On Frobenius-destabilized rank-2 vector bundles over curves

Herbert Lange and Christian Pauly

Abstract. Let *X* be a smooth projective curve of genus $g \ge 2$ over an algebraically closed field *k* of characteristic p > 0. Let \mathcal{M}_X be the moduli space of semistable rank-2 vector bundles over *X* with trivial determinant. The relative Frobenius map $F: X \to X_1$ induces by pull-back a rational map $V: \mathcal{M}_{X_1} \dashrightarrow \mathcal{M}_X$. In this paper we show the following results.

- (1) For any line bundle L over X, the rank-p vector bundle F_*L is stable.
- (2) The rational map V has base points, i.e., there exist stable bundles E over X_1 such that F^*E is not semistable.
- (3) Let $\mathcal{B} \subset \mathcal{M}_{X_1}$ denote the scheme-theoretical base locus of *V*. If g = 2, p > 2 and *X* ordinary, then \mathcal{B} is a 0-dimensional local complete intersection of length $\frac{2}{3}p(p^2-1)$ and the degree of *V* equals $\frac{1}{3}p(p^2+2)$.

Mathematics Subject Classification (2000). Primary 14H60, 14D20, Secondary 14H40.

Keywords. Vector bundle, Frobenius map, semi-stability, moduli space.

Introduction

Let *X* be a smooth projective curve of genus $g \ge 2$ over an algebraically closed field *k* of characteristic p > 0. Denote by $F: X \to X_1$ the relative *k*-linear Frobenius map. Here $X_1 = X \times_{k,\sigma} k$, where σ : Spec(*k*) \to Spec(*k*) is the Frobenius of *k* (see e.g. [R], Section 4.1). We denote by \mathcal{M}_X , respectively \mathcal{M}_{X_1} , the moduli space of semistable rank-2 vector bundles on *X*, respectively X_1 , with trivial determinant. The Frobenius *F* induces by pull-back a rational map (the Verschiebung)

$$V \colon \mathcal{M}_{X_1} \dashrightarrow \mathcal{M}_X, \quad [E] \mapsto [F^*E].$$

Here [*E*] denotes the S-equivalence class of the semistable bundle *E*. It is shown [MS] that *V* is generically étale, hence separable and dominant, if *X* or equivalently X_1 is an ordinary curve. Our first result is

Theorem 1. Over any smooth projective curve X_1 of genus $g \ge 2$ there exist stable rank-2 vector bundles E with trivial determinant, such that F^*E is not semistable. In other words, V has base points.

Note that this is a statement for an arbitrary curve of genus $g \ge 2$ over k, since associating X_1 to X induces an automorphism of the moduli space of curves of genus g over k. The existence of Frobenius-destabilized bundles was already proved in [LP2], Theorem A.4, by specializing the so-called Gunning bundle on a Mumford-Tate curve. The proof given in this paper is much simpler than the previous one. Given a line bundle L over X, the generalized Nagata–Segre theorem asserts the existence of rank-2 subbundles E of the rank-p bundle F_*L of a certain (maximal) degree. Quite surprisingly, these subbundles E of maximal degree turn out to be stable and Frobenius-destabilized.

In the case g = 2 the moduli space \mathcal{M}_X is canonically isomorphic to the projective space \mathbb{P}^3_k and the set of strictly semistable bundles can be identified with the Kummer surface Kum_X $\subset \mathbb{P}^3_k$ associated to X. According to [LP2], Proposition A.2, the rational map

$$V: \mathbb{P}^3_k \dashrightarrow \mathbb{P}^3_k$$

is given by polynomials of degree p, which are explicitly known in the cases p = 2 [LP1] and p = 3 [LP2]. Let \mathcal{B} be the scheme-theoretical base locus of V, i.e., the subscheme of \mathbb{P}^3_k determined by the ideal generated by the 4 polynomials of degree p defining V. Clearly its underlying set equals (see [O1], Theorem A.6)

supp
$$\mathcal{B} = \{E \in \mathcal{M}_{X_1} \cong \mathbb{P}^3_k \mid F^*E \text{ is not semistable}\}$$

and supp $\mathcal{B} \subset \mathbb{P}^3_k \setminus \operatorname{Kum}_{X_1}$. Since *V* has no base points on the ample divisor Kum_{X_1} , we deduce that dim $\mathcal{B} = 0$. Then we show

Theorem 2. Assume p > 2. Let X_1 be an ordinary curve of genus g = 2. Then the 0-dimensional scheme \mathcal{B} is a local complete intersection of length

$$\frac{2}{3}p(p^2-1).$$

Since \mathcal{B} is a local complete intersection, the degree of V equals deg $V = p^3 - l(\mathcal{B})$ where $l(\mathcal{B})$ denotes the length of \mathcal{B} (see e.g. [O1], Proposition 2.2). Hence we obtain the

Corollary. Under the assumption of Theorem 2

$$\deg V = \frac{1}{3}p(p^2 + 2).$$

The underlying idea of the proof of Theorem 2 is rather simple: we observe that a vector bundle $E \in \text{supp } \mathcal{B}$ corresponds via adjunction to a subbundle of the rank-pvector bundle $F_*(\theta^{-1})$ for some theta characteristic θ on X (Proposition 3.1). This is the motivation to introduce Grothendieck's Quot-scheme \mathcal{Q} parametrizing rank-2

181

subbundles of degree 0 of the vector bundle $F_*(\theta^{-1})$. We prove that the two 0dimensional schemes \mathcal{B} and \mathcal{Q} decompose as disjoint unions $\coprod \mathcal{B}_{\theta}$ and $\coprod \mathcal{Q}_{\eta}$ where θ and η vary over theta characteristics on X and p-torsion points of JX_1 respectively and that \mathcal{B}_{θ} and \mathcal{Q}_0 are isomorphic, if X is ordinary (Proposition 4.6). In particular since \mathcal{Q} is a local complete intersection, \mathcal{B} also is.

In order to compute the length of \mathcal{B} we show that \mathcal{Q} is isomorphic to a determinantal scheme \mathcal{D} defined intrinsically by the 4-th Fitting ideal of some sheaf. The non-existence of a universal family over the moduli space of rank-2 vector bundles of degree 0 forces us to work over a different parameter space constructed via the Hecke correspondence and carry out the Chern class computations on this parameter space.

The underlying set of points of \mathcal{B} has already been studied in the literature. In fact, using the notion of *p*-curvature, S. Mochizuki [Mo] describes points of \mathcal{B} as "dormant atoms" and obtains, by degenerating the genus-2 curve *X* to a singular curve, the above mentioned formula for their number ([Mo], Corollary 3.7, p. 267). Moreover he shows that for a general curve *X* the scheme \mathcal{B} is reduced. In this context we also mention the recent work of B. Osserman [O1], [O2], which explains the relationship of supp \mathcal{B} with Mochizuki's theory.

Acknowledgments. We would like to thank Yves Laszlo and Brian Osserman for helpful discussions and for pointing out several mistakes in a previous version of this paper. We also thank Adrian Langer for some advice with references. We are also grateful to the referee for interesting comments.

1. Stability of the direct image F_*L

Let *X* be a smooth projective curve of genus $g \ge 2$ over an algebraically closed field of characteristic p > 0 and let $F: X \to X_1$ denote the relative Frobenius map. Let *L* be a line bundle over *X* with

$$\deg L = g - 1 + d,$$

for some integer d. Applying the Grothendieck–Riemann–Roch theorem to the morphism F, we obtain

Lemma 1.1. The slope of the rank-p vector bundle F_*L equals

$$\mu(F_*L) = g - 1 + \frac{d}{p}.$$

The following result will be used in Section 3.

Proposition 1.2. If $g \ge 2$, then the vector bundle F_*L is stable for any line bundle L on X.

Proof. Suppose that the contrary holds, i.e., F_*L is not stable. Consider its Harder–Narasimhan filtration

$$0 = E_0 \subset E_1 \subset E_2 \subset \cdots \subset E_l = F_*L,$$

such that the quotients E_i/E_{i-1} are semistable with $\mu(E_i/E_{i-1}) > \mu(E_{i+1}/E_i)$ for all $i \in \{1, ..., l-1\}$. If F_*L is not semistable, we denote $E := E_1$. If F_*L is semistable, we denote by E any proper semistable subbundle of the same slope. Then clearly

$$\mu(E) \ge \mu(F_*L). \tag{1}$$

In case $r = \operatorname{rk} E > \frac{p-1}{2}$, we observe that the quotient bundle

$$Q = \begin{cases} F_*L/E_{l-1} & \text{if } F_*L \text{ is not semistable,} \\ F_*L/E & \text{if } F_*L \text{ is semistable,} \end{cases}$$

is also semistable and that its dual Q^* is a subbundle of $(F_*L)^*$. Moreover, by relative duality $(F_*L)^* = F_*(L^{-1} \otimes \omega_X^{\otimes 1-p})$ and by assumption rk $Q^* \leq p - r \leq \frac{p-1}{2}$. Hence, replacing if necessary *E* and *L* by Q^* and $L^{-1} \otimes \omega_X^{\otimes 1-p}$, we may assume that *E* is semistable and $r \leq \frac{p-1}{2}$.

Now, by [SB], Corollary 2, we have the inequality

$$\mu_{\max}(F^*E) - \mu_{\min}(F^*E) \le (r-1)(2g-2),\tag{2}$$

where $\mu_{\max}(F^*E)$ (resp. $\mu_{\min}(F^*E)$) denotes the slope of the first (resp. last) graded piece of the Harder–Narasimhan filtration of F^*E . The inclusion $E \subset F_*L$ gives, by adjunction, a nonzero map $F^*E \to L$. Hence

$$\deg L \ge \mu_{\min}(F^*E) \ge \mu_{\max}(F^*E) - (r-1)(2g-2) \ge p\mu(E) - (r-1)(2g-2).$$

Combining this inequality with (1) and using Lemma 1.1, we obtain

$$g - 1 + \frac{d}{p} = \mu(F_*L) \le \mu(E) \le \frac{g - 1 + d}{p} + \frac{(r - 1)(2g - 2)}{p},$$

which simplifies to

$$(g-1) \le (g-1)\left(\frac{2r-1}{p}\right).$$

This is a contradiction, since we have assumed $r \leq \frac{p-1}{2}$ and therefore $\frac{2r-1}{p} < 1$.

Remark 1.3. We observe that the vector bundles F_*L are destabilized by Frobenius, because of the nonzero canonical map $F^*F_*L \rightarrow L$ and clearly $\mu(F^*F_*L) > \deg L$. For further properties of the bundles F_*L , see [JRXY], Section 5.

Remark 1.4. In the context of Proposition 1.2 we mention the following open question: given a finite separable morphism between smooth curves $f: Y \to X$ and a line bundle $L \in \text{Pic}(Y)$, is the direct image f_*L stable? For a discussion, see [B2].

2. Existence of Frobenius-destabilized bundles

Let the notation be as in the previous section. We recall the generalized Nagata–Segre theorem, proved by Hirschowitz, which says

Theorem 2.1. For any vector bundle G of rank r and degree δ over any smooth curve X and for any integer n, $1 \le n \le r - 1$, there exists a rank-n subbundle $E \subset G$, satisfying

$$\mu(E) \ge \mu(G) - \left(\frac{r-n}{r}\right)(g-1) - \frac{\varepsilon}{rn},\tag{3}$$

where ε is the unique integer with $0 \le \varepsilon \le r - 1$ and $\varepsilon + n(r - n)(g - 1) \equiv n\delta \mod r$.

Remark 2.2. The previous theorem can be deduced (see [L], Remark 3.14) from the main theorem of [Hir] (for its proof, see http://math.unice.fr/~ah/math/Brill/).

Proof of Theorem 1. We apply Theorem 2.1 to the rank-*p* vector bundle F_*L on X_1 and n = 2, where *L* is a line bundle of degree g-1+d on *X*, with $d \equiv -2g+2 \mod p$: There exists a rank-2 vector bundle $E \subset F_*L$ such that

$$\mu(E) \ge \mu(F_*L) - \frac{p-2}{p}(g-1).$$
(4)

Note that our assumption on d was made to have $\varepsilon = 0$.

Now we will check that any E satisfying inequality (4) is stable with F^*E not semistable.

(i) *E* is stable: Let *N* be a line subbundle of *E*. The inclusion $N \subset F_*L$ gives, by adjunction, a nonzero map $F^*N \to L$, which implies (see also [JRXY], Proposition 3.2 (i))

$$\deg N \le \mu(F_*L) - \frac{p-1}{p}(g-1).$$

Comparing with (4) we see that deg $N < \mu(E)$.

(ii) F^*E is not semistable. In fact, we claim that L destabilizes F^*E . For the proof note that Lemma 1.1 implies

$$\mu(F_*L) - \frac{p-2}{p}(g-1) = \frac{2g-2+d}{p} > \frac{g-1+d}{p} = \frac{\deg L}{p}$$
(5)

since $g \ge 2$. Together with (4) this gives $\mu(E) > \frac{\deg L}{p}$ and hence

$$\mu(F^*E) > \deg L.$$

This implies the assertion, since by adjunction we obtain a nonzero map $F^*E \to L$.

Replacing *E* by a subsheaf of suitable degree, we may assume that inequality (4) is an equality. In that case, because of our assumption on *d*, $\mu(E)$ is an integer, hence deg *E* is even. In order to get trivial determinant, we may tensorize *E* with a suitable line bundle.

This shows the existence of a stable rank-2 vector bundle E with F^*E not semistable, which is equivalent to the existence of base points of V (see e.g. [O1], Theorem A.6).

3. Frobenius-destabilized bundles in genus 2.

From now on we assume that X is an ordinary curve of genus g = 2 and the characteristic of k is p > 2. Recall that \mathcal{M}_X denotes the moduli space of semistable rank-2 vector bundles with trivial determinant over X and \mathcal{B} the scheme-theoretical base locus of the rational map

$$V: \mathcal{M}_{X_1} \cong \mathbb{P}^3_k \dashrightarrow \mathbb{P}^3_k \cong \mathcal{M}_X,$$

which is given by polynomials of degree *p*.

