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The Hopf boundary point lemma for vector bundle sections

Artem Pulemotov

Abstract. The paper establishes a version of the Hopf boundary point lemma for sections of a
vector bundle over a manifold with boundary. This result may be viewed as a counterpart to the
tensor maximum principle obtained by R. Hamilton in 1986. Potential applications include the
study of various geometric flows and the construction of invariant sets for geometric boundary
value problems.
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1. Introduction

The present paper concerns the solutions of a second-order partial differential equation
in a vector bundle over a manifold with boundary. Let us describe the rootage of the
considered problem.

The maximum principle for sections of a general vector bundle over a closed
manifold was originally obtained in [9]. This statement is also known as the tensor
maximum principle. It proved to be a powerful implement in the study of the Ricci
flow; see [5]. In particular, it was used to establish important facts about four-
manifolds with nonnegative curvature operator. Other applications were considered,
as well; see, for instance, [3], [10], and [2]. In particular, the paper [10] establishes
the important matrix Li–Yau inequality for solutions of the heat equation.

A specific version of the maximum principle for sections appeared in [8]. This
version only applied to 2-tensors. Several generalizations of the maximum principle
for sections can be found in [6]. We refer to [4] and Chapter 4 of [5] for an overview
of relevant results. Once again, we emphasize that the theory discussed above has
been developed on closed manifolds.

The maximum principle for sections may be regarded as an evolution of the
maximum principle for systems of scalar parabolic equations obtained in [16]. It
must be noted that the statement in [16] has become a powerful implement in the
study of parabolic systems. In particular, it was applied to the investigation of the
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existence and the asymptotic behavior of solutions. We refer to Chapter 14 of [15] for
several relevant results and a vast bibliography; some of the references not mentioned
there are [13], [7], [12], and [1].

An important comment should be made at this point. The maximum principles
discussed above rely on the concept of an invariant set. The definition of an invariant
set for a system of scalar parabolic equations can be found, for example, in Chapter 14
of [15]. This definition generalizes easily to cover the case of an equation for vector
bundle sections. We remark that invariant sets should be viewed from a slightly
different standpoint when the boundary conditions are specified for the solutions;
see, for instance, [13], [11], and [12].

The paper [14], being devoted to the study of the Ricci flow on manifolds with
boundary, offers a specific version of the Hopf boundary point lemma. This version
applies to 2-tensors over a manifold with boundary. In essence, it is an analogue of
the maximum principle for 2-tensors proved in [8]. At the same time, in spite of the
fact that the universal maximum principle for sections suggested in [9] is a recognized
powerful tool, no counterparts of this statement have yet been obtained in the presence
of a boundary. Section 2 of the present paper establishes a general version of the Hopf
boundary point lemma. Our statement applies to sections of a general vector bundle
over a manifold with boundary. It appears to constitute a comprehensive counterpart
to the maximum principle suggested in [9].

After proving our Hopf lemma for sections, we state three of its immediate corol-
laries. They are all closely related to the concept of an invariant set. The first corollary
may be viewed as the basic maximum principle for sections of a vector bundle over
a manifold with boundary. The second corollary shows that the maximum principle
of [9] holds in the presence of a boundary provided that Neumann type boundary
conditions are imposed on the sections in question. Such a result is expected to prove
useful in the study of the Ricci flow; cf. [14]. The third corollary provides an explicit
connection between invariant sets of an equation for vector bundle sections and the
boundary conditions specified for the solutions. In certain situations, it allows to
find an invariant set for a given boundary value problem. (In one form or another,
this task was addressed in many works; see, for instance, [11], Chapter 14 of [15],
[12], and [1].) Alternatively, the third corollary may be used to construct a relatively
sophisticated boundary value problem with a given invariant set.

Section 3 of the present paper explains how our Hopf lemma for sections applies
to a system of scalar parabolic equations similar to the one studied in [16]. Roughly
speaking, we reformulate our statement for sections of a trivial bundle equipped with
the standard connection. An analogous, although not exactly the same, result for
parabolic systems can be found in [13]. We should note that the specific framework
of Section 3 enables us to refine the smoothness assumptions imposed in Section 2.
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2. The Hopf lemma for sections

Consider a smooth, compact, connected, oriented Riemannian manifold M with (pos-
sibly empty) boundary ∂M . We use the notation ν(x) for the outward unit normal
to ∂M at the point x ∈ ∂M . Let V be a vector bundle over M . The fiber of V over
x ∈ M will be denoted by Vx . The designation π(v) refers to the projection of v ∈ V

onto M . We suppose V is equipped with a fiber metric 〈·, ·〉. Let ‖ · ‖ stand for the
corresponding norm.

