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Jenkins–Strebel differentials with poles

Jinsong Liu∗

Abstract. Given any compact Riemann surface with finitely many punctures, we show that there
exists a unique Jenkins–Strebel differential on the Riemann surface with prescribed heights. In
addition, the differential has second order poles at the distinguished punctures with prescribed
leading coefficients. As a corollary, we obtain the solution of the moduli problem.
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Introduction

The theory of quadratic differentials has long played a central role in the study of
Teichmüller spaces. One aspect of quadratic differentials is their geometric properties.

At present, Jenkins–Strebel differentials (quadratic differentials with closed tra-
jectories) turn out to be useful. For example, the solutions of a large variety of
function theoretic extremal problems on Riemann surfaces can be described by these
differentials. See e.g. [12], [30], [31].

In particular, Jenkins–Strebel differentials with second order poles are also of
interest. They show up in the Penner–Strebel triangulation of the moduli space,
which is important in computing its homology. String theorists care about these
cases too.

With respect to Jenkins–Strebel differentials with second order poles, character-
istic punctured disks take the place of annuli around the distinguished punctures.
There are several types of existence theorems for these differentials. For example,
one can prescribe the lengths of the circumferences of the annuli, their heights or
the moduli of the annuli. For punctured disks, one can prescribe reduced moduli or
circumferences.

K. Strebel [28], [31] obtained the existence and uniqueness theorems for Jenkins–
Strebel differentials with characteristic punctured disks. Later B. Zwiebach [35]

∗Partially supported by the Post-doctor fellowship of China.



212 J. Liu CMH

extended the existence and uniqueness theorem to Jenkins–Strebel differentials with
punctured disks and annuli.

In [17] we discussed Jenkins–Strebel differentials on compact Riemann surfaces
by geometrical methods. By extending Strebel’s methods, and using the geometrical
methods, in this paper we will describe the most general situation for closed Riemann
surfaces with possible punctures. It shows that the geometrical methods is also useful
when constructing Jenkins–Strebel differentials with second order poles.

Suppose S is a compact Riemann surface of genus g with n punctures. Also we
suppose that S is hyperbolic, that is, 3g + n − 3 > 0. Denote by {Q1, Q2, . . . , Qq}
(q ≤ n) the distinguished punctures on the Riemann surface S.

A system of simple closed curves {γk}1≤k≤p on S is called admissible if none of
the γk is homotopic to zero, and if any two distinct curves neither intersect nor are
freely homotopic. For the definitions, please see [17], [31].

The following theorem claims that the height problem on S is always solvable if
one prescribes the heights of annuli and the negative leading coefficients.

Theorem 3.1. For arbitrary hk > 0, 1 ≤ k ≤ p, and aj > 0, 1 ≤ j ≤ q, there is a
Jenkins–Strebel differential ϕ on S with the following properties:

(i) The differential ϕ has p characteristic annuli {Rk} with type {γk}. In the
ϕ-metric these annuli have heights {hk}.

(ii) ϕ has q punctured disks {Dj } which are swept out by closed trajectories around
the marked punctures {Qj }. The closed horizontal trajectories in Dj have the same
ϕ-length aj . Equivalently, ϕ has a second order pole at Qj with leading coefficient

− ( aj

2π

)2
, j = 1, 2, . . . , q.

Moreover the quadratic differential ϕ is uniquely determined.

As a special case, Theorem 3.1 implies the following result due to Strebel [31].

Theorem 3.4. There is a unique Jenkins–Strebel differential ϕ on S whose charac-
teristic domains are q punctured disks with specified circumferences aj , 1 ≤ j ≤ q.

Theorem 3.1 can be applied to prove the following result, which claims the moduli
problem is solvable if and only if the given array of moduli is admissible. For the
definitions, please see Section 4.

Theorem 4.6. If M = (m1, m2, . . . , mp) is admissible on S, then for any given
A = (a1, a2, . . . , aq) ∈ Rq

+ there is a Jenkins–Strebel differential ϕ which has p

characteristic annuli with homotopic type {γk} and with conformal moduli {mk}. At
the puncture Qj the differential ϕ has a second order pole with leading coefficient

− ( aj

2π

)2
, j = 1, 2, . . . , q.

Moreover the differential ϕ is uniquely determined.
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Furthermore, Strebel [31] solved an extremal problem associated with punctured
disks on Riemann surfaces. He dealt with the case when there are finitely many
punctured disks (no additional annuli). Also he showed that the solutions can be
described by the Jenkins–Strebel differentials with second order poles. We will deal
with the general cases. That is, there are not only punctured disks but also annuli.

Let ζj be a fixed local parameter on S near the distinguished puncture Qj , 1 ≤
j ≤ q. Then we have

Theorem 4.7. Suppose that M = (m1, m2, . . . , mp) is admissible. Then, for any
real number m̃j , 1 ≤ j ≤ q, there is a Jenkins–Strebel differential ϕ which has char-
acteristic annuli {Rk} with type {γk}. The characteristic annulus Rk has modulus mk ,
1 ≤ k ≤ p.

Around the puncture Qj , the differential ϕ has a characteristic punctured disk Dj

with reduced modulus (with respect to the given local parameter ζj )

Mj = m̃j + c, 1 ≤ j ≤ q,

for some constant c independent of j .
In addition, ϕ is uniquely determined up to a positive constant factor. In particular,

the annuli {Rk} and the punctured disks {Dj } are uniquely determined.

The paper is organized as follows.
In Section 1 we introduce some terminologies and develop various background

necessary for our proofs. In Section 2 we describe Jenkins–Strebel differentials
with poles on Riemann surfaces. The object of Section 3 is to give the proof of the
existence and uniqueness of the height theorem. The solution of moduli problems is
left to Section 4. In the last section we give the proofs of some basic results.

Notational conventions. Throughout the paper we follow the conventions in [31].
That is, annuli are denoted by the letter k and punctured disks by the letter j .

Denote by Qj the puncture on Riemann surfaces and by aj the circumference
of a punctured disk. Moreover, θk denotes the twisting angle and lk denotes the
circumference of a characteristic annuli.

Denote by � the unit disk {|z| < 1}, and denote the unit punctured disk by

�∗ ≡ {0 < |z| < 1}.
For any annulus R, we denote by M(R) its conformal modulus.

If f : U → V is a quasiconformal homeomorphism, then we let K[f ] be the
maximal dilatation of f .
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1. Preliminaries

A punctured disk on the complex plane C always has infinite conformal modulus. It
is, however, possible to assign it a finite number which is called the reduced modulus,
introduced by Teichmüller.

Suppose that D is a punctured disk in the z-plane with puncture z0. For any
sufficiently small r > 0, we denote by D(r) the 2-connected region

D\{z : |z − z0| ≤ r}.

Let m(r) denote the conformal modulus of D(r). Then for any 0 < r ′ < r we
have

m(r) + 1

2π
log

r

r ′ ≤ m(r ′),

or equivalently

m(r) + 1

2π
log r ≤ m(r ′) + 1

2π
log r ′.

Hence the function m(r) + 1
2π

log r is increasing as r → 0+ and thus the limit

lim
r→0+

(
m(r) + 1

2π
log r

)

exists. This limit is called the reduced modulus of the punctured disk D ⊂ C with
respect to the local parameter z near z0, see e.g. [13], [31], [33].

The definition of reduced modulus can be extended to general Riemann surfaces.
Suppose that Q is a puncture of a Riemann surface � and suppose

z : U → C, z(Q) = 0,

is a local patch near Q. For any punctured disk D ⊂ S around Q, as above, for any
sufficiently small r > 0 we denote

D(r) ≡ D\{|z| ≤ r}.
Denote by m(r) ≡ M(D(r)) the modulus of the domain D(r).
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Definition 1.1. The limit

lim
r→0+

(
m(r) + 1

2π
log r

)

is called the reduced modulus of the punctured disk D (with respect to the local
uniformizer z).

Suppose that h is a holomorphic analytic homeomorphism between the punctured
disk D and the punctured disk {0 < |z| < ρ} with h(Q) = 0 and dh

dz
(0) = 1. Then

the number ρ is called the mapping radius of the punctured disk D with respect to
the local parameter z.

