is proved similarly as in the proof of Proposition 4.7). Since

D and Q corepresent the two functors D and Q, it will be enough to show that the
set D(S) coincides with Q(S) for any k-scheme S.

We first show that D(S) ⊂ Q(S). Consider a sheaf E with 〈E〉 ∈ D(S). For
simplicity we denote the sheaf E∗ ⊗ π∗X1

(F∗(θ−1)) by H . By [Ha], Theorem 12.11,
there is an isomorphism

R1πS∗H ⊗ k(s) ∼= H 1(X1 × {s},H |X1×{s}) for all s ∈ S.
From our assumption Fitt4[R1πS∗H ] = 0, we obtain dimH 1(X1×{s},H |X1×{s}) ≥
5, or equivalently dimH 0(X1 × {s},H |X1×{s}) ≥ 1, i.e., the vector bundle E |X1×{s}
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is a subsheaf, hence by Proposition 3.1 (a) (ii) a subbundle, of F∗(θ−1). This implies
that the set-theoretical image of the classifying map�E is contained in suppQ. Taking
connected components of S, we can assume that the image of�E is a point. Therefore
we can apply Lemma 5.4: there exists a locally free sheaf E0 over X1 ×� such that
E ∼ (idX1×ϕ)∗E0. For simplicity we write H0 = E∗0 ⊗π∗X1

(F∗(θ−1)). In particular
H = (idX1×ϕ)∗H0. Since the projection π� : X1×�→ � is of relative dimension
1, taking the higher direct imageR1π�∗ commutes with the (not necessarily flat) base
change ϕ : S → � ([Ha], Proposition 12.5), i.e., there is an isomorphism

ϕ∗R1π�∗H0 ∼= R1πS∗H .

Since the formation of Fitting ideals also commutes with any base change (see [E],
Corollary 20.5), we obtain

Fitt4[R1πS∗H ] = Fitt4[R1π�∗H0] ·OS.
Since Fitt4[R1πS∗H ] is equal to 0 and O� → ϕ∗OS is injective, we deduce that
Fitt4[R1π�∗H0] = 0. Since by Proposition 3.1 (b) (iii) dimR1π�∗H0 ⊗ k(s0) = 5
for the closed point s0 ∈ �, we have Fitt5[R1π�∗H0] = O�. We deduce by [E],
Proposition 20.8, that the sheaf R1π�∗H0 is a free A-module of rank 5. By [Ha],
Theorem 12.11 (b), we deduce that there is an isomorphism

π�∗H0 ⊗ k(s0) ∼= H 0(X1 × s0,H |X1×{s0})

Again by Proposition 3.1 (b) (iii) we obtain dim π�∗H0 ⊗ k(s0) = 1. In particular
the O�-module π�∗H0 is not zero and therefore there exists a nonzero global section
i ∈ H 0(�, π�∗H0) = H 0(X1 × �, E∗0 ⊗ π∗X1

F∗(θ−1)). We pull-back i under the
map idX1 × ϕ and we obtain a nonzero section

j = (idX1 × ϕ)∗i ∈ H 0(X1 × S, E∗ ⊗ π∗X1
F∗(θ−1)).

Now we apply Lemma 4.3 and we continue as in the proof of Proposition 4.7. This
shows that 〈E〉 ∈ Q(S).

We now show that Q(S) ⊂ D(S). Consider a sheaf E ∈ Q(S). The nonzero
global section j ∈ H 0(X1 × S,H) = H 0(S, πS∗H) determines by evaluation at a
point s ∈ S an element α ∈ πS∗H ⊗ k(s). The image of α under the natural map

ϕ0(s) : πS∗H ⊗ k(s) −→ H 0(X1 × {s},H |X1×{s})

coincides with j |X1×{s} which is nonzero. Also, as dimH 0(X1 × {s},H |X1×{s}) = 1,

we obtain that ϕ0(s) is surjective. Hence by [Ha], Theorem 12.11, the sheafR1πS∗H
is locally free of rank 5. Again by [E], Proposition 20.8, this is equivalent to
Fitt4[R1πS∗H ] = 0 and Fitt5[R1πS∗H ] = OS and we are done. �



Vol. 83 (2008) On Frobenius-destabilized rank-2 vector bundles over curves 201

6. Chern class computations

In this section we will compute the length of the determinantal subscheme D ⊂ NX1

by evaluating the Chern class c5(F0 − F1) – see Proposition 5.1 (b).
Let l be a prime number different from p. We have to recall some properties

of the cohomology ring H ∗(X1 × JX1 × Z,Zl) (see also [LN]). In the sequel
we identify all classes of H ∗(X1,Zl), H

∗(JX1,Zl) etc. with their preimages in
H ∗(X1 × JX1 × Z,Zl) under the natural pull-back maps.

