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Smooth divisors of projective hypersurfaces

Philippe Ellia, Davide Franco and Laurent Gruson

Abstract. Let X ⊂ Pn be a smooth codimension 2 subvariety. We first prove a “positivity
lemma” (Lemma 1.1) which is a direct application of the positivity of NX(−1). Then we first
derive two consequences:

1) Roughly speaking the family of “biliaison classes” of smooth subvarieties of P5 lying on
a hypersurface of degree s is limited.

2) The family of smooth codimension 2 subvarieties of P6 lying on a hypersurface of degree s

is limited.
The result in 1) is not effective, but 2) is. Then we obtain precise inequalities connecting the

usual numerical invariants of a smooth subcanonical subvariety X ⊂ Pn, n ≥ 5 (the degree d,
the integer e such that ωX � OX(e), the least degree, s, of a hypersurface containing X). In
particular we prove: s ≥ n + 1 if X is not a complete intersection.
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Introduction

We work over an algebraically closed field of arbitrary characteristic.
Ellingsrud–Peskine ([7]) proved that smooth surfaces in P4 are subject to strong

limitations. Their whole argument is derived from the fact that the sectional genus of
surfaces of degree d lying on a hypersurface of degree s varies in an interval of length
d(s−1)2

2s
. The aim of the present paper is to show that for smooth codimension two

subvarieties of Pn, n ≥ 5, one can get a similar result with an interval whose length
depends only on s. The main point is Lemma 1.1 whose proof is a direct application
of the positivity of NX(−1) (where NX is the normal bundle of X in Pn). As a
consequence of Lemma 1.1 (Remark 1.3) we get a series of (n − 3) inequalities the
first one of which being Lemme 1 of [7]. The second (Theorem 1.4) was obtained in a
preliminary version ([5]) by an essentially equivalent but more geometric argument.

Then we first derive two consequences:
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1) Roughly speaking (Theorem 2.1, Remark 2.5) the family of “biliaison classes”
of smooth subvarieties of P5 lying on a hypersurface of degree s is limited.

2) The family of smooth codimension two subvarieties of P6 lying on a hypersur-
face of degree s is limited (Theorem 1.4).

The result quoted in 1) is not effective, but 2) is.
In the last section we try to obtain precise inequalities connecting the usual numer-

ical invariants of a smooth subcanonical subvariety X of Pn, n ≥ 5 (the degree d, the
integer e such that ωX � OX(e), the least degree, s, of a hypersurface containing X).
In particular we prove (Theorem 3.9): s ≥ n + 1.

1. Positivity lemma and some consequences

Lemma 1.1 (Positivity lemma). Let F be a rank two vector bundle on a smooth
connected variety X of dimension m and let L be an invertible sheaf such that
h0(F ⊗ L) �= 0. Put

1 + c1(L) t

1 − c1(F ) t + c2(F ) t2 =
∑

uit
i

in A∗(X)[[t]], where A∗(X) is the Chow ring of X and t is an indeterminate. Assume
that F is globally generated. Then the ui’s can be represented by pseudo-effective
cycles (see [9], 2.2.B), in particular um has non-negative degree.

Proof. Set Q := P(F) (in Grothendieck notation Proj(SymF)) and denote by
p : Q → X the projection. The Chow ring of Q is

A∗(X)[x]
(x2 − c1(F ) x + c2(F ))

(where the indeterminate x corresponds to the tautological quotient of p∗(F )) and
the Gysin map p∗ : A∗(Q) → A∗(X) sends α + βx to β. By hypothesis, there is an
effective divisor D of first Chern class x + c1(L). Since F is globally generated x is
nef and D · xi is pseudo-effective. Then p∗(D · xi) = p∗(xi+1 + c1(L)xi) = ui (by
the formula giving the Gysin map), so ui is pseudo-effective. �

We will apply the lemma in the following situation:
X is a subvariety of codimension two of Pn (i.e. n = m + 2) and F = NX(−1).

One knows that F is globally generated because it is a quotient of TPn(−1), which is
globally generated on Pn. Then we will consider two cases separately:

(1) n = 5.