Lemma 1.2 ([31]). The reduced modulus of a punctured disk D with respect to the
local parameter z is equal to 1

2π
log ρ.

For our purpose, in the remainder of this paper we need the notions of canonical
modulus and canonical local parameter.

Recall that �∗ is the unit punctured disk. For any hyperbolic Riemann surface S,
let

π : �∗ → S, π(0) = Q

be an annular (unbranched) covering map induced by a simple loop around the punc-
ture Q. Then π is unique up to rotations of �∗. The local parameter η ≡ π−1|D can
be regarded as a local uniformizer at the neighborhood of Q.

Then we have the following definition.

Definition 1.3. For any punctured disk D ⊂ S around the puncture Q, the local
parameter η ≡ π−1|D is called the canonical local parameter of S at the neighborhood
of Q.

The canonical modulus M
D,S

is defined to be the reduced modulus of D with
respect to the canonical local parameter η ≡ π−1|D .

Evidently we have M
D,S

≤ 0. In comparison with the reduced modulus, the
canonical modulus of a punctured disk is independent of the choice of local parameters
near the puncture. The number

r
D,S

≡ e
2πM

D,S

is called the canonical mapping radius of the punctured disk D ⊂ S.

Note that an orientation preserving homeomorphism f : U → V between two
regions in C is a K-quasiconformal homeomorphism if and only if

lim sup
r→0+

max|z−ζ |=r |f (z) − f (ζ )|
min|z−ζ |=r |f (z) − f (ζ )| ≤ K, a.e. ζ ∈ U .
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Since Riemann surfaces have conformal structures, it makes sense to speak of
quasiconformal homeomorphisms between two Riemann surfaces. With respect to
quasiconformal maps we have the following result.

Lemma 1.4. Let Q ⊂ S (resp. Q′ ⊂ S′) be a marked puncture on S (resp. S′). Let
f : S → S′ be a K-quasiconformal homeomorphism with f (Q) = Q′.

If D ⊂ S is any punctured disk around Q, then f (D) ⊂ S′ is a punctured disk
around the puncture f (Q). In addition, the canonical moduli M

D,S
and M

f (D),S′ of
the punctured disks D and f (D) satisfy that

K · M
D,S

− 2K − 1

π
log 2 ≤ M

f (D),S′ ≤ M
D,S

K
+ 2

π
log 2 − log 2

πK
.

In particular, M
f (D),S′ → −∞ if and only if M

D,S
→ −∞.

Proof. Recall that π : �∗ → S is the annular covering map and η ≡ π−1|D is the
canonical parameter of S near Q.

Similarly, there is an annular covering map �∗ → S′ induced by a simple loop
around the puncture f (Q).

Denote by D̃ (resp. D̃′) the lifting image of D (resp. D′) which encloses the center
0 ∈ �. Let

z : D̃ → {z : 0 < |z| < e2πM}
be the holomorphic homeomorphism, where dz

dη
(0) = 1 and M ≡ M

D,S
is the canon-

ical modulus of the punctured disk D.
By applying the Koebe- 1

4 Theorem, we obtain that{
η : 0 < |η| <

e2πM

4

}
⊂ D̃ ⊂ �∗.

Lift f : S → S′ to a K-quasiconformal homeomorphism F : �∗ → �∗ with F(0) =
0. By applying Mori’s Theorem (see the Appendix), we have

|F(η)| ≥ 41−K |η|K, η ∈ �∗.

From the fact F(D̃) = D̃′, it follows that{
η : 0 < |η| < 41−K

(
e2πM

4

)K
}

⊂ D̃′ ⊂ �∗.

Hence the canonical modulus M ′ ≡ M
f (D),S′ satisfies

M ′ ≥ log 41−K
(

e2πM

4

)K

2π
= K · M − 2K − 1

π
log 2.

Interchanging M and M ′, we obtain the desired result. �
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Lemma 1.5. Let γ0 ⊂ S be a simple loop around the puncture Q which encloses
a punctured disk D0. Then there exists a positive constant m ≡ m(S, γ0) with the
following property:

Any annulus R ⊂ S of homotopic type γ0 with modulus M(R) ≥ m has at least
one of its boundary components lying inside the punctured disk D0.

Proof. For any 0 < r < 1, we denote by �r the conformal modulus of the 2-con-
nected region �\[0, r].

Using the annular covering π : �∗ → S , we can lift γ0 to a simple closed curve
γ̃0 ⊂ �∗ which surrounds 0. If we set

c ≡ inf{|ζ | : ζ ∈ γ̃0},
then the positive constant m ≡ �c has the desired property. �

Note that a quadratic differential ϕ = ϕ(z)dz2 on the Riemann surface S is a
holomorphic section of the square (T ∗)

⊗
2 of the tangent bundle T ∗.

Obviously, ϕ induces a ‘singular’ metric ds = √|ϕ(z)||dz| on S. For any piece-
wise smooth curve γ ⊂ S, the infimum

h = inf
γ̃∼γ

∫
γ̃

|
√
ϕ|,

where γ̃ varies over all piecewise smooth curves in the homotopy class of γ , is called
the ϕ-height of γ .

If a quadratic differential ϕ has a double pole at z0, then ϕ has the form

ϕ ≡ ϕ(z) dz2 =
(

a−2

z2 + a−1

z
+ a0 + a1z + · · ·

)
dz2 = a−2

ξ2 dξ2.

The local parameter ξ is uniquely determined up to a complex constant factor. It is
called the normalized uniformizer near z0. The leading coefficient a−2 is an invariant
datum, i.e. it is independent of the choice of coordinate patches near the puncture z0.

Figure 1 shows the local trajectory structures near a double pole. Depending on
the leading coefficient a−2,, we have three cases to distinguish.

�����
��
	

��

·

a−2 < 0

��
����

��

Figure 1

a−2 > 0

·

Im a−2 �= 0

·

If z0 is a double pole of a quadratic differential with leading coefficient −a2

(a > 0), then horizontal trajectories near z0 are closed and they have the same
ϕ-length 2πa.
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Note that a non-zero quadratic differential is called a Jenkins–Strebel differential
if its non-closed trajectories cover a set of measure zero. Hence a Jenkins–Strebel
differential decomposes the Riemann surface into characteristic regions, which are
swept out by closed trajectories. These characteristic regions consist of annuli or
punctured disks.

If a quadratic differential has a pole of order ≥ 3, then there is a neighborhood
of the pole such that each trajectory ray entering it tends to it. Therefore a Jenkins–
Strebel differential has only simple poles or double poles, and the leading coefficient
of the double pole must be negative. See e.g. [31].

In [17] we considered Jenkins–Strebel differentials with only characteristic annuli.
In this paper we allow that Jenkins–Strebel differentials have characteristic punctured
disks near the distinguished punctures.

The next two lemmas on the inequalities of weighted sum of moduli and weighted
sum of the reciprocals of moduli are well known. For their complete proofs we refer
to [31].

Lemma 1.6 ([31]). Let ϕ �= 0 be a non-zero Jenkins–Strebel differential on S with
type {γk}1≤k≤p, and its characteristic annuli {Rk} have heights {hk}. If {R̃k} is
a system of non-overlapping annuli on S with the homotopy type {γk}, then their
conformal moduli M̃k ≡ M(Rk) satisfy

∑
k

h2
k

M̃k

≥
∑

k

h2
k

Mk

,

with equality holds if and only if R̃k = Rk for each k.

Lemma 1.7 ([31]). Let ϕ �= 0 be a Jenkins–Strebel differential on S. Suppose that its
characteristic regions consist of a finite number of annuli {Rk} with finite conformal
moduli {Mk} and a finite number of punctured disks {Dj } around the distinguished
punctures {Qj }. Furthermore, suppose that {Dj } have reduced moduli {Mj } (with
respect to a fixed system of local coordinates near the punctures {Qj }).