Consider a time-dependent sectionf (t, x)of the vector bundleV . In what follows,
the time parameter t varies through the interval [0, T ] with a fixed T > 0. Choose a
connection A in V compatible with 〈·, ·〉. Let ∇f (t, x) denote the covariant derivative
of f (t, x) with respect to A. We write ∇χf (t, x) to indicate the application of
∇f (t, x) to the tangent vector χ ∈ TxM . Employing the connection A in V and
the Levi-Civita connection in the cotangent bundle T ∗M , one can define the second
covariant derivative ∇2f (t, x). We write ∇2

χ1,χ2
f (t, x) to indicate the application

of ∇2f (t, x) to the vectors χ1, χ2 ∈ TxM . The Laplacian � acts on the section
f (t, x) by taking the trace of ∇2f (t, x). We refer to Chapter 4 of [5] for the details
of defining the Laplacian.1

Let φ(t, v) be a time-dependent mapping of V into itself such that φ(t, v) ∈ Vπ(v)

for any (t, v) ∈ [0, T ] × V . Suppose every compact set U ⊂ V admits a constant
Cφ(U) > 0 satisfying

‖φ(t, v1) − φ(t, v2)‖ ≤ Cφ(U)‖v1 − v2‖. (2.1)

The estimate must hold for any t ∈ (0, T ), and any v1, v2 ∈ U subject to π(v1) =
π(v2). Let ζ(t, x) be a time-dependent vector field on M . Suppose f (t, x) solves
the second-order equation

∂

∂t
f (t, x) = �f (t, x) + ∇ζ(t,x)f (t, x) + φ(t, f (t, x)) (2.2)

on (0, T ) × M . In particular, f (t, x) must be continuous in t ∈ [0, T ] and C1-
differentiable in t ∈ (0, T ).

Consider a nonempty set W ⊂ V . We assume W is invariant under the parallel
translation with respect to the connection A fixed in V . The set Wx = W ∩ Vx must
be closed and convex in the fiber Vx for every x ∈ M . When writing ∂Wx , we refer to
the boundary of Wx in Vx . It should be noted that ∂Wx is not required to be smooth
for any x ∈ M . Given a point ω ∈ W subject to ω ∈ ∂Wπ(ω), we call λ ∈ Vπ(ω) a
supporting vector for W at ω if ‖λ‖ = 1 and the inequality 〈λ, σ 〉 ≤ 〈λ, ω〉 holds for
all σ ∈ Wπ(ω). The set of all the supporting vectors for W at ω will be denoted by
SωW . In a sense, the elements of SωW are outward unit normals to ∂Wπ(ω) at ω.

1The denotations ∇̂(t)(∇̄(t)ϕ)(t, x) and �̂ are used in Chapter 4 of [5] for the objects denoted by ∇2f (t, x)

and � in the present paper.
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Introduce the notation

distW v = inf
ω∈Wπ(v)

‖v − ω‖

for v ∈ V . Let ω(v) be the unique point in Wπ(v) such that distW v = ‖v − ω(v)‖.
Obviously, distW v represents the distance between v ∈ V and Wπ(v), while ω(v)

is the unique point in Wπ(v) closest to v. We call (t, x) ∈ [0, T ] × M a maximal
distance pair if

distW f (t, x) = sup
y∈M

distW f (t, y) > 0.

Let λ(v) denote the difference v − ω(v) for v ∈ V .
We are now ready to formulate our Hopf lemma for sections. It should be remarked

that the assumption on the mappingφ(t, v) in our statement is quite standard. Roughly
speaking, we demand that φ(t, v) point into W when v is subject to v ∈ ∂Wπ(v). This
is equivalent to the “ordinary differential equation assumption” employed in [9]; see
Lemma 4.1 in [9].

Theorem 2.1. Suppose the solution f (t, x) of equation (2.2) and the mapping φ(t, v)

appearing in the right-hand side of equation (2.2) meet the following requirements:

(1) The initial value f (0, x) lies in W for all x ∈ M .

(2) The estimate 〈λ, φ(t, ω)〉 ≤ 0 holds for any t ∈ (0, T ), any ω ∈ W subject to
ω ∈ ∂Wπ(ω), and any supporting vector λ ∈ SωW .

If the value f (t, x) lies outside of W for some (t, x) ∈ (0, T ] × M , then there exists
a maximal distance pair (tpos, xpos) ∈ (0, T ) × ∂M such that the formula

〈λ(f (tpos, xpos)), ∇ν(xpos)f (tpos, xpos)〉 > 0 (2.3)

holds true.

Before proving the theorem, we need to make some preliminary arrangements.
Given a real-valued function θ(t) on [0, T ), define

θ̇+(t) = lim sup
h→0+

θ(t + h) − θ(t)

h

for t ∈ [0, T ). The following lemma will be required; cf. Lemma 3.1 and Corollary 3.3
in [9], or Lemma 7 in [6].