(2) ωX = OX(e) for some integer e (by [2] this is always satisfied if n ≥ 6).
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Recall that in the last situation we have an exact sequence

0 → O → E → �X(e + n + 1) → 0,

where E is a rank 2 vector bundle on Pn with Chern classes c1(E) = e + n + 1,
c2(E) = deg(X), and that NX = E ⊗ OX.

Lemma 1.2. Let X ⊂ P5 be a smooth codimension two subvariety of degree d lying
on a hypersurface � of degree s. Denote by π the sectional genus of X and assume
that X �⊂ Sing�. Then one has

0 ≤ μ := d(s2 − 4s + d) − s(2π − 2) ≤ s(s − 1)3.

Proof. The computations are made in Num(X) = A(X)/(numerical equivalence)
(so Num3(X) � Z). We denote by Ci the Chern classes of NX(−1), by h (resp. k)
the class of OX(1) (resp. ωX). Finally y will denote the element c2(NX(−s)) ∈
Num2(X).

Since X �⊂ Sing�, we have h0(NX(s − e − n − 1)) = h0(N∗
X(s)) �= 0 hence we

may apply Lemma 1.1 with F = NX(−1) and L = OX(s − e − n) and the ui’s are
pseudo-effective.

We have

u2 = (s − 1)hC1 − C2 = (s − 1)2h2 − y

and

u3 = (s − 1)h(C2
1 − C2) − C1C2 = (s − 1)3h3 − ((s − 1)h + C1)y.

We know that C1 = 4h + k and y = (s2 − 6s + d)h2 − shk (this follows expressing
this c2 in function of c2(NX) which is dh2 by the self intersection formula). The
relation u3 ≥ 0 is equivalent (in Z) to:

0 ≤ (s − 1)3h3 − [(s + 3)h + k] · [(s2 − 6s + d)h2 − shk]
= −[d(s + 3) − 21s + 1]h3 − (d − 9s)h2k + shk2.

Let us write h2k as a function of μ:

h2k = (s2 − 6s + d)h3 − μ

s
.

Apply “Hodge index” to the hyperplane section of X: setting δ = (h2k)2−h3·(hk2) ≥
0, we get (with d = h3)

hk2 = (h2k)2

d
− δ

d
.
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We partially eliminate h2k:

0 ≤ −d[d(s + 3) − 21s + 1] + h2k

[
− (d − 9s) + s

d

(
(s2 − 6s + d)

d

s
− μ

s

)]
− sδ

d
.

This yields

0 ≤ −d[d(s + 3) − 21s + d] + h2k

[
s(s + 3) − μ

d

]
− sδ

d
.

We eliminate h2k:

0 ≤ −d[d(s + 3) − 21s + d] + [(s2 − 6s + d)d − μ]
(
s + 3 − μ

ds

)
− sδ

d
,

this can be written

0 ≤ (s − 1)3d − μ

(
2s − 3 + d

s

)
+ μ2

ds
− sδ

d
.

Now multiply by s/d:

0 ≤ s(s − 1)3 − μ

[
1 + s(2s − 3)

d

]
+ μ2

d2 − δ
s2

d2 .

The relation u2 ≥ 0 implies that μ ≤ d(s − 1)2, so,

0 ≤ s(s − 1)3 − μ + μ

d

[
− s(2s − 3) + μ

d

]
− δ

s2

d2

= (s − 1)3 − μ + μ

d
[(s − 1)2 − s(2s − 3)] − μ

d

[
(s − 1)2 − μ

d

]
− δ

s2

d2 .

Finally

0 ≤ s(s − 1)3 − μ − μ

d
(s2 − s − 1) − μ

d

[
(s − 1)2 − μ

d

]
− δ

s2

d2 ,

and the lemma follows. �

The last lemma will be used in Section 2.
In the second case let s = min{t : h0(�X(t) �= 0} and q = min(s, e + n), and

notice that h0(N∗
X(q)) > 0. Apply the positivity lemma with L = OX(q − e − n).

Then the ui’s can be computed in A∗(Pn) = Z[t]
tn+1 (by abuse of notation we consider

ui as an integer instead of an element of Zt i) and the positivity lemma applied to
X ∩ Pi+2 says that ui ≥ 0 for i ≤ n − 2. Let si be the Segre classes of E(−1). One
has ui = c1(L) · si−1 + si . If s ≥ e + n one has L � O, ui = si ; this case is not new
([8]), so we focus on the other case (q = s).
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Remark 1.3. The ui are computed by induction on i by u0 = 1, u1 = s − 1,
ui = (e + n − 1)ui−1 − (d − e − n)ui−2.