Suppose that ϕ has finite reduced norm∑
k

a2
kMk +

∑
j

a2
j Mj ,

where ak , 1 ≤ k ≤ p, is the ϕ-length of closed horizontal trajectories homotopic to
γk , and aj , 1 ≤ j ≤ q, is the ϕ-length of closed horizontal trajectories around Qj .

Let {R̃k} and {D̃j } be non-overlapping regions homotopic to the annuli {Rk}
and the punctured disks {Dj }, respectively. Moreover we suppose that {R̃k} have
conformal moduli {M̃k} and {D̃j } have reduced moduli {M̃j } (with respect to the
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same system of coordinates near {Qj }). Then we have∑
k

a2
kMk +

∑
j

a2
j Mj ≥

∑
k

a2
k M̃k +

∑
j

a2
j M̃j .

The equality holds if and only if R̃k = Rk , D̃j = Dj for all k and j . In addition, as
an easy consequence, we obtain that

inf
j,k

{M̃k − Mk, M̃j − Mj } ≤ 0.

The equality holds if and only if R̃k = Rk , D̃j = Dj for all k, j .

Remark 1.8. Lemmas 1.6 and 1.7 can be extended, in a rather straightforward man-
ner, to the case whenS is a Riemann surface with boundaries andϕ is a Jenkins–Strebel
differential which is real along the boundary curves.

In fact, we can construct the double surface ofS, denoted by S̃. Sinceϕ is real along
the boundary curves, by reflection it can be continued to a Jenkins–Strebel differential
on S̃. Therefore we have the corresponding results on the bordered Riemann surface.

2. Differentials with poles

Suppose that P is a pair of ‘pants’, namely it is a bordered surface by cutting off the
interiors of 3 disjoint closed disks from the Riemann sphere. Denote by {γ1, γ2, γ3}
its boundary components.

Then we have the following result.

Lemma 2.1. Let (h1, h2, h3) �= 0 be a fixed non-zero triple of numbers, where hi ≥ 0.
If (l1, l2, l3) is a non-negative triple such that li �= 0 if and only if hi �= 0, then there
is a conformal structure P on P with the following properties:

(i) The Riemann surface P admits a Jenkins–Strebel differential ϕ with type {γk}
(k corresponds to those hk �= 0). The boundary components {γk} are closed hori-
zontal trajectories of ϕ. And the characteristic annuli {Rk} have ϕ-circumferences
{lk} and ϕ-heights {hk}.

(ii) If hi = 0, then the corresponding boundary component γi is a puncture of P

and ϕ has at most a simple pole at this puncture.

Proof. If each component of (h1, h2, h3) is not zero, then this lemma is just Lemma 2.1
in [17].

Supposing that li = 0 for at least one i, then we will deal with two cases:

1. There is only one component of (l1, l2, l3) is 0. Without loss of generality we
assume that l3 = 0. We can divide the case 1 into two subcases:
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(i) l1 > l2 > 0 (the subcase 0 < l1 < l2 can be treated by the same way).
Let A1A

′
1A2A

′
2A3A

′
3 = ⋃

i=1,2 D̃i be a ‘hexagon’ in the z-plane, where D̃1, D̃2
are two rectangles and

A1 =
(

l1

2
,
h1

2

)
, A′

1 =
(

0,
h1

2

)
, A2 =

(
0, −h2

2

)
,

A′
2 =

(
l2

2
, −h2

2

)
, A3 =

(
l2

2
, 0

)
, A′

3 =
(

l1

2
, 0

)
.

See Figure 2(a). Denote by ϕ ≡ dz2 the quadratic differential in the ‘pentagon’
A1A

′
1A2A

′
2A3.

(ii) l1 = l2 �= 0.
Let A1A

′
1A2A

′
2A3 = ⋃

i=1,2 D̃i be a ‘pentagon’ in the z-plane, where D̃1, D̃2 are
two rectangles and

A1 =
(

l1

2
,
h1

2

)
, A′

1 =
(

0,
h1

2

)
, A2 =

(
0, −h2

2

)
,

A′
2 =

(
l1

2
, −h2

2

)
, A3 =

(
l1

2
, 0

)
.

See Figure 2 (b). Denote by ϕ ≡ dz2 the quadratic differential in the ‘pentagon’
A1A

′
1A2A

′
2A3.

2. Two components of (l1, l2, l3) are zero. Without loss of generality we assume
that l2 = l3 = 0 and l1 �= 0.

Let A1A
′
1A2A

′
2 = D̃i be a ‘rectangle’ in the z-plane, where

A1 =
(

l1

2
,
h1

2

)
, A′

1 =
(

0,
h1

2

)
, A2 = (0, 0), A′

2 =
(

l1

2
, 0

)
.

See Figure 2 (c). Denote by ϕ ≡ dz2 the quadratic differential in the ‘pentagon’
A1A

′
1A2A

′
2A3.

(a)

A1
A′

1

A2 A′
2

A3
A′

3
�

(b)

A1
A′

1

A2

A3

A′
2

�

(c)

A1
A′

1

A2
A′

2
��

Figure 2
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In the case 1 (i), the surface P̃ = A1A
′
1A2A

′
2A3A

′
3 has a mirror image P̃

∗ =
A1A

′
1A2A

′
2A3A

′
3
∗. See e.g. [31]. The surfaces P̃

∗
and P̃ can be glued along the

boundary components
{A′

1A2, A
′
2A3, A3A

′
3, A

′
3A1}

to form a new Riemann surface, denoted by P .
Similarly, in the case 1 (ii) the surface P̃ and its mirror image P̃

∗
can be glued

along the boundary components

{A′
1A2, A

′
2A3, A3A1}

to form a new surface P .
In case 2, the Riemann surface P̃ = A1A

′
1A2A

′
2 and its mirror image P̃

∗ =
A1A

′
1A2A

′
2
∗ can be glued along the boundary components {A′

1A2, A2A
′
2, A

′
2A1} to

form a new surface P .
In Figure 2 (a), (b) and (c) the symbol ‘�’ denotes the punctures of P .
By analytic continuation, the quadratic differential ϕ on P̃ and the reflection

differential ϕ∗ on P̃
∗

can be joined together to form a new quadratic differential
on P , denoted by the same notation ϕ.

In case 1 (i) the surface P has a puncture at A′
3 and ϕ has a simple pole at A′

3.
In case 1 (ii) the surface P has a puncture at A3 and A3 is a removable pole of ϕ.
In case 2 the differential ϕ has two simple poles at the punctures A2 and A′

2. This
construction shows that the surface P has the desired properties.

When li �= 0, we call Ai the marked point of the boundary curve γi on P . �

From Lemma 2.1, and repeating the similar methods in [17], we obtain

Corollary 2.2 ([31]). Suppose that {γ1, γ2, . . . , γp} is an admissible curves system
on the punctured Riemann surface S. Then, for arbitrary hk > 0, 1 ≤ k ≤ p, there
exists a Jenkins–Strebel differential ϕ with type {γk} and ϕ-heights {hk}.

Moreover the differential ϕ is uniquely determined.

Analogous to Lemma 2.1, we have the following result.

Lemma 2.3. Let (h1, h2, h3) be a fixed non-zero triple of numbers with 0 ≤ hi ≤
+∞. Also we suppose that 0 < hi < +∞ for at least one i.

For any non-negative triple (l1, l2, l3) satisfying that li = 0 if and only if hi = 0,
we can put a conformal structure on P such that the resulting bordered Riemann
surface P has the following properties:

(i) P admits a Jenkins–Strebel differential ϕ of type {γk}, where k ∈ {i : 0 < hi <

+∞}. The boundary components {γk} are closed horizontal trajectories of ϕ. In the
ϕ-metric the characteristic annulus Rk with homotopic type γk has circumferences lk
and heights hk , where k ∈ {i : 0 < hi < +∞}.
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(ii) If j satisfies that hj = +∞, then the boundary component of P corresponding
to γj is a puncture, denoted by Qj . In the ϕ-metric the characteristic punctured disk
Dj around Qj has circumference lj . Equivalently ϕ has a second order pole at Qj

with the leading coefficient −( lj
2π

)2
.

(iii) All the left boundary components of P are punctures and ϕ has at most a
simple pole at these punctures.