First of all we will show that the 0-dimensional scheme \mathcal{B} is the disjoint union of subschemes \mathcal{B}_{θ} indexed by theta characteristics of *X*.

Proposition 3.1. (a) Let *E* be a vector bundle on X_1 such that $E \in \text{supp } \mathcal{B}$. Then we have

- (i) There exists a unique theta characteristic θ on X such that Hom $(E, F_*(\theta^{-1})) \neq 0$.
- (ii) Any rank-2 vector bundle E of degree 0 satisfying Hom(E, $F_*(\theta^{-1})$) $\neq 0$ is a subbundle of $F_*(\theta^{-1})$, i.e. the quotient $F_*(\theta^{-1})/E$ is torsion free.

(b) Let θ be a theta characteristic on X. Any rank-2 subbundle $E \subset F_*(\theta^{-1})$ of degree 0 has the following properties

(i) *E* is stable and F^*E is not semistable,

Vol. 83 (2008) On Frobenius-destabilized rank-2 vector bundles over curves

185

- (ii) $F^*(\det E) = \mathcal{O}_X$,
- (iii) dim Hom $(E, F_*(\theta^{-1})) = 1$ and dim $H^1(E^* \otimes F_*(\theta^{-1})) = 5$,
- (iv) *E* is a rank-2 subbundle of maximal degree.

Proof. (a) By [LS], Corollary 2.6, we know that, for every $E \in \text{supp } \mathcal{B}$ the bundle F^*E is the nonsplit extension of θ^{-1} by θ , for some theta characteristic θ on X (note that $\text{Ext}^1(\theta^{-1}, \theta) \cong k$). By adjunction we get a nonzero homomorphism $\psi: E \to F_*(\theta^{-1})$, which shows (i). Uniqueness of θ will be proved below.

As for (ii), we have to show that ψ is of maximal rank. Suppose it is not, then there is a line bundle N on the curve X_1 such that ψ factorizes as $E \to N \to F_*(\theta^{-1})$. By stability of E we have deg N > 0. On the other hand, by adjunction, we get a nonzero homomorphism $F^*N \to \theta^{-1}$ implying $p \cdot \deg N \leq -1$, a contradiction. Hence $\psi: E \to F_*(\theta^{-1})$ is injective. Moreover E is even a subbundle of $F_*(\theta^{-1})$, since otherwise there exists a subbundle $E' \subset F_*(\theta^{-1})$ with deg E' > 0 and which fits into the exact sequence

$$0 \longrightarrow E \longrightarrow E' \stackrel{\pi}{\longrightarrow} T \longrightarrow 0,$$

where *T* is a torsion sheaf supported on an effective divisor. Varying π , we obtain a family of bundles ker $\pi \subset E'$ of dimension > 0 and det ker $\pi = \mathcal{O}_{X_1}$. This would imply (see proof of Theorem 1) dim $\mathcal{B} > 0$, a contradiction.

Finally, since θ is the maximal destabilizing line subbundle of F^*E , it is unique. (b) We observe that inequality (4) holds for the pair $E \subset F_*(\theta^{-1})$. Hence, by the proof of Theorem 1, *E* is stable and F^*E is not semistable.

Let $\varphi: F^*E \to \theta^{-1}$ denote the homomorphism adjoint to the inclusion $E \subset F_*(\theta^{-1})$. The homomorphism φ is surjective, since otherwise F^*E would contain a line subbundle of degree > 1, contradicting [LS], Satz 2.4. Hence we get an exact sequence

$$0 \to \ker \varphi \to F^* E \to \theta^{-1} \to 0.$$
 (6)

On the other hand, let N denote a line bundle on X_1 such that $E \otimes N$ has trivial determinant, i.e. $N^{-2} = \det E$. Applying Corollary 2.6 in [LS] to the bundle $F^*(E \otimes N)$ we get an exact sequence

$$0 \to \tilde{\theta} \otimes F^* N^{-1} \to F^* E \to \tilde{\theta}^{-1} \otimes F^* N^{-1} \to 0,$$

for some theta characteristic $\tilde{\theta}$. By uniqueness of the destabilizing subbundle of maximal degree of F^*E , this exact sequence must coincide with (6) up to a nonzero constant. This implies that $F^*N \otimes \tilde{\theta} = \theta$, hence $(F^*N)^2 = \mathcal{O}_X$. So we obtain that $\mathcal{O}_X = \det(F^*E) = F^*(\det E)$ proving (ii).

By adjunction the equality dim Hom $(E, F_*(\theta^{-1})) = \dim \text{Hom}(F^*E, \theta^{-1}) = 1$ holds. Moreover by Riemann–Roch we obtain dim $H^1(E^* \otimes F_*(\theta^{-1})) = 5$. This proves (iii). Finally, suppose that there exists a rank-2 subbundle $E' \subset F_*(\theta^{-1})$ with deg $E' \geq 1$. Then we can consider the kernel $E = \ker \pi$ of a surjective morphism $\pi : E' \to T$ onto a torsion sheaf with length equal to deg E'. By varying π and after tensoring ker π with a suitable line bundle of degree 0, we construct a family of dimension > 0 of stable rank-2 vector bundles with trivial determinant which are Frobenius-destabilized, contradicting dim $\mathcal{B} = 0$. This proves (iv).

It follows from Proposition 3.1 (a) that the scheme $\mathcal B$ decomposes as a disjoint union

$$\mathcal{B} = \coprod_{ heta} \mathcal{B}_{ heta},$$

where θ varies over the set of all theta characteristics of X and

$$\operatorname{supp} \mathcal{B}_{\theta} = \{ E \in \operatorname{supp} \mathcal{B} \mid E \subset F_*(\theta^{-1}) \}.$$

Tensor product with a 2-torsion point $\alpha \in JX_1[2] \cong JX[2]$ induces an isomorphism of \mathcal{B}_{θ} with $\mathcal{B}_{\theta \otimes \alpha}$ for every theta characteristic θ . We denote by $l(\mathcal{B})$ and $l(\mathcal{B}_{\theta})$ the length of the schemes \mathcal{B} and \mathcal{B}_{θ} . From the preceding we deduce the relations

$$l(\mathcal{B}) = 16 \cdot l(\mathcal{B}_{\theta}) \quad \text{for every theta characteristic } \theta.$$
(7)

4. Grothendieck's Quot-scheme

Let θ be a theta characteristic on X. We consider the functor \underline{Q} from the opposite category of k-schemes of finite type to the category of sets defined by

$$\underline{\mathcal{Q}}(S) = \{ \sigma : \pi_{X_1}^*(F_*(\theta^{-1})) \to \mathcal{G} \to 0 \mid \mathcal{G} \text{ coherent over } X_1 \times S, \text{ flat over } S, \\ \deg \mathcal{G}_{|_{X_1 \times \{s\}}} = \operatorname{rk} \mathcal{G}_{|_{X_1 \times \{s\}}} = p - 2 \text{ for all } s \in S \} / \cong$$

where $\pi_{X_1}: X_1 \times S \to X_1$ denotes the natural projection and $\sigma \cong \sigma'$ for quotients σ and σ' if and only if there exists an isomorphism $\lambda: \mathcal{G} \to \mathcal{G}'$ such that $\sigma' = \lambda \circ \sigma$.

Grothendieck showed in [G] (see also [HL], Section 2.2) that the functor \underline{Q} is representable by a *k*-scheme, which we denote by Q. A *k*-point of Q corresponds to a quotient $\sigma: F_*(\theta^{-1}) \to G$, or equivalently to a rank-2 subsheaf $E = \ker \sigma \subset$ $F_*(\theta^{-1})$ of degree 0 on X_1 . By Proposition 3.1 (a) (ii) any subsheaf E of degree 0 is a subbundle of $F_*(\theta^{-1})$, which implies that any sheaf $\mathcal{G} \in \underline{Q}(S)$ is locally free (see also [MuSa] or [L], Lemma 3.8). Moreover we note that by Proposition 3.1 (b) (iv) the bundle E has maximal degree as a subbundle of $F_*(\theta^{-1})$.

Hence taking the kernel of σ induces a bijection of $\underline{\mathcal{Q}}(S)$ with the following set, which we also denote by $\underline{\mathcal{Q}}(S)$

$$\underline{\mathcal{Q}}(S) = \{ \mathcal{E} \hookrightarrow \pi_{X_1}^*(F_*(\theta^{-1})) \mid \mathcal{E} \text{ locally free sheaf over } X_1 \times S \text{ of rank } 2, \\ \pi_{X_1}^*(F_*(\theta^{-1})) / \mathcal{E} \text{ locally free, } \deg \mathcal{E}|_{X_1 \times \{s\}} = 0 \text{ for all } s \in S \} / \cong$$

By Proposition 3.1 (b) the scheme @ decomposes as a disjoint union

$$\mathcal{Q} = \coprod_{\eta} \mathcal{Q}_{\eta},$$

where η varies over the *p*-torsion points $\eta \in JX_1[p]_{red} = ker(V: JX_1 \to JX)$. We also denote by V the Verschiebung of JX_1 , i.e. $V(L) = F^*L$, for $L \in JX_1$. The set-theoretical support of Q_{η} equals

$$\operatorname{supp} \mathcal{Q}_n = \{ E \in \operatorname{supp} \mathcal{Q} \mid \det E = \eta \}.$$

Because of the projection formula, the tensor product with a *p*-torsion point $\beta \in JX_1[p]_{red}$ induces an isomorphism of \mathcal{Q}_η with $\mathcal{Q}_{\eta \otimes \beta}$. This implies the relation

$$l(\mathcal{Q}) = p^2 \cdot l(\mathcal{Q}_0),\tag{8}$$

since X_1 is assumed to be ordinary. Moreover, by Proposition 3.1 we have the settheoretical equality

supp
$$\mathcal{Q}_0 = \operatorname{supp} \mathcal{B}_{\theta}$$
.

Proposition 4.1. (a) dim $\mathcal{Q} = 0$.

(b) The scheme Q is a local complete intersection at any k-point $e = (E \subset E)$ $F_*(\theta^{-1})) \in \mathcal{Q}.$

Proof. Assertion (a) follows from the preceding remarks and dim $\mathcal{B} = 0$. By [HL], Proposition 2.2.8, assertion (b) follows from the equality $\dim_{[E]} \mathcal{Q} = 0 =$ $\chi(\operatorname{Hom}(E,G))$, where $E = \ker(\sigma: F_*(\theta^{-1}) \to G)$ and Hom denotes the sheaf of homomorphisms.

Let \mathcal{N}_{X_1} denote the moduli space of semistable rank-2 vector bundles of degree 0 over X_1 . We denote by $\mathcal{N}_{X_1}^s$ and $\mathcal{M}_{X_1}^s$ the open subschemes of \mathcal{N}_{X_1} and \mathcal{M}_{X_1} corresponding to stable vector bundles. Recall (see [La1], Theorem 4.1) that $\mathcal{N}_{X_1}^s$ and $\mathcal{M}_{X_1}^s$ universally corepresent the functors (see e.g. [HL], Definition 2.2.1) from the opposite category of k-schemes of finite type to the category of sets defined by

$$\underline{\mathcal{N}}_{X_1}^s(S) = \{ \mathcal{E} \text{ locally free sheaf over } X_1 \times S \text{ of rank } 2 \mid \mathcal{E}|_{X_1 \times \{s\}} \text{ stable,} \\ \deg \mathcal{E}|_{X_1 \times \{s\}} = 0 \text{ for all } s \in S \} / \sim,$$

 $\underline{\mathcal{M}}_{X_1}^{s}(S) = \{ \mathcal{E} \text{ locally free sheaf over } X_1 \times S \text{ of rank } 2 \mid \mathcal{E}|_{X_1 \times \{s\}} \text{ stable}$

for all $s \in S$, det $\mathcal{E} = \pi_S^* M$ for some line bundle M on $S \} / \sim$,

where $\pi_S: X_1 \times S \to S$ denotes the natural projection and $\mathcal{E}' \sim \mathcal{E}$ if and only if there exists a line bundle L on S such that $\mathcal{E}' \cong \mathcal{E} \otimes \pi_S^* L$. We denote by $\langle \mathcal{E} \rangle$ the equivalence class of the vector bundle \mathcal{E} for the relation \sim .

Consider the determinant morphism

$$\det \colon \mathcal{N}_{X_1} \to JX_1, \quad [E] \mapsto \det E,$$

and denote by det⁻¹(0) the scheme-theoretical fibre over the trivial line bundle on X_1 . Since $\mathcal{N}_{X_1}^s$ universally corepresents the functor $\underline{\mathcal{N}}_{X_1}^s$, we have an isomorphism

$$\mathcal{M}_{X_1}^s \cong \mathcal{N}_{X_1}^s \cap \det^{-1}(0).$$

Remark 4.2. If p > 0, it is not known whether the canonical morphism $\mathcal{M}_{X_1} \rightarrow \det^{-1}(0)$ is an isomorphism (see e.g. [La2], Section 3).

In the sequel we need the following relative version of Proposition 3.1 (b) (ii). By a k-scheme we always mean a k-scheme of finite type.