Set z := d − s(e + n + 1) + s2, then the first ui’s are: u2 = (s − 1)2 − z,
u3 = (s − 1)3 − z(e + n + s − 2) and u4 = u2

2 − z(e + n − 1)2.
We have the non trivial inequalities ui ≥ 0, 2 ≤ i ≤ n − 2. The first is included

in Lemme 1 of [7], the second immediately implies the following theorem in the case
n = 5 (see also [5]).

Theorem 1.4 (Speciality theorem). Let X ⊂ Pn, n ≥ 5, be a smooth subvariety of
codimension two with ωX � OX(e). Let � ⊂ Pn denote a hypersurface of degree s

containing X. If X is not a complete intersection then:

(i) If n = 5: e ≤ (s−1)3

4 − 3 − s and d ≤ s(s−1)[(s−1)2−4]
4 + 1.

(ii) If n ≥ 6: e ≤ (s−1)2−n+1√
n−1

− n + 1 and d ≤ s[(s−1)2−n+1]√
n−1

+ 1.

Proof. (i) By u3 ≥ 0: (s − 1)3 ≥ z(e + n + s − 2). Observe that, since X is not
a complete intersection, z = c2(E(−e − n − 1 + s) is the degree of a codimension
two subscheme which is not a complete intersection. By [12], z ≥ n − 1. It follows
that (s − 1)3 ≥ (n − 1)(e + n + s − 2), which gives the bound on e. By u2 ≥ 0:
d ≤ s(n − 1 + e) + 1 and this gives the bound on d.

(ii) The proof is similar using u4 ≥ 0 instead of u3 ≥ 0. �

2. Application to the biliaison classes of codimension two subvarieties of P5

We recall that a family � of coherent sheaves over an algebraic variety S is limited if
there exists an algebraic variety T and a coherent sheaf F over T × S such that for
any member G of � there exists a geometric point t ∈ T such that G is isomorphic to
the fiber Ft of F over t .

Theorem 2.1. Fix an integer s > 0. The family of sheaves �X,�

([
d
s

])
, where

• � is any integral hypersurface of degree s in P5,
• d is any integer and X is a smooth threefold of degree d lying on �,

is limited.

Remark 2.2. The corresponding statement for Pn is

• false for n = 3 (for � = P1 ×P1, a quadric in P3, one gets the sheaves O(a, −a)

if d is even),
• unknown for n = 4,
• superseded by the speciality theorem (1.4) for n ≥ 6.
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Since the degree of X is bounded when X ⊂ Sing�, the family of the sheaves
�X,� , with X ⊂ Sing�, is clearly limited. Hence in the following we will assume
X �⊂ Sing�.

Let C (resp. S) denote the intersection of X (resp. �) with a general P3 in P5.

Lemma 2.3. The sheaves �C,S

([
d
s

])
form a limited family.

Proof. Due to the existence of Grothendieck Quot scheme, it suffices to show that:

(1) the Hilbert polynomials of these sheaves constitute a finite set,

(2) there exists an integer N depending only on s such that �X,S

([
d
s

] + N
)

is
Castelnuovo-regular.

(1) By a direct computation we have

χ
(
�C,S

([
d
s

])) =
(

s + ε

3

)
−

(
ε

3

)
− μ

2s
,

where μ = d(s2 − 4s + d) − s(2π − 2), ε = d
s

− [
d
s

]
. (If s divides d, just compare

χ(�C,S(d/s)) with χ(��,S(d/s)) where � is the complete intersection of S with a
surface of degree d/s). We conclude with Lemma 1.2.