The proof of Lemma 2.3 will be postponed to Section 5.
Recall that the Riemann surface S is of type (g, n). If


 = {γ1, γ2, . . . , γN }
is a maximal finite admissible curves system on S, then N = 3g + n − 3. And 


divides S into 2g + n − 2 pairs of ‘pants’ {Pi}1≤i≤2g+n−2. Let {γiμ}μ=1,2,3 denote
the boundary components of Pi .

Let H ≡ (h1, h2, . . . , h3g+n−3) ∈ R3g+n−3
+ be the heights associated with the

maximal admissible system 
 and let

A ≡ (a1, a2, . . . , aq) ∈ Rq
+

be the leading coefficients at the marked punctures {Qj }.
Suppose that v = (Lv, �v) ∈ R3g+n−3

+ × R3g+n−3, where

Lv = (l1, l2, . . . , l3g+n−3) ∈ R3g+n−3
+ ,

and
�v = (θ1, θ2, . . . , θ3g+n−3) ∈ R3g+n−3.

Lemma 2.3 immediately implies that there exists a conformal structure on Pi such
that the corresponding Riemann surface Pi has the following properties:

(1) Pi admits a Jenkins–Strebel differential ϕi . If the boundary component γiμ is not
a puncture, then γiμ is a closed horizontal trajectory of ϕi . Also in the ϕi-metric,
the characteristic annuli {Riμ} have lengths {liμ} and heights {hiμ/2}.

(2) If Qij is a marked puncture of Pi , then ϕi has a double pole at Qij with leading

coefficient −( aij

2π

)2.

(3) All the left boundary components of Pi are punctures and ϕi has at most simple
poles at these punctures.

Let Lv be the lengths of boundary trajectories and let �v be the twisting angles
between two pairs of adjacent ‘pants’. With the help of 3-graphs [4], as in [17] we can
construct a Riemann surface hA

H (v) with a Jenkins–Strebel differential ϕv on hA
H (v).

The differential ϕv is of type 
 and its characteristic annulus Rk has ϕv-heights hk ,
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where 1 ≤ k ≤ 3g + n − 3. Moreover, ϕ has the leading coefficient − ( aj

2π

)2
at the

puncture Qj , 1 ≤ j ≤ q.
Note that the Teichmüller space of the Riemann surface S is defined to be the

space of Teichmüller deformations of the complex structure on S, denoted by Tg,n.
See e.g. [1], [15]. For any Riemann surface S̃ of the same type (g, n), we denote by
[S̃] ∈ Tg,n the equivalent class of conformal structures which includes S̃.

By sending hA
H (v) = [hA

H (v)] ∈ Tg,n, we obtain a map

hA
H : R3g+n−3

+ × R3g+n−3 → Tg,n. (1)

In addition, we have

Theorem 2.4. Given the maximal admissible system 
, and positive arrays A =
(a1, a2, . . . , aq) and H = (h1, h2, . . . , h3g+n−3), the map

hA
H : R3g+n−3

+ × R3g+n−3 → Tg,n

defined in (1), is a homeomorphism.

The proof of Theorem 2.4 will also be postponed to Section 5.

3. The main theorem

With the help of Theorem 2.4 we are ready to prove the following generalized height
theorem on punctured Riemann surfaces.

Recall that S is a compact Riemann surface with distinguished punctures
{Qj }1≤j≤q .

Theorem 3.1. For arbitrary hk > 0, 1 ≤ k ≤ p, and aj > 0, 1 ≤ j ≤ q, there is a
Jenkins–Strebel differential ϕ on S with the following properties:

(i) The differential ϕ has p characteristic annuli {Rk} with type {γk}. In the
ϕ-metric these annuli have heights {hk}.

(ii) ϕ has q punctured disks {Dj } which are swept out by closed trajectories around
the marked punctures {Qj }. The closed horizontal trajectories in Dj have the same
ϕ-length aj . Equivalently, ϕ has a second order pole at Qj with leading coefficient

− ( aj

2π

)2
, j = 1, 2, . . . , q.

Moreover the quadratic differential ϕ is uniquely determined.

Proof. At first we prove the uniqueness part.
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We assume, by contradiction, that there are two quadratic differentials ϕi , i =
1, 2, on S such that the characteristic annuli R1k and R2k have the same height hk ,
1 ≤ k ≤ p. Moreover ϕ1 and ϕ2 have the same leading coefficient −( aj

2π

)2 at the
marked puncture Qj , where 1 ≤ j ≤ q.

Let ηj be the canonical local parameter of S near the puncture Qj . Denote by Dij

the characteristic punctured disks of ϕi around Qj , where i = 1, 2 and 1 ≤ j ≤ q.
Using the local normalized uniformizer ζij , the punctured disk Dij has the form

Dij = {ζij : 0 < |ζij | < rij },
where

dζij

dηj
(0) = 1 and rij is nothing else than the mapping radius of ϕi with respect

to ζj . Then Mij ≡ 1
2π

log rij is the canonical modulus of Dij , where 1 ≤ i ≤ 2 and
1 ≤ j ≤ q.

Picking a sufficient smallρ with mapping radius rij ≥ ρ for 1 ≤ i ≤ 2, 1 ≤ j ≤ q,
we denote

S1(ρ) ≡ S\ ∪ {|ζ1j | < ρ}.
LetMj(ρ) resp. M̃j (ρ))denote the conformal modulus of the annulusD1j\ ⋃{|ζ1j | <

ρ} (resp. D2j\ ⋃{|ζ1j | < ρ}), 1 ≤ j ≤ q. Denote by Mik the conformal modulus of
the annulus Rik , where 1 ≤ i ≤ 2, 1 ≤ k ≤ p.

In the Riemann surface S1(ρ), by applying Lemma 1.6 to the differential ϕ1, we
have ∑

k

h2
k

M1k

+
∑
j

( aj

2π
log

r1j

ρ

)2

Mj(ρ)
≤

∑
k

h2
k

M2k

+
∑
j

( aj

2π
log

r1j

ρ

)2

M̃j (ρ)
. (2)

Evidently as ρ → 0+, we have

Mj(ρ) = 1

2π
log

r1j

ρ
and M̃j (ρ) + 1

2π
log ρ → M2j = 1

2π
log r2j .

By adding the term
∑

j

a2
j

2π
log ρ to both sides of the inequality (2) and letting ρ → 0,

we deduce that∑
k

a1khk +
∑
j

a2
j M1j ≤

∑
k

a2khk +
∑
j

a2
j (2M1j − M2j ),

or ∑
k

a1khk −
∑
j

a2
j M1j ≤

∑
k

a2khk −
∑
j

a2
j M2j . (3)

Interchanging ϕ1 and ϕ2, the opposite inequality holds too. Therefore∑
k

a1khk −
∑
j

a2
j M1j =

∑
k

a2khk −
∑
j

a2
j M2j . (4)
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On the other hand, from Lemma 1.7 it follows that∑
k

a2
1kM1k +

∑
j

a2
j M1j ≥

∑
k

a2
1kM2k +

∑
j

a2
j M2j . (5)

Combining (4) and (5) one obtains

∑
k

2a1khk ≥
∑

k

(
a2k + a2

1k

a2k

)
hk.

The elementary inequality implies that

2a1k ≤ a2k + a2
1k

a2k

, 1 ≤ k ≤ p,

with equality if and only if a1k = a2k . Hence

a1k = a2k, 1 ≤ k ≤ p.

From Lemma 1.7 it follows that the characteristic annuli and the characteristic punc-
tured disks of ϕ1 and ϕ2 are identical, which proves the uniqueness part.

We now show the existence part.
Since {γ1, γ2, . . . , γp} is an admissible system on S, we conclude p ≤ 3g+n−3.
If p = 3g + n − 3, then {γ1, γ2, . . . , γp} is a maximal admissible curves system

on S. Denote
H ≡ (h1, h2, . . . , h3g+n−3) ∈ R3g+n−3

+ .

Let A ≡ (a1, a2, . . . , aq) ∈ Rq
+ be the leading coefficients at the punctures {Qj }.