Let � ∈ H 2(JX1,Zl) denote the class of the theta divisor in JX1. Let f denote
a positive generator of H 2(X1,Zl). The cup product H 1(X1,Zl) × H 1(X1,Zl)→
H 2(X1,Zl) � Zl gives a symplectic structure on H 1(X1,Zl). Choose a symplectic
basis e1, e2, e3, e4 ofH 1(X1,Zl) such that e1e3 = e2e4 = −f and all other products
eiej = 0. We can then normalize the Poincaré bundle L on X1 × JX1 so that

c(L) = 1+ ξ1 (9)

where ξ1 ∈ H 1(X1,Zl)⊗H 1(JX1,Zl) ⊂ H 2(X1 × JX1,Zl) can be written as

ξ1 =
4∑
i=1

ei ⊗ ϕi

with ϕi ∈ H 1(JX1,Zl). Moreover, we have by the same reasoning, applying
[ACGH], p. 335 and p. 21,

ξ2
1 = −2�f and �2[JX1] = 2. (10)

Since the variety MX1(x) is a smooth intersection of 2 quadrics in P
5, one can work

out that the l-adic cohomology groupsHi(MX1(x),Zl) for i = 0, . . . , 6 are (see e.g.
[Re], p. 0.19)

Zl , 0, Zl , Z
4
l , Zl , 0, Zl .

In particular H 2(MX1(x),Zl) is free of rank 1 and, if α denotes a positive generator
of it, then

α3[MX1(x)] = 4. (11)

According to [N2] p. 338 and applying reduction mod p and a comparison theorem,
the Chern classes of the universal bundle U are of the form

c1(U) = α + f and c2(U) = χ + ξ2 + αf (12)

with χ ∈ H 4(MX1(x),Zl) and ξ2 ∈ H 1(X1,Zl)⊗H 3(MX1(x),Zl). As in [N2] and
[KN] we write

β = α2 − 4χ and ξ2
2 = γf with γ ∈ H 6(MX1(x),Zl). (13)
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Then the relations of [KN] give

α2 + β = 0 and α3 + 5αβ + 4γ = 0.

Hence β = −α2, γ = α3. Together with (12) and (13) this gives

c2(U) = α2

2
+ ξ2 + αf and ξ2

2 = α3f (14)

Define � ∈ H 1(JX1,Zl)⊗H 3(MX1(x),Zl) by

ξ1ξ2 = �f. (15)

Then we have for dimensional reasons and noting thatH 5(MX1(x),Zl) = 0, that the
following classes are all zero:

f 2, ξ3
1 , α4, ξ1f, ξ2f, αξ2, α�, �2�, �3. (16)

Finally, Z is the P
1-bundle associated to the vector bundle Ux on MX1(x). Let

H ∈ H 2(Z,Zl) denote the first Chern class of the tautological line bundle on Z. We
have, using the definition of the Chern classes ci(U) and (11),

H 2 = αH − α
2

2
, H 4 = 0, α3H [Z] = 4 (17)

and we get for the “universal” bundle V,

c1(V) = α and c2(V) = α2

2
+ ξ2 +Hf. (18)

Lemma 6.1. (a) The cohomology class α · c5(F0 − F1) ∈ H 12(JX1 × Z,Zl) is a
multiple of the class α3H�2.

(b) The pull-back under the map ϕ : Z −→ MX1
∼= P

3 of the class of a point is

the class H 3 = α2

2 H − α3

2 .

Proof. For part (a) it is enough to note that all other relevant cohomology classes
vanish, since α4 = 0 and α� = 0.

As for part (b), it suffices to show that c1(ϕ
∗OP3(1)) = H . The line bundle

OP3(1) is the inverse of the determinant line bundle [KM] over the moduli space
MX1 . Since the formation of the determinant line bundle commutes with any base
change (see [KM]), the pull-back ϕ∗OP3(1) is the inverse of the determinant line
bundle associated to the family V⊗π∗X1

N for any line bundleN of degree 1 overX1.
Hence the first Chern class of ϕ∗OP3(1) can be computed by the Grothendieck–Rie-
mann–Roch theorem applied to the sheaf V ⊗π∗X1

N overX1×Z and the morphism
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πZ : X1 × Z→ Z. We have

ch(V ⊗ π∗X1
N) · π∗X1

td(X1) = (2+ α + (−ξ2 −Hf )+ h.o.t.) (1+ f )(1− f )
= 2+ α + (−ξ2 −Hf )+ h.o.t.,

and therefore G-R-R implies that c1(ϕ
∗OP3(1)) = H – note that πZ∗(ξ2) = 0. �

Proposition 6.2. We have

l(D) = 1

24
p3(p2 − 1).