(2) We set �C,S

([
d
s

]) =: F and notice that, for degree reasons, F (s − 1) ⊗ OH

is Castelnuovo-regular for H a general plane in P3. Also (since h0(F (−1)) = 0) we
have

h0(F (s − 1)) ≤
s−1∑
k=0

h0(F (k) ⊗ OH ) ≤
s−1∑
k=0

(sk + 1),

i.e., h0(F (s −1)) is bounded uniformly in s. It follows that h1(F (s −1)) is bounded
uniformly in s (since h0 and χ are and h2(F (s − 1)) = 0), say by M . By a classical
argument h1 is strictly decreasing after the regularity of the general plane section
([14]) and we deduce that h1(F (s − 1 + M)) = 0, so F is (s + M)-regular. �

Lemma 2.4. Let � be a family of sheaves on Pn with the following properties:

(1) any F ∈ � is locally of depth ≥ 2;

(2) for a general hyperplane H ⊂ Pn the family of the restrictions of the members
of � is limited;

(3) h0(F ) is bounded uniformly in F ∈ �.

Then � is limited.

Proof. By the second assumption we know that the set of the Hilbert polynomials of
F |H (F ∈ �) is finite, so it will be sufficient to prove the following
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Claim. h1(F ) is bounded uniformly in F ∈ �.

In fact, by assumption (2) we know that the hi(F )’s are bounded uniformly in
F ∈ � when i ≥ 2 because of the inequality hi(F ) ≤ ∑

k≥0 hi−1F (k)|H . So, from
(1), (3) and our claim, it follows that |χ(F )| is bounded uniformly in F ∈ �. So
the Hilbert polynomial PF of F is such that PF (0) and (PF (x + 1) − PF (x)) form
a finite set (F ∈ �), which implies that the set {PF : F ∈ �} is finite. A uniform
bound on the regularity of F is obtained exactly as in the previous lemma.

To prove the claim we look at the exact sequence

H 0(F |H (−k)) → H 1(F (−k − 1)) → H 1(F (−k)) → H 1(F |H (−k)).

There is an integer k0 independent ofF so thath0(F |H (−k0)) = 0 = h1(F |H (−k0)).
Since F is locally of depth ≥ 2 we also know H 1(F (−k)) = 0 for k  0,
and so for k ≥ k0 by using the above exact sequence. Then we have h1(F ) ≤∑k0

0 h1(F |H (−i)). �

Proof of Theorem 2.1. From Lemma 2.3 we know that the family of sheaves
�X,�

([
d
s

]|P3
)

is limited for a general P3 ⊂ P5. We conclude applying two times
Lemma 2.4. �

Remark 2.5. (1) If we consider the class of ideals �X,� (as in the theorem) modulo the
equivalence relation identifying two sheaves� , J if� is isomorphic to some twist ofJ,
we could call them “biliaison classes”(on a specified hypersurface): if �X,� ∼ �X′,�′
then � = �′ and X′ and X can be linked in � to the same variety. Then (roughly
speaking) the theorem says that when the degree of the specified hypersurface remains
bounded, the set of the corresponding biliaison classes is limited.

(2) In contrast with the case n ≥ 6, we notice that for any s ≥ 2 one can findACM,
non complete intersection varieties of arbitrary large degree lying on a hypersurface
of degree s.

Corollary 2.6 (compare with [3]). The family of smooth threefold in P5 which are
not of general type is limited.

Proof. According to [3] (proof of Theorem 4.3) we may restrict to the threefolds
lying on a hypersurface of degree 12, so we may fix s. Consider the corresponding
family of sheaves F = �X,�

([
d
s

])
, as in Theorem 2.1. Then ωX is a quotient of

Hom(�X,�, ω�) = Hom(F , ω�

([
d
s

]))
. Since the family � is limited we can find

an integer k (independent of X) such that Hom(F , ω�(k)) is globally generated. So
if X is not of general type one must have

[
d
s

]
< k, hence d < s(k + 1). �
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3. Application to subcanonical codimension two subvarieties of Pn, n ≥ 5

Notation. We are now in case 2 of Section 1, so X is the zero-locus of a rank two
vector bundle E of Chern classes (e + n + 1, d). For sake of simplicity we consider
the Chern polynomial e(X) = X2 −C1X +C2 of E(−1)∗. Let � = C2

1 −4C2 be its
discriminant. We set ρ = √

C2 and write 1−C1X+C2X
2 = 1−2ρ ·ch t ·X+ρ2X2

with the convention that t > 0 if � > 0 and t = iθ , 0 < θ < π , if � < 0 (in this
way ch t = cos θ , sh t = i sin θ ). Then the roots of X2 − C1X + C2 are b = ρet ,
a = ρe−t . Finally we set σ = √

z.
If sk is the k-th Segre class of E(−1), i.e.

