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Generalized Property R and the Schoenflies Conjecture
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Abstract. There is a relation between the generalized Property R Conjecture and the Schoenflies
Conjecture that suggests a new line of attack on the latter. The new approach gives a quick proof
of the genus 2 Schoenflies Conjecture and suffices to prove the genus 3 case, even in the absence
of new progress on the generalized Property R Conjecture.
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1. Introduction and preliminaries

The Schoenflies Conjecture asks whether every PL (or, equivalently, smooth) 3-sphere
in S4 divides the 4-sphere into two PL balls. The appeal of the conjecture is at least
3-fold:

• The topological version (for locally flat embeddings) is known to be true in
every dimension. Both the PL and the smooth versions (when properly phrased,
to avoid problems with exotic structures) are known to be true in every other
dimension.

• If the Schoenflies Conjecture is false, then there is no hope for a PL prime
decomposition theorem for 4-manifolds, for it would imply that there are PL
4-manifolds X and Y , not themselves 4-spheres, so that X # Y ∼= S4.

• The Schoenflies Conjecture is weaker than the still unsolved 4-dimensional PL
Poincaré Conjecture, and so might be more accessible.

Little explicit progress has been made on the Schoenflies Conjecture for several
decades, a time which has nonetheless seen rapid progress in our understanding of both
3- and 4-dimensional manifolds. Here we outline how the Schoenflies Conjecture
is connected to another important problem on the border between classical 3- and
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4-dimensional topology, namely the generalized Property R Conjecture. We show
how at least some of the last two decades of progress in combinatorial 3-dimensional
topology, particularly sutured manifold theory, can be used to extend the proof of the
Schoenflies Conjecture from what are called genus 2 embeddings ofS3 inS4 to genus 3
embeddings. In some sense this is a small advance, but it has some philosophical
interest: genus 2 surfaces have long been known to have special properties (e.g.
the hyperelliptic involution) that are not shared by higher genus surfaces. That this
approach works for genus 3 suggests that the special properties of genus 2 surfaces are
not needed and so are not a barrier to success for arbitrary, higher genus embeddings.

We work in the PL category throughout. All manifolds discussed are orientable.

2. Generalized Property R

Recall the famous Property R theorem, proven in a somewhat stronger form by David
Gabai [Ga2]:

Theorem 2.1 (Property R). If 0-framed surgery on a knot K ⊂ S3 yields S1 × S2

then K is the unknot.

It is well known (indeed it is perhaps the original motivation for the Property R
Conjecture) that Property R has an immediate consequence for the handlebody struc-
ture of 4-manifolds:

Corollary 2.2. Suppose U4 is a homology 4-sphere and has a handle structure
containing exactly one 2-handle and no 3-handles. Then U is the 4-sphere.

Remark. It is immediate that U4 is in fact a homotopy 4-sphere, since the dual handle
structure would have no 1-handles and U4 is simply connected. But this property
plays no role in the proof.

Proof. Since U has a handle structure with no 3-handles, dually it has a handle
structure with no 1-handles. In order for U to be connected, this dual handle structure
must then have exactly one 0-handle, so the original handle structure has a single 4-
handle.

Let U− ⊂ U be the union of all 0- and 1-handles of U and M = ∂U−. U− can
be thought of as the regular neighborhood of a graph or, collapsing a maximal tree in
that graph, as the regular neighborhood of a bouquet of circles. The 4-dimensional
regular neighborhood of a circle in an orientable 4-manifold is S1 × D3, so U− is
the boundary connected sum �n(S

1 × D3), some n ≥ 0. (Explicitly, the number of
summands n is one more than the difference between the number of 1-handles and
0-handles, i.e. 1 − χ , where χ is the Euler characteristic of the graph.) It follows
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that M = #n(S
1 × S2) and, in particular, H2(M) ∼= Zn. Now consider the closed

complement U+ of U− in U . Via the dual handle structure, U+ is obtained by attaching
a single 2-handle to B4, so it deformation retracts to a 2-sphere and, in particular,
H2(U+) ∼= Z. Since U is a homology 4-sphere and H2(U−) = 0, it follows from the
Mayer–Vietoris sequence

H3(U) = 0 → H2(M) → H2(U+) ⊕ H2(U−) → H2(U) = 0

that Z ∼= H2(U+) ∼= Zn, so n = 1 and M = S1 × S2.
On the other hand, U+, whose handle structure (dual to that from U ) consists of

a 0-handle and a 2-handle, is visibly the trace of surgery on a knot in S3, namely the
attaching map of the 2-handle. The framing of the surgery is zero, since the generator
of H2(U+) is represented by ∗× S2 ⊂ S1 × S2 ∼= M and this class visibly has trivial
self-intersection. Since the result of 0-framed surgery on the knot is M = S1 × S2,
the knot is trivial by Property R (Theorem 2.1) so U+ is simply S2 × D2.

Hence U is the boundary union S1 × D3 ∪∂ S2 × D2. Of course the same is true
of S4, since the closed complement of a neighborhood of the standard 2-sphere in
S4 is S1 × D3. So we see that U can be obtained from S4 by removing the standard
S1 × D3 and pasting it back in, perhaps differently. But it is well known (and is
usefully extended to all 4-dimensional handlebodies by Laudenbach and Poenaru
[LP]) that any automorphism of S1 × S2 extends to an automorphism of S1 × D3, so
the gluing homeomorphism extends across S1 × D3 to give a homeomorphism of U

with S4. �

The generalized Property R conjecture (cf. Kirby Problem 1.82) says this:

Conjecture 1 (Generalized Property R). Suppose L is a framed link of n ≥ 1 com-
ponents in S3, and surgery on L via the specified framing yields #n(S

1 × S2). Then
there is a sequence of handle slides on L (cf. [Ki]) that converts L into a 0-framed
unlink.

In the case n = 1 no slides are possible, so Conjecture 1 does indeed directly
generalize Theorem 2.1. On the other hand, for n > 1 it is certainly necessary to
include the possibility of handle slides. For if one starts with the 0-framed unlink
of n-components and does a series of possibly complicated handle-slides, the result
will be a possibly complicated framed link L of n-components. The result of doing
the specified framed surgery on L will necessarily be the same (cf. [Ki]) as for the
original unlink, namely #n(S

1 ×S2), but L itself is no longer the unlink. The example
L is still consistent with Conjecture 1 since simply reversing the sequence of handle
slides will convert L back to the framed unlink. So in some sense Conjecture 1 is the
broadest plausible generalization of Theorem 2.1.

The generalized Property R Conjecture naturally leads to a generalized Corol-
lary 2.2:
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Proposition 2.3. Suppose Conjecture 1 is true. Then any homology 4-sphere U with
a handle structure containing no 3-handles is S4.

Proof. Again focus on the 3-manifold M that separates U− (the manifold after the 0
and 1-handles are attached) from its closed complement U+ in U . The dual handle
structure on U shows that U+ is constructed by attaching some 2-handles to B4. On
the other hand, the original handle structure shows that U− is the regular neighborhood
of a graph, so, as before for some n, U− ∼= �n(S

1 × D3) and M ∼= #n(S
1 × S2).

In particular H2(M) ∼= Zn. Since U is a homology 4-sphere and H2(U−) = 0, it
follows as before from the Mayer–Vietoris sequence that H2(U+) ∼= Zn. Hence U+
must be obtained from B4 by attaching exactly n 2-handles. Then the generalized
Property R conjecture would imply that U+ ∼= �n(S

2 × D2). It is shown in [LP] that
any automorphism of #n(S

1 × S2) = ∂�n(S
1 × D3) extends to an automorphism of

�n(S
1 × D3). (This is not quite stated explicitly in [LP] beyond the observation on

p. 342, “mark that no diffeomorphism of Xp was needed here!”). Hence the only
manifold that can be obtained by gluing U+ to U− along M is S4. �

The proposition suggests this possibly weaker conjecture:

Conjecture 2 (Weak generalized Property R conjecture). Suppose attaching n

2-handles to B4 gives a manifold W whose boundary is #n(S
1 × S2). Then W ∼=

�n(S
2 × D2).

We have then:

Proposition 2.4. The weak generalized Property R conjecture (Conjecture 2) is equiv-
alent to the conjecture that any homology 4-sphere U with a handle structure con-
taining no 3-handles is S4.

Proof. The proof of Proposition 2.3 really required only Conjecture 2, so only the
converse needs to be proved.

Suppose we know that any homology 4-sphere with a handle structure containing
no 3-handles is S4. Suppose W is a 4-manifold constructed by attaching n 2-handles
to B4 and ∂W is #n(S

1 × S2). Consider the exact sequence of the pair (W, ∂W):

0 = H3(W, ∂W) → H2(∂W) → H2(W)

→ H2(W, ∂W) → H1(∂W) → H1(W) = 0.

