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Relating diameter and mean curvature for submanifolds
of Euclidean space

Peter Topping

Abstract. Given a closedm-dimensional manifoldM immersed in R
n, we estimate its diameterd

in terms of its mean curvature H by

d ≤ C(m)

∫
M

|H |m−1dμ.
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1. Introduction

Given a closed connected surface M2 immersed in R
3, there are a number of geometric

inequalities relating fundamental quantities such as diameter, area, curvature and
(when defined) enclosed volume. One particularly useful example is an inequality of
Leon Simon which relates the extrinsic diameter1 dext := maxx,y∈M↪→R3 |x − y|R3

to the area A and mean curvature H (here the average rather than the sum of the
principle curvatures) by

dext <
2

π
A

1
2

(∫
M

H 2 dμ

) 1
2

, (1.1)

where μ is the measure on M induced by the ambient space. See [4] for the original
proof and applications, [6] for the perturbed proof with the constant 2

π
(presumably

optimal up to a factor of two, by consideration of a long cylinder with capped ends)
and [1] for another paper which uses the result.

1we will adopt the convention that a point x ∈ M is sent to a point x ∈ R
n by the immersion.
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It is hard to look at this estimate for long without speculating that it is, in fact, a
special case of a stronger simpler estimate, and in [6] we conjectured that

dext <
1

π

∫
M

|H | dμ, (1.2)

to which one could apply the Cauchy–Schwarz inequality to deduce (1.1) with the
(conjectured) optimal constant.

In this paper, we prove (1.2) with the constant 1
π

weakened to 32
π

, but with the
estimate strengthened by replacing the extrinsic diameter dext with the intrinsic di-
ameter dint := maxx,y∈M distM(x, y). We also generalise it to any dimension, and
codimension.

We remark that in the case that M is a surface of constant mean curvature H

immersed in R
3, we established in [5] that

dext ≤ A|H |
2π

,

which is twice as strong as (1.2). Equality is then achieved when M is a sphere.
The methods required for that are entirely different, relying on special properties
of Jacobian determinants. We also point out that if one is willing to weaken the
inequality (1.2) by replacing |H | by the norm of the second fundamental form (and
adjusting the constant 1

π
) then one can proceed directly by a slicing argument ([4]).

In order to work in any codimension in the following theorem, we will work now
with the mean curvature vector H . Our normalisation is that for the unit sphere in
R

n, the vector H should be the inward unit vector.

Theorem 1.1. For n > m ≥ 1, suppose that M is an m-dimensional closed (com-
pact, no boundary) connected manifold smoothly immersed in R

n. Then its intrinsic
diameter dint and its mean curvature H are related by

dint ≤ C(m)

∫
M

|H |m−1 dμ. (1.3)

We can take C(2) = 32
π

.

Aside from the works already cited, the closest precedent for this theorem is our
work on diameter estimates for intrinsic manifolds evolving under Ricci flow [7].
In the present paper a core tool will be the Michael–Simon Sobolev inequality
Lemma 2.1, originally from [2]; in the Ricci flow setting we used the direct ana-
logue of Michael and Simon’s result, which is the Ricci flow log-Sobolev inequality
implied by the monotonicity of Perelman’s W -entropy (see [3], [8]).

At the core of the proof of (1.1) was the following assertion that one cannot
simultaneously have small area and small curvature in a ball within the surface.
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Given x ∈ M2, we denote the subset of M immersed inside the open extrinsic ball
in R

3 centred at x of radius r > 0 by Bext(x, r), and its area by Aext(x, r). Then for
all r > 0, we have

π ≤ Aext(x, r)

r2 + 1

4

∫
Bext(x,r)

|H |2 dμ. (1.4)

This type of estimate is from [4], and with these constants (which are each sharp)
from [6]. By applying it for fixed, carefully chosen r > 0, and various centres x ∈ M,
one can derive (1.1).

At the core of the present paper is a refined version of (1.4), which can be con-
sidered a companion to Theorem 4.2 in [7]. Given x ∈ Mm, we denote the intrinsic
open ball in M centred at x and of (intrinsic) radius r > 0 by B(x, r), and its volume
by V (x, r). By analogy with [7], when m ≥ 2 we define, for R > 0, the maximal
function

M(x, R) := sup
r∈(0,R]

r− 1
m−1 [V (x, r)]− m−2

m−1

∫
B(x,r)

|H | dμ,

and measure collapsedness by

κ(x, R) := inf
r∈(0,R]

V (x, r)

rm
.