Lemma 4.3. Let S be a connected k-scheme and let \mathcal{E} be a locally free sheaf of rank-2 over $X_1 \times S$ such that deg $\mathcal{E}|_{X_1 \times \{s\}} = 0$ for all points s of S. Suppose that Hom $(\mathcal{E}, \pi^*_{X_1}(F_*(\theta^{-1})) \neq 0$. Then we have the exact sequence

$$0 \longrightarrow \pi_X^*(\theta) \longrightarrow (F \times \mathrm{id}_S)^* \mathcal{E} \longrightarrow \pi_X^*(\theta^{-1}) \longrightarrow 0.$$

In particular

$$(F \times \mathrm{id}_S)^*(\det \mathcal{E}) = \mathcal{O}_{X_1 \times S}.$$

Proof. First we note that by flat base change for $\pi_{X_1} \colon X_1 \times S \to X_1$, we have an isomorphism $\pi_{X_1}^*(F_*(\theta^{-1})) \cong (F \times \mathrm{id}_S)_*(\pi_X^*(\theta^{-1}))$. Hence the nonzero morphism $\mathcal{E} \to \pi_{X_1}^*(F_*(\theta^{-1}))$ gives via adjunction a nonzero morphism

$$\varphi \colon (F \times \mathrm{id}_S)^* \mathcal{E} \longrightarrow \pi^*_X(\theta^{-1}).$$

We know by the proof of Proposition 3.1 (b) that the fibre $\varphi_{(x,s)}$ over any closed point $(x, s) \in X \times S$ is a surjective *k*-linear map. Hence φ is surjective by Nakayama and we have an exact sequence

$$0 \longrightarrow \mathcal{L} \longrightarrow (F \times \mathrm{id}_S)^* \mathcal{E} \longrightarrow \pi_X^*(\theta^{-1}) \longrightarrow 0,$$

with \mathcal{L} locally free sheaf of rank 1. By [K], Section 5, the rank-2 vector bundle $(F \times id_S)^* \mathcal{E}$ is equipped with a canonical connection

$$\nabla \colon (F \times \mathrm{id}_S)^* \mathcal{E} \longrightarrow (F \times \mathrm{id}_S)^* \mathcal{E} \otimes \Omega^1_{X \times S/S}.$$

We note that $\Omega^1_{X \times S/S} = \pi^*_X(\omega_X)$, where ω_X denotes the canonical line bundle of *X*. The first fundamental form of the connection ∇ is an $\mathcal{O}_{X \times S}$ -linear homomorphism

$$\psi_{\nabla} \colon \mathcal{L} \longrightarrow \pi_X^*(\theta^{-1}) \otimes \pi_X^*(\omega_X) = \pi_X^*(\theta).$$

The restriction of ψ_{∇} to the curve $X \times \{s\} \subset X \times S$ for any closed point $s \in S$ is an isomorphism (see e.g. proof of [LS], Corollary 2.6). Hence the fibre of ψ_{∇} is a *k*-linear isomorphism over any closed point $(x, s) \in X \times S$. We conclude that ψ_{∇} is an isomorphism, by Nakayama's lemma and because \mathcal{L} is a locally free sheaf of rank 1.

We obtain the second assertion of the lemma, since

$$(F \times \mathrm{id}_S)^*(\det \mathfrak{E}) = \det(F \times \mathrm{id}_S)^*\mathfrak{E} = \mathcal{L} \otimes \pi_X^*(\theta^{-1}) = \mathcal{O}_{X_1 \times S}. \qquad \Box$$

Proposition 4.4. We assume X ordinary.

(a) The forgetful morphism

$$i: \mathcal{Q} \hookrightarrow \mathcal{N}_{X_1}^s, \quad e = (E \subset F_*(\theta^{-1})) \mapsto E$$

is a closed embedding.

(b) The restriction i₀ of i to the subscheme Q₀ ⊂ Q factors through M^s_{X1}, i.e. there is a closed embedding

$$i_0: \mathcal{Q}_0 \hookrightarrow \mathcal{M}^s_{X_1}.$$

Proof. (a) Let $e = (E \subset F_*(\theta^{-1}))$ be a *k*-point of \mathcal{Q} . To show that *i* is a closed embedding at $e \in \mathcal{Q}$, it is enough to show that the differential $(di)_e : T_e \mathcal{Q} \to T_{[E]} \mathcal{N}_{X_1}$ is injective – note that \mathcal{Q} is proper. Since the bundle *E* is stable, the Zariski tangent spaces identify with Hom(*E*, *G*) and Ext¹(*E*, *E*) respectively (see e.g. [HL], Proposition 2.2.7 and Corollary 4.5.2). Moreover, if we apply the functor Hom(*E*, \cdot) to the exact sequence associated with $e \in \mathcal{Q}$

$$0 \longrightarrow E \longrightarrow F_*(\theta^{-1}) \longrightarrow G \longrightarrow 0,$$

the coboundary map δ of the long exact sequence

$$0 \longrightarrow \operatorname{Hom}(E, E) \longrightarrow \operatorname{Hom}(E, F_*(\theta^{-1}))$$
$$\longrightarrow \operatorname{Hom}(E, G) \xrightarrow{\delta} \operatorname{Ext}^1(E, E) \longrightarrow \cdots$$

identifies with the differential $(di)_e$. By Proposition 3.1 (b) we obtain that the map $\text{Hom}(E, E) \rightarrow \text{Hom}(E, F_*(\theta^{-1}))$ is an isomorphism. Thus $(di)_e$ is injective.

(b) We consider the composite map

$$\alpha\colon \mathcal{Q} \stackrel{i}{\longrightarrow} \mathcal{N}_{X_1}^s \stackrel{\text{det}}{\longrightarrow} JX_1 \stackrel{V}{\longrightarrow} JX,$$

where the last map is the isogeny given by the Verschiebung on JX_1 , i.e. $V(L) = F^*L$ for $L \in JX_1$. The morphism α is induced by the natural transformation of functors $\underline{\alpha} : \underline{\Omega} \Rightarrow JX$, defined by

$$\underline{\mathcal{Q}}(S) \longrightarrow \underline{JX}(S), \quad (\mathcal{E} \hookrightarrow \pi_X^*(F_*(\theta^{-1}))) \mapsto (F \times \mathrm{id}_S)^*(\det \mathcal{E}).$$

Using Lemma 4.3 this immediately implies that α factors through the inclusion of the reduced point $\{\mathcal{O}_X\} \hookrightarrow JX$. Hence the image of \mathcal{Q} under the composite morphism det $\circ i$ is contained in the kernel of the isogeny V, which is the reduced scheme $JX_1[p]_{\text{red}}$, since we have assumed X ordinary. Taking connected components we see that the image of \mathcal{Q}_0 under det $\circ i$ is the reduced point $\{\mathcal{O}_{X_1}\} \hookrightarrow JX_1$, which implies that $i_0(\mathcal{Q}_0)$ is contained in $\mathcal{N}_{X_1}^s \cap \text{det}^{-1}(0) \cong \mathcal{M}_{X_1}^s$.

In order to compare the two schemes \mathcal{B}_{θ} and \mathcal{Q}_0 we need the following lemma.

Lemma 4.5. (1) The closed subscheme $\mathcal{B} \subset \mathcal{M}_{X_1}^s$ corepresents the functor $\underline{\mathcal{B}}$ which associates to a k-scheme S the set

 $\underline{\mathscr{B}}(S) = \{ \mathcal{E} \text{ locally free sheaf over } X_1 \times S \text{ of rank } 2 \mid \mathcal{E}|_{X_1 \times \{s\}} \text{ stable for all } s \in S, \\ 0 \to \mathcal{L} \to (F \times \operatorname{id}_S)^* \mathcal{E} \to \mathcal{M} \to 0 \text{ for some locally free sheaves } \mathcal{L}, \mathcal{M} \\ \text{over } X \times S \text{ of rank } 1, \deg \mathcal{L}|_{X \times \{s\}} = -\deg \mathcal{M}|_{X \times \{s\}} = 1 \text{ for all } s \in S, \\ \det \mathcal{E} = \pi_S^* \mathcal{M} \text{ for some line bundle } \mathcal{M} \text{ on } S \} / \sim .$

(2) The closed subscheme $\mathcal{B}_{\theta} \subset \mathcal{M}_{X_1}^s$ corepresents the subfunctor $\underline{\mathcal{B}}_{\theta}$ of $\underline{\mathcal{B}}$ defined by $\langle \mathcal{E} \rangle \in \underline{\mathcal{B}}_{\theta}(S)$ if and only if the set-theoretical image of the classifying morphism of \mathcal{L}

$$\Phi_{\mathcal{L}} \colon S \longrightarrow \operatorname{Pic}^{1}(X), \quad s \longmapsto \mathcal{L}|_{X \times \{s\}},$$

is the point $\theta \in \operatorname{Pic}^1(X)$.

Proof. We denote by \mathfrak{M}_X the algebraic stack parametrizing rank-2 vector bundles with trivial determinant over X. Let \mathfrak{M}_X^{ss} and \mathfrak{M}_X^s denote the open substacks of \mathfrak{M}_X parametrizing semistable and stable bundles. We similarly denote the corresponding stacks of bundles over X_1 . The Shatz stratification [Sh] of \mathfrak{M}_X induced by the degree of the first piece of the Harder–Narasimhan filtration reduces in the case of rank-2 vector bundles to a filtration of the stack \mathfrak{M}_X

$$\mathfrak{M}_X^{ss} \subset \mathfrak{M}_X^{\leq 1} \subset \mathfrak{M}_X^{\leq 2} \subset \cdots \subset \mathfrak{M}_X^{\leq n} \subset \cdots \subset \mathfrak{M}_X$$

by open substacks $\mathfrak{M}_X^{\leq n}$. It follows from the semicontinuity of the Harder–Narasimhan filtration ([Sh], Section 5) that, for every integer *n*, there is a closed reduced substack \mathfrak{M}_X^n of $\mathfrak{M}_X^{\leq n}$ parametrizing vector bundles having a maximal destabilizing line subbundle of degree *n*. Note that \mathfrak{M}_X^n is the complement of $\mathfrak{M}_X^{\leq n-1}$ in $\mathfrak{M}_X^{\leq n}$. It can be shown (see e.g. [He], Folgerung 2.1.10) that the stacks \mathfrak{M}_X^n and \mathfrak{M}_X are smooth. Let $\mathfrak{V}: \mathfrak{M}_{X_1} \to \mathfrak{M}_X$ denote the morphism of stacks induced by pull-back under the Frobenius map $F: X \to X_1$. It follows from [LS], Corollary 2.6, that the restriction of \mathfrak{V} to the open substack $\mathfrak{M}_{X_1}^{ss}$ determines a morphism of stacks

$$\mathfrak{V}^{ss} \colon \mathfrak{M}_{X_1}^{ss} \longrightarrow \mathfrak{M}_X^{\leq 1}.$$

We will use the following facts about the stack \mathfrak{M}_X .

- The pull-back of O_{P³}(1) by the natural map M^{ss}_X → M_X ≃ P³ extends to a line bundle, which we denote by O(1), over the moduli stack M^{≤1}_X and Pic(M^{≤1}_X) = Z · O(1). Moreover, for any positive integer *l*, there is a natural isomorphism H⁰(M^{≤1}_X, O(l)) ≃ H⁰(M_{P³}, O_{P³}(l)) (see [BL], Propositions 8.3 and 8.4).
- The closed substack 𝔐¹_X is the base locus of the linear system |𝒪(1)| over the stack 𝔐^{≤1}_X (see Proposition A).

In order to prove part (1) it will be enough to show that the functor $\underline{\mathcal{B}}$ defined in the lemma coincides with the fibre product functor $\mathcal{B} \times_{\mathcal{M}_{X_1}^s} \underline{\mathcal{M}}_{X_1}^s$ – we recall that $\mathcal{M}_{X_1}^s$ universally corepresents the functor $\underline{\mathcal{M}}_{X_1}^s$.

We now compute the fibre product functor $\mathcal{B} \times_{\mathcal{M}_{X_1}^s} \underline{\mathcal{M}}_{X_1}^s$. Let *S* be a *k*-scheme and consider a vector bundle $\mathcal{E} \in \mathfrak{M}_{X_1}^s(S)$. Since the subscheme \mathcal{B} is defined as the base locus of the linear system $V^*|\mathcal{O}_{\mathbb{P}^3}(1)|$, we obtain that $\langle \mathcal{E} \rangle \in [\mathcal{B} \times_{\mathcal{M}_{X_1}^s} \underline{\mathcal{M}}_{X_1}^s](S)$ if and only if \mathcal{E} lies in the base locus of $\mathfrak{V}^{ss*}|\mathcal{O}(1)|$ – here we use the isomorphism $|\mathcal{O}_{\mathbb{P}^3}(1)| \cong |\mathcal{O}(1)|$, or equivalently $\mathfrak{V}^{ss}(\mathcal{E}) := (F \times \mathrm{id}_S)^*\mathcal{E} \in \mathfrak{M}_X^{\leq 1}(S)$ lies in the base locus of $|\mathcal{O}(1)|$, which is the closed substack \mathfrak{M}_X^1 .

We now consider the universal exact sequence defined by the Harder–Narasimhan filtration over \mathfrak{M}^1_X :

$$0 \to \mathcal{L} \to (F \times \mathrm{id}_S)^* \mathcal{E} \to \mathcal{M} \to 0,$$

with \mathcal{L} , \mathcal{M} locally free sheaves over $X \times S$ such that deg $\mathcal{L}|_{X \times \{s\}} = - \deg \mathcal{M}|_{X \times \{s\}} = 1$ for any $s \in S$. This shows that the two sets $\left[\mathcal{B} \times_{\mathcal{M}_{X_1}^s} \underline{\mathcal{M}}_{X_1}^s\right](S)$ and $\underline{\mathcal{B}}(S)$ coincide. This proves (1).

As for (2), we add the condition that the family \mathcal{E} is Frobenius-destabilized by the theta-characteristic θ .

Remark 4.6. Note that in Lemma 4.5 we do not need to assume X ordinary.

Proposition 4.7. We assume X ordinary. There is a scheme-theoretical equality

 $\mathcal{B}_{\theta} = \mathcal{Q}_0$

as closed subschemes of \mathcal{M}_{X_1} .

Proof. Since \mathcal{B}_{θ} and \mathcal{Q}_0 corepresent the two functors $\underline{\mathcal{B}}_{\theta}$ and $\underline{\mathcal{Q}}_0$ it will be enough to show that there is a canonical bijection between the set $\underline{\mathcal{B}}_{\theta}(S)$ and $\underline{\mathcal{Q}}_0(S)$ for any *k*-scheme *S*. We recall that

$$\underline{\mathcal{Q}}_{0}(S) = \{ \mathcal{E} \hookrightarrow \pi_{X_{1}}^{*}(F_{*}(\theta^{-1})) \mid \mathcal{E} \text{ locally free sheaf over } X_{1} \times S \text{ of rank } 2, \\ \pi_{X}^{*}(F_{*}(\theta^{-1})) / \mathcal{E} \text{ locally free, det } \mathcal{E} \cong \mathcal{O}_{X_{1} \times S} \} / \cong$$

Note that the property det $\mathcal{E} \cong \mathcal{O}_{X_1 \times S}$ is implied as follows: by Proposition 4.4 (b) we have det $\mathcal{E} \cong \pi_S^* L$ for some line bundle *L* over *S* and by Lemma 4.3 we conclude that $L = \mathcal{O}_S$.