From Theorem 3.2, it follows that

(hA
H )−1 : Tg,n → R3g+n−3

+ × R3g+n−3

is a homeomorphism. By considering the point [S] ∈ Tg,n, we conclude that there is a
Jenkins–Strebel differential ϕA

H on S with type {γk}. Its annuli {Rk} have ϕA
H -heights

{hk} and its characteristic punctured disks Dj have ϕA
H -circumferences {aj }.

Now we assume p < 3g +n−3. By adding 3g +n−3−p simple closed curves
{γp+1, . . . , γ3g+n−3} to {γ1, γ2, . . . , γp}, we obtain a maximal admissible system

{γ1, γ2, . . . , γp, γp+1, . . . , γ3g+n−3}
on S, denoted by 
.

For any positive vector ε = (ε1, ε2, . . . , ε3g+n−3−p), by applying the same argu-
ment as above, we obtain a differential ϕε on S with type 
. Its characteristic annuli
have ϕε-heights

(h1, . . . , hp, ε1, . . . , ε3g+n−3−p).

and its characteristic punctured disks have ϕε-circumferences {aj }.
Now we have the following result. Its proof will be postponed to Section 5.
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Lemma 3.2. If εi ≤ εi(0) for some εi(0) > 0, where 1 ≤ i ≤ 3g + n − 3 − p, then
the quadratic differentials {ϕε} are locally uniformly bounded on S.

Let us proceed with the proof of Theorem 3.1.
Letting ε tend to 0, Lemma 3.2 implies that the quadratic differentials {ϕε}

are locally uniformly bounded on S. Hence ϕε converges locally uniformly to
some quadratic differential ϕ with type {γk}1≤k≤p. Also the characteristic annuli
of ϕ have ϕ-heights (h1, h2, . . . , hp) and its characteristic punctured disks have ϕ-
circumferences {aj }1≤j≤q , as desired. �

Denote by JS the set consisting of all Jenkins–Strebel differentials on S of homo-
topic type {γk}1≤k≤p and with second order poles at the marked punctures {Qj }. It
is permitted that for some k there is no annulus and for some j there is no punctured
disk. Moreover we assume that 0 ∈ JS .

Applying Theorems 23.3 and 24.7 of [31], with the assistance of Lemma 3.2 we
have

Lemma 3.3. The space JS is closed under locally uniform convergence on S. In
other words, if ϕn ∈ JS and ϕn → ϕ locally uniformly on S, then ϕ ∈ JS . Moreover
the lengths anj → aj , the heights hnk → hk and the moduli Mnk → Mk for each j

and k.
Conversely, if {anj } and {hnk} are bounded, then the sequence {ϕn} ⊂ JS contains

a subsequence which converges locally uniformly on S.

By taking the admissible curves system to be ∅, we obtain a new proof of the
following result due to Strebel.

Theorem 3.4. For any distinct q marked punctures on S, there is a unique Jenkins–
Strebel differential ϕ whose characteristic domains are q-punctured disks with speci-
fied circumferences aj , 1 ≤ j ≤ q.

4. Solution of the moduli problems

Recall that {γk} is a system of admissible curves on S. If {Rk} ⊂ S are disjoint 2-
connected regions with type {γk}, then their conformal moduli {M(Rk)} are bounded
from above. It leads to the following definition.

Definition 4.1. A moduli array M = (m1, m2, . . . , mp) (mk > 0) is called admissible
on S, if there is a system of non-overlapping ring regions {Rk} ⊂ S homotopic to
{γk} and their conformal moduli {M(Rk)} satisfy

mk < M(Rk), k = 1, 2, . . . , p.
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Denote by M the set consisting of all admissible vectors M on S. Clearly M ⊂ Rp
+

is open.

Remark 4.2. For any M = (m1, m2, . . . , mp) ∈ Rp
+, the Strebel Moduli Theorem

shows that there exists a Jenkins–Strebel differential of type {γk}. Its characteristic
annuli have moduli {λ mk} for some constant λ > 0 independent of k. In addition,
the differential ϕ is unique up to a positive constant factor.

Obviously M ∈ M if and only if λ > 1.

For any
C = (c1, c2, . . . , cp) ∈ Rp

+,

there is a unique Jenkins–Strebel differential ϕc on S such that the moduli of the
characteristic annuli {Rc

k} maximize the sum
∑

k c2
km̃k, among all possible choices

of disjoint ring domains {R̃k} ⊂ S homotopic to {γk}. See e.g. Theorem 21.11 in
[31]. Again, for each annulus Rc

k with conformal modulus M(Rc
k) > 0, the number

ck is just the ϕc-length of closed trajectories in Rc
k .

Let {mc
k} denote the conformal moduli of the characteristic annuli {Rc

k} (If some
annulus Rc

k disappears, then we set mc
k = 0).

To obtain some properties of the space M, we will give another criterion in
determining whether M ∈ M or not.

Lemma 4.3. If M = (m1, m2, . . . , mp) ∈ Rp
+, then M ∈ M if and only if for each

C = {ck} ∈ Rp
+, ∑

k

c2
km

c
k >

∑
k

c2
kmk.

Proof. If M ∈ M, then it is immediate that,
∑

k c2
km

c
k >

∑
k c2

kmk for each C ∈ Rp
+.

Conversely, we assume that M /∈ M. Thus there exists a differential ϕ0 with type
{γk} and its annuli have moduli {λ mk} for some 0 < λ ≤ 1. Letting (c01, c02, . . . , c0p)

be the ϕ0-lengths of its characteristic annuli, we have∑
k

c2
0kλ mk ≤

∑
k

c2
0kmk,

which contradicts our assumption. �

Lemma 4.3 immediately implies the following result.

Theorem 4.4. M is strictly convex in Rp
+. That is, M, M ′ ∈ M implies that

t M + (1 − t) M ′ ∈ M for all t ∈ [0, 1].
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Recall that {γk}1≤k≤p is an admissible curves system on S.
Given A = (a1, a2, . . . , aq) ∈ Rq

+, for any

V = (v1, v2, . . . , vp) ∈ Rp
+,

from Theorem 3.3 it follows that there is a unique Jenkins–Strebel differential ϕV

with homotopic type {γk}. Its characteristic annuli have ϕV -heights {vk} and ϕV has
the leading coefficient −( aj

2π

)2 at the puncture Qj , 1 ≤ j ≤ q.
Denote by {mv

k}1≤k≤p the moduli of its characteristic annuli. It is clear that
MV ≡ (mv

1, m
v
2, . . . , m

v
p) ∈ M. By setting FA(V ) = MV we immediately obtain a

map
FA : Rp

+ → M. (6)

Furthermore we have:

Theorem 4.5. For any A = (a1, a2, . . . , aq) ∈ Rq
+, the map FA : Rp

+ → M defined
in (6) is a homeomorphism.

The proof of this theorem is postponed to Section 5. The following is an equivalent
statement of Theorem 4.5.

Theorem 4.6. If M = (m1, m2, . . . , mp) is admissible on S, then for any given
A = (a1, a2, . . . , aq) ∈ Rq

+ there is a Jenkins–Strebel differential ϕ which has p

characteristic annuli with homotopic type {γk} and with conformal moduli {mk}. At
the puncture Qj the differential ϕ has a second order pole with leading coefficient

−( aj

2π

)2
, j = 1, 2, . . . , q.

Moreover the differential ϕ is uniquely determined.

Theorem 4.5 and 4.6 can be applied to solve the following moduli problem.

Moduli problem. Given arrays M = (m1, . . . , mp) ∈ Rp
+ and A = (a1, . . . , aq) ∈

Rq
+, can one find a quadratic differential ϕ with the following properties?

The characteristic annuli of ϕ are homotopic to {γk} and have conformal moduli
{mk}. Also ϕ has second order poles at {Qj } with prescribed leading coefficient{ − ( aj

2π

)2}.

As we have shown in Theorem 4.6, the moduli problem is solvable if and only if
M ∈ M. In particular the moduli problem is always solvable for sufficiently small
M > 0.

Recall that ζj is a fixed local parameter near the distinguished puncture Qj , 1 ≤
j ≤ q. The remainder of this section is to prove the following result.