Since the last two non-trivial terms are both Zn, the inclusion induces an isomorphism
of the first two non-trivial terms, H2(∂W) → H2(W) ∼= Zn. Attach V = �n(S

1×D3)

to W by a homeomorphism of their boundaries and call the result U . (There is an
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obvious homeomorphism of boundaries, and any other one will give the same 4-mani-
fold, per [LP]). Then the Mayer–Vietoris sequence for the pair (W, V ) shows that U

is a homology 4-sphere hence, under our assumption, U = S4.
V ⊂ U is just a regular neighborhood of the wedge of n circles �. Since U

is simply connected, � is homotopic to a standard (i.e. planar) wedge of circles in
U whose complement is �n(S

2 × D2). In dimension 4, homotopy of 1-complexes
implies isotopy (apply general position to the level-preserving map � × I → U × I )
so in fact W ∼= �n(S

2 × D2) as required. �

Setting aside conjecture, here is a concrete extension of Property R:

Proposition 2.5. Suppose a 2-handle is attached to a genus n 4-dimensional handle-
body N = �n(S

1×D3) and the resulting 4-manifold N− has boundary #n−1(S
1×S2).

Then N− ∼= �n−1(S
1 × D3).

Proof. The proof is by induction on n; when n = 1 this is Property R. Suppose then
that n > 1 and let K ⊂ ∂(�n(S

1 ×D3)) ∼= #n(S
1 ×S2) be the attaching map for the 4-

dimensional 2-handle. The hypothesis is then that surgery on K yields #n−1(S
1×S2),

a reducible manifold. But examining the possibilities in [Sch2] we see that this is
possible only if #n(S

1 × S2) − K is itself reducible, so in particular one of the non-
separating 2-spheres {∗} × S2 is disjoint from K . Following [LP], this 2-sphere
bounds a 3-ball in N . Split N along this 3-ball, converting N to �n−1(S

1 × D3) and
∂N− to #n−2(S

1 ×S2). By inductive hypothesis, the split open N− is �n−2(S
1 ×D3)

so originally N− ∼= �n−1(S
1 × D3). �

Remark. Experts will note that, rather than use [Sch2], one can substitute the some-
what simpler [Ga1]: If n > 1 then H2(#n(S

1 × S2) − η(K)) 	= 0. Since both ∞-
and 0-framed surgery on K (or on a companion solid torus if #n(S

1 × S2) − η(K)

is toroidal) yield reducible (hence non-taut) 3-manifolds, from [Ga1] it follows that
#n(S

1 × S2) − η(K) is itself not taut, hence is reducible.

3. Application: Heegaard unions

Let Hn = �n(S
1 × D2) denote a 3-dimensional genus n orientable handlebody and

J n = �n(S
1 × D3) denote a 4-dimensional genus n orientable handlebody. Hn and

J n can also be thought of as regular neighborhoods in, respectively, R3 and R4 of
any graph � with Euler characteristic χ(�) = 1 − n.

Definition 3.1. Suppose, for some ρ0, ρ1, ρ2 ∈ N, Hρ0 is embedded into both ∂J ρ1

and ∂J ρ2 so that its complement in each ∂J ρi , i = 1, 2 is also a handlebody. Then
the 4-manifold W = J ρ1 ∪Hρ0 J ρ2 is called the Heegaard union of the J ρi along
Hρ0 . See Figure 1.
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copies of H

J ρ1

J ρ2

H = Hρ0

Figure 1

The term Heegaard union comes from the fact that Hρ0 is half of a Heegaard
splitting of both ∂J ρ1 and ∂J ρ2 . Moreover, if W is such a Heegaard union, then
(∂J ρ1−Hρ0)∪∂Hρ0 (∂J ρ2−Hρ0) is a Heegaard splitting of ∂W . The construction here
is tangentially related to the construction in [BC, 2.4] of a 4-dimensional cobordism
between three Heegaard-split 3-manifolds. Indeed, if two of the three 3-manifolds
in the Birman–Craggs construction are of the form #i (S

1 × S2) and are then filled in
with copies of #i (S

1 × D3) the result is a Heegaard union.

Lemma 3.2. If a Heegaard union W = J ρ1 ∪ J ρ2 is a rational homology ball, then
ρ0 = ρ1 + ρ2.

Proof. The first and second homology groups (rational coefficients) of W are trivial,
so the result follows from the Mayer–Vietoris sequence of W = J ρ1 ∪Hρ0 J ρ2 :

H2(W) = 0 → H1(H
ρ0) → H1(J

ρ1) ⊕ H1(J
ρ2) → H1(W) = 0. �

Proposition 3.3. Suppose a Heegaard union W = J ρ1 ∪Hρ0 J ρ2 is a homology ball
and ∂W ∼= S3. If the weak generalized Property R conjecture (Conjecture 2) is true
for min{ρ1, ρ2} components, then W = B4.

Proof. Suppose with no loss of generality that ρ1 ≤ ρ2. Let Ji denote J ρi , i = 1, 2
and H0 denote Hρ0 . Consider the genus ρ0 Heegaard splitting of ∂J2 given by
H0 ∪∂H0 (∂J2 −H0). According to Waldhausen [Wa] there is only one such Heegaard
splitting of ∂J2 up to homeomorphism, obtained as follows: Regard J2 as the product
of the interval with a genus ρ2 3-dimensional handlebody H . Then H × {0} ⊂
∂(H × I ) = ∂J2 and ∂J2 − (H × {0}) are both 3-dimensional handlebodies. The
resulting Heegaard splitting of ∂J2 is called the product splitting. It can be regarded
as the natural Heegaard splitting of ∂J2 ∼= #ρ2(S

1×S2). Any other Heegaard splitting
(e.g. the genus ρ0 splitting at hand) is homeomorphic to a stabilization of this standard
splitting.

As proven in [LP] and noted above, any automorphism of ∂J2 extends over J2
itself, so we may as well assume that the Heegaard splitting H0 ∪∂H0 (∂J2 − H0)
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actually is a stabilization of the product splitting. In particular, and most dramatically,
if ρ0 = ρ2 then no stabilization is required, so J2 is just H0 × I and W ∼= J1. Much
the same is true if ρ0 = ρ2 + 1: most of H0 is just H , so its attachment to J1 has no
effect on the topology of J1. The single stabilization changes the picture slightly, and
is best conveyed by considering what the effect would be of attaching a 4-ball to J1
not along one side of the minimal genus splitting of ∂B4 (i.e. along B3 ⊂ S3), which
clearly leaves J1 unchanged, but rather along one side of the once-stabilized splitting
of ∂B4. That is, B4 is attached to J1 along a solid torus, unknotted in ∂B4. But this
is exactly a description of attaching a 2-handle to J1. So W can be viewed as J1 with
a single 2-handle attached. In the general situation, in which the product splitting is
stabilized ρ0 − ρ2 times, W is homeomorphic to J1 with ρ0 − ρ2 2-handles attached.
The result now follows from Lemma 3.2 and Proposition 2.4. �

Remark. The link along which the 2-handles are attached has ρ1 components and,
viewed in S3, is part of a genus ρ0 Heegaard splitting. So its tunnel number can be
calculated: ρ1 − 1 tunnels are needed to connect the link into a genus ρ1 handlebody,
and another ρ0 − ρ1 are needed to make it half of a Heegaard splitting. Hence the
tunnel number is ρ0 − 1. This fact may be useful, but anyway explains why [Sch1]
could be done just knowing Property R for tunnel number one knots.

Corollary 3.4. Suppose a Heegaard union W = J ρ1 ∪Hρ0 J ρ2 is a homology ball
and ∂W ∼= S3. If ρ0 ≤ 3 then W = B4.

Proof. By Lemma 3.2, ρ1 +ρ2 ≤ 3, hence min{ρ1, ρ2} ≤ 1. The result then follows
from Proposition 3.3 and Theorem 2.1. �

4. Handlebody structure on 3-manifold complements

Suppose M ⊂ S4 is a connected closed PL or smooth 3-submanifold. In this section
we discuss the handlebody structure of each complementary component of M .

It is a classical result (cf. [KL]) that M can be isotoped so that it is in the form of
a rectified critical level embedding. We briefly review what that means.

Informally, the embedding M ⊂ S4 is in the form of a critical level embedding if
it has a handle structure in which each handle is horizontal with respect to the natural
height function on S4, and M intersects each region of S4 between handle levels in
a vertical collar of the boundary of the part of M that lies below (or, symmetrically,
above). More formally, regard S4 as the boundary of D4 × [−1, 1], so S4 consists
of two 4-balls D4 × ±1 (called the poles) added to the ends of S3 × [−1, 1]. Let
p : S3 ×[−1, 1] → [−1, 1] be the natural projection. For −1 < t < 1 denote p−1(t)

by S3
t . Then M ⊂ S3 × [−1, 1] ⊂ S4 is a critical level embedding if there are a
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collection t1 < t2 < · · · < tn of values in (−1, 1) and a collection of closed surfaces
F1, . . . , Fn ⊂ S3 so that

(1) p(M) = [t1, tn] ⊂ (−1, 1).