First we show that the natural map $\underline{\mathcal{Q}}_0(S) \longrightarrow \underline{\mathcal{M}}_{X_1}^s(S)$ is injective. Suppose that there exist $\mathcal{E}, \mathcal{E}' \in \underline{\mathcal{Q}}_0(S)$ such that $\langle \mathcal{E} \rangle = \langle \mathcal{E}' \rangle$, i.e. $\mathcal{E}' \cong \mathcal{E} \otimes \pi_S^*(L)$ for some line bundle *L* on *S*. Then by Lemma 4.3 we have two inclusions

$$i: \pi_X^*(\theta) \longrightarrow (F \times \mathrm{id}_S)^* \mathfrak{E}, \quad i': \pi_X^*(\theta) \otimes \pi_S^*(L^{-1}) \longrightarrow (F \times \mathrm{id}_S)^* \mathfrak{E}.$$

Composing with the projection σ : $(F \times id_S)^* \mathcal{E} \to \pi_X^*(\theta^{-1})$ we see that the composite map $\sigma \circ i'$ is identically zero. Hence the two subbundles $\pi_X^*(\theta)$ and $\pi_X^*(\theta) \otimes \pi_S^*(L^{-1})$ coincide, which implies $\pi_S^*(L) = \mathcal{O}_{X_1 \times S}$.

Therefore the two sets $\underline{Q}_0(S)$ and $\underline{\mathcal{B}}_{\theta}(S)$ are naturally subsets of $\underline{\mathcal{M}}_{X_1}^s(S)$.

We now show that $\underline{\mathcal{Q}}_0(S) \subset \underline{\mathcal{B}}_{\theta}(S)$. Consider $\mathcal{E} \in \underline{\mathcal{Q}}_0(S)$. By Proposition 3.1 (b) the bundle $\mathcal{E}|_{X_1 \times \{s\}}$ is stable for all $s \in S$. By Lemma 4.3 we can take $\mathcal{L} = \pi_X^*(\theta)$ and $\mathcal{M} = \pi_X^*(\theta^{-1})$, so that $\langle \mathcal{E} \rangle \in \underline{\mathcal{B}}_{\theta}(S)$.

Hence it remains to show that $\underline{\mathscr{B}}_{\theta}(S) \subset \underline{\mathscr{Q}}_{0}(S)$. Consider a sheaf \mathscr{E} with $\langle \mathscr{E} \rangle \in \underline{\mathscr{B}}_{\theta}(S)$ – see Lemma 4.5 (2). As in the proof of Lemma 4.3 we consider the canonical connection ∇ on $(F \times id_{S})^{*}\mathscr{E}$. Its first fundamental form is an $\mathcal{O}_{X \times S}$ -linear homomorphism

$$\psi_{\nabla}\colon \mathcal{L} \longrightarrow \mathcal{M} \otimes \pi_X^*(\omega_X),$$

which is surjective on closed points $(x, s) \in X \times S$. Hence we can conclude that ψ_{∇} is an isomorphism. Moreover taking the determinant, we obtain

$$\mathcal{L} \otimes \mathcal{M} = \det(F \times \mathrm{id}_S)^* \mathcal{E} = \pi_S^* M,$$

for some line bundle M on S. Combining both isomorphisms we deduce that

$$\mathcal{L} \otimes \mathcal{L} = \pi_X^*(\omega_X) \otimes \pi_S^* M.$$

Hence its classifying morphism $\Phi_{\mathcal{L}\otimes\mathcal{L}}: S \longrightarrow \text{Pic}^2(X)$ factorizes through the inclusion of the reduced point $\{\omega_X\} \hookrightarrow \text{Pic}^2(X)$. Moreover the composite map of $\Phi_{\mathcal{L}}$ with the duplication map [2]

$$\Phi_{\mathcal{L}\otimes\mathcal{L}}\colon S \xrightarrow{\Phi_{\mathcal{L}}} \operatorname{Pic}^{1}(X) \xrightarrow{[2]} \operatorname{Pic}^{2}(X)$$

coincides with $\Phi_{\mathcal{L}\otimes\mathcal{L}}$. We deduce that $\Phi_{\mathcal{L}}$ factorizes through the inclusion of the reduced point $\{\theta\} \hookrightarrow \operatorname{Pic}^1(X)$. Note that the fibre $[2]^{-1}(\omega_X)$ is reduced, since p > 2. Since $\operatorname{Pic}^1(X)$ is a fine moduli space, there exists a line bundle N over S such that

$$\mathcal{L} = \pi_X^*(\theta) \otimes \pi_S^*(N).$$

Vol. 83 (2008) On Frobenius-destabilized rank-2 vector bundles over curves

We introduce the vector bundle $\mathcal{E}_0 = \mathcal{E} \otimes \pi_S^*(N^{-1})$. Then $\langle \mathcal{E}_0 \rangle = \langle \mathcal{E} \rangle$ and we have an exact sequence

$$0 \longrightarrow \pi_X^*(\theta) \longrightarrow (F \times \mathrm{id}_S)^* \mathcal{E}_0 \xrightarrow{\sigma} \pi_X^*(\theta^{-1}) \longrightarrow 0,$$

since $\pi_S^* M = \pi_S^* N^2$. By adjunction the morphism σ gives a nonzero morphism

$$j: \mathcal{E}_0 \longrightarrow (F \times \mathrm{id}_S)_*(\pi_X^*(\theta^{-1})) \cong \pi_{X_1}^*(F_*(\theta^{-1})).$$

We now show that *j* is injective. Suppose it is not. Then there exists a subsheaf $\tilde{\mathcal{E}}_0 \subset \pi^*_{X_1}(F_*(\theta^{-1}))$ and a surjective map $\tau : \mathcal{E}_0 \to \tilde{\mathcal{E}}_0$. Let \mathcal{K} denote the kernel of τ . Again by adjunction we obtain a map $\alpha : (F \times \mathrm{id}_S)^* \tilde{\mathcal{E}}_0 \to \pi^*_X(\theta^{-1})$ such that the composite map

$$(F \times \mathrm{id}_S)^* \mathcal{E}_0 \xrightarrow{\tau^*} (F \times \mathrm{id}_S)^* \tilde{\mathcal{E}}_0 \xrightarrow{\alpha} \pi_X^* (\theta^{-1})$$

coincides with σ . Here τ^* denotes the map $(F \times \mathrm{id}_S)^* \tau$. Since σ is surjective, α is also surjective. We denote by \mathcal{M} the kernel of α . The induced map $\bar{\tau} : \pi_X^*(\theta) = \ker \sigma \rightarrow \mathcal{M}$ is surjective, because τ^* is surjective. Moreover the first fundamental form of the canonical connection $\tilde{\nabla}$ on $(F \times \mathrm{id}_S)^* \tilde{\mathcal{E}}_0$ induces an $\mathcal{O}_{X \times S}$ -linear homomorphism $\psi_{\tilde{\nabla}} : \mathcal{M} \to \pi_X^*(\theta)$ and the composite map

$$\psi_{\nabla} \colon \pi_X^*(\theta) \stackrel{\bar{\tau}}{\longrightarrow} \mathcal{M} \stackrel{\psi_{\bar{\nabla}}}{\longrightarrow} \pi_X^*(\theta)$$

coincides with the first fundamental form of ∇ of $(F \times id_S)^* \mathcal{E}_0$, which is an isomorphism. Therefore $\overline{\tau}$ is an isomorphism too. So τ^* is an isomorphism and $(F \times id_S)^* \mathcal{K} = 0$. We deduce that $\mathcal{K} = 0$.

In order to show that $\mathscr{E}_0 \in \underline{\mathscr{Q}}_0(S)$, it remains to verify that the quotient sheaf $\pi_{X_1}(F_*(\theta^{-1}))/\mathscr{E}_0$ is flat over *S*. We recall that flatness implies locally freeness because of maximality of degree. But flatness follows from [HL], Lemma 2.1.4, since the restriction of *j* to $X_1 \times \{s\}$ is injective for any closed $s \in S$ by Proposition 3.1 (a).

Since Q_0 represents the functor \underline{Q}_0 , we obtain the following

Corollary 4.8. The scheme \mathcal{B}_{θ} represents the functor $\underline{\mathcal{B}}_{\theta}$ defined in Lemma 4.5.

Combining Proposition 4.7 with relations (7) and (8), we obtain

Corollary 4.9. We have

$$l(\mathcal{B}) = \frac{16}{p^2} \cdot l(\mathcal{Q}).$$

5. Determinantal subschemes

In this section we introduce a determinantal subscheme $\mathcal{D} \subset \mathcal{N}_{X_1}$, whose length will be computed in the next section. We also show that \mathcal{D} is isomorphic to Grothendieck's Quot-scheme \mathcal{Q} . We first define a determinantal subscheme $\tilde{\mathcal{D}}$ of a variety $JX_1 \times Z$ covering \mathcal{N}_{X_1} and then we show that $\tilde{\mathcal{D}}$ is a \mathbb{P}^1 -fibration over an étale cover of $\mathcal{D} \subset \mathcal{N}_{X_1}$.

Since there does not exist a universal bundle over $X_1 \times \mathcal{M}_{X_1}$, following an idea of Mukai [Mu], we consider the moduli space $\mathcal{M}_{X_1}(x)$ of stable rank-2 vector bundles on X_1 with determinant $\mathcal{O}_{X_1}(x)$ for a fixed point $x \in X_1$. According to [N1] the variety $\mathcal{M}_{X_1}(x)$ is a smooth intersection of two quadrics in \mathbb{P}^5 . Let \mathcal{U} denote a universal bundle on $X_1 \times \mathcal{M}_{X_1}(x)$ and denote

$$\mathcal{U}_x := \mathcal{U}|_{\{x\} \times \mathcal{M}_{X_1}(x)}$$

considered as a rank-2 vector bundle on $\mathcal{M}_{X_1}(x)$. Then the projectivized bundle

$$Z := \mathbb{P}(\mathcal{U}_x)$$

is a \mathbb{P}^1 -bundle over $\mathcal{M}_{X_1}(x)$. The variety Z parametrizes pairs (F_z, l_z) consisting of a stable vector bundle $F_z \in \mathcal{M}_{X_1}(x)$ and a non-trivial linear form $l_z \colon F_z(x) \to k_x$ on the fibre of F_z over x defined up to a non-zero constant. Thus to any $z \in Z$ one can associate an exact sequence

$$0 \to E_z \to F_z \to k_x \to 0$$

uniquely determined up to a multiplicative constant. Clearly E_z is semistable, since F_z is stable, and det $E_z = \mathcal{O}_{X_1}$. Hence we get a diagram (the so-called Hecke correspondence)

$$Z \xrightarrow{\varphi} \mathcal{M}_{X_1} \cong \mathbb{P}^3$$

$$\pi \downarrow$$

$$\mathcal{M}_{X_1}(x)$$

with $\varphi(z) = [E_z]$ and $\pi(z) = F_z$. We note that there is an isomorphism $\varphi^{-1}(E) \cong \mathbb{P}^1$ (see e.g. [Mu], (3.7)) and that $\pi(\varphi^{-1}(E)) \subset \mathcal{M}_{X_1}(x) \subset \mathbb{P}^5$ is a conic for any stable $E \in \mathcal{M}_{X_1}^s$ (see e.g. [NR2]). On $X_1 \times Z$ there exists a "universal" bundle, which we denote by \mathcal{V} (see [Mu], (3.8)). It has the property

$$\mathcal{V}|_{X_1 \times \{z\}} \cong E_z$$
, for all $z \in Z$.

Let \mathcal{L} denote a Poincaré bundle on $X_1 \times JX_1$. By abuse of notation we also denote by \mathcal{V} and \mathcal{L} their pull-backs to $X_1 \times JX_1 \times Z$. We denote by π_{X_1} and q the

Vol. 83 (2008)

canonical projections

$$X_1 \stackrel{\pi_{X_1}}{\longleftarrow} X_1 \times JX_1 \times Z \stackrel{q}{\longrightarrow} JX_1 \times Z.$$

We consider the map *m* given by tensor product

$$m: JX_1 \times \mathcal{M}_{X_1} \longrightarrow \mathcal{N}_{X_1}, \quad (L, E) \longmapsto L \otimes E.$$

Note that the restriction of *m* to the stable locus $m^s : JX_1 \times \mathcal{M}_{X_1}^s \longrightarrow \mathcal{N}_{X_1}^s$ is an étale map of degree 16. We denote by ψ the composite map

$$\psi: JX_1 \times Z \xrightarrow{\operatorname{id}_{JX_1} \times \varphi} JX_1 \times \mathcal{M}_{X_1} \xrightarrow{m} \mathcal{N}_{X_1}, \quad \psi(L, z) = L \otimes E_z.$$

Let $D \in |\omega_{X_1}|$ be a smooth canonical divisor on X_1 . We introduce the following sheaves over $JX_1 \times Z$

$$\mathcal{F}_1 = q_*(\mathcal{L}^* \otimes \mathcal{V}^* \otimes \pi_{X_1}^*(F_*(\theta^{-1}) \otimes \omega_{X_1}))$$

and

$$\mathcal{F}_0 = \bigoplus_{y \in D} \left(\mathcal{L}^* \otimes \mathcal{V}^* |_{\{y\} \times JX_1 \times Z} \right) \otimes k^{\oplus p}$$

The next proposition is an even degree analogue of [LN], Theorem 3.1.