Proof. Let λ denote the length of the subscheme m−1(D) ⊂ JX1 ×MX1 Since the
mapms is étale of degree 16, we obviously have the relation λ = 16·l(D). According
to Lemma 6.1 (b) we have in H 10(JX1 × Z,Zl)

[(id×ϕ)−1(pt)] = H 3 · �
2

2
= 1

4
α2H�2 − 1

4
α3�2,

where pt denotes the class of a point in JX1×MX1 . Using Proposition 5.6 we obtain
that the class δ = c5(F0−F1) ∈ H 10(JX1×Z,Zl) equals λ · ( 1

4α
2H�2− 1

4α
3�2).

Intersecting with α we obtain with Lemma 6.1 (a) and (16)

α · c5(F0 − F1) = λ

4
α3H�2. (19)

So we have to compute the class α · c5(F0 − F1). By (9) and (10),

ch(L) = 1+ ξ1 −�f
whereas by (14), (16) and (18),

ch(V) = 2+ α + (−ξ2 −Hf )+ 1

12
(−α3 − 6αHf )+ 1

12
(α3f − α2Hf ).

Moreover

ch(π∗X1
(F∗(θ−1)⊗ ωX1)) · π∗X1

td(X1) = p + (2p − 2)f.

So using (14), (15) and (16),

ch(V∗ ⊗L∗ ⊗ π∗X1
(F∗(θ−1)⊗ ωX1)) · π∗X1

td(X1)

= 2p + [(4p − 4)f − pα − 2pξ1]
+

[
pαξ1 − 2p�f − (2p − 2)αf − pξ2 − pHf

]

+
[
p

12
α3 + p

2
αHf + p�f + pα�f

]

+
[

3p − 2

12
α3f − p

12
α3ξ1 − p

12
α2Hf

]
+

[
− p

12
α3�f

]
.
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Hence by Grothendieck–Riemann–Roch for the morphism q we get

ch(F1) = 4p − 4+ [−(2p − 2)α − 2p�− pH ] +
[
p

2
αH + p�+ pα�

]

+
[

3p − 2

12
α3 − p

12
α2H

]
+

[
− p

12
α3�

]
.

From (10) and (18) we easily obtain

ch(F0) = 4p − 2pα + p
6
α3.

So

ch(F0 − F1) = 4+ [2p�− 2α + pH ] +
[
− p

2
αH − p�− pα�

]

+
[
− p + 1

12
α3 + p

12
α2H

]
+

[
p

12
α3�

]
.

Defining pn := n! · chn(F0 −F1) we have according to Newton’s recursive formula
([F] p. 56),

c5(F0 −F1) = 1

5

(
p5 − 5

6
p2p3 − 5

4
p1p4 + 5

6
p2

1p3 + 5

8
p1p

2
2 −

5

12
p3

1p2 + 1

24
p5

1

)

with

p1 = 2p�− 2α + pH, p2 = −p(αH + 2�+ 2α�),

p3 = 1

2
(−(p + 1)α3 + pα2H), p4 = 2pα3�, p5 = 0.

Now an immediate computation using (16) and (17) gives

α · c5(F0 − F1) = p3(p2 − 1)

6
α3H�2.

We conclude from (19) that λ = 2
3p

3(p2 − 1) and we are done. �

Remark 6.3. If k = C, the number of maximal subbundles of a general vector bundle
has recently been computed by Y. Holla by using Gromov–Witten invariants [Ho].
His formula ([Ho], Corollary 4.6) coincides with ours.

7. Proof of Theorem 2

The proof of Theorem 2 is now straightforward. It suffices to combine Corollary 4.9,
Proposition 5.7 and Proposition 6.2 to obtain the length l(B).

The fact that B is a local complete intersection follows from the isomorphism
Bθ = Q0 (Proposition 4.6) and Proposition 4.1. �
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8. Questions and remarks

(1) Is the rank-p vector bundleF∗L very stable, i.e.F∗L has no nilpotentωX1-valued
endomorphisms, for a general line bundle?

(2) IsF∗(θ−1) very stable for a general curveX? Note that very-stability ofF∗(θ−1)

implies reducedness of B (see e.g. [LN], Lemma 3.3).

(3) If g = 2, we have shown that for a general stableE ∈MX the fibreV −1(E) con-
sists of 1

3p(p
2 + 2) stable vector bundles E1 ∈MX1 , i.e. bundles E1 such that

F ∗E1 ∼= E or equivalently (via adjunction) E1 ⊂ F∗E. The Quot-scheme
parametrizing rank-2 subbundles of degree 0 of the rank-2p vector bundle
F∗E has expected dimension 0, contains the fibre V −1(E), but it also has a
1-dimensional component arising from Frobenius-destabilized bundles as fol-
lows: for any M ∈ Pic1(X) with Hom(M−1, E) �= 0 consider a stable degree
0 rank-2 bundle E1 such that F ∗E1 has a nonzero map to M−1.