(2) For each 1 ≤ i ≤ n − 1, M ∩ (S3 × (ti , ti+1)) = Fi × (ti , ti+1).

(3) M ∩ S3
t1

= B3 with boundary F1.

(4) For each 2 ≤ i ≤ n, Fi is obtained from Fi−1 by a j -surgery, some 0 ≤ j ≤ 3.
That is, there is a 3-ball Dj × D3−j ⊂ S3 incident to Fi−1 in ∂Dj × D3−j and
Fi is obtained from Fi−1 by replacing ∂Dj × D3−j with Dj × ∂D3−j .

(5) For each 2 ≤ i ≤ n, M ∩ S3
ti

is the trace of the surgery above. That is, it is the
union of Fi−1, Fi and Dj × D3−j .

Such an embedding gives rise to a handle structure on M with n handles added
successively at levels t1, . . . , tn. j is the index of the handle Dj × D3−j . A critical
level embedding is called rectified if, for 0 ≤ j ≤ 2, each handle of index j occurs
at a lower level than each handle of index j + 1. Furthermore, all 0- and 1-handles
lie below S3

0 and all 2- and 3-handles lie above S3
0 . See Figure 2.

all 2- & 3-handles attached below

all 0- & 1-handles attached above

D4 north pole

S3 × {0}

D4 south pole

Figure 2

Note that the surface M ∩ S3
0 is a Heegaard surface for M , since all 0- and 1-

handles lie on one side (namely in S3 × [−1, 0]) and all 2- and 3-handles lie on the
other (S3 × [0, 1]). In particular, M ∩ S3

0 is connected. It is easy to see, [Sch1,
Lemma 1.4], though not completely obvious, that if the first 1-handle attached to the
boundary of a 0-handle is incident to the 0-handle at only one end, then the handles
cancel and there is a rectified embedding of M in which neither handle appears. So,
minimizing the number of handles, we will henceforth assume that the first 1-handle
incident to each 0-handle is incident to it in both ends. Equally important is the dual
to this remark: the boundary of the core of any 2-handle is essential in the surface to
which the 2-handle is attached. To summarize:
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Lemma 4.1. Any rectified critical level embedding of M may be isotoped rel M ∩S3
0

to a rectified critical level embedding with no more (but perhaps fewer) handles of
any index, such that

• the first 1-handle incident to each 0-handle is incident to it in both ends, and
• the core of any 2-handle attached in S3

t is a compressing disk for M ∩ S3
t−ε.

We will henceforth consider only rectified critical level embeddings with these
two properties.

Definition 4.2. The genus of the embedding of M in S4 is the genus of the Heegaard
surface M ∩ S3

0 .

It will be important to understand how a rectified critical level embedding induces
a handlebody structure on each of its closed complementary components X and Y . Let
X denote the component of S4 −M that contains the south pole D4 ×{−1}. For each
generic t ∈ (−1, 1) let Y−

t , (resp. X−
t , M−

t ) be the part of Y (resp. X, M) lying below
level t or, more formally, the 4-manifold Y ∩(S3×[−1, t]) (resp. X∩(S3×[−1, t]), 3-
manifold M ∩(S3 ×[−1, t]). Symmetrically, let Y+

t , (resp. X+
t , M+

t ) be the part of Y

(resp. X, M) lying above level t , that is, the 4-manifold with boundary Y ∩(S3×[t, 1])
(resp. X∩ (S3 ×[t, 1]), 3-manifold with boundary M ∩ (S3 ×[t, 1])). Finally, let Y ∗

t ,
(resp. X∗

t , M∗
t ) be the part of Y (resp. X, M) lying at level t , that is the 3-manifold

with boundary Y ∩S3
t (resp. X∩S3

t , closed surface M ∩S3
t ). Thus ∂Y−

t is the union of
M−

t and Y ∗
t . If ti < t < ti+1 then ∂M−

t = ∂M+
t = M∗

t = Fi ⊂ S3
t and Y ∗

t consists
of a collection of closed complementary components of Fi in S3

t . Each component
of Fi in S3

t is incident to Y ∗
t on exactly one side and to X∗

t on the other.
Clearly as long as no ti lies between the values t < t ′, then Y±

t
∼= Y±

t ′ , since the
region between them is just a collar on part of the boundary. On the other hand, for
each ti , consider the relation between Y−

ti−ε and Y−
ti+ε. We know that Fi is obtained

from Fi−1 by doing j -surgery along a j -disk in S3 − Fi−1. If that j -handle lies on
the Y side of Fi−1 (in the sphere S3

ti−ε) then Y ∗
ti+ε is homeomorphic to just Y ∗

ti−ε with
that j -handle removed. So Y−

ti+ε is still just Y−
ti−ε with a collar added to part of its

boundary, but only to the complement of the j -handle in Y ∗
ti−ε. Hence it is still true

that Y−
ti+ε

∼= Y−
ti−ε. On the other hand, if the j -handle lies on the X side of Fi−1, then

Y−
ti+ε is homeomorphic to Y−

ti−ε but with a (4-dimensional) j -handle added, namely
the product of the interval [ti , ti +ε] with the 3-dimensional j -handle added to M−

ti−ε

in S3
ti

.
We have then the general rule, sometimes called the rising water rule (cf. Figure 3):

Lemma 4.3. (1) If the j -surgery at level ti has its core in Y , then Y−
ti+ε

∼= Y−
ti−ε.

(2) If the j -surgery at level ti has its core in X, then Y−
ti+ε

∼= Y−
ti−ε with a j -handle

attached.
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handle on Y side

handle added to XX X

YY

Figure 3

Of course the symmetric statements hold for X. Note that since X contains
the south pole, Xt0−ε

∼= B4 whereas Yt0−ε = ∅. Just as M∗
0 is a Heegaard surface

for M , X−
0 and Y−

0 are connected 4-manifolds, constructed from just 0- and 1-handles.
In other words, there are integers nx, ny ≥ 0 so that X0 = �nx (S

1 × D3) and
Y0 = �ny (S

1 × D3).
Each handle in M−

0 corresponds to a handle of the same index in exactly one of
X−

0 or Y−
0 , so there is a connection between nx, ny and the genus g of M∗

0 : The
critical level embedding defines a handlebody structure on M−

0 with a 0-handles and
b 1-handles, where

b − a + 1 = g.

If a > g then there would be at least one 0-handle in the critical level embedding
which is first incident to a 1-handle on a single one of its ends, violating the Handle
Cancellation Lemma 4.1. So

a ≤ g.

Let ax, ay (resp. bx, by) denote the number of 0- (resp. 1-) handles in the critical
level embedding whose cores lie in X and Y . We have from above that ax + ay =
a, bx + by = b, nx = by − ay and ny = bx − ax + 1. (The asymmetry is explained
by noting that the south pole is a 0-handle for X.) It follows that

nx + ny = g.

Another way of counting nx and ny is this: Suppose a 1-handle at critical level ti
has its core lying in X, say. If the ends of the 1-handle lie in distinct components of
Fi−1 then the 1-handle adds a 1-handle to Y but nothing to its genus. In contrast, if
the ends of the 1-handle lie on the same component of Fi−1 then it adds 1 to the genus
of Y . A count of the total number of the latter sort of 1-handles lying in X (resp. Y )
gives ny (resp. nX).

For everything that has been said about X− and Y− there is a dual statement for
X+ and Y+, easily obtained by just inverting the height function. The result is that,
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beyond the standard 4-dimensional duality of handle structures on X and on Y , there
is a kind of 3-dimensional duality between handles in X and handles in Y , induced
by the 3-dimensional duality of handles in M . See Figure 4.

D3−j

Dj

X

Y

Figure 4

To be concrete: X+
0 is also a solid 4-dimensional handlebody. To determine its

genus, consider the core of each 2-handle, say at critical height ti > 0. If the core of
the 2-handle lies on the X side of Fi−1 then the cocore lies on the Y side of Fi so it
corresponds to a 1-handle in X+

0 . This 1-handle adds genus to X+
0 if and only if the

boundary of the 2-handle is non-separating in Fi−1.
To see how this occurs, consider the “dual rule” to Lemma 4.3. That is, suppose

again that Fi is obtained from Fi−1 by doing j -surgery along a j -disk in S3 − Fi−1
and ask how Y+

ti−ε and Y+
ti+ε differ. If the j -surgery at level ti has its core in Y ,

then, viewed from above instead of below, there is a corresponding 3 − j surgery
with its core in X. So, following the argument of Lemma 4.3, Y+

ti−ε
∼= Y+

ti+ε with a
(3 − j)-handle attached. On the other hand, if the core of the j -handle lies in X, Y+
is unchanged. This might be called the descending hydrogen rule (cf. Figure 5).