Lemma 2.1. Suppose θ(t) is a non-negative continuous function on [0, T ) with
θ(0) = 0. Suppose also θ(t) is not identically 0 on [0, T ). Given a constant C > 0,
there exists a point tC ∈ (0, T ) such that θ̇+(tC) > Cθ(tC) and θ(tC) > 0.
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Proof. Assume the existence of C > 0 satisfying the estimate θ̇+(t) ≤ Cθ(t) when-
ever θ(t) > 0. Introduce a new non-negative continuous function η(t) = e−Ctθ(t).
Clearly, the equality η(0) = 0 holds, and η̇+(t) ≤ 0 whenever η(t) > 0.

Fix ε1, ε2 > 0. We will now prove that η(t) ≤ ε1t + ε2 for all t ∈ [0, T ). Let
a be the largest possible number in (0, T ] such that the inequality η(t) ≤ ε1t + ε2
holds on [0, a). (Since η(0) = 0 < ε2, the set of such numbers is not empty, and a

is well defined.) We claim that a = T . Indeed, if a < T , then η(a) = ε1a + ε2 > 0
by continuity and

lim sup
h→0+

η(a + h) − η(a)

h
≤ 0.

But this implies η(t) ≤ ε1t + ε2 on [0, a + δ) for some δ > 0, which contradicts the
definition of a.

Thus η(t) ≤ ε1t + ε2 for all t ∈ [0, T ). Since this inequality holds for any
ε1, ε2 > 0, we can conclude that η(t) is identically 0. Hence θ(t) is identically 0,
which contradicts the suppositions of the lemma. �

Proof of Theorem 2.1. It suffices to carry out the proof assuming W is compact. In
order to justify this statement, fix a number R > 0 large enough to ensure that
‖f (t, x)‖ < R and ‖ω(f (t, x))‖ < R for any (t, x) ∈ [0, T ] × M . Introduce the
set Ŵ = {w ∈ W | ‖w‖ ≤ R}. One can verify that Ŵ is compact. Clearly, it is
invariant under the parallel translation with respect to A, and its intersection with the
fiber Vx is closed and convex in Vx for every x ∈ M . Let κ(v) be a smooth function
acting from V to the interval [0, 1]. We choose κ(v) demanding that κ(v) = 1 when
‖v‖ ≤ R and κ(v) = 0 when ‖v‖ ≥ 2R. Define the time-dependent mapping φ̂(t, v)

of V into itself by the formula φ̂(t, v) = κ(v)φ(t, v). Estimate (2.1) is obviously
satisfied for φ̂(t, v) with the constant C

φ̂
(U) = Cφ(U) when the compact set U is

equal to f ([0, T ] × M) ∪ Ŵ . (We note that the proof of the theorem will not require
estimate (2.1) to hold when U is other than f ([0, T ]×M)∪W .) The section f (t, x)

would remain a solution of equation (2.2) if the mapping φ̂(t, v) appeared in the right-
hand side of this equation instead of the mapping φ(t, v). A straightforward argument
demonstrates that it suffices to prove the theorem with W and φ(t, v) replaced by Ŵ

and φ̂(t, v). Therefore, supposing W is compact does not lead to a loss of generality.
Introduce the function

s(t) = sup
x∈M

distW f (t, x)

for t ∈ [0, T ]. Evidently, it is non-negative. One can show that s(t) is continuous.
Our requirement (1) implies that s(0) = 0. If f (t, x) lies outside of W for some
(t, x) ∈ (0, T ] × M , then s(t) is not identically 0 on [0, T ]. Assuming the assertion
of the theorem fails to hold, we will prove the estimate ṡ+(t) ≤ Cs(t) for a fixed
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constant C > 0 and an arbitrary t ∈ (0, T ) such that s(t) > 0. Lemma 2.1 would
then provide a contradiction.

Fix a point t ∈ (0, T ) satisfying s(t) > 0. Ifx ∈ M is subject to distW f (t, x) > 0,
the equality

distW f (t, x) = sup
ω∈∂Wx

sup
λ∈SωW

〈λ, f (t, x) − ω〉

holds true. This implies

s(t) = sup
(ω,λ)∈�

〈λ, f (t, π(ω)) − ω〉,

� = {(ω, λ) ∈ V × V | ω ∈ ∂Wπ(ω), λ ∈ SωW }.
The set � is compact in V × V . Therefore, we can apply Lemma 9 in [6], see also
Lemma 3.5 in [9], to conclude

ṡ+(t) ≤ sup
(ω,λ)∈�′

∂

∂r
〈λ, f (r, π(ω)) − ω〉|r=t ,

�′ = {(ω, λ) ∈ � | s(t) = 〈λ, f (t, π(ω)) − ω〉}.
Fix a pair (ω, λ) ∈ �′. For brevity, we write x instead of π(ω). The point x ∈ M

is thus fixed from now on. Assuming the assertion of the theorem fails to hold, we
will show that ∂

∂r
〈λ, f (r, x)−ω〉|r=t ≤ Cs(t) for a constant C > 0 independent of t .