Proposition 5.1. (a) *The sheaves* \mathcal{F}_0 *and* \mathcal{F}_1 *are locally free of rank* 4p *and* 4p - 4 *respectively and there is an exact sequence*

$$0 \longrightarrow \mathcal{F}_1 \stackrel{\gamma}{\longrightarrow} \mathcal{F}_0 \longrightarrow R^1 q_*(\mathcal{L}^* \otimes \mathcal{V}^* \otimes \pi^*_{X_1}(F_*(\theta^{-1}))) \longrightarrow 0$$

Let $\tilde{\mathcal{D}} \subset JX_1 \times Z$ denote the subscheme defined by the 4-th Fitting ideal of the sheaf $R^1q_*(\mathcal{L}^* \otimes \mathcal{V}^* \otimes \pi^*_{X_1}(F_*(\theta^{-1})))$. We have set-theoretically

$$\sup \tilde{\mathcal{D}} = \{(L, z) \in JX_1 \times Z \mid \dim \operatorname{Hom}(L \otimes E_z, F_*(\theta^{-1})) = 1\}$$

and dim $\tilde{\mathcal{D}} = 1$.

(b) Let δ denote the *l*-adic ($l \neq p$) cohomology class of $\tilde{\mathcal{D}}$ in $JX_1 \times Z$. Then

$$\delta = c_5(\mathcal{F}_0 - \mathcal{F}_1) \in H^{10}(JX_1 \times Z, \mathbb{Z}_l).$$

Proof. We consider the canonical exact sequence over $X_1 \times JX_1 \times Z$ associated to the effective divisor $\pi_{X_1}^* D$

$$\begin{split} 0 &\to \mathcal{L}^* \otimes \mathcal{V}^* \otimes \pi_{X_1}^* F_*(\theta^{-1}) \xrightarrow{\otimes D} \mathcal{L}^* \otimes \mathcal{V}^* \otimes \pi_{X_1}^*(F_*(\theta^{-1}) \otimes \omega_{X_1}) \\ &\to \mathcal{L}^* \otimes \mathcal{V}^*|_{\pi_{X_1}^* D} \otimes k^{\oplus p} \to 0. \end{split}$$

By Proposition 1.2 the rank-p vector bundle $F_*(\theta^{-1})$ is stable and since

$$1 - \frac{2}{p} = \mu(F_*(\theta^{-1})) > \mu(L \otimes E) = 0 \quad \text{for all } (L, E) \in JX_1 \times \mathcal{M}_{X_1},$$

we obtain

196

$$\dim H^1(L^* \otimes E^* \otimes F_*(\theta^{-1}) \otimes \omega_{X_1}) = \dim \operatorname{Hom}(F_*(\theta^{-1}), L \otimes E) = 0.$$

This implies

$$R^1q_*(\mathcal{L}^*\otimes \mathcal{V}^*\otimes \pi^*_{X_1}(F_*(\theta^{-1})\otimes \omega_{X_1}))=0.$$

By the base change theorems the sheaf \mathcal{F}_1 is locally free. Taking direct images by q (note that $q_*(\mathcal{L}^* \otimes \mathcal{V}^* \otimes \pi_{X_1}^* F_*(\theta^{-1})) = 0$ because it is a torsion sheaf), we obtain the exact sequence

$$0 \longrightarrow \mathcal{F}_1 \stackrel{\gamma}{\longrightarrow} \mathcal{F}_0 \longrightarrow R^1 q_*(\mathcal{L}^* \otimes \mathcal{V}^* \otimes \pi^*_{X_1}(F_*(\theta^{-1}))) \longrightarrow 0.$$

with \mathcal{F}_1 and \mathcal{F}_0 as in the statement of the proposition. Note that by Riemann–Roch we have

$$\operatorname{rk} \mathcal{F}_1 = 4p - 4$$
 and $\operatorname{rk} \mathcal{F}_0 = 4p$.

It follows from the proof of Proposition 3.1 (a) that any nonzero homomorphism $L \otimes E \longrightarrow F_*(\theta^{-1})$ is injective. Moreover by Proposition 3.1 (b) (iii) for any subbundle $L \otimes E \subset F_*(\theta^{-1})$ we have dim Hom $(L \otimes E, F_*(\theta^{-1})) = 1$, or equivalently dim $H^1(L^* \otimes E^* \otimes F_*(\theta^{-1})) = 5$. Using the base change theorems we obtain the following series of equivalences

$$(L, z) \in \operatorname{supp} \hat{\mathcal{D}} \iff \operatorname{rk} \gamma_{(L, z)} < 4p - 4 = \operatorname{rk} \mathcal{F}_{1}$$
$$\iff \dim H^{1}(L^{*} \otimes E^{*} \otimes F_{*}(\theta^{-1})) \geq 5$$
$$\iff \dim \operatorname{Hom}(L \otimes E, F_{*}(\theta^{-1})) \geq 1$$
$$\iff \dim \operatorname{Hom}(L \otimes E, F_{*}(\theta^{-1})) = 1.$$

Finally we clearly have the equality supp $\psi(\tilde{\mathcal{D}}) = \text{supp } \mathcal{Q}$. Since dim $\mathcal{Q} = 0$ and since $\varphi^{-1}(E) \cong \mathbb{P}^1$ for *E* stable, we deduce that dim $\tilde{\mathcal{D}} = 1$. This proves part (a).

Part (b) follows from Porteous' formula, which says that the fundamental class $\delta \in H^{10}(JX_1 \times Z, \mathbb{Z}_l)$ of the determinantal subscheme $\tilde{\mathcal{D}}$ is given (with the notation of [ACGH], p. 86) by

$$\begin{split} \delta &= \Delta_{4p-(4p-5),4p-4-(4p-5)}(c_t(\mathcal{F}_0 - \mathcal{F}_1)) \\ &= \Delta_{5,1}(c_t(\mathcal{F}_0 - \mathcal{F}_1)) \\ &= c_5(\mathcal{F}_0 - \mathcal{F}_1). \end{split}$$

Vol. 83 (2008)

Let *M* be a sheaf over a *k*-scheme *S*. We denote by

$$\operatorname{Fitt}_n[M] \subset \mathcal{O}_S$$

the *n*-th Fitting ideal sheaf of *M*.

We now define the 0-dimensional subscheme $\mathcal{D} \subset \mathcal{N}_{X_1}^s$, which is supported on supp \mathcal{Q} , by defining a scheme structure \mathcal{D}_E for every $E \in \text{supp } \mathcal{Q}$. Note that

$$\mathcal{D}=\coprod_{E\in\mathrm{supp}\,\mathcal{Q}}\mathcal{D}_E.$$

Consider a bundle $E \in \mathcal{N}_{X_1}^s$ with $E \in \text{supp } \mathcal{Q}$, i.e.

$$\dim \operatorname{Hom}(E, F_*(\theta^{-1})) \ge 1 \quad \Longleftrightarrow \quad \dim H^1(E^* \otimes F_*(\theta^{-1})) \ge 5.$$

The GIT-construction of the moduli space $\mathcal{N}_{X_1}^s$ realizes $\mathcal{N}_{X_1}^s$ as a quotient of an open subset \mathcal{U} of a Quot-scheme by the group $\mathbb{P} \operatorname{GL}(N)$ for some N. It can be shown (see e.g. [La2], Section 3) that \mathcal{U} is a principal $\mathbb{P} \operatorname{GL}(N)$ -bundle for the étale topology over $\mathcal{N}_{X_1}^s$. Hence there exists an étale neighbourhood $\tau: \overline{U} \to U$ of E over which the $\mathbb{P} \operatorname{GL}(N)$ -bundle is trivial, i.e., admits a section. The universal bundle over the Quot-scheme restricts to a bundle \mathcal{E} over $X_1 \times \overline{U}$. Choose a point $\overline{E} \in \overline{U}$ over E. We denote by $\mathcal{D}_{\overline{E}}$ the connected component supported at \overline{E} of the scheme defined by the Fitting ideal sheaf

$$\operatorname{Fitt}_4[R^1 \pi_{\overline{U}*}(\mathcal{E}^* \otimes \pi_{X_1}^* F_*(\theta^{-1}))]$$

Lemma 5.2. Let $\tau : \overline{U} \to U$ be an étale map and $y \in \overline{U}$, $x \in U$ such that $\tau(y) = x$. Let $\overline{\Lambda} \subset \overline{U}$ be a 0-dimensional scheme supported at y. Then the restriction of τ to $\overline{\Lambda}$ induces an isomorphism of $\overline{\Lambda}$ with its scheme-theoretical image in $\Delta = \tau(\overline{\Lambda}) \subset U$, *i.e.*

$$\tau|_{\overline{\Lambda}} \colon \overline{\Lambda} \longrightarrow \Delta \subset U.$$

Proof. We denote by $A = \mathcal{O}_{\overline{U},y}$, $B = \mathcal{O}_{U,x}$ the local rings at the points y, x and by $\mathfrak{m}_A, \mathfrak{m}_B$ their maximal ideals. Let $I \subset \mathfrak{m}_A$ denote the ideal defining the scheme $\overline{\Lambda}$. Since dim $\overline{\Lambda} = 0$ there exists an integer n such that $\mathfrak{m}_A^n \subset I$. The natural map $B \hookrightarrow A \twoheadrightarrow A/I$ factorizes as follows

$$\beta \colon B \twoheadrightarrow B/\mathfrak{m}^n_B \xrightarrow{\alpha} A/\mathfrak{m}^n_A \twoheadrightarrow A/I.$$

Note that α is an isomorphism, since τ is étale (see e.g. [Mum], Corollary 1 of Theorem III.5.3). This shows that β is surjective, hence $\tau|_{\overline{\Lambda}}$ is an isomorphism.

Proposition–Definition 5.3. For $E \in \text{supp}\mathcal{Q}$ we define \mathcal{D}_E as the scheme-theoretical image $\tau(\mathcal{D}_{\overline{E}}) \subset \mathcal{N}_{X_1}^s$ under the étale map τ . Then the scheme \mathcal{D}_E does not depend on the étale neighbourhood $\tau : \overline{U} \to U$ of E and the point \overline{E} .

Proof. Consider for i = 1, 2 étale neighbourhoods $\tau_i : \overline{U}_i \to U$ such that universal bundles \mathcal{E}_i exist over $X_1 \times \overline{U}_i$, and points $\overline{E}_i \in \overline{U}_i$ lying over $E \in U$. Because of Lemma 5.2 it will be enough to show that the schemes $\mathcal{D}_{\overline{E}_1}$ and $\mathcal{D}_{\overline{E}_2}$ are isomorphic.

Consider the fibre product $\overline{U} = \overline{U}_1 \times_U \overline{U}_2$ and the point $\overline{E} = (\overline{E}_1, \overline{E}_2) \in \overline{U}$. The two projections $\pi_i : \overline{U} \to \overline{U}_i$ for i = 1, 2 are étale. Moreover $(\operatorname{id}_{X_1} \times \pi_i)^* \mathcal{E}_i \sim \mathcal{E}$, where \mathcal{E} denotes the universal bundle over $X_1 \times \overline{U}$. Since the formation of the Fitting ideal and taking the higher direct image $R^1 \pi_{\overline{U}*}$ commutes with the flat base changes π_1 and π_2 (see [E], Corollary 20.5), we obtain for i = 1, 2

$$\pi_i^{-1} \left[\operatorname{Fitt}_4(R^1 \pi_{\overline{U}_1*}(\mathcal{E}_i^* \otimes \pi_{X_1}^* F_*(\theta^{-1})) \right] \cdot \mathcal{O}_{\overline{U}} = \operatorname{Fitt}_4(R^1 \pi_{\overline{U}*}(\mathcal{E}^* \otimes \pi_{X_1}^* F_*(\theta^{-1}))).$$

This shows that the connected components supported at \overline{E} of the fibres $\pi_i^{-1}(\mathcal{D}_{\overline{E}_i})$ equal $\mathcal{D}_{\overline{E}}$. Applying Lemma 5.2 to π_i and $\mathcal{D}_{\overline{E}}$ we obtain isomorphisms $\pi_i : \mathcal{D}_{\overline{E}} \to \mathcal{D}_{\overline{E}_i}$ and we are done.

Lemma 5.4. (a) Let S be a k-scheme and \mathcal{E} a sheaf over $X_1 \times S$ with $\langle \mathcal{E} \rangle \in \mathcal{N}_{X_1}^s(S)$. We suppose that the set-theoretical image of the classifying morphism of \mathcal{E}

$$\Phi_{\mathscr{E}}\colon S\longrightarrow \mathscr{N}^{s}_{X_{1}}, \quad s\longmapsto \mathscr{E}|_{X_{1}\times\{s\}}$$

is a point. Then there exists an Artinian ring A, a morphism $\varphi \colon S \longrightarrow \Delta := \operatorname{Spec}(A)$ and a locally free sheaf \mathcal{E}_0 over $X_1 \times \Delta$ such that

- (1) $\mathcal{E} \sim (\mathrm{id}_{X_1} \times \varphi)^* \mathcal{E}_0$
- (2) the natural map $\mathcal{O}_{\Delta} \longrightarrow \varphi_* \mathcal{O}_S$ is injective.
 - (b) There exists a universal family \mathcal{E}_0 over $X_1 \times \mathcal{D}$.

Proof. (a) Since the set-theoretical support of im $\Phi_{\mathcal{E}}$ is a point $x \in \mathcal{N}_{X_1}^s$, there exists an Artinian ring A such that $\Phi_{\mathcal{E}}$ factorizes through the inclusion $\Delta := \operatorname{Spec}(A) \hookrightarrow \mathcal{N}_{X_1}^s$. As explained above there exists an étale neighbourhood $\tau : \overline{U} \to U$ of x such that there is a universal bundle $\mathcal{E}^{\operatorname{univ}}$ over $X_1 \times \overline{U}$. Choose $y \in \overline{U}$ such that $\tau(y) = x$ and denote by $\overline{\Lambda} \subset \overline{U}$ the connected component supported at y of the fibre $\tau^{-1}(\Delta)$. By Lemma 5.2 there is an isomorphism $\tau : \overline{\Lambda} \xrightarrow{\sim} \Delta$. Denote by \mathcal{E}_0 the restriction of $\mathcal{E}^{\operatorname{univ}}$ to $X_1 \times \overline{\Lambda} \cong X_1 \times \Delta$. This shows property (1). As for (2), we consider the ideal $I \subset A$ defined by $\widetilde{I} = \ker(\mathcal{O}_{\operatorname{Spec}(A)} \to \varphi_* \mathcal{O}_S)$, where \widetilde{I} denotes the associated $\mathcal{O}_{\operatorname{Spec}(A)}$ -module. If $I \neq 0$, we replace A by A/I and we are done.