To summarize all possibilities:

Lemma 4.4. Suppose Fi is obtained from Fi−1 by doing j -surgery along a j -disk in
S3 − Fi−1.

(1) If the j -surgery at level ti has its core in Y , then
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• Y−
ti+ε

∼= Y−
ti−ε,

• X−
ti+ε

∼= X−
ti−ε with a j -handle attached,

• Y+
ti−ε

∼= Y+
ti+ε with a (3 − j)-handle attached,

• X+
ti−ε

∼= X+
ti+ε.

(2) If the j -surgery at level ti has its core in X, then

• Y−
ti+ε

∼= Y−
ti−ε with a j -handle attached,

• X−
ti+ε

∼= X−
ti−ε,

• Y+
ti−ε

∼= Y+
ti+ε,

• X+
ti−ε

∼= X+
ti+ε with a (3 − j)-handle attached.

handle on X side

handle added to Y

X

XY

Y

Figure 5

Here is a simple example of how this 3-dimensional duality can be useful:

Proposition 4.5. Suppose there is a rectified critical level embedding of M = S3

in S4 so that the 0- and 1-handles, as they are successively attached, all lie on the
X-side. Then X ∼= B4.

Proof. Following Lemma 4.4, X has no 0 or 1-handles, so it only has 2- and 3-handles.
Dually (in the standard 4-dimensional handle duality of X), X can be constructed with
only 1 and 2-handles. Neither of these statements, in itself, is enough to show that X

is a 4-ball.
Consider, however, what the given information tells us about Y , following

Lemma 4.4 applied to the construction of Y from above: The possible 2- and 3-handles
in the construction of X from below correspond respectively to 1- and 0-handles in
the construction of Y from above. Similarly, the lack of 0- and 1-handles (beyond the
south pole) for X constructed from below corresponds to a lack of 3- and 2-handles
for Y when constructed from above. Hence Y has only 0- and 1-handles, i.e. it is a
4-dimensional handlebody. On the other hand, because it is the complement of S3 in
S4 it is a homotopy 4-ball, so the handlebody must be of genus 0, i.e. Y is a 4-ball.
Then its complement X is also a 4-ball. �



Vol. 83 (2008) Generalized Property R and the Schoenflies Conjecture 433

5. Two proofs of the genus 2 Schoenflies Conjecture

Informed by the ideas above, we present two proofs of the genus 2 Schoenflies
Conjecture. The first is similar in spirit (though different in detail) to the original
proof of [Sch1]. The second uses a different approach, one that aims to simplify the
picture by reimbedding X or Y .

Here is a more general statement, relevant to the classical approach:

Proposition 5.1. Suppose a 3-sphere M has a genus g rectified critical level embed-
ding in S4 with at most two 0-handles or at most two 3-handles. If the generalized
Property R conjecture is true for links of g − 1 components then M divides S4 into
two PL 4-balls.

Proof. Perhaps inverting the height function, assume without loss of generality that M
has at most two 3-handles. The roles of X and Y can be interchanged by passing the
lowest 0-handle over the south pole, so we can also assume without loss of generality
that the first (that is, the lowest) 3-handle for M lies in Y and so represents the addition
of a 3-handle to X. The second 3-handle (and so the last handle) of M either lies in X

or in Y , but these options are isotopic by passing the handle over the north pole. So,
via an isotopy of this handle, we can choose whether both 3-handles of M lie in Y

(and so represent attaching of 3-handles to X and not Y ) or one each lies in X and Y .
See Figure 6.

X

X

Y Y Y Y

Figure 6

Now consider the genera nx and ny of the 4-dimensional handlebodies X−
0 , Y−

0 ,
with g = nx + ny . If nx = 0 then X−

0 is a 4-ball. X is obtained from this 4-ball
by attaching some number of 2 and 3-handles, and also a 4-handle if the north pole
of S4 lies in X. There are as many, total, of 2- and 4-handles as there are 3-handles
(since X is a homotopy 4-ball) and the argument of the previous paragraph ensures
that we can arrange it so that X contains at most one 3-handle. Viewed dually, this
means that X can be constructed from ∂X = S3 with no 3-handles, and at most one
each of 1- and 2-handles. The result then follows from Corollary 2.2.
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If nx ≥ 1 then ny ≤ g−1 and, first arranging as above so that Y has no 3-handles,
the result again follows from the proof of Proposition 2.3. �

Corollary 5.2 ([Sch1]). Each complementary component of a genus 2 embedding of
M = S3 in S4 is a 4-ball.

Proof. As noted above, we can assume that the number a of 0-handles in the rectified
embedding of M is no larger than g = 2. Proposition 5.1 then shows the result
follows from Property R, via Corollary 2.2 . �

The reimbedding proof of the genus 2 Schoenflies Conjecture begins with a more
general claim that follows from our results above for Heegaard unions:

Proposition 5.3. Suppose M ∼= S3 has a rectified critical level embedding in S4

so that Y ∗
0 (resp. X∗

0) is a handlebody of genus ρ0. If the generalized Property R
conjecture is true for [ρ0/2] components then Y ∼= B4 (resp. X ∼= B4).

Proof. It was noted above that Y−
0 is a 4-dimensional handlebody and M−

0 is a 3-
dimensional handlebody. The latter fact, and the hypothesis, imply that M−

0 ∪Y ∗
0 is a

Heegaard splitting of ∂Y−
0 . Viewing the critical level embedding from the top down

we symmetrically see that Y+
0 is a 4-dimensional handlebody and Y is a Heegaard

union of Y−
0 and Y+

0 along Y ∗
0 .

Let ρ1, ρ2 denote the genera of Y−
0 and Y+

0 respectively. Since M is a 3-sphere,
each complementary component of M is a homotopy 4-ball. In particular, following
lemma 3.2, ρ1 + ρ2 = ρ0. The result now follows from Proposition 3.3. �

Proposition 5.3 suggests a clear strategy for a proof of the general Schoenflies
Conjecture, assuming the generalized Property R Conjecture: Given a rectified critical
level embedding of M = S3 in S4, try to reimbed X (or Y ), still a rectified critical
level embedding, so that afterwards, either the 3-manifold X∗

0 or its complement Y ∗
0 is

a handlebody, or at least more closely resembles a handlebody. For even if a series of
reimbeddings, first of X, then of its new complement Y ′, then of the new complement
of Y ′, etc, eventually leads to a handlebody cross-section at height 0, we are finished.
Indeed, once one of the complementary components of the multiply reimbedded M

is a 4-ball, we have that both are, hence the previous complementary components,
in succession, leading back to the original X and Y are all 4-balls. (This is more
formally explained in the proof of Corollary 8.2.) What follows is a proof of the
genus 2 Schoenflies Conjecture built on this strategy.

In order to be as flexible as possible in reimbedding X or Y we first prove a techni-
cal lemma which roughly shows that, at the expense of some vertical rearrangement
of the 3-handles (or, dually, the 0-handles), the core of a 2-handle (resp, the cocore of
a 1-handle) can be moved rel its boundary to another position without affecting the
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isotopy class of M or even the embedding of M below the specified 2-handle (resp.
above the specified 1-handle).

Suppose, as above, M is a rectified critical level embedded S3 in S4.

Lemma 5.4 (Prairie-Dog Lemma). Let E ⊂ S3
ti

− Fi−1 be the core of the 2-handle
added to Fi−1 at critical level ti > 0 and let t be a generic height such that ti−1 <

t < ti . Let E′ ⊂ S3
ti

− Fi−1 be another disk on the same side as E, with ∂E′ isotopic
to ∂E in Fi−1. Then there is a proper isotopy of M+

t in S3 × [t, 1] so that afterwards

• the new embedding M ′ of S3 is still a rectified critical level embedding,

• the critical levels and their indices are the same for M and M ′,
• the core of the 2-handle at critical level ti is E′, and

• for any generic level t below the level of the first 3-handle, M−
t

∼= M ′−
t .

Proof. With no loss we take ∂E′ parallel (hence disjoint) from ∂E. Let k be the
number of 2-handles above level ti and n = |E ∩ E′|. The proof is by induction on
the pair (k, n), lexicographically ordered.

Case 1. k = n = 0. In this case, the 2-handle attached at level ti is the last 2-handle
attached and E′ is disjoint from E. Then the union of E and E′ (and a collar between
their boundaries) is a 2-sphere in S3 − Fi−1; if it bounds a 3-ball in S3 − Fi−1 then
the disks are isotopic and there is nothing to prove. If it does not bound a 3-ball, let
S be the parallel reducing sphere for S3 −Fi and B ⊂ S3 be the ball it bounds on the
side that does not contain the component to which E and E′ are attached. Since ti
is the highest 2-handle, each component of Fi ∩ B is a sphere and each is eventually
capped off above ti by a 3-handle.