This would yield the desired estimate ṡ+(t) ≤ Cs(t).
Equation (2.2) yields

∂

∂r
〈λ, f (r, x) − ω〉|r=t

= 〈λ, �f (t, x)〉 + 〈λ, ∇ζ(t,x)f (t, x)〉 + 〈λ, φ(t, f (t, x))〉.
(2.4)

The inclusion (ω, λ) ∈ �′ implies that (t, x) is a maximal distance pair and the
vector λ coincides with λ(f (t,x))

‖λ(f (t,x))‖ . If the assertion of the theorem were incorrect,

then either x would be in the interior of M or 〈λ, ∇ν(x)f (t, x)〉 would be non-positive.
Assuming this alternative, we will estimate each of the three terms in the right-hand
side of equation (2.4).

Let us establish the equality 〈λ, ∇χf (t, x)〉 = 0 for an arbitrary χ ∈ TxM .
Obviously, it would imply

〈λ, ∇ζ(t,x)f (t, x)〉 = 0. (2.5)

At the first step, we consider a vector χ ∈ TxM admitting a geodesic segment γχ(u)

defined for u ∈ [0, εχ ] in such a way that γχ(0) = x and dγχ

du
(0) = χ . The number εχ
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should be chosen small enough to ensure the geodesic segment’s not intersecting itself.
The initial goal is to show that 〈λ, ∇χf (t, x)〉 ≤ 0.

For the sake of brevity, we write γ (u) instead of γχ(u) and ε instead of εχ . One
can extend the vectors λ and ω to parallel (with respect to the connection A) sections
λ′(γ (u)) and ω′(γ (u)) of the bundle V defined along γ (u). The covariant derivatives
of λ′(γ (u)) and ω′(γ (u)) with respect to A at the point x = γ (0) exist in the direction
of χ . Writing ∇χλ′(x) and ∇χω′(x) for these covariant derivatives, we can easily
see that ∇χλ′(x) = 0 and ∇χω′(x) = 0.

Introduce the function g(u) = 〈λ′(γ (u)), f (t, γ (u)) − ω′(γ (u))〉 on [0, ε]. Ob-
viously, g(0) = s(t). Using the fact that the parallel transport is an isometry of the
fibers, one proves ω′(γ (u)) ∈ ∂Wγ (u) and λ′(γ (u)) ∈ Sω′(γ (u))W for any u ∈ [0, ε].
These inclusions imply the inequality

g(0) = s(t) ≥ 〈λ′(γ (u)), f (t, γ (u)) − ω′(γ (u))〉 = g(u)

for any u ∈ [0, ε]. As a consequence, the function g(u) has a maximum at 0, and
the one-sided derivative dg

du
(0) is non-positive. Since the connection A is compatible

with the fiber metric, we have the formula

〈λ, ∇χf (t, x)〉 = 〈∇χλ′(x), f (t, x)〉 + 〈λ, ∇χf (t, x)〉
= ∂

∂u
〈λ′(γ (u)), f (t, γ (u))〉|u=0 = dg

du
(0).

Hence 〈λ, ∇χf (t, x)〉 ≤ 0.
Choose an orthonormal basis {e1, . . . , en} of the tangent space TxM . We will show

that 〈λ, ∇ek
f (t, x)〉 = 0 for any k = 1, . . . , n. Suppose x lies in the interior of M .

Then a geodesic segment γek
(u), the parameter u varying through [0, εek

], subject

to γek
(0) = x and

dγek

du
(0) = ek exists for any k = 1, . . . , n. As a consequence,

the scalar products 〈λ, ∇ek
f (t, x)〉 are non-positive. Substituting −ek for ek and

repeating the argument, we conclude that the scalar products 〈λ, ∇ek
f (t, x)〉 are also

non-negative. Thus 〈λ, ∇ek
f (t, x)〉 = 0 for any k = 1, . . . , n.