1

1 − C1X + C2X2 =
∑
k≥0

skX
k

one deduces from 1 − C1X + C2X
2 = (1 − ρetX)(1 − ρe−tX), after a partial

decomposition, the formula sk = ρk sh(k+1)t
sh t

(to be replaced by ρk(k + 1) if � = 0)
and

uk = ρk

[
s − 1

ρ

sh kt

sh t
− sh(k − 1)t

sh t

]

(to be replaced by uk = ρk
[
k s−1

ρ
− (k − 1)

]
if � = 0).

Lemma 3.1. Let f , g and v be functions defined by f (x) = sh(x+1)t
sh xt

, g(x) = sin(x+1)θ
sin xθ

and v(x) = (x+1)
x

.

(1) If � > 0, then there exists a unique α ∈]0, +∞[ such that f (α) = ρ/(s − 1).

(2) If � < 0, then there exists a unique α ∈]0, π
θ

− 1[ such that g(α) = ρ/(s − 1).

(3) If � = 0, then there exists a unique α ≥ n − 3 such that v(α) = ρ/(s − 1).

Proof. (1) The function f is strictly decreasing on ]0, +∞[. Moreover, if � > 0,
limx→+∞ f (x) = et . Since � > 0, E is not stable and 2s < e + n + 1. Since
0 < z = e(s − 1), we have s − 1 < a hence s − 1 ≤ a = ρe−t , et ≤ ρ

s−1 . We
conclude that there exists a unique α such that f (α) = ρ/(s − 1).

(2) In this case is g is strictly decreasing on ]0, π
θ

− 1[ and we conclude.
(3) In this case is v is strictly decreasing on ]0, +∞[ so we have a unique α ∈

]0, +∞[ such that v(α) = ρ/(s − 1). By Lemma 1.1 (see also the end of Notation),
v(n − 3) ≥ ρ/(s − 1), hence α ≥ n − 3. �
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Lemma 3.2. With notations as above we have:

σ

sh t
= s − 1

sh αt
= ρ

sh(α + 1)t
= e + n − s

sh(α + 2)t
if � > 0;

σ

sin θ
= s − 1

sin αθ
= ρ

sin(α + 1)θ
= e + n − s

sin(α + 2)θ
if � < 0;

α + 2 = e + n − s

σ
= ρ

σ
+ 1 = s − 1

σ
+ 2 if � = 0.

Proof. First assume that � > 0. By definition z = e(s − 1). Inserting s − 1 =
ρ sh αt

sh(α+1)t
, we get

z = ρ2
[

sh2(αt)

sh2(α + 1)t
− 2 ch t · sh(αt)

sh(α + 1)t
+ 1

]
= ρ2

[
sh2(αt)

sh2(α + 1)t
− sh(α − 1)t

sh(α + 1)t

]
.

For the last equality check that sh(α + 1)t + sh(α − 1)t = 2 ch t · sh(αt). Finally

ρ2
[

sh2(αt)

sh2(α + 1)t
− sh(α − 1)t

sh(α + 1)t

]
=

[
ρ sh t

sh(α + 1)t

]2

.

For this check that sh2(αt) − sh(α − 1)t · sh(α + 1)t = sh2(t). We conclude that

σ

sh t
= ρ

sh(α + 1)t
.

This proves the first three equalities. For the last one:

ρ

sh(α + 1)t
= s − 1

sh αt
= 2ρ ch t − (s − 1)

2 sh(α + 1)t ch t − sh αt
.

To conclude observe that 2ρ ch t = e+n−1 and 2 sh(α+1)t ch t−sh αt = sh(α+2)t .
The proof in case � < 0 is similar. If � = 0, observe that z = e(s − 1) =

(s − ρ − 1)2, hence σ = ρ − s + 1. �

Remark 3.3. Observe that when � < 0 and s = e + n, then sin(α + 2)θ = 0.