If all are capped off by 3-handles that lie within B, push all of M ∩ (B × [t, 1])
vertically down to a height just above t so that afterwards, E is isotopic to E′ in
S3

ti−ε − M . Perform the isotopy, then push M ∩ (B × [t, 1]) back up, so that the
3-handles are attached above height ti . The number of 3-handles attached (namely,
the number of components of Fi) is the same, so, although perhaps rearranged in
order, the critical heights at which the 3-handles are attached can be restored to the
original set of critical heights. See Figure 7.

The picture is only a little changed if one of the components of Fi lying in B is
eventually capped off by a 3-handle not in B. The proof is by induction on the number
of such handles. Consider the highest such handle, say at level tj , capping off a sphere
component S of Fj ∩B in S3

tj
. Let B ′ be the 3-ball component of S3

tj
−S that does lie

in B, i.e. the complement of the 3-handle in S3
tj

. If there are no components of Fj in
the interior of B ′ then the 3-handle is isotopic to B ′ via passing over the north pole.
This isotopy decreases by one the number of 3-handles not lying in B, completing the
inductive step. If some components of Fj do lie in B ′ note that eventually they are
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t
Fti

E′
Fti−1

E

Figure 7

capped off by 3-handles lying in B ′ (by choice of tj ). Simply push M ∩ (B ′ × [tj , 1])
down below level tj and do the pole pass described above.

Case 2. k = 0, n > 0. Consider an innermost disk E′
0 ⊂ E′ cut off by E in E′.

Then the union of E′
0 and the subdisk E0 of E bounded by ∂E′

0 is a sphere bounding
a ball B whose interior is disjoint from E. If no component of Fi lies in B, E0 can
be isotoped past E′

0, reducing n by at least one and maybe more, thereby completing
the inductive step. If some components of Fi lie in B, then follow the recipe given
in Case 1. For example, if all components of Fi ∩ B eventually bound 3-handles that
lie in B, push M ∩ (B × [t, 1]) vertically down to just above level t , do the isotopy,
then raise M ∩ (B × [t, 1]) back up again.

Case 3. k > 0. Depending on whether n = 0 or n ≥ 1, let S and B be the reducing
sphere and 3-balls described in cases 1) and 2) above. The inductive hypothesis and
a standard innermost disk argument tells us that any 2-handle attached above level ti
can, starting from highest to lowest, be replaced by a 2-handle disjoint from the
sphere S. Suppose tj is the level of the first 3-handle; after the replacement the entire
product S × [t, tj ) is disjoint from M . In fact, following the argument of Case 2, we
can isotope the 3-handles of M (possibly rearranging the ordering of the 3-handles)
so that all of S × [t, 1] is disjoint from M . Then push M ∩ (B × [t, 1]) down to
just above level t , do the isotopy across B as described in Case 1 or 2, then precisely
restore the height of M ∩ (S3 × [t, 1]). �

Note that since all moves are by isotopy, X and Y do not change.

Lemma 5.5 (Torus Unknotting Lemma). Suppose that Y ∗
0 (or, symmetrically, X∗

0)

lies in a knotted solid torus W ⊂ S3
0 . Let h0 : W → S1 × D2 be an orientation-

preserving homeomorphism to the unknotted solid torus S1 ×D2 ⊂ S3
0 . Then there is

a reimbedding h : Y → S4 to a rectified critical level embedding so that h(Y )∩S3
0 =

h0(Y
∗
0 ) and the number of handles of each index is unchanged. For t any generic

height between the highest 0-handle and lowest 3-handle, both of M±
t are unchanged.
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Proof. If ∂W compresses in X∗
0, there is nothing to prove: ∂-reduce W to get a 3-ball,

which can be isotoped into S1 × D2 ⊂ S3
0 and that same isotopy can be applied at

every level of S3 × I ⊂ S4.
So we assume that ∂W is incompressible in X∗

0. In each successively increasing
critical level ti > 0 ask whether the 2-handle attached at ti can be replaced, as in the
Prairie-Dog Lemma 5.4, by a 2-handle that lies in W . If it can be done, then do so.
This may alter the critical level embedding of M , but only above level ti−1. If success
is possible at the critical levels of all 2-handles, the same can be accomplished for
the 3-handles, as described in Case 2 of the proof of Lemma 5.4. Similarly, at each
successively decreasing critical level tj < 0 try to replace cocores of 1-handles by
disks that lie in W . If this can be done for all 1-handles, then also replace cocores
of 0-handles by 3-balls in W . If success is possible for all 1- and 2-handles, hence
at all levels, then M ∩ (∂W × [−1, 1]) = ∅ and so Y ⊂ W × [−1, 1]. Then the
function h0 ×[−1, 1] on W ×[−1, 1], restricted to Y ⊂ W ×[−1, 1], is the required
reimbedding.

We are left with the case where successful replacement of the core of a 2-handle or
cocore of a 1-handle is not always possible. Suppose, without loss of generality, that
ti > 0 is the lowest critical level for which the core of the associated 2-handle cannot
be replaced by one that lies in W ⊂ S3

ti
. Without loss, we assume that the replacements

of lower 2-handles have been done, so Y ∩ (S3 × [0, ti − ε]) ⊂ W × [0, ti − ε]. In
particular, the core of the 2-handle must lie in X∗

ti−ε .
Choose a disk D ⊂ X∗

ti−ε so that its boundary is the same as that of the core of
the 2-handle and, among all such disks, D intersects ∂W in as few components as
possible. An innermost circle of D∩∂W then cuts off a subdisk of D whose boundary
is essential in ∂W (by choice of D) so, since W is knotted, the subdisk must be a
meridian disk for the solid torus W . So at the generic level ti − ε, ∂W compresses
in X∗

ti−ε ∩ W . In particular, Y ∗
ti−ε lies in a 3-ball B ⊂ W . It is a classical result that

simple coning extends the homeomorphism h0|B : B → h0(B) ⊂ S1 × D2 ⊂ S3 to
an orientation-preserving homeomorphism H : S3 → S3. Define then the embedding
of Y+

0 into S3 × [0, 1] so that h|Y ∩ (S3 × [0, ti − ε]) = h0 × [0, ti − ε] and, for
t ≥ ti − ε, h|Y ∗

t = H |Y ∗
t .

The same argument applies symmetrically to construct h|Y−
0 . Either all co-cores

of 1-handles can be replaced by disks in W , in which case we afterwards simply use
h0 at every level t ∈ [−1, 0] or there is a highest critical level ti for which the cocore
of the associated handle on M cannot be replaced by a disk in W and we apply the
symmetric version of the construction above. �

Here then is an alternative proof of Corollary 5.2:

Proof. Like any surface in S3, the genus 2 surface M∗
0 compresses in S3, and so it

compresses into either X∗
0 or Y ∗

0 , say the former. Maximally compress M∗
0 in X∗

0.
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If X∗
0 is a handlebody then Proposition 5.3 says X ∼= B4, hence its complement

Y ∼= B4.
If X∗

0 is not a handlebody, then the surface F resulting from maximally compress-
ing the surface M∗

0 into X∗
0 consists of one or two tori. Like any surface in S3, F

compresses in S3. The torus component of F that compresses in the complement
of F bounds a solid torus W on the side on which the compressing disk lies. That
side cannot lie in X∗

0, since F is maximally compressed in that direction, so W must
contain M∗

0 and so indeed all of Y ∗
0 . The solid torus W is knotted, else F would still

compress further into X∗
0. Now apply the Torus Unknotting Lemma 5.5 to reimbed

Y in S4 in a level-preserving way so that afterwards W is unknotted; in particular,
afterwards F does compress further into the (new) complement of Y ∗

0 . After per-
haps a further iteration of the argument (when F originally consisted of two tori) we
have a level-preserving re-embedding of Y in S4 so that afterwards its complement
is a handlebody. It follows from Proposition 5.3 then that after such a reimbedding
S4 − Y ∼= B4, hence also Y ∼= B4. �

6. Straightening connecting tubes between tori in S3

Enlightened by Corollary 3.4, observe that there is no generalized Property R obstacle
to applying Proposition 5.3 to the proof of the genus 3 Schoenflies Conjecture. All
that is needed is a sufficiently powerful version of the Torus Unknotting Lemma 5.5
that would instruct us how to reimbed some complementary component Y of a genus 3
S3 in S4 so that its new complement in S3

0 more closely resembles a handlebody (e.g.
it ∂-reduces to a surface of lower genus than X∗

0 or Y ∗
0 did originally).

Fuelling excitement in this direction is the classic theorem of Fox [Fo] that any
compact connected 3-dimensional submanifold of S3 can be reimbedded as the com-
plement of handlebodies. What seems difficult to find is a way to extend such a
reimbedding of Y ∗

0 to all of Y , as is done in Lemma 5.5. It is crucial in the proof of
Lemma 5.5 that a solid torus has a unique meridian, whereas of course higher genus
handlebodies have infinitely many meridians.