Suppose x lies in the boundary of M . Without loss of generality, we assume
that en coincides with the inward normal to the boundary of M . It is easy to verify
the existence of a geodesic segment γen(u) defined for u ∈ [0, εen] in such a way

that γen(0) = x and dγen

du
(0) = en. Consequently, the scalar product 〈λ, ∇enf (t, x)〉

is non-positive. At the same time, our hypothesis implies that 〈λ, ∇enf (t, x)〉 =
−〈λ, ∇ν(x)f (t, x)〉 is non-negative. Thus 〈λ, ∇enf (t, x)〉 = 0. Provided n ≥ 2,
we now prove that 〈λ, ∇ek

f (t, x)〉 = 0 for k = 1, . . . , n − 1. The situation is
slightly more complicated here because a geodesic emanating from x in the direction
of ek does not necessarily exist. In order to overcome this problem, we will carry
out an approximation procedure. Namely, fix a sequence (em

k )∞m=1 converging to ek

for every k = 1, . . . , n − 1. We choose the vectors em
k demanding that the scalar
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product of em
k and en with respect to the Riemannian metric in M be strictly positive.

Given k and m, it is easy to verify the existence of a geodesic segment γem
k
(u), the

parameter u varying through [0, εem
k
], subject to γem

k
(0) = x and

dγem
k

du
(0) = em

k .

As a consequence, 〈λ, ∇em
k
f (t, x)〉 ≤ 0. The convergence of (em

k )∞m=1 to ek then

implies 〈λ, ∇ek
f (t, x)〉 ≤ 0. Substituting −ek for ek and repeating the argument, we

conclude that 〈λ, ∇ek
f (t, x)〉 ≥ 0. Thus 〈λ, ∇ek

f (t, x)〉 = 0 for k = 1, . . . , n − 1.
By virtue of the established equalities, 〈λ, ∇χf (t, x)〉 = 0 for an arbitrary χ ∈

TxM . This clearly proves formula (2.5).
Our next goal is to obtain the estimate

〈λ, �f (t, x)〉 ≤ 0. (2.6)

As before, consider a vector χ ∈ TxM admitting a geodesic segment γχ(u) defined

for u ∈ [0, εχ ] in such a way that γχ(0) = x and dγχ

du
(0) = χ . The number εχ

should be small enough to ensure the absence of self-intersections. We now show
that 〈λ, ∇2

χ,χf (t, x)〉 ≤ 0. This would provide us with a basis for the proof of

estimate (2.6).
Again, we write γ (u) instead of γχ(u) and ε instead of εχ . It will be convenient

to use the notation γ ′(u) for dγ
du

(u). A parallel section λ′(γ (u)) of the bundle V

along γ (u) has been introduced above. The covariant derivative of this section with
respect to the connection A at the point γ (u) exists in the direction of γ ′(u) for any
u ∈ [0, ε). Writing ∇γ ′(u)λ

′(γ (u)) for this covariant derivative, we can easily see
that ∇γ ′(u)λ

′(γ (u)) = 0 for any u ∈ [0, ε).
Since A is compatible with the fiber metric, the equality

〈λ, ∇2
χ,χf (t, x)〉 = 〈∇χλ′(x), ∇χf (t, x)〉 + 〈λ, ∇2

χ,χf (t, x)〉
= ∂

∂u
〈λ′(γ (u)), ∇γ ′(u)f (t, γ (u))〉|u=0

= ∂

∂u

(〈∇γ ′(u)λ
′(γ (u)), f (t, γ (u))〉

+ 〈λ′(γ (u)), ∇γ ′(u)f (t, γ (u))〉)|u=0

= ∂2

∂u2 〈λ′(γ (u)), f (t, γ (u))〉|u=0

= d2g

du2 (0)

holds true. The function g(u) introduced above has a maximum at 0. It has been

proven that dg
du

(0) = 〈λ, ∇χf (t, x)〉 = 0. Therefore d2g

du2 (0) ≤ 0, which yields

〈λ, ∇2
χ,χf (t, x)〉 ≤ 0.
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Suppose x lies in the interior of M . Then every vector from the chosen above basis
{e1, . . . , en} appears as a tangent vector for a certain geodesic segment emanating
from x. As a consequence, 〈λ, ∇2

ek,ek
f (t, x)〉 ≤ 0 for every k = 1, . . . , n.

Suppose x lies in the boundary of M . Recall that en is assumed to coincide
with the inward normal to the boundary of M . As mentioned before, en appears
as a tangent vector for a certain geodesic segment emanating from x. Therefore,
〈λ, ∇2

en,en
f (t, x)〉 ≤ 0. Provided n ≥ 2, we can approximate the other basis vectors

with the previously fixed sequences (em
k )∞m=1 to conclude that 〈λ, ∇2

ek,ek
f (t, x)〉 ≤ 0

for every k = 1, . . . , n − 1.
According to the definition of the Laplacian,

〈λ, �f (t, x)〉 =
n∑

k=1

〈λ, ∇2
ek,ek

f (t, x)〉.

By virtue of the established inequalities, all the terms in the right-hand side are non-
positive. This clearly implies formula (2.6).