Theorem 4.7. Suppose that M = (m1, m2, . . . , mp) ∈ M. That is, M is admissible
on S.
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Then, for any real numbers m̃j , 1 ≤ j ≤ q, there is a Jenkins–Strebel differential
ϕ which has characteristic annuli {Rk} homotopic to {γk}. The characteristic annulus
Rk has modulus mk , 1 ≤ k ≤ p.

Around the puncture Qj , the differential ϕ has a characteristic punctured disk Dj

with reduced modulus (with respect to the given local parameter ζj )

Mj = m̃j + c, 1 ≤ j ≤ q,

for some constant c independent of j .
In addition, ϕ is uniquely determined up to a positive constant factor. In particular,

the annuli {Rk} and the punctured disks {Dj } are uniquely determined.

Proof. To prove the uniqueness, let ϕ and ϕ̂ be two solutions whose annuli Rk and
R̂k have the same conformal moduli mk , 1 ≤ k ≤ p, and whose punctured disks Dj

and D̂j have reduced moduli (with respect to the given local parameter ζj )

Mj = m̃j + c, M̂j = m̃j + ĉ, 1 ≤ j ≤ q,

respectively. By applying Lemma 1.7 to the quadratic differential ϕ, we conclude
that

inf
1≤j≤q

(M̂j − Mj) = ĉ − c ≤ 0.

Similarly, by starting with the quadratic differential ϕ̂, we conclude that c − ĉ ≤ 0.
Hence c = ĉ.

From Lemma 1.7, it follows that

Rk ≡ R̂k, Dj ≡ D̂j , 1 ≤ k ≤ p, 1 ≤ j ≤ q.

Hence ϕ and ϕ̂ have the same trajectory structures, which implies that ϕ̂ = λϕ for
some λ ∈ R+.

To prove the existence, we denote by C the set consisting of all real numbers {c}
with the following properties:

(1) There exists a system of disjoint ring domains {R̃k} and punctured disks {D̃j }
on S such that {R̃k} is homotopic to {γk} and {D̃j } is around the distinguished
punctures {Qj }.

(2) The 2-connected domain R̃k has conformal modulus ≥ mk , 1 ≤ k ≤ p. With
respect to the given local parameter ζj , the punctured disk D̃j has reduced modu-
lus ≥ m̃j + c, 1 ≤ j ≤ q.

From M = (m1, m2, . . . , mp) ∈ M, it immediately follows that C �= ∅ (see e.g.
Theorem 4.6). Furthermore it is obvious that

c0 ≡ sup C < ∞.
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By using the normal family argument, we conclude that there exists a system of
disjoint ring domains {Rk} and punctured disks {Dj } on S such that their conformal
moduli and reduced moduli (with respect to the given local parameter {ζj }) realize
the number c0.

Now we can prove that the regions {Rk} and {Dj } are associated with some
Jenkins–Strebel differential on S.

In terms of the normalized local parameter zj ,

Dj = {zj : 0 < |zj | < rj }, 1 ≤ j ≤ q,

where
dzj
dζj

(0) = 1 and rj is the reduced mapping radius with respect to ζj . Choose a

sufficiently small number ρ with 0 < ρ < rj , where 1 ≤ j ≤ q. Denote mj(ρ) to be
the modulus of the ring domain

Rj(ρ) ≡ {zj : ρ < |zj | < rj }, 1 ≤ j ≤ q.

We claim that Rk , 1 ≤ k ≤ p, and Rj(ρ), 1 ≤ j ≤ q, are characteristic ring domains
of some quadratic differential ϕρ on the truncated Riemann surface S(ρ) ≡ S\∪j {zj :
|zj | < ρ}.

Otherwise, we would have a system of ring domains {R̃k} and {R̃j (ρ)} on S(ρ)

with conformal moduli M(R̃k) = (1 + ε)mk and

M(R̃j (ρ)) = (1 + ε)
1

2π
log

rj

ρ
,

for some ε > 0.
By adding the punctured disks {zj : |zj | < ρ} to the truncated Riemann surface

S(ρ), we obtain a system of ring domains with conformal moduli {(1 + ε)mk} and
punctured disks with reduced moduli (with respect to the given local parameter ζj )

M̃j ≥ (1 + ε)
1

2π
log

rj

ρ
+ 1

2π
log ρ >

1

2π
log rj = Mj, 1 ≤ j ≤ q.

It contradicts the original assumption that c0 = sup C.
Thus the ring domains {Rk}1≤k≤p and {Rj(ρ)}1≤j≤q are associated with a quad-

ratic differential ϕρ on S(ρ). And the boundary components {|zj | = ρ} are the closed
trajectories of ϕρ . Hence

ϕρ = ϕ|S(ρ)

for some Jenkins–Strebel differential ϕ on S.
In conclusion, the characteristic domains of ϕ consist of ring domains with moduli

{mk} and punctured disks with reduced moduli {m̃j + c0} (with respect to the given
local parameters {ζj }), as desired. �
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5. Proof of some basic results

Now we can begin the proofs of some basic results.

Proof of Lemma 2.3. If hi �= +∞ for each i ∈ {1, 2, 3}, Lemma 2.3 follows from
Lemma 2.1.

Now we assume that there is at least one j such that hj = +∞. We form a new
triple (h̃1, h̃2, h̃3) by setting h̃i = hi if hi �= +∞, otherwise setting h̃i = 1.

From the new triple (h̃1, h̃2, h̃3), by applying Lemma 2.1 we can construct a
Riemann surface P̃ with the following properties:

� The Riemann surface P̃ admits a Jenkins–Strebel differential ϕ̃ of type {γk},
where k ∈ {0 < h̃k < +∞}. The boundary components {γk} are closed
horizontal trajectories of ϕ̃. In the ϕ̃-metric the characteristic annulus R̃k ⊂ P̃

has circumference lk and height h̃k .

�� When h̃i = 0, each boundary component γi is a puncture of P̃ and ϕ̃ has at most
a simple pole at this puncture.

Recall that �∗ is the punctured unit disk. Denote by

ϕ∗ ≡ −
(

lj

2π

)2 dζ 2

ζ 2

the quadratic differential in �∗. We can easily check that all concentric circles
{ζ : |ζ | = r} (0 < r < 1) are horizontal trajectories of ϕ∗ with the same ϕ∗-length lj .

As in Figure 2, for each j satisfying that hj = +∞, we denote by Aj the marked
point on boundaries γj .

By identifying the marked points Aj ∈ γj and 1 ∈ {|ζ | = 1}, and by isometrically
welding the boundary components {|ζ | = 1} and γj (in the ϕ∗- and ϕ̃-metric, re-
spectively), we can join together the Riemann surfaces �∗ and P̃ . The weld process
preserves their induced orientations. Since the curves {|ζ | = 1}) and γj are both
horizontal trajectories and have the same length lj , this welding is possible. Denote
by P the resulting Riemann surface.

The Jenkins–Strebel differentials ϕ̃ and ϕ∗ are joined to form a new Jenkins–
Strebel differential on P , denoted by ϕ. Hence the Riemann surface P and the
differential ϕ on P have the desired properties, which establishes Lemma 2.3. �

Proof of Theorem 2.4. Note that the spaces R3g+n−3
+ × R3g+n−3 and Tg,n are both

homeomorphic to the 6g + 2n − 6 dimensional Euclidean space R6g+n−6. To prove
that the map hA

H : R3g+n−3
+ × R3g+n−3 → Tg,n is a homeomorphism, it is sufficient

to check that hA
H is continuous, injective and proper.

The proof of Theorem 2.4 is divided into several steps.

Step 1. Prove that hA
H : R3g+n−3

+ × R3g+n−3 → Tg,n is continuous.
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We assume that, as n → +∞,

vn ≡ (Ln, �n) → v0 ≡ (L0, �0), (7)

in the space R3g+n−3
+ × R3g+n−3. For simplicity of notations we set Sn ≡ hA

H (vn)

and S0 ≡ hA
H (v0).