For genus 3 embeddings, there is indeed enough information to make such a
reimbedding strategy work. The key is a genus 2 analogue of the Torus Unknotting
Lemma, called the Tube Straightening Lemma. We precede it with a preparatory
lemma in 3-manifold topology, whose proof is reminiscent of that in [Ga3] or [Th]:

Lemma 6.1. Suppose F ⊂ S3 is a genus 2 surface and k ⊂ F is a separating curve
in F . Denote the complementary components of F by U and V and suppose k bounds
a disk E in V so that U ∪η(E) is reducible. Suppose N ⊂ V is a compact 3-manifold.
Then at least one of the following must hold:
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• any simple closed curve in ∂N that bounds a disk in S3 − N bounds a disk in
V − N ,

• N can be isotoped in V to be disjoint from E, or
• k bounds a disk in U .

Proof. Suppose some component of ∂N is a sphere S. Since V is irreducible, S

bounds a ball B in V . Nothing is lost by adding B to N , if N is incident to S on the
outside of B, or removing B ∩ N from N , if N is incident to S on the inside of B.
So we may as well assume that ∂N has no sphere components. Essentially the same
argument shows that we may take V − N to be irreducible. For if S is a reducing
sphere bounding a ball B in V , then any curve in B ∩∂N that bounds a disk in S3 −N

bounds a disk in B − N ⊂ V − N and any curve in ∂N − B that bounds a disk in
(V − N) ∪ B also bounds a disk in V − N , so without loss, we may delete B ∩ N

from N . The proof then will be by induction on −χ(∂N) ≥ 0, assuming now that
V − N is irreducible.

Case 1. ∂N does not compress in V −N . If ∂N does not compress in S3 −N either,
then the first conclusion holds vacuously. Suppose then that S3 − N is boundary-
reducible. A reducing sphere S for U ∪ η(E) must separate the two tori that are
obtained from F by compressing along E, since otherwise one ball that S bounds
in S3 would lie entirely in U ∪ η(E). This implies that S intersects V in an odd
number of copies of E or, put another way, it intersects U in a planar surface P with
an odd number of boundary components lying on a regular neighborhood of k in F .
Consider then the result of 0-framed surgery on k in the manifold S3 − N : P can
be capped off to give a sphere which is non-separating in the new manifold, since a
meridian of η(k) intersects P in an odd number of points. On the other hand, S3 −N

itself is ∂-reducible. No options a)-e) in [Sch2, Theorem 6.2] are consistent with this
outcome (in particular the manifold called M ′ there having a non-separating sphere)
so we conclude that S3 − (N ∪ η(k)) is either reducible or ∂-reducible. In the latter
case, consider how a ∂-reducing disk D would intersect the surface F − η(k). We
know the framing of F ∩ ∂η(K) is a 0-framing (since each component of F − η(k)

is a Seifert surface for k) so D ∩ F , if non-empty, consists entirely of simple closed
curves. An innermost disk in D cut off by the intersection (perhaps all of D) lies
either in U or V − N . But each component of F − η(K) is a once-punctured torus,
so if it compresses in U or V − N so does its boundary, i.e. a copy of k. Hence we
have that k bounds a disk in either U or V − N . Since V is irreducible, in the latter
case the disk can be isotoped to E in V , thereby isotoping N in V off of E.

The same argument applies if S3−(N∪η(k)) is reducible: since both U and V −N

are irreducible, such a reducing sphere must intersect F −η(k) and an innermost disk
cut off by the intersection leads to the same contradiction.

Case 2. ∂N compresses in V −N . The proof is by contradiction: Choose an essential
curve 	 ⊂ ∂N and a compressing disk D for ∂N in V − N so that 	 bounds a disk
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D	 in S3 − N but does not bound a disk in V − N and, among all such choices of
	, D	, D, |D ∩ D	| is minimal. If D and D	 are disjoint, then let N ′ = N ∪ η(D).
If there is then a sphere component of ∂N ′, the ball it bounds in V can, without loss,
be deleted from N ′. In any case (perhaps after deleting the ball if a sphere appears
in ∂N ′), −χ(∂N ′) < −χ(∂N) and the inductive hypothesis holds for N ′. But the
conclusion for N ′ implies the conclusion for N , which is contained in N ′ (e.g. if 	

bounds a disk in V − N ′ it bounds a disk in V − N ), so this is impossible.
If D and D	 are not disjoint, note that all curves of intersection must be arcs, else

an innermost disk cut off in D could be used to surger D	 and would lower |D ∩D	|.
Similarly, let D′ denote the disk cut off from D by an outermost arc of D ∩ D	 in D

and let D	′, D	′′ ⊂ V − N denote the two disks obtained by the ∂-compression of
D	 to ∂N along D′. Both of these disks intersect D in fewer components than D	

did, so by choice of 	 and D	 the boundary of each new disk must bound a disk in
V − N (of course, if either curve is inessential in ∂N then it automatically bounds
a disk in ∂N ⊂ V ). A standard innermost disk argument shows that D	′ and D	′′
can be taken to be disjoint; band them together via the band in ∂N which undoes the
∂-compression by D′. To be more explicit, note that the arc ∂D′ ∩ ∂N defined a band
move on ∂D	 that split ∂D	 into ∂D	′ and ∂D	′′ . Undo that band move to recover
the curve ∂D	, now bounding a disk (namely the band sum of D	′ and D	′′) that lies
in V − N . This contradicts our original choice of 	. �

Lemma 6.2 (Tube Straightening Lemma). Suppose that Y ∩ S3
0 (or, symmetrically,

X∩S3
0) lies in V ⊂ S3

0 , with closed complement U , and ∂U = ∂V is of genus 2. Sup-
pose V contains a separating compressing disk E so that the manifold U+ obtained
from U by attaching a 2-handle along E is reducible. Then there is an embedding
h0 : V → S3 so that h0(∂E) bounds a disk in U ′ the complement of h0(V ). There is
also a reimbedding h : Y → S4 to a rectified critical level embedding so that

• h(Y ) ∩ S3
0 = h0(Y

∗
0 ),

• the number of handles of each index is unchanged, and

• for t any generic height between the highest 0-handle and lowest 3-handle, both
of M±

t are unchanged.

Proof. Let h0 : V → S3 be the reimbedding (unique up to isotopy) that replaces the
1-handle in V that is dual to E with a handle intersecting the reducing sphere for U+
in a single point. Then after the reimbedding ∂E bounds a disk in the complement
of h0(V ), namely the complement of E in the reducing sphere.

In each successively increasing critical level ti > 0 ask whether the 2-handle
attached at ti can be replaced, as in the Prairie-Dog Lemma 5.4, by a 2-handle that
lies in V . If it can, then do so. This may alter the critical level embedding of M ,
but only above level ti−1. If success is possible at the critical levels of all 2-handles,
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the same can be accomplished for the 3-handles, as described in Case 2 of the proof
of Lemma 5.4. Similarly, at each successively decreasing critical level tj < 0 try
to replace cocores of 1-handles by disks that lie in V . If this can be done for all 1-
handles, then also replace cocores of 0-handles by 3-balls in V . If success is possible
for all 1- and 2-handles, hence at all levels, then M ∩ (∂V × [−1, 1]) = ∅ and so
Y ⊂ V × [−1, 1]. Then the function h0 × [−1, 1] on V × [−1, 1], restricted to
Y ⊂ V × [−1, 1], is the required reimbedding.

We are left with the case where successful replacement of the core of a 2-handle or
cocore of a 1-handle is not always possible. Suppose, without loss of generality, that
ti > 0 is the lowest critical level for which the core of the associated 2-handle cannot
be replaced by one that lies in V ⊂ S3

ti
. Without loss, we assume that the replacements

of lower 2-handles have been done, so Y ∩ (S3 × [0, ti − ε]) ⊂ (V × [0, ti − ε]). In
particular, the core of the 2-handle must lie in X∗

ti−ε .
Now apply Lemma 6.1 using Y ∗

ti−ε for N . By assumption, the boundary of the
core of the 2-handle bounds no disk in V ∩ X∗

ti−ε so the first possible conclusion
of Lemma 6.1 cannot hold. If the last holds, there was nothing to prove to begin
with. (Take h = identity.) Hence we conclude that the second conclusion holds:
Y ∗

ti−ε can be isotoped to be disjoint from E. But once this is true, the reimbedding
h0 has no effect on Y ∗

ti−ε; that is, Y ∗
ti−ε is isotopic to h0(Y

∗
ti−ε). Hence we can define

h|(Y ∩ (S3 × [0, 1])) to be h0 × [0, ti − ε] on Y ∩ (S3 × [0, ti − ε]), followed by
a quick isotopy of h0(Y

∗
ti−ε) to Y ∗

ti−ε/2 followed by the unaltered embedding above
level ti − ε/2. Note that this unaltered embedding is not necessarily the original
embedding, because of changes made while ensuring that earlier 2-handles lie in V .