Proposition 3.4. Keeping notations as above, we have, for n ≥ 5:

e + n − s ≤ (n − 1)−
1

n−4 (s − 1)
n−2
n−4

and

d ≤ s
[
1 + (n − 1)−

1
n−4 (s − 1)

n−2
n−4

]
.
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Proof. First of all we assume that � > 0 and we observe that f (t) = log sh t is
concave. Since αt = 1

α
t + α−1

α
(α + 1)t we have f (at) = f

( 1
α
t + α−1

α
(α + 1)t

) ≥
1
α
f (t) + α−1

α
f ((α + 1)t). Taking the exponentials we find

sh αt ≥ (sh t)
1
α (sh(α + 1)t)

α−1
α . (+)

Similarly, writing αt = 2
α+1 t+ α−1

α+1 (α+2)t and exponentiating the inequality coming
from the concavity of f (t) we get

sh αt ≥ (sh t)
2

α+1 (sh(α + 2)t)
α−1
α+1 . (++)

By Lemma 3.2, σ
sh t

= h−1
sh αt

= ρ
sh(α+1)t

= e+n−h
sh(α+2)t

, hence (+) gives

s − 1 ≥ (σ )
1
α (ρ)

α−1
α

and (++) gives

s − 1 ≥ (σ )
2

α+1 (e + n − s)
α−1
α+1

from which it follows that

ρ ≤ σ
−1
α−1 (s − 1)

α
α−1 , e + n − s ≤ σ

−2
α−1 (s − 1)

α+1
α−1 ,

and finally d = ρ2 + e + n ≤ s(1 + σ
−2
α−1 (s − 1)

α+1
α−1 ).

In order to conclude the case � > 0 it suffices to show that σ
−2
α−1 (s − 1)

α+1
α−1 ≤

(n − 1)
−1
n−4 (s − 1)

n−2
n−4 . Since z = σ 2 ≥ n − 1 we have (s−1)2

σ 2 ≤ (s−1)2

n−1 , and hence

σ
−2
α−1 (s −1)

α+1
α−1 = (

(s−1)2

σ 2

) 1
α−1 (s −1) ≤ (

(s−1)2

n−1

) 1
α−1 (s −1) and we are done because

α ≥ n − 3.
The case � < 0 (� = 0) can be proved the same way by using f (t) = log sin t

(f (t) = log t) which is concave as well for t ∈]0, π [. �

In some sense the next proposition improves Theorem 1.4, except in the case
� > 0 where the bound depends on �, hence on e.

Proposition 3.5. Let X ⊂ Pn, n ≥ 4, be a smooth codimension two subvariety with
ωX � OX(e). If X is not a complete intersection, then the following holds.

(1) If � > 0, then d < M2s2 + sM
√

�, where M = n−2
n−3 .

(2) If � ≤ 0, then d < M2s(s − 1) + s.

Proof. (1) By Lemma 3.2
ρ

s − 1
= sh(α + 1)t

sh αt
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and
sh(α + 1)t

sh αt
≤ sh(n − 2)t

sh(n − 3)t

since α ≥ n − 3 (Lemma 3.1). One can check that

sh(n − 2)t

sh(n − 3)t
≤ et n − 2

n − 3
,

so
ρ

s − 1
≤ et n − 2

n − 3

and

a = ρ

et
≤ (s − 1)

n − 2

n − 3
.

Then we have

w := a − (s − 1) ≤ (s − 1)

[
n − 2

n − 3
− 1

]
= s − 1

n − 3
<

s

n − 3

and
d = (a + 1)(b + 1) = (s + w)2 + √

�(s + w).

Finally we get d <
(
n−2
n−3

)2
s2 + s

√
�n−2

n−3 .

(2) First assume � < 0. By Lemma 3.2 we have ρ
s−1 = sin((α+1)θ)

sin((α)θ)
≤ α+1

α
, indeed

sin x
x

is decreasing on 0 < x ≤ π . It follows that ρ ≤ M(s − 1). Since ρ = √
ab =√

d − e − n, we get the result taking into account the inequality s(e+n+1− s) ≤ d

(z ≥ 0).
The case � = 0 follows directly from uk ≥ 0 (see Remark 1.3), taking into

account the inequality s(e + n + 1 − s) ≤ d. �

Remark 3.6. Observe the limiting (n → +∞) case of Proposition 3.5 (1): d ≤
s2 + s

√
�, which can occur only for X a complete intersection (a + 1, b + 1).

The aim of the remaining of the paper is to improve the bound s ≥ n − 1 of [12]
(resp. s ≥ n if 5 ≤ n ≤ 6, [4]). We will distinguish several cases according to the
sign of the discriminant, �, of X.