(b) We take
$$\Delta = \mathcal{D}_E$$
 and $\Lambda = \mathcal{D}_{\overline{F}}$ and proceed as in (a).

Proposition 5.5. The subscheme $\mathcal{D} \subset \mathcal{N}_{X_1}^s$ represents the functor $\underline{\mathcal{D}}$ which associates to any k-scheme S the set

$$\underline{\mathcal{D}}(S) = \{ \mathcal{E} \text{ locally free sheaf over } X_1 \times S \text{ of rank } 2 \mid \deg \mathcal{E}|_{X_1 \times \{s\}} = 0 \\ \text{for all } s \in S, \text{Fitt}_4[R^1 \pi_{S*}(\mathcal{E}^* \otimes \pi_{X_1}^*(F_*(\theta^{-1})))] = 0 \} / \sim .$$

Proof. Consider a sheaf \mathscr{E} over $X_1 \times S$ with $\langle \mathscr{E} \rangle \in \underline{\mathcal{N}}_{X_1}^s(S)$. Then $\langle \mathscr{E} \rangle$ is an element of $[\mathcal{D} \times_{\mathcal{N}_{X_1}^s} \underline{\mathcal{N}}_{X_1}^s](S)$ if and only if the classifying map $\Phi_{\mathscr{E}} : S \to \mathcal{N}_{X_1}^s$ factorizes as $S \xrightarrow{\varphi} \mathcal{D} \subset \mathcal{N}_{X_1}^s$. By Lemma 5.4 (b) there exists a universal family \mathscr{E}_0 over $X_1 \times \mathcal{D}$ and we have $\mathscr{E} \sim (\mathrm{id}_{X_1} \times \varphi)^* \mathscr{E}_0$. Since \mathcal{D} is defined (over an étale cover) by a Fitting ideal and since the formation of the Fitting ideal commutes with any base change, we deduce that $[\mathcal{D} \times_{\mathcal{N}_{X_1}^s} \underline{\mathcal{N}}_{X_1}^s](S) = \underline{\mathcal{D}}(S)$. Since $\mathcal{N}_{X_1}^s$ universally corepresents the functor $\underline{\mathcal{N}}_{X_1}^s$, this shows that \mathcal{D} corepresents the functor $\underline{\mathcal{D}}$. The existence of a universal family \mathscr{E}_0 over $X \times \mathcal{D}$ implies that \mathcal{D} represents the functor $\underline{\mathcal{D}}$. \Box

Proposition 5.6. There is a scheme-theoretical equality

$$\tilde{\mathcal{D}} = \psi^{-1} \mathcal{D}$$

Proof. In order to show that the subschemes $\tilde{\mathcal{D}}$ and $\psi^{-1}\mathcal{D}$ of $JX_1 \times Z$ coincide, it is enough to show that the two subsets $Mor(S, \tilde{\mathcal{D}})$ and $Mor(S, \psi^{-1}\mathcal{D})$ of $Mor(S, JX_1 \times Z)$ coincide for any *k*-scheme *S*. Consider $\Phi \in Mor(S, JX_1 \times Z)$ and denote $\mathcal{E}_{\Phi} := (id_{X_1} \times \Phi)^* (\mathcal{L} \otimes \mathcal{V})$. By definition of $\tilde{\mathcal{D}}$ we have $\Phi \in Mor(S, \tilde{\mathcal{D}})$ if and only if Fitt₄[$R^1\pi_{S*}(\mathcal{E}_{\Phi}^* \otimes \pi_{X_1}^*(F_*(\theta^{-1})))$] = 0. On the other hand $\Phi \in Mor(S, \psi^{-1}(\mathcal{D}))$ if and only if $\psi \circ \Phi \in Mor(S, \mathcal{D})$. The latter set equals $\underline{\mathcal{D}}(S)$ by Proposition 5.5. Since $(\psi \circ \Phi)^* \mathcal{E}_0 \sim \mathcal{E}_{\Phi}$, we are done. \Box

Proposition 5.7. There is a scheme-theoretical equality

 $\mathcal{D} = \mathcal{Q}.$

Proof. We note that $\underline{\mathcal{D}}(S)$ and $\underline{\mathcal{Q}}(S)$ are subsets of $\underline{\mathcal{N}}_{X_1}^s(S)$ (the injectivity of the map $\underline{\mathcal{Q}}(S) \to \underline{\mathcal{N}}_{X_1}^s(S)$ is proved similarly as in the proof of Proposition 4.7). Since \mathcal{D} and \mathcal{Q} corepresent the two functors $\underline{\mathcal{D}}$ and $\underline{\mathcal{Q}}$, it will be enough to show that the set $\underline{\mathcal{D}}(S)$ coincides with $\underline{\mathcal{Q}}(S)$ for any *k*-scheme *S*.

We first show that $\underline{\mathcal{D}}(S) \subset \underline{\mathcal{Q}}(S)$. Consider a sheaf \mathcal{E} with $\langle \mathcal{E} \rangle \in \underline{\mathcal{D}}(S)$. For simplicity we denote the sheaf $\mathcal{E}^* \otimes \pi^*_{X_1}(F_*(\theta^{-1}))$ by \mathcal{H} . By [Ha], Theorem 12.11, there is an isomorphism

$$R^1 \pi_{S*} \mathcal{H} \otimes k(s) \cong H^1(X_1 \times \{s\}, \mathcal{H}|_{X_1 \times \{s\}})$$
 for all $s \in S$.

From our assumption Fitt₄[$R^1\pi_{S*}\mathcal{H}$] = 0, we obtain dim $H^1(X_1 \times \{s\}, \mathcal{H}|_{X_1 \times \{s\}}) \ge$ 5, or equivalently dim $H^0(X_1 \times \{s\}, \mathcal{H}|_{X_1 \times \{s\}}) \ge 1$, i.e., the vector bundle $\mathcal{E}|_{X_1 \times \{s\}}$ is a subsheaf, hence by Proposition 3.1 (a) (ii) a subbundle, of $F_*(\theta^{-1})$. This implies that the set-theoretical image of the classifying map $\Phi_{\mathcal{E}}$ is contained in supp \mathcal{Q} . Taking connected components of S, we can assume that the image of $\Phi_{\mathcal{E}}$ is a point. Therefore we can apply Lemma 5.4: there exists a locally free sheaf \mathcal{E}_0 over $X_1 \times \Delta$ such that $\mathcal{E} \sim (\operatorname{id}_{X_1} \times \varphi)^* \mathcal{E}_0$. For simplicity we write $\mathcal{H}_0 = \mathcal{E}_0^* \otimes \pi_{X_1}^* (F_*(\theta^{-1}))$. In particular $\mathcal{H} = (\operatorname{id}_{X_1} \times \varphi)^* \mathcal{H}_0$. Since the projection $\pi_\Delta \colon X_1 \times \Delta \to \Delta$ is of relative dimension 1, taking the higher direct image $R^1 \pi_{\Delta *}$ commutes with the (not necessarily flat) base change $\varphi \colon S \to \Delta$ ([Ha], Proposition 12.5), i.e., there is an isomorphism

$$\varphi^* R^1 \pi_{\Delta *} \mathcal{H}_0 \cong R^1 \pi_{S*} \mathcal{H}.$$

Since the formation of Fitting ideals also commutes with any base change (see [E], Corollary 20.5), we obtain

$$\operatorname{Fitt}_4[R^1\pi_{S*}\mathcal{H}] = \operatorname{Fitt}_4[R^1\pi_{\Delta*}\mathcal{H}_0] \cdot \mathcal{O}_S.$$

Since Fitt₄[$R^1\pi_{S*}\mathcal{H}$] is equal to 0 and $\mathcal{O}_{\Delta} \rightarrow \varphi_*\mathcal{O}_S$ is injective, we deduce that Fitt₄[$R^1\pi_{\Delta*}\mathcal{H}_0$] = 0. Since by Proposition 3.1 (b) (iii) dim $R^1\pi_{\Delta*}\mathcal{H}_0 \otimes k(s_0) = 5$ for the closed point $s_0 \in \Delta$, we have Fitt₅[$R^1\pi_{\Delta*}\mathcal{H}_0$] = \mathcal{O}_{Δ} . We deduce by [E], Proposition 20.8, that the sheaf $R^1\pi_{\Delta*}\mathcal{H}_0$ is a free *A*-module of rank 5. By [Ha], Theorem 12.11 (b), we deduce that there is an isomorphism

$$\pi_{\Delta *}\mathcal{H}_0 \otimes k(s_0) \cong H^0(X_1 \times s_0, \mathcal{H}|_{X_1 \times \{s_0\}})$$

Again by Proposition 3.1 (b) (iii) we obtain dim $\pi_{\Delta *} \mathcal{H}_0 \otimes k(s_0) = 1$. In particular the \mathcal{O}_{Δ} -module $\pi_{\Delta *} \mathcal{H}_0$ is not zero and therefore there exists a nonzero global section $i \in H^0(\Delta, \pi_{\Delta *} \mathcal{H}_0) = H^0(X_1 \times \Delta, \mathcal{E}_0^* \otimes \pi_{X_1}^* F_*(\theta^{-1}))$. We pull-back *i* under the map id_{X_1} \times \varphi and we obtain a nonzero section

$$j = (\mathrm{id}_{X_1} \times \varphi)^* i \in H^0(X_1 \times S, \mathcal{E}^* \otimes \pi_{X_1}^* F_*(\theta^{-1})).$$

Now we apply Lemma 4.3 and we continue as in the proof of Proposition 4.7. This shows that $\langle \mathcal{E} \rangle \in \underline{\mathcal{Q}}(S)$.

We now show that $\underline{\mathcal{Q}}(S) \subset \underline{\mathcal{D}}(S)$. Consider a sheaf $\mathcal{E} \in \underline{\mathcal{Q}}(S)$. The nonzero global section $j \in H^0(X_1 \times S, \mathcal{H}) = H^0(S, \pi_{S*}\mathcal{H})$ determines by evaluation at a point $s \in S$ an element $\alpha \in \pi_{S*}\mathcal{H} \otimes k(s)$. The image of α under the natural map

$$\varphi^{0}(s) \colon \pi_{S*}\mathcal{H} \otimes k(s) \longrightarrow H^{0}(X_{1} \times \{s\}, \mathcal{H}|_{X_{1} \times \{s\}})$$

coincides with $j|_{X_1 \times \{s\}}$ which is nonzero. Also, as dim $H^0(X_1 \times \{s\}, \mathcal{H}|_{X_1 \times \{s\}}) = 1$, we obtain that $\varphi^0(s)$ is surjective. Hence by [Ha], Theorem 12.11, the sheaf $R^1 \pi_{S*} \mathcal{H}$ is locally free of rank 5. Again by [E], Proposition 20.8, this is equivalent to Fitt₄[$R^1 \pi_{S*} \mathcal{H}$] = 0 and Fitt₅[$R^1 \pi_{S*} \mathcal{H}$] = \mathcal{O}_S and we are done. Vol. 83 (2008) On Frobenius-destabilized rank-2 vector bundles over curves 201

6. Chern class computations

In this section we will compute the length of the determinantal subscheme $\mathcal{D} \subset \mathcal{N}_{X_1}$ by evaluating the Chern class $c_5(\mathcal{F}_0 - \mathcal{F}_1)$ – see Proposition 5.1 (b).

Let *l* be a prime number different from *p*. We have to recall some properties of the cohomology ring $H^*(X_1 \times JX_1 \times Z, \mathbb{Z}_l)$ (see also [LN]). In the sequel we identify all classes of $H^*(X_1, \mathbb{Z}_l)$, $H^*(JX_1, \mathbb{Z}_l)$ etc. with their preimages in $H^*(X_1 \times JX_1 \times Z, \mathbb{Z}_l)$ under the natural pull-back maps.

Let $\Theta \in H^2(JX_1, \mathbb{Z}_l)$ denote the class of the theta divisor in JX_1 . Let f denote a positive generator of $H^2(X_1, \mathbb{Z}_l)$. The cup product $H^1(X_1, \mathbb{Z}_l) \times H^1(X_1, \mathbb{Z}_l) \to$ $H^2(X_1, \mathbb{Z}_l) \simeq \mathbb{Z}_l$ gives a symplectic structure on $H^1(X_1, \mathbb{Z}_l)$. Choose a symplectic basis e_1, e_2, e_3, e_4 of $H^1(X_1, \mathbb{Z}_l)$ such that $e_1e_3 = e_2e_4 = -f$ and all other products $e_ie_j = 0$. We can then normalize the Poincaré bundle \mathcal{L} on $X_1 \times JX_1$ so that

$$c(\mathcal{L}) = 1 + \xi_1 \tag{9}$$

where $\xi_1 \in H^1(X_1, \mathbb{Z}_l) \otimes H^1(JX_1, \mathbb{Z}_l) \subset H^2(X_1 \times JX_1, \mathbb{Z}_l)$ can be written as

$$\xi_1 = \sum_{i=1}^4 e_i \otimes \varphi_i$$

with $\varphi_i \in H^1(JX_1, \mathbb{Z}_l)$. Moreover, we have by the same reasoning, applying [ACGH], p. 335 and p. 21,

$$\xi_1^2 = -2\Theta f$$
 and $\Theta^2[JX_1] = 2.$ (10)

Since the variety $\mathcal{M}_{X_1}(x)$ is a smooth intersection of 2 quadrics in \mathbb{P}^5 , one can work out that the *l*-adic cohomology groups $H^i(\mathcal{M}_{X_1}(x), \mathbb{Z}_l)$ for i = 0, ..., 6 are (see e.g. [Re], p. 0.19)

$$\mathbb{Z}_l, 0, \mathbb{Z}_l, \mathbb{Z}_l^4, \mathbb{Z}_l, 0, \mathbb{Z}_l.$$

In particular $H^2(\mathcal{M}_{X_1}(x), \mathbb{Z}_l)$ is free of rank 1 and, if α denotes a positive generator of it, then

$$\alpha^{3}[\mathcal{M}_{X_{1}}(x)] = 4. \tag{11}$$

According to [N2] p. 338 and applying reduction mod p and a comparison theorem, the Chern classes of the universal bundle \mathcal{U} are of the form

$$c_1(\mathcal{U}) = \alpha + f \quad \text{and} \quad c_2(\mathcal{U}) = \chi + \xi_2 + \alpha f$$
 (12)

with $\chi \in H^4(\mathcal{M}_{X_1}(x), \mathbb{Z}_l)$ and $\xi_2 \in H^1(X_1, \mathbb{Z}_l) \otimes H^3(\mathcal{M}_{X_1}(x), \mathbb{Z}_l)$. As in [N2] and [KN] we write

$$\beta = \alpha^2 - 4\chi$$
 and $\xi_2^2 = \gamma f$ with $\gamma \in H^6(\mathcal{M}_{X_1}(x), \mathbb{Z}_l).$ (13)

Then the relations of [KN] give

$$\alpha^2 + \beta = 0$$
 and $\alpha^3 + 5\alpha\beta + 4\gamma = 0$.