Finally, the argument can be applied symmetrically on Y ∩ (S3 × [−1, 0]). �

7. Weak Fox reimbedding via unknotting and straightening

In this section we show that, for a genus 3 surface in S3, the operations of torus
unknotting and tube straightening described above suffice to give a weak version of
Fox reimbedding. That is, for a genus 3 surface F ⊂ S3 there is a sequence of such
reimbeddings, not necessarily all operating on the same complementary component
of F , so that eventually a complementary component is a handlebody. Although
the context of this section appears to be 3-manifold theory, the notation is meant to
be suggestive of the eventual application to the genus 3 Schoenflies Conjecture. In
particular, the terms torus unknotting and tube straightening as used in this section
refer to the 3-dimensional reimbedding h0 given in, respectively, Lemma 5.5 and
Lemma 6.2.

Suppose F ⊂ S3 is a surface dividing S3 into two components denoted X and Y .
Suppose D1 is a compressing disk for F in X giving rise to a new surface F1 ⊂ S3

with complementary components X1 = X − η(D1) and Y1 = X ∪ η(D1). Suppose
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D2 is a compressing disk for F1 in X1 or Y1, giving rise to a new surface F2 ⊂ S3

with complementary components X2 and Y2. Continue to make such a series of
compressions via compressing disks Di, i = 1, . . . , n so that each Di lies either in
Xi−1 or Yi−1 (the complementary components of Fi−1 ⊂ S3) until all components
of Fn are spheres.

Definition 7.1. F can be straightened if there is a sequence of torus unknottings
and tube straightenings of F , as described in Lemmas 5.5 and Lemma 6.2, so that
afterwards either

• X or Y is a handlebody, or

• the order of the compressions D1, . . . , Dn can be rearranged so that afterwards
some ∂Di is inessential in Fi−1 and so can be eliminated from the sequence.

In the spirit of Lemma 5.4, any disk Di can be replaced by a disk D′
i in the same

complementary component, so long as ∂Di and ∂D′
i are isotopic in Fi−1.

The following series of lemmas assumes we are given such a sequence for F ⊂ S3,
that the sequence is as short as possible, and that the first compressing disk D1 lies
in X. There are, of course, symmetric statements if D1 ⊂ Y .

Lemma 7.2. If D2 ⊂ X1 then F can be straightened. More specifically, there is a
sequence of torus unknottings which convert X into a handlebody

Proof. Since X1 = X − η(D1), the disks D1 and D2 can be thought of as disjoint
disks in X and the compressions given by D1, D2 can be performed simultaneously. If
any component of F2 is a sphere, one of the disks is redundant and could be removed
from the sequence of compressions. Since χ(F2) = 0, we can then assume that F2
consists of one, two, or three tori, depending on how the disks D1, D2 are arranged.

The proof is by induction on the number of components in F2. Suppose F2 is a
single torus; since it is in S3 it bounds a solid torus on at least one side. If a solid
torus that it bounds lies in X2 then the original X was a handlebody and we are done.
If the solid torus that F2 bounds lies in Y2 then all of F also lies in that solid torus.
After a torus unknotting, F2 also bounds a solid torus in X2 and X is a handlebody,
as required.

Suppose D1 is separating, so one of the components T of F1 is a torus. If T

bounds a solid torus in X1 then we may as well have used the meridian of that torus
for D1. This switch would lower the number of components of F2, so we can invoke
the inductive hypothesis. If, on the other hand, T bounds a solid torus in Y1 then all
of F also lies in that solid torus. After perhaps a torus unknotting, T bounds a solid
torus in X1 as well, and again we could replace D1 by a meridian of that torus and
invoke the inductive hypothesis.
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The same argument applies if D2 is separating – just switch the order of D1 and
D2. So the only remaining possibility is that D1 and D2 are both non-separating but
together they separate F , so F2 consists of two tori. If either bounds a solid torus in
X2 then a meridian for that solid torus could be substituted for D2, thereby lowering
the number of components of F2 and completing the inductive step. If neither bounds
a solid torus in X2 then the solid torus W in S3 that one of them does bound must
contain the other torus, and so in fact W contains all of F . After a torus unknotting,
∂W will, on its other side, also bound a solid torus W ′ ⊂ X2. After that reimbedding
we can replace D2 by a meridian of W ′ and invoke the inductive hypothesis. �

Lemma 7.3. If D1 ⊂ X and D2 ⊂ Y1 are both separating, and D2 ⊂ Y � Y1 (i.e.
D2 does not pass through the 1-handle dual to D1) then F can be straightened.

Proof. Since the interiors of both D1, D2 are disjoint from F , their order can be
rearranged, so there is symmetry between the two. Since D1 is separating there is a
torus component T1 ⊂ F1 and T1 bounds a component W1 of X1 whose interior is
disjoint from F2. After perhaps a torus unknotting of its complement we may as well
assume that W1 is a solid torus. Eventually some compression Di will compress T1
to a sphere; if Di ⊂ W1 then we could have done Di before D1, making D1 (coplanar
to Di) redundant, and thereby reduced the number of compressions. Thus we may
as well assume Di ⊂ Yi−1, so W1 is an unknotted solid torus. Similarly, the torus
component T2 ⊂ F2 not incident to D1 bounds a solid unknotted torus W2 ⊂ Y2. See
Figure 8.

Assume, with no loss of generality, that D3 ⊂ Y2. We have already seen that D3
cannot compress T2, else the number of compressions could be reduced. It follows
that D3 either compresses T1 or it compresses the third torus T3 created from F by
the compressions D1, D2. Either case implies that the component U+ = Y2 − W2
of Y2 is reducible. Apply tube straightening to U = U+ ∩ Y so that the tube dual to
D1 passes through the reducing sphere of U+ once. After the straightening, the disk
Di that eventually compresses T1 into Yi lies in Y , so it can be the first compression,
making D1 redundant. �

Lemma 7.4. If D1 ⊂ X and D2 ⊂ Y1 are both separating and if D3 or both D4 and
D5 are towards the X side, then F can be straightened.

Proof. In this case there is not necessarily symmetry between D1 and D2, but the
argument of Lemma 7.3 still applies if the compression disk for T3 lies on the X-side
rather than the Y -side or if T2 compresses before T3. So that is what we now verify:
If D3 lies on the X-side it compresses T2 or T3 into X2 and we are done. On the other
hand, if D4 and D5 both lie on the X-side then since T1 compresses on the Y -side,
one of D4 or D5 is the compression disk for T3. �



444 M. Scharlemann CMH

W1

D1

U

D2

U+

W2

Figure 8

Lemma 7.5. If D1 ⊂ X is separating, and Y is ∂-reducible, then either D2 ⊂ Y � Y1
or F can be straightened.

Proof. Consider the torus component T1 of F1 and the component W1 ⊂ X1 it
bounds. As noted above, the interior of W1 is disjoint from F1 and so, perhaps after a
torus unknotting, we can assume that W1 is a solid torus. Moreover, the disk Di that
eventually compresses T1 lies on the Y -side and not in W1. Hence W1 is an unknotted
solid torus.

Following Lemma 7.2 we may as well assume that D2 ⊂ Y1. By assumption
Y is ∂-reducible and, after attaching a 2-handle (a neighborhood of D1) to get Y1
the resulting manifold still is ∂-reducible, via D2. It follows from the Jaco handle
addition lemma [Ja] that there is a ∂-reducing disk J ⊂ Y for Y whose boundary is
disjoint from ∂D1. Take J to be non-separating, if this is possible.

If ∂J lies on T1 then it is parallel to the disk Di that eventually compresses T1 so
we may as well do that compression before D1, making D1 redundant and so reducing
the number of compressions. So we henceforth suppose ∂J lies on the other, genus 2
component of F − ∂D1, and so lies on ∂F1 − T1.

If ∂J is inessential in F1 then it is parallel to ∂D1 in F . Thus ∂D1 also bounds the
disk J ⊂ Y and the union of the two gives a reducing sphere for Y1 that intersects the
1-handle dual to D1 in a single point. It follows that the longitude ∂Di of T1 bounds
a disk in Y and we are done as before.

If ∂J is essential in F1 compress Y along J to get YJ and consider the component
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WJ ⊂ YJ (in fact all of YJ if J is non-separating) such that ∂D1 ⊂ ∂WJ and ∂WJ

has genus 2. The manifold W+
J obtained by attaching η(D1) to WJ has boundary the

union of two tori. W+
J can also be viewed as a component of Y1 − η(J ).

We claim that either D2 ⊂ Y or W+
J is reducible. This is obvious if there is a

disk component of D2 − J that cannot be removed by an isotopy or if ∂D2 ∩ J = ∅.
The alternative then is that D2 ∩ J is a non-empty collection of arcs. Consider an
outermost disk D′ cut off from D2 by J . We may as well assume D′ ⊂ W+

J . For if
it’s not then J is separating, D′ is a meridian of the other complementary component
(a solid torus) and we may as well have used D′ for J , thereby eliminating the case
that J is separating. With then D′ ⊂ W+

J , compress the torus boundary component
of ∂W+

J along D′ to get a reducing sphere for W+
J .