Proposition 3.7. Let X ⊂ Pn, n ≥ 4, be a smooth subvariety of codimension two.
Assume that X is not a complete intersection.

(1) If � ≥ 0, then s − 1 ≥ (n − 3)
√

n − 1 and e ≥ (2n − 4)
√

n − 1 − n.

(2) If � < 0 and e + n + 1 ≥ 2s, then s − 1 ≥ 2
π
(n − 3)

√
n − 1 and e ≥

2
π
(2n − 4)

√
n − 1 − n.
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Proof. (1) Assume first � > 0. By Lemma 3.2 we have s−1
σ

= sh(αt)
sh t

≥ α. Since
σ ≥ √

n − 1 and α ≥ n − 3, we get the result. In the same way, from Lemma 3.2,
e+n−s

σ
= sh(α+2)

sh t
≥ α + 2 ≥ n − 1, hence e + n − s ≥ (n − 1)

√
n − 1 and the result

follows.
Assume now � = 0. We have z = (s − a − 1)2. Since z ≥ n − 1, it follows

that a + 1 − s ≥ √
n − 1 (note that a + 1 > s if X is not a complete intersection),

so a ≥ s − 1 + √
n − 1 and we get s − 1 ≥ (n−3)

(n−2)
(s − 1 + √

n − 1) hence s − 1 ≥
(n − 3)

√
n − 1. We conclude as above since e+n−s

σ
= α + 2 ≥ n − 1.

(2) By Lemma 3.2, e+n−s
s−1 = sin(α+2)θ

sin αθ
. The assumption e + n + 1 ≥ 2s implies

that sin(α + 2)θ ≥ sin αθ . This in turn implies αθ < π
2 (we have (α + 2)θ < 3π

2 ,

cf. Definition 3.1). By Lemma 3.2, s−1
σ

= sin(αθ)
sin θ

. Since sin αx/ sin x is decreasing,
we get: s−1

σ
> 1

sin(π/2α)
, hence s − 1 > 2

π
(n − 3)

√
n − 1. The proof for e is similar

using e+n−s
σ

= sin(α+2)θ
sin θ

of Lemma 3.2. �

Lemma 3.8. Let X ⊂ Pn, n ≥ 6, be a smooth subvariety of codimension two. Assume
that � < 0 and e + n + 1 − 2s ≤ 0.

(i) If n ≥ 6, then s ≥ n + 2.

(ii) If n ≥ 8, then s ≥ 3n/2.

Proof. (i) If n ≥ 6, then e ≥ n + 2 ([8]), hence (n + 2) + n + 1 ≤ e + n + 1 ≤ 2s,
thus s ≥ n + 2.

(ii) As above using e ≥ 2n − 1 ([8], Corollary 3.4 (i)). �

Theorem 3.9. Let X ⊂ Pn, n ≥ 4, be a smooth codimension two subvariety. Assume
that ch(k) = 0. If n < 6 assume that X is subcanonical. If h0(�X(n)) �= 0, then X

is a complete intersection.

Proof. For the case n = 4 we refer to [6].
If n = 5, by [4] we may assume that s = 5, and by [1], e ≥ 3. From u3 ≥ 0 (see

Remark 1.3) we get: z ≤ (s−1)3

e+n+s−2 , i.e. z ≤ 5. In fact 4 ≤ z ≤ 5, since z ≥ n − 1
([12]). Arguing as in [4], Lemma 2.6, every irreducible component of Zred appears
with multiplicity, hence Z is either a multiplicity z structure on a linear subspace or
is contained in a cubic hypersurface. The last case is not possible ([12]). In the first
case by [10] (or also [11] observing that the proof of the main theorem works in the
case of a codimension two linear subspace of P5), Z is a complete intersection.

In the case n = 6, we have f (z) = [(s−1)2−z]2

z
≥ (e + n − 1)2 because u4 ≥ 0.