Lemma 1.2. For n > m ≥ 2, suppose that M is an m-dimensional manifold smoothly
immersed in R

n, which is complete with respect to the induced metric. Then there
exists a constant δ > 0 dependent only on m such that for any x ∈ M and R > 0, at
least one of the following is true:

(i) M(x, R) > δ;
(ii) κ(x, R) > δ.

In the case of surfaces (m = 2) in R
n, we can set δ = π

8 .

It is worth extracting the main content of this lemma in the case that M is a closed
surface.

Corollary 1.3. Suppose that M2 is a closed surface immersed in R
n, and x ∈ M.

Then

sup
r>0

1

r

∫
B(x,r)

|H | dμ >
π

8
. (1.5)

Note that for any M, the quantity we are maximizing on the left-hand side of (1.5)
is made arbitrarily small by sending r > 0 to either zero or infinity, but the corollary
says that there is always some intermediate r > 0 where it has a good positive lower
bound.
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2. Estimates relating curvature and volume

In this section we prove Lemma 1.2. The main input to the proof will be the Michael–
Simon Sobolev inequality:

Lemma 2.1. In the setting of Lemma 1.2, there exists a constant σ > 0 dependent
only on m such that if f ∈ W 1,1(M) then

σ‖f ‖
L

m
m−1

≤ ‖∇f ‖L1 + m‖f H‖L1 .

In the case that m = 2, we may take σ(2) = √
2π .

For the original proof, see [2]. As for the m = 2 case, we give a proof with the
explicit σ(2) in the appendix, based on ideas of Leon Simon as we describe there.

Armed with Lemma 2.1, we can prove Lemma 1.2.

Proof. Suppose, with a δ > 0 to be chosen later, that M(x, R) ≤ δ. Then for all
r ∈ (0, R], ∫

B(x,r)

|H | dμ ≤ δr
1

m−1 [V (x, r)]m−2
m−1 . (2.1)

Note that for fixed x, V (r) := V (x, r) is a locally Lipschitz function of r > 0.
Indeed, one could locally give an upper bound for the Lipschitz constant in terms of
a local lower bound for the Ricci curvature. In particular, V (r) is differentiable for
almost all r > 0. For such r ∈ (0, R], and any μ > 0, define a Lipschitz cut-off
function f on M by

f (y) =

⎧⎪⎨
⎪⎩

1, y ∈ B(x, r),

1 − 1
μ
(distM(x, y) − r), y ∈ B(x, r + μ)\B(x, r),

0, y /∈ B(x, r + μ).

If we now apply the Michael–Simon estimate from Lemma 2.1, we find that

σV (r)
m−1
m ≤ σ‖f ‖

L
m

m−1
≤ 1

μ
(V (r + μ) − V (r)) + m‖H‖L1(B(x,r+μ)),
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and letting μ ↓ 0, we deduce that

σV
m−1
m ≤ dV

dr
+ m‖H‖L1(B(x,r)).

By (2.1) this gives

dV

dr
+ mδr

1
m−1 V

m−2
m−1 − σV

m−1
m ≥ 0. (2.2)

Let us now assume that δ > 0 is sufficiently small that δ < ωm, where ωm is the
volume of the unit ball in R

m, and define a function v(r) := δrm. Computing

dv

dr
+ mδr

1
m−1 v

m−2
m−1 − σv

m−1
m = (mδ + mδ

2m−3
m−1 − σδ

m−1
m )rm−1,

we see that by choosing δ > 0 sufficiently small, depending only on m, we will have
(because m ≥ 2)

dv

dr
+ mδr

1
m−1 v

m−2
m−1 − σv

m−1
m ≤ 0. (2.3)

Note that if m = 2, because σ(2) = √
2π , we are free to choose δ = π

8 in order
to satisfy (2.3) and the previous constraint δ < ω2 = π . Given (2.2) and (2.3) and
the fact that V (r)/rm → ωm as r ↓ 0, while v(r)/rm = δ < ωm, we deduce that
V (r) > v(r) for all r ∈ (0, R] and hence

κ(x, R) = inf
r∈(0,R]

V (x, r)

rm
> δ,

as desired. �

3. Diameter control

We now wish to combine Lemma 1.2 with a covering argument, along the lines of [7],
in order to prove Theorem 1.1.