Finally, let us prove the estimate

〈λ, φ(t, f (t, x))〉 ≤ Cs(t) (2.7)

with a constant C > 0 independent of t . The vector λ belongs to SωW . It must also
belong to Sω(f (t,x))W , although ω does not necessarily coincide with ω(f (t, x)).
(Recall that ω(f (t, x)) stands for the unique point in Wx closest to f (t, x).) In
accordance with our requirement (2), 〈λ, φ(t, ω(f (t, x)))〉 ≤ 0. Hence the estimate

〈λ, φ(t, f (t, x))〉 ≤ 〈λ, φ(t, f (t, x))〉 − 〈λ, φ(t, ω(f (t, x)))〉
≤ ‖φ(t, f (t, x)) − φ(t, ω(f (t, x)))‖
≤ C‖f (t, x) − ω(f (t, x))‖ = Cs(t)

holds with the constant C > 0 equal to the constant Cφ(f ([0, T ] × M) ∪ W) > 0
given by formula (2.1). This concludes the proof of (2.7). Remark that the argument
we used does not depend on whether x is in the boundary of M or in the interior of M .

Equation (2.4) now provides ∂
∂r

〈λ, f (r, x) − ω〉|r=t ≤ Cs(t). As mentioned
before, this inequality implies ṡ+(t) ≤ Cs(t), which is impossible in view of
Lemma 2.1. �

Remark 2.1. The assumption on the mapping φ(t, v) imposed by the theorem may
be slightly refined. Namely, it suffices to demand that the estimate 〈λ, φ(t, ω)〉 ≤ 0
hold when ω is equal to ω(f (t, x)) and λ is equal to λ(f (t, x)) for every maximal
distance pair (t, x) ∈ (0, T ) × M .

Remark 2.2. If the boundary of M is empty, then the suppositions of the theorem
cannot be satisfied simultaneously. In this case, requirements (1) and (2) ensure that
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f (t, x) cannot lie outside of W . This fact is essentially equivalent to the maximum
principle obtained in [9].

Remark 2.3. The theorem would prevail if the Riemannian metric in M and the
connection A fixed in V depended on the time parameter t ∈ [0, T ]. Of course,
then we would have to modify some of the assumptions imposed above. Firstly, the
connection A(t) fixed in V at time t would be required to be compatible with the fiber
metric 〈·, ·〉 for all t ∈ (0, T ). Secondly, the set W would have to be invariant under
the parallel translation with respect to A(t) for all t ∈ (0, T ). The details of defining
the Laplacian and writing down equation (2.2) in the situation under discussion can
be found in Chapter 4 of [5]. The covariant derivative and the outward normal in
formula (2.3) would have to be computed with respect to the connection A(tpos) and
the Riemannian metric in M at time tpos.

We will now formulate three immediate corollaries of Theorem 2.1. The following
statement may be viewed as the basic maximum principle for sections of a vector
bundle over a manifold with boundary.

Corollary 2.1. Suppose the solution f (t, x) and the mapping φ(t, v) meet require-
ments (1) and (2) of Theorem 2.1. If f (t, x) lies in W for all (t, x) ∈ (0, T ) × ∂M ,
then f (t, x) lies in W for all (t, x) ∈ [0, T ] × M .

The following statement shows that the maximum principle of [9] holds for f (t, x)

provided that Neumann type boundary conditions are imposed.

Corollary 2.2. Suppose the solution f (t, x) and the mapping φ(t, v) meet require-
ments (1) and (2) of Theorem 2.1. If the boundary condition

∇ν(x)f (t, x) = 0

is satisfied for all (t, x) ∈ (0, T ) × ∂M , then f (t, x) lies in W for all (t, x) ∈
[0, T ] × M .

Let λ̄(v) be a mapping of V into itself such that λ̄(v) ∈ Vπ(v) for any v ∈ V .
The following statement establishes an explicit connection between invariant sets of
equation (2.2) and the boundary conditions specified for the solutions.

Corollary 2.3. Suppose the solution f (t, x) and the mapping φ(t, v) meet require-
ments (1) and (2) of Theorem 2.1. Suppose also λ̄(v) = λ(v) for any v ∈ V lying
outside of W . If the boundary condition

〈λ̄(f (t, x)), ∇ν(x)f (t, x)〉 = 0

is satisfied for all (t, x) ∈ (0, T ) × ∂M , then f (t, x) lies in W for all (t, x) ∈
[0, T ] × M .
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It should be noted that both Corollary 2.1 and Corollary 2.2 can be deduced from
Corollary 2.3.

3. Systems of parabolic equations

We will now explain how Theorem 2.1 applies to a parabolic system similar to the
one studied in [16]. We remark that dealing with a parabolic system rather than an
equation for vector bundle sections enables us to refine the smoothness assumptions
imposed in Section 2.