Since f (z) is decreasing and z ≥ n − 1, f (n − 1) ≥ (e + n − 1)2, i.e. (s − 1)2 ≥√
n − 1(e+n−1)+n−1. By [8]: e ≥ n+2, so (s−1)2 ≥ √

n − 1(2n+1)+n−1,
but this inequality is not satisfied if s ≤ n = 6.
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Finally assume that 7 ≤ n. If either � ≥ 0, or � < 0 and e + n + 1 ≥ 2s,
we conclude with Proposition 3.7. If � < 0 and e + n + 1 ≤ 2s we conclude by
Lemma 3.8. �

We conclude the paper with a remark concerning the asymptotic behaviour (for
n going to infinity) of the constants introduced in this paper. As an explicit example
of how our remark works we give an improvement of Theorem 3.9 (and of [12]) for
n ≥ 8 (see Corollary 3.11).

Remark 3.10. In case � < 0, we may proceed as follows. By Lemma 3.2, s − 1 =
ρ

sin(αθ)
sin(α+1)θ

, so s − 1 = δ
sin(αθ)

sin θ ·sin(α+1)θ
, where δ = 1

2

√−� = ρ sin θ , θ(α + 1) < π .

Let us denote by m(α) the minimum of the function ϕ(θ) = sin(αθ)
sin θ ·sin(α+1)θ

on ]0, π
α+1 [.

This minimum is reached for the solution, β, of sin(α+1)β
sin β

= √
α + 1 and is an in-

creasing function of α. So we have s − 1 ≥ δm(α) ≥ δm(n − 3) ≥
√−�min(n)

2 ·
m(n − 3), where −�min(n) is the minimal value of −� allowed by the Schwarzen-
berger conditions on Pn (see [8]). It is possible to compute an approximated value of
mn := m(n−3). For instance we have: m5 = 1, 6949, m6 = 2, 2845, m7 = 2, 8203,
m8 = 3, 3233 (and m40 = 16, 1647). Since −�min(8) = 119, we get s − 1 ≥ 19 if
n = 8, which is better than 12 = 3 · 8

2 .
Let E be a rank two vector bundle on Pn with Chern classes c1, c2 (and � =

c2
1 − 4c2 not a square). Let R = Z[X]/(X2 − c1X + c2). The Schwarzenberger

condition says that TrQR/Q

(
ξ+k
n

) ∈ Z for ξ = class of X, k ∈ Z. Let p be a prime
number, then we have three cases:

(1) inert (pR is prime),

(2) decomposable (R/pR � Fp × Fp),

(3) ramified (p | �).

Claim. If there exists a rank 2 vector bundle E of Chern classes (c1, c2) on Pn, then
for each prime p < n, the discriminant � = c2

1 −4c2 is a square mod p (possibly 0).

Proof. Assuming the contrary, we may suppose that n − 1 = p is a prime such
that � is not a square mod p. Let ξ be a root of X2 − c1X + c2 in Fp2 . Then
TrF

p2/Fp (ξ(ξ + 1) . . . (ξ + p)) ≡ −� mod p, since (ξ + 1) . . . (ξ + p) = F(ξ) − ξ

where F is the Frobenius automorphism of Fp2 and TrF
p2/Fp (ξ(F (ξ) − ξ)) ≡ −�.

So, if x is the image of X in R, one has that TrR/Z(x(x+1) . . . (x+p)) is not divisible
by p and TrQR/Q

(
x+p
p+1

) = χ(E) is not an integer. Contradiction. �

By [13], pp. 134–135, one knows that there exists some prime p < n such that �

is not a square mod p, when n ≥ c(log |�|)2 under Generalized Riemann Hypothesis

or when n ≥ 2(|�|)A without restrictions. This means that |�min(n)| ≥ e
√

n
c under

GRH or |�min(n)| ≥ (
n
2

) 1
A .
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Corollary 3.11. Let X ⊂ Pn, n ≥ 8, be a smooth codimension two subvariety. If X

is not a complete intersection, then s ≥ 3n
2 .

Proof. First consider the case that � < 0. If e + n + 1 ≤ 2s, the result follows from
Lemma 3.8. If e + n + 1 > 2s and n ≥ 11, it follows from Proposition 3.7 because
1 + 2

π
(n − 3)

√
n − 1 ≥ 3n

2 . If e + n + 1 > 2s and 8 ≤ n ≤ 10, it follows from
Remark 3.10 since s ≥ 20.

If � ≥ 0, by Proposition 3.7, it is enough to check that 1 + (n − 3)
√

n − 1 ≥ 3n
2

if n ≥ 8. �
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