Hence $\beta = -\alpha^2$, $\gamma = \alpha^3$. Together with (12) and (13) this gives

$$c_2(\mathcal{U}) = \frac{\alpha^2}{2} + \xi_2 + \alpha f \text{ and } \xi_2^2 = \alpha^3 f$$
 (14)

Define $\Lambda \in H^1(JX_1, \mathbb{Z}_l) \otimes H^3(\mathcal{M}_{X_1}(x), \mathbb{Z}_l)$ by

$$\xi_1 \xi_2 = \Lambda f. \tag{15}$$

Then we have for dimensional reasons and noting that $H^5(\mathcal{M}_{X_1}(x), \mathbb{Z}_l) = 0$, that the following classes are all zero:

$$f^2$$
, ξ_1^3 , α^4 , $\xi_1 f$, $\xi_2 f$, $\alpha \xi_2$, $\alpha \Lambda$, $\Theta^2 \Lambda$, Θ^3 . (16)

Finally, *Z* is the \mathbb{P}^1 -bundle associated to the vector bundle \mathcal{U}_x on $\mathcal{M}_{X_1}(x)$. Let $H \in H^2(Z, \mathbb{Z}_l)$ denote the first Chern class of the tautological line bundle on *Z*. We have, using the definition of the Chern classes $c_i(\mathcal{U})$ and (11),

$$H^2 = \alpha H - \frac{\alpha^2}{2}, \quad H^4 = 0, \quad \alpha^3 H[Z] = 4$$
 (17)

and we get for the "universal" bundle \mathcal{V} ,

$$c_1(\mathcal{V}) = \alpha$$
 and $c_2(\mathcal{V}) = \frac{\alpha^2}{2} + \xi_2 + Hf.$ (18)

Lemma 6.1. (a) The cohomology class $\alpha \cdot c_5(\mathcal{F}_0 - \mathcal{F}_1) \in H^{12}(JX_1 \times Z, \mathbb{Z}_l)$ is a multiple of the class $\alpha^3 H \Theta^2$.

(b) The pull-back under the map $\varphi: Z \longrightarrow \mathcal{M}_{X_1} \cong \mathbb{P}^3$ of the class of a point is the class $H^3 = \frac{\alpha^2}{2}H - \frac{\alpha^3}{2}$.

Proof. For part (a) it is enough to note that all other relevant cohomology classes vanish, since $\alpha^4 = 0$ and $\alpha \Lambda = 0$.

As for part (b), it suffices to show that $c_1(\varphi^*\mathcal{O}_{\mathbb{P}^3}(1)) = H$. The line bundle $\mathcal{O}_{\mathbb{P}^3}(1)$ is the inverse of the determinant line bundle [KM] over the moduli space \mathcal{M}_{X_1} . Since the formation of the determinant line bundle commutes with any base change (see [KM]), the pull-back $\varphi^*\mathcal{O}_{\mathbb{P}^3}(1)$ is the inverse of the determinant line bundle associated to the family $\mathcal{V} \otimes \pi^*_{X_1} N$ for any line bundle N of degree 1 over X_1 . Hence the first Chern class of $\varphi^*\mathcal{O}_{\mathbb{P}^3}(1)$ can be computed by the Grothendieck–Riemann–Roch theorem applied to the sheaf $\mathcal{V} \otimes \pi^*_{X_1} N$ over $X_1 \times Z$ and the morphism

Vol. 83 (2008) On Frobenius-destabilized rank-2 vector bundles over curves

 $\pi_Z \colon X_1 \times Z \to Z$. We have

$$ch(\mathcal{V} \otimes \pi_{X_1}^* N) \cdot \pi_{X_1}^* td(X_1) = (2 + \alpha + (-\xi_2 - Hf) + \text{h.o.t.}) (1 + f)(1 - f)$$

= 2 + \alpha + (-\xi_2 - Hf) + h.o.t.,

and therefore G-R-R implies that $c_1(\varphi^* \mathcal{O}_{\mathbb{P}^3}(1)) = H$ – note that $\pi_{Z*}(\xi_2) = 0$. \Box

Proposition 6.2. We have

$$l(\mathcal{D}) = \frac{1}{24}p^3(p^2 - 1).$$

Proof. Let λ denote the length of the subscheme $m^{-1}(\mathcal{D}) \subset JX_1 \times \mathcal{M}_{X_1}$ Since the map m^s is étale of degree 16, we obviously have the relation $\lambda = 16 \cdot l(\mathcal{D})$. According to Lemma 6.1 (b) we have in $H^{10}(JX_1 \times Z, \mathbb{Z}_l)$

$$[(\mathrm{id} \times \varphi)^{-1}(pt)] = H^3 \cdot \frac{\Theta^2}{2} = \frac{1}{4}\alpha^2 H \Theta^2 - \frac{1}{4}\alpha^3 \Theta^2$$

where *pt* denotes the class of a point in $JX_1 \times \mathcal{M}_{X_1}$. Using Proposition 5.6 we obtain that the class $\delta = c_5(\mathcal{F}_0 - \mathcal{F}_1) \in H^{10}(JX_1 \times Z, \mathbb{Z}_l)$ equals $\lambda \cdot (\frac{1}{4}\alpha^2 H \Theta^2 - \frac{1}{4}\alpha^3 \Theta^2)$. Intersecting with α we obtain with Lemma 6.1 (a) and (16)

$$\alpha \cdot c_5(\mathcal{F}_0 - \mathcal{F}_1) = \frac{\lambda}{4} \alpha^3 H \Theta^2.$$
⁽¹⁹⁾

203

So we have to compute the class $\alpha \cdot c_5(\mathcal{F}_0 - \mathcal{F}_1)$. By (9) and (10),

$$ch(\mathcal{L}) = 1 + \xi_1 - \Theta f$$

whereas by (14), (16) and (18),

$$ch(\mathcal{V}) = 2 + \alpha + (-\xi_2 - Hf) + \frac{1}{12}(-\alpha^3 - 6\alpha Hf) + \frac{1}{12}(\alpha^3 f - \alpha^2 Hf).$$

Moreover

$$ch(\pi_{X_1}^*(F_*(\theta^{-1}) \otimes \omega_{X_1})) \cdot \pi_{X_1}^* td(X_1) = p + (2p - 2)f.$$

So using (14), (15) and (16),

$$ch(\mathcal{V}^* \otimes \mathcal{L}^* \otimes \pi_{X_1}^* (F_*(\theta^{-1}) \otimes \omega_{X_1})) \cdot \pi_{X_1}^* td(X_1) \\= 2p + [(4p - 4)f - p\alpha - 2p\xi_1] \\+ \left[p\alpha\xi_1 - 2p\Theta f - (2p - 2)\alpha f - p\xi_2 - pHf \right] \\+ \left[\frac{p}{12}\alpha^3 + \frac{p}{2}\alpha Hf + p\Lambda f + p\alpha\Theta f \right] \\+ \left[\frac{3p - 2}{12}\alpha^3 f - \frac{p}{12}\alpha^3\xi_1 - \frac{p}{12}\alpha^2 Hf \right] + \left[-\frac{p}{12}\alpha^3\Theta f \right].$$

H. Lange and C. Pauly

Hence by Grothendieck–Riemann–Roch for the morphism q we get

$$ch(\mathcal{F}_1) = 4p - 4 + \left[-(2p - 2)\alpha - 2p\Theta - pH\right] + \left[\frac{p}{2}\alpha H + p\Lambda + p\alpha\Theta\right] \\ + \left[\frac{3p - 2}{12}\alpha^3 - \frac{p}{12}\alpha^2 H\right] + \left[-\frac{p}{12}\alpha^3\Theta\right].$$

From (10) and (18) we easily obtain

$$ch(\mathcal{F}_0) = 4p - 2p\alpha + \frac{p}{6}\alpha^3.$$

So

$$ch(\mathcal{F}_0 - \mathcal{F}_1) = 4 + [2p\Theta - 2\alpha + pH] + \left[-\frac{p}{2}\alpha H - p\Lambda - p\alpha\Theta \right] \\ + \left[-\frac{p+1}{12}\alpha^3 + \frac{p}{12}\alpha^2 H \right] + \left[\frac{p}{12}\alpha^3\Theta \right].$$

Defining $p_n := n! \cdot ch_n(\mathcal{F}_0 - \mathcal{F}_1)$ we have according to Newton's recursive formula ([F] p. 56),

$$c_5(\mathcal{F}_0 - \mathcal{F}_1) = \frac{1}{5} \left(p_5 - \frac{5}{6} p_2 p_3 - \frac{5}{4} p_1 p_4 + \frac{5}{6} p_1^2 p_3 + \frac{5}{8} p_1 p_2^2 - \frac{5}{12} p_1^3 p_2 + \frac{1}{24} p_1^5 \right)$$

with

$$p_1 = 2p\Theta - 2\alpha + pH, \quad p_2 = -p(\alpha H + 2\Lambda + 2\alpha\Theta),$$

 $p_3 = \frac{1}{2}(-(p+1)\alpha^3 + p\alpha^2 H), \quad p_4 = 2p\alpha^3\Theta, \quad p_5 = 0.$

Now an immediate computation using (16) and (17) gives

$$\alpha \cdot c_5(\mathcal{F}_0 - \mathcal{F}_1) = \frac{p^3(p^2 - 1)}{6} \alpha^3 H \Theta^2.$$

We conclude from (19) that $\lambda = \frac{2}{3}p^3(p^2 - 1)$ and we are done.

Remark 6.3. If $k = \mathbb{C}$, the number of maximal subbundles of a general vector bundle has recently been computed by Y. Holla by using Gromov–Witten invariants [Ho]. His formula ([Ho], Corollary 4.6) coincides with ours.

7. Proof of Theorem 2

The proof of Theorem 2 is now straightforward. It suffices to combine Corollary 4.9, Proposition 5.7 and Proposition 6.2 to obtain the length $l(\mathcal{B})$.

The fact that \mathcal{B} is a local complete intersection follows from the isomorphism $\mathcal{B}_{\theta} = \mathcal{Q}_0$ (Proposition 4.6) and Proposition 4.1.

8. Questions and remarks

(1) Is the rank-*p* vector bundle F_*L very stable, i.e. F_*L has no nilpotent ω_{X_1} -valued endomorphisms, for a general line bundle?

205

- (2) Is $F_*(\theta^{-1})$ very stable for a general curve X? Note that very-stability of $F_*(\theta^{-1})$ implies reducedness of \mathcal{B} (see e.g. [LN], Lemma 3.3).
- (3) If g = 2, we have shown that for a general stable E ∈ M_X the fibre V⁻¹(E) consists of ¹/₃p(p² + 2) stable vector bundles E₁ ∈ M_{X1}, i.e. bundles E₁ such that F*E₁ ≅ E or equivalently (via adjunction) E₁ ⊂ F_{*}E. The Quot-scheme parametrizing rank-2 subbundles of degree 0 of the rank-2p vector bundle F_{*}E has expected dimension 0, contains the fibre V⁻¹(E), but it also has a 1-dimensional component arising from Frobenius-destabilized bundles as follows: for any M ∈ Pic¹(X) with Hom(M⁻¹, E) ≠ 0 consider a stable degree 0 rank-2 bundle E₁ such that F^{*}E₁ has a nonzero map to M⁻¹.
- (4) If p = 3 the base locus B consists of 16 reduced points, which correspond to the 16 nodes of the Kummer surface associated to JX (see [LP2], Corollary 6.6). For general p, does the configuration of points determined by B have some geometric significance?

Appendix on base loci and substack of non-semistable vector bundles.

For lack of a suitable reference, we include a detailed proof of the following fact, which was used in Lemma 4.5. We use the notation of Lemma 4.5.

Proposition A. Let X be a smooth curve of genus 2. The closed substack \mathfrak{M}_X^1 equals the base locus $\operatorname{Bs}|\mathcal{O}(1)|$ of the linear system $|\mathcal{O}(1)|$ over the moduli stack $\mathfrak{M}_X^{\leq 1}$.