From the assumption (7) we deduce that {Sn} lie in a compact set of Tg,n, see
e.g. [8]. Therefore there is a subsequence of {Sn} which tends to some S∗ ∈ Tg,n.
For convenience of notation we call the subsequence {Sn} again. Therefore there are
Teichmüller extremal homeomorphisms

Fn : Sn → S∗, n = 1, 2, . . . (8)

with maximal dilatations Kn ≡ K[Fn] → 1.
Let ηnj be the canonical local parameter of Sn at the neighborhood of Qj . For

any characteristic punctured domain Dnj ⊂ Sn, in terms of the normalized local
parameters ζnj we have

Dnj = {ζnj : 0 < |ζnj | < rnj }, n = 0, 1, 2, . . . ,

where
dζnj

dηnj
(0) = 1 and rnj is the canonical mapping radii of Dnj . If we denote

Sk
n ≡ Sn

∖{
0 < |ζnj | <

rnj

2k

}
, k = 1, 2, . . . ,

then the Riemann surfaces sequence {Sk
n} is an exhaustion of the Riemann surface Sn.

For each k, Lemma 3.5 in [8] implies that [Sk
n] → [Sk

0 ] in the reduced Teichmüller
space. Hence there are Teichmüller deformations

Fnk : Sk
n → Sk

0 , (9)

with maximal dilatations Kk
n ≡ K[Fnk] → 1 as n → ∞.

Combining (8) with (9), we obtain a quasiconformal map

Fn � F
(−1)
nk : Sk

0 → S∗.

Furthermore, for each fixed k the maximal dilatations satisfy

K[Fn � F
(−1)
nk ] ≤ K[Fn] · K[Fnk] → 1, n → +∞.

We can therefore pass to a subsequence (denoted again by Fn � F
(−1)
nk ) such that,

as n → +∞, the quasiconformal homeomorphism Fn � F
(−1)
nk locally uniformly

converges to a quasiconformal homeomorphism

Fk : Sk
0 → S∗.
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Since Fn � F
(−1)
nk induces the same isomorphism between the fundamental groups of

Sk
0 and S∗, we conclude that Fk is univalent.

By using the standard argument we know that there is a conformal homeomor-
phism F : S0 → S∗. This implies that

[S∗] = [S0] ∈ Tg,n,

which proves the continuity of the map hA
H : R3g+n−3

+ × R3g+n−3 → Tg,n.

Step 2. Prove that hA
H : R3g+n−3

+ × R3g+n−3 → Tg,n is injective.
Since the proof is similar to the uniqueness part of the proof of Theorem 3.1, we

omit it here.

Step 3. Show that hA
H : R3g+n−3

+ × R3g+n−3 → Tg,n is a proper map.
To prove the properness of the map hA

H , we must show that if any sequence

{v′
n} ⊂ R3g+n−3

+ × R3g+n−3 approaches the boundary of R3g+n−3
+ × R3g+n−3, then

the surfaces {hA
H (v′

n)} approach the boundary of Tg,n.
Let

v′
n = (ln1, . . . , ln(3g−3), θn1, . . . , θn(3g−3)).

The assumption that {v′
n} approaches the boundary of R3g+n−3

+ × R3g+n−3 implies
that at least one of the following holds:

(i) lnk0 → +∞ for some fixed 1 ≤ k0 ≤ 3g + n − 3 as n → +∞.

(ii) For some fixed 1 ≤ k0 ≤ 3g + n − 3, lnk0 → +0 as n → +∞.

(iii) As n → +∞, then c < lnk < C, 1 ≤ k ≤ 3g + n − 3, and

3g+n−3∑
k=1

|θnk| → +∞,

for two positive constants c, C > 0 independent of n.

Letting v′
0 = (1, 1, . . . , 1; 0, 0, . . . , 0) ∈ R3g+n−3

+ × R3g+n−3, as before we set

S′
0 ≡ hA

H (v′
0) and S′

n ≡ hA
H (v′

n).

Also we let ϕn, n = 0, 1, . . . , be the corresponding quadratic differential on the
Riemann surface S′

n.
Let fn : S′

0 → S′
n be the extremal quasiconformal homeomorphism which is

homotopic to the identity. And let Kn ≡ K[fn] be the maximal dilatation. If {S′
n}

do not go to the boundary of Tg,n, then we may assume (selecting a subsequence if
necessary) that

Kn ≤ K, (10)

for some K ≥ 1 independent of n.
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When n = 0, 1, 2, . . . , let

Mnk ≡ M(Rnk), 1 ≤ k ≤ 3g + n − 3,

be the conformal modulus of the characteristic annulus of ϕn. Also we denote by
Mnj the canonical moduli of the punctured disks Dnj , 1 ≤ j ≤ q.

Now, for notational simplicity, we use the same notations as in Step 1. That
is, ηnj is the canonical local parameter of S′

n at the neighborhood of Qj . For any
characteristic punctured domain Dnj ⊂ S′

n of ϕn, in terms of the normalized local
parameters ζnj we have

Dnj = {ζnj : 0 < |ζnj | < rnj }, n = 0, 1, 2, . . . , (11)

where
dζnj

dηnj
(0) = 1 and rnj is the canonical mapping radii of Dnj .

We denote by

δj ≡
{
ζ0j : |ζ0j | = r0j

2

}
, 1 ≤ j ≤ q

the closed curves on the Riemann surface S′
0, where ζ0j is defined in (11). Lemma 1.4

and the Koebe Distortion Theorem (see the Appendix) show that the curves {fn(δj )}
lie outside the punctured disk{

ζnj : 0 < |ζnj | <
rnj

Cj

}
⊂ S′

n,

where Cj ≡ Cj(S0, K, r0j ) > 1 is independent of n. Hence we obtain a map

fn : S′
0

∖ ⋃
j

{
0 < |ζ0j | <

r0j

2

}
→ S′

n

∖ ⋃
j

{
0 < |ζnj | <

rnj

Cj

}
.

Let M̃nk be the modulus of the region f (R0k), where 1 ≤ k ≤ 3g + n − 3. We
have

1

M̃nk

≤ K

M0k

, 1 ≤ k ≤ p, n = 1, 2, . . . . (12)

Since R0j ≡ {
ζ0j : r0j

2 < |ζ0j | < r0j

} ⊂ S′
0 has conformal modulus log 2

2π
, the

modulus M̃nj ≡ M(fn(R0j )) satisfies

M̃nj ≥ log 2

2Kπ
, 1 ≤ j ≤ q. (13)

Summing the inequalities (12) and (13) over all annuli on the Riemann surface
S′

0\ ∪ {
0 < |ζ0j | <

r0j

2

}
, we have

∑
k

h2
k

M̃nk

+
∑
j

(aj log Cj

2π

)2

M̃nj

≤ K ·
( ∑

k

h2
k

M0k

+
∑
j

(aj log Cj

2π

)2

log 2
2π

)
. (14)
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Together with the inequality (14), from Lemma 1.6 it immediately follows that

∑
k

h2
k

Mnk

+
∑
j

(aj log Cj

2π

)2

log Cj

2π

≤
∑

k

h2
k

M̃nk

+
∑
j

(aj log Cj

2π

)2

M̃nj

,

≤ K ·
( ∑

k

h2
k

M0k

+
∑
j

(aj log Cj

2π

)2

log 2
2π

)
,

that is,

∑
k

hk · lnk +
∑
j

a2
j log Cj

2π
≤ K ·

( ∑
k

hk · l0k +
∑
j

(aj log Cj)
2

2π log 2

)
. (15)

If lnk0 → +∞ for some fixed k0 as n → +∞, then the left-hand side of inequality
(15) approaches +∞ but the right-hand side remains bounded. This contradicts the
assumption (10). Hence

dT (S′
0, S

′
n) = log Kn → +∞,

which proves the case (i).
Combining Ahlfors’ Lemma and Wolpert’s Lemma (see the Appendix), we can

prove the case (ii), see e.g. [1].
The case (iii) follows from the discreteness of Teichmüller modular group acting

on Tg,n; see [17] for details.
In conclusion, we proved Theorem 2.4. �

Proof of Lemma 3.2. Denote ε0 ≡ (ε1(0), . . . , ε3g+n−3−p(0)). Theorem 2.4 implies
that there exists a Jenkins–Strebel differential ϕ0 on S with type 
. Its characteristic
annuli have ϕ0-heights

(h1, . . . , hp, ε1(0), . . . , ε3g+n−3−p(0)),

and its characteristic punctured disks {D0
j } around {Qj } have ϕ0-circumferences {aj }.