Let M be the closure of a bounded domain in R
n with C1-differentiable boundary

∂M . We use the designation ν(x) for the outward unit normal to ∂M at the point
x ∈ ∂M . Differentiation with respect to x ∈ M in the direction of ν(x) will be
denoted by ∂

∂ν
. Let x1, . . . , xn be the standard coordinates in R

n.
Consider a collection of time-dependent real-valued functions fi(t, x) on M in-

dexed by i = 1, . . . , m. The time parameter t varies through the interval [0, T ].
We write f (t, x) for the vector (f1(t, x), . . . , fm(t, x)). Roughly speaking, f (t, x)

appears as a time-dependent section of the product bundle M × R
m.

Let φi(t, x, v) be a collection of time-dependent real-valued functions on M ×R
m

indexed by i = 1, . . . , m. Again, φ(t, x, v) stands for the vector (φ1(t, x, v), . . . ,

φm(t, x, v)). The denotations 〈·, ·〉 and ‖ · ‖ refer to the standard Euclidean scalar
product and the standard Euclidean norm in R

m. We demand that every compact set
U ⊂ R

m admit a constant Cφ(U) > 0 such that

‖φ(t, x, v1) − φ(t, x, v2)‖ ≤ Cφ(U)‖v1 − v2‖.
The estimate must hold for any t ∈ (0, T ), any x ∈ M , and any pair of vectors
v1, v2 ∈ U . Roughly speaking, φ(t, x, v) appears as a time-dependent mapping of
the bundle M × R

m into itself. The above inequality may then be viewed as a special
case of inequality (2.1).

Fix time-dependent real-valued functions ζj (t, x) on M for j = 1, . . . , n. We
suppose fi(t, x) solves the second-order equation

∂

∂t
fi(t, x) =

n∑
j=1

∂2

∂x2
j

fi(t, x) +
n∑

j=1

ζj (t, x)
∂

∂xj

fi(t, x) + φi(t, x, f (t, x)) (3.1)

on (0, T ) × M for every i = 1, . . . , m. In particular, fi(t, x) must be continuous
in t ∈ [0, T ], C1-differentiable in t ∈ (0, T ), and C2-differentiable in x ∈ M . The
collection of equations (3.1) for i = 1, . . . , m may be viewed as a special case of
equation (2.2).

Consider a nonempty closed convex set W ⊂ R
m. Given a point ω ∈ ∂W , we call

λ ∈ R
m a supporting vector for W at ω if ‖λ‖ = 1 and the inequality 〈λ, σ 〉 ≤ 〈λ, ω〉
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holds for all σ ∈ W . Let SωW signify the set of all the supporting vectors for W

at ω. We write distW v to denote the standard Euclidean distance between v ∈ R
m

and W . The designation ω(v) refers to the unique point in W closest to v. We call
(t, x) ∈ [0, T ] × M a maximal distance pair if

distW f (t, x) = sup
y∈M

distW f (t, y) > 0.

Let λ(v) denote the difference v − ω(v) for v ∈ R
m.

Following the proof of Theorem 2.1, one can obtain the following result.

Theorem 3.1. Suppose the vector-valued functions f (t, x) and φ(t, x, v) related by
equations (3.1) for i = 1, . . . , m meet the following requirements:

(1) The initial value f (0, x) lies in W for all x ∈ M .

(2) The estimate 〈λ, φ(t, x, ω)〉 ≤ 0 holds for any (t, x, ω) ∈ (0, T ) × M × ∂W

and any supporting vector λ ∈ SωW .

If the value f (t, x) lies outside of W for some (t, x) ∈ (0, T ] × M , then there exists
a maximal distance pair (tpos, xpos) ∈ (0, T ) × ∂M such that the formula

∂

∂ν
〈λ(f (tpos, xpos)), f (tpos, x)〉|x=xpos > 0

holds true.
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References

[1] L. Amour and T. Raoux, The Cauchy problem for a coupled semilinear parabolic system.
Nonlinear Anal. 52 (2003), 891–904. Zbl 1015.35037 MR 1937871

[2] H.-D. Cao and L. Ni, Matrix Li-Yau-Hamilton estimates for the heat equation on Kähler
manifolds. Math. Ann. 331 (2005), 795–807. Zbl 1083.58024 MR 2148797

[3] B. Chow, The Yamabe flow on locally conformally flat manifolds with positive Ricci
curvature. Comm. Pure Appl. Math. 45 (1992), 1003–1014. Zbl 0785.53027 MR 1168117

[4] B. Chow, Ricci flow and Einstein metrics in low dimensions. In Surveys in differential
geometry: essays on Einstein manifolds, International Press, Boston 1999, 187–220.
Zbl 0999.53041 MR 1798610