Finally, if W+
J is reducible, apply tube straightening to the surface ∂WJ , replacing

the handle dual to D1 by a handle intersecting the reducing sphere once, allowing the
same conclusion as before. �

Corollary 7.6. If D1 ⊂ X and D2 ⊂ Y1 are both separating, and Y is ∂-reducible,
then F can be straightened.

Proof. Combine Lemmas 7.5 and 7.3. �

Corollary 7.7. If D1 ⊂ X is separating then either

• at least two of the three non-separating compressing disks are on the Y -side
and, if D2 is separating, Y is ∂-irreducible, or

• F can be straightened.

Proof. Following Lemmas 7.2, 7.4, and 7.5 we may as well assume that D2 ⊂ Y � Y1
and D2 is non-separating. As before, let T1 be the torus component of F1 bounding
a component W1 of X1 whose interior is disjoint from F1.

If the compressing disk Di that eventually compresses T1 lies on the X-side, then
Di ⊂ W1 (and W1 is a solid torus). No earlier compressing disk can be incident to
T1 so in fact Di could have been done before D1, making the latter redundant. This
reduces the number of compressions.

If, on the other hand, Di lies on the Y -side then both Di and D2 are non-separating
disks lying on the Y -side, as required. �

Lemma 7.8. If D1 ⊂ X is non-separating, then either all succeeding disks D2, D3
are non-separating or F can be straightened.

Proof. Since D1 is non-separating, F1 is a genus 2 surface. Its complementary
component Y1 contains all of Y . If D2 is also non-separating then F3 is a torus, for
which any compressing disk is non-separating, giving the result.
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So suppose D2 is separating. Following Lemma 7.2 we may as well assume
D2 ⊂ Y1, so ∂Y2 consists of two tori. Hence D3 is non-separating and compresses
one of the tori. If D3 ⊂ Y2 then D3 could have been done before D2, making D2
redundant. If D3 ⊂ X2 then the result of the compression is a sphere which could
have been viewed as a reducing sphere for Y2. Apply tube straightening, using Y1
for N . After that reimbedding, D3 ⊂ X1 � X2 does not pass through D2 so the
compression along D3 could be done before the compression along D2, making D2
redundant. �

We note in passing, though the fact will not be used, that if there are non-separating
compressing disks on both sides, they may be taken to be disjoint:

Proposition 7.9. If D1 ⊂ X is non-separating, and Y has a non-separating ∂-re-
ducing disk E, then either ∂D1 ∩ ∂E = ∅ or F can be straightened.

Proof. Following Lemma 7.2 we may as well assume that D2 ⊂ Y1. By assumption
Y is ∂-reducible and, after attaching a 2-handle (a neighborhood of D1) to get Y1 the
resulting manifold still ∂-reducible, via D2. It follows from the Jaco handle addition
lemma [Ja] that there is a ∂-reducing disk J ⊂ Y for Y whose boundary is disjoint
from ∂D1. Take J to be non-separating, if this is possible.

Suppose first that ∂J is inessential in F1. Then the disk it bounds in F1 contains
both copies of D1 resulting from the compression of F along D1. Put another way, J
cuts off a component WJ from Y that has torus boundary and whose interior is disjoint
from F . Following, perhaps, a torus unknotting, we may assume that WJ is a solid
torus. A standard innermost disk, outermost arc argument between J and D2 ensures
that they can be taken to be disjoint, so D2 compresses the other, genus 2 component
of Y − η(J ). This compression, together with the compression via the meridian
of WJ , ∂-reduces Y to one or two components, each with a torus boundary. After
perhaps some further torus unknottings, Y becomes then a handlebody, as required.

So suppose henceforth that ∂J is essential in F1. Compress Y along J to get YJ

and consider the component WJ ⊂ YJ (in fact all of YJ if J is non-separating) such
that ∂D1 ⊂ ∂WJ and ∂WJ has genus 2. The manifold W+

J obtained by attaching
η(D1) to WJ has boundary a torus. W+

J can also be viewed as a component of
Y1 − η(J ).

Consider an outermost disk E′ of E cut off by J , or let E′ = E if E is disjoint
from J . We may as well assume that E′ lies in WJ , since if J is separating and E′
lies in the other component, we should have taken E′ for J . If E′ is inessential in WJ

then E′ = E is parallel to J (since E is non-separating), so ∂D1 ∩ ∂E = ∅ and we
are done. If E′ is essential in WJ then each component of Y − (η(J ) ∪ η(E′)) has
interior disjoint from F and is bounded by a torus. Following some torus unknottings
we can take them to be solid tori. In that case Y is a handlebody, as required. �
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8. The genus 3 Schoenflies Conjecture

We now apply the results of the previous sections to complete the proof of the genus 3
Schoenflies Conjecture.

Theorem 8.1. Suppose M is a genus 3 rectified critical level embedding of S3 in S4.
Then after a series of reimbeddings of M via other genus 3 rectified critical level
embeddings, each of which changes at most one of the complementary components
of M , one of those complementary components is B4

Proof. We assume that any possible genus 3 rectified critical level reimbedding of M

that preserves at least one complementary component and simultaneously decreases
the number of handles has been done. If any further such a sequence of reimbeddings
via Lemmas 6.2 or 5.5 (reimbeddings that do not raise the number of handles) results
in X∗

0 (resp. Y ∗
0 ) becoming a handlebody, then X (resp. Y ) is B4, via Proposition 5.3.

So we assume no such further sequence exists and use the results of the previous
section to see if there are other options. With no loss of generality, assume the cocore
D1 of the highest 1-handle lies in X∗

0 and let E1 denote the core of the lowest 2-handle.
Following Lemma 7.2 we can assume that the cocore D2 of the previous 1-handle

lies on the Y -side and the cocore E2 of the next 1-handle lies on the side opposite the
one on which E1 lies.

Claim. Perhaps after rearranging the ordering of the handles, at least one of D1 and
E1 is non-separating.

Suppose D1 and E1 are both separating. If both D1 and E1 lie in X∗
0, then it follows

from Corollary 7.7 that at least two of the non-separating cores of the 2-handles and
at least two of the non-separating cocores of the 1-handles all lie on the Y -side of
the surfaces to which they are attached. So both Y+

0 and Y−
0 are 4-dimensional

handlebodies of genus at least 2. But the Mayer–Vietoris sequence for Y+
0 , Y−

0 glued
along Y ∗

0 then contradicts H∗(Y ) ∼= H∗(B4), cf. the proof of Lemma 3.2.
On the other hand, if D1 ⊂ X∗

0 and E1 ⊂ Y ∗
0 then, following Corollary 7.6 and

Lemma 7.5, D2 is non-separating and lies in Y ∗
0 . Then interchange D1 and D2, using

the 1-handle dual to D2 as the highest 1-handle. The new arrangement establishes
the claim.

Following the claim, we can, with no loss, assume that E1 is non-separating. Then
according to Lemma 7.8, all of the cores of 2-handles are non-separating, so each
surface Fi at or above height t = 0 are connected. Hence there is at most one 3-
handle in M and, passing this 3-handle over the north pole if necessary, this guarantees
that each of X and Y have induced handle structures without 3-handles. Following
the comments preceding Lemma 4.4, the sum of the genera of the 4-dimensional
handlebodies X−

0 and Y−
0 is 3, so one of them, say X−

0 , has genus ≤ 1. X is then
obtained from the genus 0 or 1 handlebody X−

0 by attaching some 2-handles but no
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3-handles. Moreover, ∂X is a sphere. If ( X−
0 ) = 0 (resp. genus(X−

0 ) = 1) then no
(resp. one) 2-handle must be attached, to ensure that H1(X) = H2(X) = 0. In the
first case, since no 2-handles (hence no handles at all) are attached, X ∼= X−

0
∼= B4.

In the second case, one 2-handle is attached to X−
0

∼= S1 × D3 and so X ∼= B4, by
Corollary 2.2. �

Corollary 8.2. Each complementary component of a genus 3 rectified critical level
embedding of S3 in S4 is a 4-ball.

Proof. Let M be a genus 3 rectified critical level embedding of S3. Following The-
orem 8.1 there is a sequence of such embeddings

M = M0, M1, M2, . . . , Mn

so that one of the complementary components of Mn is B4 and, furthermore, for each
i = 0, . . . , n − 1, one of the complementary components of Mi is homeomorphic to
a complementary component of Mi+1. The argument is by induction on n, exploiting
the fact that the complement of B4 in S4 is B4.

Since one complementary component of Mn is B4, both complementary compo-
nents are. If n = 0 we are done. For n ≥ 1, note that since one complementary
component of Mn−1 is homeomorphic to a complementary component of Mn, that
complementary component is B4. This completes the inductive step. �
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