Let ηj be the canonical local parameter of S near the puncture Qj , where 1 ≤ j ≤ q.
Then by using the normalized local parameter ζ 0

j , we have

D0
j = {p : 0 < |ζ 0

j (p)| < rj }, 1 ≤ j ≤ q,

where
dζ 0

j

dηj
(0) = 1 and rj is the canonical mapping radius of D0

j .

For each ε, we denote by {Dε
j } the characteristic punctured disks of the differen-

tial ϕε. Then
Dε

j = {p : 0 < |ζ ε
j (p)| < rε

j }, 1 ≤ j ≤ q,
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where
dζ ε

j

dηj
(0) = 1 and rε

j is the canonical mapping radius of Dε
j .

From Lemma 1.5 it follows that, for each l there exists ml > 0 such that any ring
domain R̃ ⊂ S around Qj with modulus M(R̃) > ml has at least one of its boundary
components lying inside the punctured disk

{
0 < |ζ 0

j (p)| <
rj

2l

}
.

If we denote

Sl ≡ S
∖{

0 < |ζ 0
j | <

rj

2l

}
, l = 1, 2, . . . ,

then for any ρε
j > 0 which satisfies ml < 1

2π
log

rε
j

ρε
j

< 2ml, we have

Sl ⊂ S\ ∪j {0 < |ζ ε
j (p)| < ρε

j }.
Let Mk resp. Mε

k ) be the moduli of the characteristic annuli of the Jenkins–Strebel
differentials ϕ0 resp. ϕε), where 1 ≤ k ≤ 3g+n−3. Denote ‖ϕε‖Sl ≡ ∫∫

Sl |ϕε| dxdy.
Then Lemma 1.6 implies that

‖ϕε‖Sl ≤ ‖ϕε‖S\∪j {0<|ζ ε
j |<ρε

j }

=
p∑

k=1

h2
k

Mε
k

+
3g+n−3−p∑

i=1

ε2
i

Mε
p+i

+
q∑

j=1

( aj

2π
log

rε
j

ρε
j

)2

1
2π

log
rε
j

ρε
j

≤
p∑

k=1

h2
k

Mk

+
3g+n−3−p∑

i=1

ε2
i

Mp+i

+
q∑

j=1

( aj

2π
log

rε
j

ρε
j

)2

Ml
j

≤
p∑

k=1

h2
k

Mk

+
3g+n−3−p∑

i=1

εi(0)2

Mp+i

+
q∑

j=1

(2mlaj )
2

Ml
j

≤ ‖ϕε0‖Sl +
q∑

j=1

(2mlaj )
2

l log 2
2π

,

where Ml
j = l log 2

2π
is the conformal modulus of

{ rj

2l < |ζ 0
j | < rj

}
.

Thus the norm ‖ϕε‖Sl is bounded from above independent of ε, from which we
deduce that the quadratic differentials {ϕε} are locally uniformly bounded on S. It
completes the proof of Lemma 3.2. �

Proof of Theorem 4.5. To prove Theorem 4.5 it suffices to show FA : Rp
+ → M is

continuous, injective and proper.
The continuity of FV follows from Lemma 3.3.
To prove FA is injective, we assume that there are V1, V2 ∈ Rp

+ such that
FA(V1) = FA(V2).
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Let Mij , i = 1, 2, be the reduced moduli of the punctured disk around Qj with
respect to the same fixed local parameter ζj , 1 ≤ j ≤ q. When proving Theo-
rem 3.1, with respect to the differential ϕ1 we have actually established the following
inequality: ∑

k

v2
1k

M1k

−
∑
j

a2
j M1j ≤

∑
k

v2
1k

M2k

−
∑
j

a2
j M2j

(see the claim (3)). The fact M1k = M2k , 1 ≤ k ≤ p, implies that∑
j

a2
j M1j ≥

∑
j

a2
j M2j .

Interchanging ϕ1 and ϕ2, the opposite inequality holds too. We therefore have∑
j

a2
j M1j =

∑
j

a2
j M2j .

Lemma 1.7 then implies the injectivity of the map FA.
Brouwer’s theorem on invariance of domain shows that FA(Rp

+) is an open domain
in M. If FA(Rp

+) � M, then there is a point M0 ∈ M but M0 ∈ ∂FA(Rp
+). That is,

there is a sequence
{Vn}n=1,2... ⊂ Rp

+
approaching the boundary of Rp

+, but {FA(Vn)} approaches an interior point M0 of M.
The assertion that Vn = (vn1, vn2, . . . , vnp) approaches the boundary of Rp

+ is
equivalent to one of the following:

� For all n, the sequence {Vn} remains bounded but vnk0 → +0 for some fixed
1 ≤ k0 ≤ p.

�� When n → +∞, the Euclidean norm ‖Vn‖ → ∞.

Denote by ϕn the unique Jenkins–Strebel differential which realizes the data Vn and A.

That is, ϕn has a second order pole at Qj with leading coefficient − ( aj

2π

)2
, 1 ≤ j ≤ q,

and its characteristic annuli have ϕn-heights Vn ∈ Rp
+.

In the case (�), from Lemma 3.2 and 3.3 it follows that the k0-th component of
FA(Vn) approaches 0+, which contradicts the assumption that M0 ∈ M.

In the case (��), the sequence {Vn/‖Vn‖} remains bounded but Vn/‖Vn‖ �
0+. Lemma 3.3 shows that the quadratic differential ϕn/‖Vn‖ locally uniformly
converges to a non-zero Jenkins–Strebel differential ϕ0, with homotopic type {γk}.
From aj/‖Vn‖ → 0, it follows that the quadratic differential ϕ0 has no second order
pole at Qj , 1 ≤ j ≤ q.

Since ϕn and ϕn/‖Vn‖ have the same trajectory structures, from Lemma 3.3 we
obtain that the annuli of ϕ0 have moduli M0. This contradicts our previous assumption
that M0 ∈ M.

Therefore FA(Rp
+) = M, as desired. �
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Appendix. Some known results

In previous proofs we needed several well-known results on conformal maps or qua-
siconformal homeomorphisms. To make this paper self-contained, we add it here.
For their complete proofs, please see [1], [2], [24].

Koebe Distortion Theorem. If f : � → C be a univalent function with f (0) = 0
and f ′(0) = 1, then

|z|
(1 + |z|)2 ≤ |f (z)| ≤ |z|

(1 − |z|)2 .

Mori’s Theorem. If f : � → � is a K-quasiconformal map with f (0) = 0, then

|f (z)| ≤ 41− 1
K |z| 1

K , z ∈ �.

Suppose that X is a hyperbolic Riemann surface. Then X has a canonical metric
of constant curvature −1. This metric is unique and denoted by dρ

X
.

Let dX(x, y) denote the hyperbolic distance between two points x, y ∈ X. Then
we have the following two results.

Ahlfors’s Lemma. Let f : X → Y be a holomorphic map between hyperbolic
Riemann surfaces. Then either

(i) f is a locally covering map, or
(ii)f ∗(dρ

Y
) < dρ

X
, and hence dY (f (x), f (y)) < dX(x, y) for any pair of distinct

points x, y ∈ X.
In particular, if hyperbolic Riemann surfaces X ⊂ X̃, then

dρ
X̃

< dρ
X
.

Wolpert’s Lemma. Let h : S1 → S2 be a K-quasiconformal homeomorphism be-
tween hyperbolic Riemann surfaces S1, S2.

If α1 ⊂ S1 is a closed hyperbolic geodesic, then the hyperbolic geodesic α2 in the
homotopy class of f (α1) satisfies

L(α1)

K
≤ L(α2) ≤ K · L(α1),

where L(αi), i = 1, 2, denotes the hyperbolic length.
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