[5] B. Chow and D. Knopf, The Ricci flow: an introduction. Math. Surveys Monogr. 110,
Amer. Math. Soc., Providence, RI, 2004. Zbl 1086.53085 MR 2061425

[6] B. Chow and P. Lu, The maximum principle for systems of parabolic equations subject to
an avoidance set. Pacific J. Math. 214 (2004), 201–222. Zbl 1049.35101 MR 2042930

http://www.emis.de/MATH-item?1015.35037
http://www.ams.org/mathscinet-getitem?mr=1937871
http://www.emis.de/MATH-item?1083.58024
http://www.ams.org/mathscinet-getitem?mr=2148797
http://www.emis.de/MATH-item?0785.53027
http://www.ams.org/mathscinet-getitem?mr=1168117
http://www.emis.de/MATH-item?0999.53041
http://www.ams.org/mathscinet-getitem?mr=1798610
http://www.emis.de/MATH-item?1086.53085
http://www.ams.org/mathscinet-getitem?mr=2061425
http://www.emis.de/MATH-item?1049.35101
http://www.ams.org/mathscinet-getitem?mr=2042930


Vol. 83 (2008) The Hopf boundary point lemma for vector bundle sections 419

[7] C. Cosner and P. Schaefer, On the development of functionals which satisfy a maximum
principle. Appl. Anal. 26 (1987), 45–60. Zbl 0607.34049 MR 0916898

[8] R. Hamilton, Three-manifolds with positive Ricci curvature. J. Differential Geom. 17
(1982), 255–306. Zbl 0504.53034 MR 0664497

[9] R. Hamilton, Four-manifolds with positive curvature operator. J. Differential Geom. 24
(1986), 153–179. Zbl 0628.53042 MR 0862046

[10] R. Hamilton, A matrix Harnack estimate for the heat equation. Comm. Anal. Geom. 1
(1993), 113–126. Zbl 0799.53048 MR 1230276

[11] H. Kuiper, Invariant sets for nonlinear elliptic and parabolic systems. SIAM J. Math. Anal.
11 (1980), 1075–1103. Zbl 0468.35055 MR 0595833

[12] H. Kuiper, Positively invariant regions for strongly coupled reaction-diffusion systems with
a balance law. J. Math. Anal. Appl. 249 (2000), 340–350. Zbl 0984.35084 MR 1781228

[13] R. Redheffer and W. Walter, Invariant sets for systems of partial differential equations
I. Parabolic equations. Arch. Rational Mech. Anal. 67 (1978), 41–52. Zbl 0377.35038
MR 0473317

[14] Y. Shen, On Ricci deformation of a Riemannian metric on manifold with boundary. Pacific
J. Math. 173 (1996), 203–221. Zbl 0867.53031 MR 1387799

[15] J. Smoller, Shock waves and reaction-diffusion equations. Grundlehren Math. Wiss. 258,
2nd edition, Springer-Verlag, New York 1994. Zbl 0807.35002 MR 1301779

[16] H. Weinberger, Invariant sets for weakly coupled parabolic and elliptic systems. Rend.
Mat. (6) 8 (1975), 295–310. Zbl 0312.35043 MR 0397126

Received August 1, 2006

Artem Pulemotov, Department of Mathematics, Cornell University, 310 Malott Hall, Ithaca,
NY 14853-4201, U.S.A.
E-mail: artem@math.cornell.edu

http://www.emis.de/MATH-item?0607.34049
http://www.ams.org/mathscinet-getitem?mr=0916898
http://www.emis.de/MATH-item?0504.53034
http://www.ams.org/mathscinet-getitem?mr=0664497
http://www.emis.de/MATH-item?0628.53042
http://www.ams.org/mathscinet-getitem?mr=0862046
http://www.emis.de/MATH-item?0799.53048
http://www.ams.org/mathscinet-getitem?mr=1230276
http://www.emis.de/MATH-item?0468.35055
http://www.ams.org/mathscinet-getitem?mr=0595833
http://www.emis.de/MATH-item?0984.35084
http://www.ams.org/mathscinet-getitem?mr=1781228
http://www.emis.de/MATH-item?0377.35038
http://www.ams.org/mathscinet-getitem?mr=0473317
http://www.emis.de/MATH-item?0867.53031
http://www.ams.org/mathscinet-getitem?mr=1387799
http://www.emis.de/MATH-item?0807.35002
http://www.ams.org/mathscinet-getitem?mr=1301779
http://www.emis.de/MATH-item?0312.35043
http://www.ams.org/mathscinet-getitem?mr=0397126

	Introduction
	The Hopf lemma for sections
	Systems of parabolic equations