Proof. We may assume that m ≥ 2 since the case m = 1 is trivially true with
C(1) = 1

2 . Choose R > 0 sufficiently large so that the total volume of the manifold
is less than δRm, where δ is given by Lemma 1.2. In particular, for all z ∈ M, we must
have κ(z, R) ≤ V (z,R)

Rm ≤ δ, so by Lemma 1.2, we can be sure that M(z, R) > δ. Un-
ravelling the definition of the maximal function, and applying the Hölder inequality,
we see that there exists r = r(z) such that

δ < r− 1
m−1 V (z, r)−

m−2
m−1

∫
B(z,r)

|H | dμ

≤ r− 1
m−1

(∫
B(z,r)

|H |m−1 dμ

) 1
m−1

,

(3.1)
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and hence

r(z) ≤ δ1−m

∫
B(z,r(z))

|H |m−1 dμ. (3.2)

Now let x, y ∈ M be any two extremal points, by which we mean that dint =
distM(x, y), and let � ⊂ M be any shortest geodesic connecting x and y. The set
of balls B(z, r(z)) with z ∈ � is clearly a covering of �. By a minor perturbation of
the covering argument in [7, Lemma 5.2], we know that for any λ ∈ (0, 1

2 ), we can
find a sequence of points {zi} ⊂ � such that the balls {B(zi, r(zi))} are disjoint and
cover at least a fraction λ of the whole of �:

λdint ≤
∑

i

2r(zi).

Combining with (3.2), we may then estimate

dint ≤ 2

λ

∑
i

r(zi) ≤ 2

λ
δ1−m

∑
i

∫
B(zi ,r(zi ))

|H |m−1 dμ

≤ 2

λ
δ1−m

∫
M

|H |m−1 dμ.

(3.3)

Since we may take λ as close as we like to 1
2 , we arrive at the desired estimate

dint ≤ 4δ1−m

∫
M

|H |m−1 dμ. (3.4)

Note that in the case m = 2, we can then give the coefficient 4δ1−m explicitly as 32
π

since δ = π
8 by Lemma 1.2. �

4. Appendix

It is a well-known fact, due to but not published by Leon Simon, that the isoperimetric
inequality holds on a minimal surface in Euclidean space, with a constant optimal up
to a factor of 2. (In conventional notation, this says that 2πA ≤ L2.) It is perhaps
less well appreciated that his same proof gives an almost-optimal Sobolev inequality
on an arbitrary complete immersed surface, as claimed in Lemma 2.1, and we sketch
the proof in this appendix.

First, note that by replacing f by |f |, we may assume that f ≥ 0, and by
approximation, we may assume that f is smooth with compact support.

The argument relies on two applications of the first variation formula∫
M

divM 
 = −2
∫

M

 · H , (4.1)
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where 
 is a vector field in R
n defined on the surface. (We have adopted the conven-

tions of [6].) One may compute that

divM
x

|x|2 = 2|x⊥|2
|x|4 ; (4.2)

divM
x

|x| = 1

|x| + |x⊥|2
|x|3 ≥ 1

|x| , (4.3)

where x⊥ is the projection of the vector x onto the normal space at the point x.
Consequently, by applying (4.1) first with 
(x) = f (x) x

|x|2 , if the immersion of M

maps over the origin 0 ∈ R
n, we have

−2πf (0)−2
∫

M
f

x

|x|2 ·H =
∫

M
divM

(
f

x

|x|2
)

=
∫

M

(
∇f · x

|x|2 + 2f
|x⊥|2
|x|4

)
,

and thus

2πf (0) ≤
∫

M

( |∇f |(x)

|x| + 2f (x)|H |(x)

|x|
)

dx. (4.4)

Moreover, by applying (4.1) with 
 = f (y)
y
|y| , we have

−2
∫

M
f

y

|y| · H =
∫

M
divM

(
f

y

|y|
)

=
∫

M

(
y · ∇f

|y| + f divM
y

|y|
)
,

and thus by (4.3) (with x replaced by y) we find that∫
M

f (y)

|y| dy ≤
∫

M
(|∇f | + 2f |H |). (4.5)

Returning to (4.4) with the origin translated to an arbitrary point y ∈ R
n on the

surface, then multiplying by f (y) and integrating, we have∫
M

2πf 2(y) dy ≤
∫

M

[∫
M

( |∇f |(x)

|x − y| + 2f (x)|H |(x)

|x − y|
)

dx

]
f (y) dy

=
∫

M
(|∇f |(x) + 2f (x)|H |(x))

(∫
M

f (y)

|x − y| dy

)
dx.

(4.6)

This we can simplify using (4.5), this time with the origin translated to the point x,
to give∫

M
2πf 2(y) dy

≤
∫

M
(|∇f |(x) + 2f (x)|H |(x))

(∫
M

(|∇f |(y) + 2f (y)|H |(y))dy

)
dx

=
(∫

M
|∇f | + 2f |H |

)2

,

(4.7)

which completes the proof.
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