(4) Ifp = 3 the base locus B consists of 16 reduced points, which correspond to the
16 nodes of the Kummer surface associated to JX (see [LP2], Corollary 6.6).
For general p, does the configuration of points determined by B have some
geometric significance?

Appendix on base loci and substack of non-semistable vector bundles.

For lack of a suitable reference, we include a detailed proof of the following fact,
which was used in Lemma 4.5. We use the notation of Lemma 4.5.

Proposition A. LetX be a smooth curve of genus 2. The closed substack M1
X equals

the base locus Bs|O(1)| of the linear system |O(1)| over the moduli stack M≤1
X .

Proof. Let E be a rank-2 vector bundle with trivial determinant over X. It follows
from [R], Proposition 1.6.2, that E is semistable if and only if there exists a line
bundle M of degree 1 such that h0(X,E ⊗ M) = h1(X,E ⊗ M) = 0. Consider
the determinant divisor θM associated to M . Then θM ∈ |O(1)| and for an S-valued
point E of M≤1

X

supp(θM) = {s ∈ S | h0(X, Es ⊗M) > 0}.
We know (see e.g. [B1], Proposition 2.5) that the linear system |O(1)| is linearly
generated by the divisors θM when M varies in Pic1(X). The previous equivalence
implies that the open complements of the closed substacks Bs|O(1)| andM1

X coincide.
To conclude the proposition it remains to show that the base locus Bs|O(1)| is a
reduced substack of M≤1

X .
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The normal bundle N of the closed substack M1
X in M≤1

X can be described as
follows(e.g. [He], Behauptung 2.1.12, p. 44 or [VL], exposé 4, Théorème 4, p. 90):
let E denote the universal bundle over X ×MX restricted to X ×M1

X. There is a
canonical inclusion

End0(E)
filt ⊂ End0(E),

where End0(E)
filt denotes the sheaf of tracefree endomorphisms preserving the Har-

der–Narasimhan filtration. We denote by End′0(E) the quotient. Then the normal
bundleN equals R1p∗ End′0(E), where p denotes projection onto M1

X. In the rank-2
case the universal Harder–Narasimhan filtration over X ×M1

X is of the form

0 −→ L −→ E −→ L−1 −→ 0,

where L is a degree 1 line bundle. In that case we have End′0(E) = Hom(L,L−1)

and therefore N = R1p∗L−2.
Consider an S-point E ∈ M≤1

X (S) and x ∈ S such that the vector bundle Ex =
E ∈ M1

X(k), i.e., E is destabilized by L of degree 1. Consider a line bundle M of
degree 1 and its associated determinant divisor θM . Then the divisor θM contains the
closed substack M1

X. The Kodaira–Spencer map at the point x ∈ S associated to E
is a k-linear map

κ : TxS −→ H 1(X,End0(E)).

Note that we consider bundles with trivial determinant, hence κ takes values in
H 1(X,End0(E)). By [Las], Sections II and III, the linear form on TxS defining
the tangent space TxθM to the determinant divisor θM is the map � � κ , where � is
given by cup product

� : H 1(X,End0(E)) −→ Hom(H 0(X,E ⊗M),H 1(X,E ⊗M)), e �→ ∪e.
Using Serre duality we identify H 1(X,End0(E))

∗ with H 0(X,End0(E) ⊗ ω) and
H 1(X,E ⊗M) with H 0(X,E ⊗ ωM−1)∗. The dual of � equals the symmetrized
multiplication map of global sections (note that End0(E) = Sym2E and E = E∗)

μ : H 0(X,E ⊗M)⊗H 0(X,E ⊗ ωM−1) −→ H 0(X,End0(E)⊗ ω).
Note that both spaces on the left have dimension equal to 1 for general M and that
H 0(X,E ⊗M) = H 0(X,L⊗M) and H 0(X,E ⊗ ωM−1) = H 0(X,L⊗ ωM−1)

for general M . This implies that dim im(μ) = 1 and

im(μ) ⊂ H 0(X,L2ω) ⊂ H 0(X,End0(E)⊗ ω).
We denote by h a generator of im(μ). We obtain that for general M the conormal
vector defined by TxθM is given (up to a scalar) by

h ∈ H 0(X,L2ω) = H 1(X,L−2)∗ = N∗x .



Vol. 83 (2008) On Frobenius-destabilized rank-2 vector bundles over curves 207

The corresponding rational map

Pic1(X) −→ PH 0(X,L2ω) = P
2, M �→ h,

is easily seen to be dominant. In particular its image is non degenerate. This shows
that the point E is a reduced point of Bs|O(1)|, because the linear span of the family
of conormal vectors defined by TxθM whenM varies in an open set of Pic1(X) equals
the full space N∗x . �
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