Proof. Let *E* be a rank-2 vector bundle with trivial determinant over *X*. It follows from [R], Proposition 1.6.2, that *E* is semistable if and only if there exists a line bundle *M* of degree 1 such that $h^0(X, E \otimes M) = h^1(X, E \otimes M) = 0$. Consider the determinant divisor θ_M associated to *M*. Then $\theta_M \in |\mathcal{O}(1)|$ and for an *S*-valued point \mathcal{E} of $\mathfrak{M}_X^{\leq 1}$

$$\operatorname{supp}(\theta_M) = \{ s \in S \mid h^0(X, \mathcal{E}_s \otimes M) > 0 \}.$$

We know (see e.g. [B1], Proposition 2.5) that the linear system $|\mathcal{O}(1)|$ is linearly generated by the divisors θ_M when M varies in $\operatorname{Pic}^1(X)$. The previous equivalence implies that the open complements of the closed substacks $\operatorname{Bs}|\mathcal{O}(1)|$ and \mathfrak{M}_X^1 coincide. To conclude the proposition it remains to show that the base locus $\operatorname{Bs}|\mathcal{O}(1)|$ is a reduced substack of $\mathfrak{M}_X^{\leq 1}$.

The normal bundle N of the closed substack \mathfrak{M}_X^1 in $\mathfrak{M}_X^{\leq 1}$ can be described as follows(e.g. [He], Behauptung 2.1.12, p. 44 or [VL], exposé 4, Théorème 4, p. 90): let \mathscr{E} denote the universal bundle over $X \times \mathfrak{M}_X$ restricted to $X \times \mathfrak{M}_X^1$. There is a canonical inclusion

$$\operatorname{End}_0(\mathscr{E})^{\operatorname{filt}} \subset \operatorname{End}_0(\mathscr{E}),$$

where $\operatorname{End}_0(\mathscr{E})^{\operatorname{filt}}$ denotes the sheaf of tracefree endomorphisms preserving the Harder–Narasimhan filtration. We denote by $\operatorname{End}'_0(\mathscr{E})$ the quotient. Then the normal bundle *N* equals $R^1 p_* \operatorname{End}'_0(\mathscr{E})$, where *p* denotes projection onto \mathfrak{M}^1_X . In the rank-2 case the universal Harder–Narasimhan filtration over $X \times \mathfrak{M}^1_X$ is of the form

$$0 \longrightarrow \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L}^{-1} \longrightarrow 0,$$

where \mathcal{L} is a degree 1 line bundle. In that case we have $\operatorname{End}_0'(\mathcal{E}) = \operatorname{Hom}(\mathcal{L}, \mathcal{L}^{-1})$ and therefore $N = R^1 p_* \mathcal{L}^{-2}$.

Consider an S-point $\mathcal{E} \in \mathfrak{M}_X^{\leq 1}(S)$ and $x \in S$ such that the vector bundle $\mathcal{E}_x = E \in \mathfrak{M}_X^1(k)$, i.e., E is destabilized by L of degree 1. Consider a line bundle M of degree 1 and its associated determinant divisor θ_M . Then the divisor θ_M contains the closed substack \mathfrak{M}_X^1 . The Kodaira–Spencer map at the point $x \in S$ associated to \mathcal{E} is a k-linear map

$$\kappa: T_x S \longrightarrow H^1(X, \operatorname{End}_0(E)).$$

Note that we consider bundles with trivial determinant, hence κ takes values in $H^1(X, \operatorname{End}_0(E))$. By [Las], Sections II and III, the linear form on T_xS defining the tangent space $T_x\theta_M$ to the determinant divisor θ_M is the map $\Phi \circ \kappa$, where Φ is given by cup product

$$\Phi \colon H^1(X, \operatorname{End}_0(E)) \longrightarrow \operatorname{Hom}(H^0(X, E \otimes M), H^1(X, E \otimes M)), \quad e \mapsto \cup e.$$

Using Serre duality we identify $H^1(X, \operatorname{End}_0(E))^*$ with $H^0(X, \operatorname{End}_0(E) \otimes \omega)$ and $H^1(X, E \otimes M)$ with $H^0(X, E \otimes \omega M^{-1})^*$. The dual of Φ equals the symmetrized multiplication map of global sections (note that $\operatorname{End}_0(E) = \operatorname{Sym}^2 E$ and $E = E^*$)

$$\mu \colon H^0(X, E \otimes M) \otimes H^0(X, E \otimes \omega M^{-1}) \longrightarrow H^0(X, \operatorname{End}_0(E) \otimes \omega).$$

Note that both spaces on the left have dimension equal to 1 for general M and that $H^0(X, E \otimes M) = H^0(X, L \otimes M)$ and $H^0(X, E \otimes \omega M^{-1}) = H^0(X, L \otimes \omega M^{-1})$ for general M. This implies that dim im $(\mu) = 1$ and

$$\operatorname{im}(\mu) \subset H^0(X, L^2\omega) \subset H^0(X, \operatorname{End}_0(E) \otimes \omega).$$

We denote by *h* a generator of $im(\mu)$. We obtain that for general *M* the conormal vector defined by $T_x \theta_M$ is given (up to a scalar) by

$$h \in H^0(X, L^2\omega) = H^1(X, L^{-2})^* = N_x^*.$$

Vol. 83 (2008)

The corresponding rational map

$$\operatorname{Pic}^{1}(X) \longrightarrow \mathbb{P}H^{0}(X, L^{2}\omega) = \mathbb{P}^{2}, \quad M \mapsto h,$$

is easily seen to be dominant. In particular its image is non degenerate. This shows that the point *E* is a reduced point of Bs $|\mathcal{O}(1)|$, because the linear span of the family of conormal vectors defined by $T_x \theta_M$ when *M* varies in an open set of Pic¹(*X*) equals the full space N_x^* .

References

- [ACGH] E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, Geometry of Algebraic Curves. Grundlehren Math. Wiss. 267, Springer-Verlag, New York 1985. Zbl 0559.14017 MR 0770932
- [B1] A. Beauville, Fibrés de rang 2 sur les courbes, fibré déterminant et fonctions thêta. Bull. Soc. Math. France 116 (1988), 431–448. Zbl 0691.14016 MR 1005388
- [B2] A. Beauville, On the stability of the direct image of a generic vector bundle. Preprint. http://math.unice.fr/~beauvill/pubs/imdir.pdf
- [BL] A. Beauville, Y. Laszlo, Conformal blocks and generalized theta functions. *Comm. Math. Phys.* 164 (1994), 385–419. Zbl 0815.14015 MR 1289330
- [E] D. Eisenbud, Commutative Algebra. Grad. Texts in Math. 150, Springer-Verlag, Berlin 1994. Zbl 0819.13001 MR 1322960
- [F] W. Fulton, Intersection Theory. Ergeb. Math. Grenzgeb. (3) 2, Springer-Verlag, Berlin 1984. Zbl 0541.14005 MR R0732620
- [G] A. Grothendieck, Fondements de la Géométrie Algébrique, IV, Les schémas de Hilbert. Séminaire Bourbaki, t. 13, 1960/61, n. 221. Zbl 0239.14002 MR 146040
- [Ha] R. Hartshorne, Algebraic Geometry. Grad. Texts in Math. 52, Springer-Verlag, New York, Heidelberg, Berlin 1977. Zbl 0367.14001 MR 0463157
- [Hir] A. Hirschowitz, Problèmes de Brill-Noether en rang supérieur. C. R. Acad. Sci. 307 (1988), 153–156. Zbl 0654.14017 MR 0956606
- [He] J. Heinloth, Über den Modulstack der Vektorbündel auf Kurven, Diploma Thesis. http://www.uni-due.de/~hm0002/
- [Ho] Y. I. Holla, Counting maximal subbundles via Gromov-Witten invariants. *Math. Ann.* 328 (2004), 121–133. Zbl 1065.14042 MR 2030371
- [HL] D. Huybrechts, M. Lehn, *The geometry of moduli spaces of sheaves*. Aspects Math E31, Vieweg & Sohn, Braunschweig 1997. Zbl 0872.14002 MR 1450870
- [JRXY] K. Joshi, S. Ramanan, E.Z. Xia, J.-K. Yu, On vector bundles destabilized by Frobenius pull-back. *Compositio Math.* 142 (2006), 616–630. Zbl 1101.14049 MR 2231194
- [K] N. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turittin. Inst. Hautes Études Sci. Publ. Math. 39 (1970), 175–232. Zbl 0221.14007 MR 0291177

[KN]	A. King, P. E. Newstead, On the cohomology ring of the moduli space of rank 2 vector bundles on a curve. <i>Topology</i> 37 (1998), 407–418. Zbl 0913.14008 MR 1489212
[KM]	F. Knudsen, D. Mumford, The projectivity of the moduli space of stable curves I. <i>Math. Scand.</i> 39 (1976), 19–55. Zbl 0343.14008 MR 0437541
[L]	H. Lange, Some geometrical aspects of vector bundles on curves. In <i>Topics in algebraic geometry</i> , Aportaciones Mat. Notas Investigación 5, Soc. Mat. Mexicana, México 1992, 53–74. Zbl 0899.14012 MR 1308330
[LS]	H. Lange, U. Stuhler, Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe. <i>Math. Z.</i> 156 (1977), 73–83. Zbl 0349.14018 MR 0472827
[LN]	H. Lange, P. Newstead, Maximal subbundles and Gromov-Witten invariants. In <i>A Tribute to C. S. Seshadri</i> , Trends Math., Birkhäuser, Basel 2003, 310–322. Zbl 1071.14036 MR 2017590
[La1]	A. Langer, Moduli spaces of sheaves in mixed characteristic. <i>Duke Math. J.</i> 124 (2004), 571–586. Zbl 02113314 MR 2085175
[La2]	A. Langer, Moduli spaces and Castelnuovo-Mumford regularity of sheaves on surfaces. <i>Amer. J. Math.</i> 128 (2006), 373–417. Zbl 1102.14030 MR 2214897
[Las]	Y. Laszlo, Un théorème de Riemann pour les diviseurs thêta sur les espaces de modules de fibrés stables sur une courbe. <i>Duke Math. J.</i> 64 (1991), 333–347. Zbl 0753.14023 MR 1136379
[LP1]	Y. Laszlo, C. Pauly, The action of the Frobenius map on rank 2 vector bundles in characterictic 2. <i>J. Algebraic Geom.</i> 11 (2002), 219–243. Zbl 1080.14527 MR 1874113
[LP2]	Y. Laszlo, C. Pauly, The Frobenius map, rank 2 vector bundles and Kummer's quartic surface in characteristic 2 and 3. <i>Adv. Math.</i> 185 (2004), 246–269. Zbl 1055.14038 MR 2060469
[MS]	V. B. Mehta, S. Subramanian, Nef line bundles which are not ample. <i>Math. Z.</i> 219 (1995), 235–244. Zbl 0826.14009 MR 1337219
[Mo]	S. Mochizuki, <i>Foundations of p-adic Teichmüller Theory</i> . AMS/IP Stud. Adv. Math. 11, Amer. Math. Soc., Providence, RI, 1999 Zbl 0969.14013 MR 1700772
[Mu]	S. Mukai, Non-Abelian Brill-Noether theory and Fano 3-folds. <i>Sugaku</i> 49 (1997), 1–24 (in Japanese; English transl. <i>Sugaku Expositions</i> 14 (2001), 125–153. Zbl 0929.14021 MR 1478148
[MuSa]	S. Mukai, F. Sakai, Maximal subbundles of vector bundles on a curve. <i>Manuscripta Math.</i> 52 (1985), 251–256. Zbl 0572.14008 MR 0790801
[Mum]	D. Mumford, <i>The red book of varieties and schemes</i> . Lecture Notes in Math. 1358, Springer-Verlag, Berlin 1999. Zbl 0658.14001 MR 1748380
[NR1]	M. S. Narasimhan, S. Ramanan, Deformations of the moduli space of vector bundles over an algebraic curve. <i>Ann. of Math.</i> (2) 101 (1975), 391–417. Zbl 0314.14004 MR 0384797
[NR2]	M. S. Narasimhan, S. Ramanan, Moduli of vector bundles on a compact Riemann surface. <i>Ann. of Math.</i> (2) 89 (1969), 14–51. Zbl 0186.54902 MR 0242185
[N1]	P. E. Newstead, Stable bundles of rank 2 and odd degree over a curve of genus 2. <i>Topology</i> 7 (1968), 205–215. Zbl 0174.52901 MR 0237500

H. Lange and C. Pauly

CMH

- [N2] P. E. Newstead, Characteristic classes of stable bundles of rank 2 over an algebraic curve. *Trans. Amer. Math. Soc.* 169 (1972), 337–345. Zbl 0256.14008 MR 0316452
- [O1] B. Osserman, The generalized Verschiebung map for curves of genus 2. *Math. Ann.* 336 (2006), 963–986. Zbl 1111.14031 MR 2255181
- [O2] B. Osserman, Mochizuki's crys-stable bundles: A lexicon and applications. *Publ. Res. Inst. Math. Sci.* 43 (2007), 95–119. MR 2317114
- [R] M. Raynaud, Sections des fibrés vectoriels sur une courbe. Bull. Soc. Math. France 110 (1982), 103–125. Zbl 0505.14011 MR 0662131
- [Re] M. Reid, The complete intersection of two or more quadrics, Doctoral Thesis, Cambridge University, Cambridge 1972.
- [S] C. S. Seshadri, Vector bundles on curves. In *Linear algebraic groups and their representations*, Contemp. Math. 153, Amer. Math. Soc., Providence, RI, 1993, 163–200. Zbl 0799.14013 MR 1247504
- [Sh] S. Shatz, The decomposition and specialization of algebraic families of vector bundles. *Compositio Math.* **35** (1977), 163–187. Zbl 0371.14010 MR 0498573
- [SB] N. I. Shepherd-Barron, Semi-stability and reduction mod *p. Topology* **37** (1998), 659–664. Zbl 0926.14021 MR 1604907
- [VL] J.-L. Verdier, J. Le Potier (eds.), Module des fibrés stables sur les courbes algébriques.
 Progr. Math. 54, Birkhäuser, Boston, MA, 1985 Zbl 0546.00011 MR 0790317

Received September 23, 2003; revised October 6, 2005

Herbert Lange, Mathematisches Institut, Universität Erlangen-Nürnberg, Bismarckstrasse 1 1/2, 91054 Erlangen, Germany

E-mail: lange@mi.uni-erlangen.de

Christian Pauly, Département de Mathématiques, Université de Montpellier II, Case Courrier 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France E-mail: pauly@math.univ-montp2.fr